大气边界层中的湍流结构与特征
大气边界层中的湍流湍流衰减分析

大气边界层中的湍流湍流衰减分析大气边界层是指大气和地表之间的相互作用区域,是大气中湍流产生和传播的重要区域。
湍流在大气边界层中存在着湍流能量的传递和湍流衰减的过程,对大气层的运动和气象现象有着重要影响。
本文将探讨大气边界层中湍流的衰减机制及其分析方法。
一、湍流衰减的机制湍流在大气边界层中的衰减主要受到以下几个因素的影响:1. 摩擦:地表的摩擦作用能够减弱湍流能量的传递,使湍流能量逐渐转化为内能而减弱。
2. 湍流混合:湍流传播过程中,不同高度上的气体发生混合,导致湍流的衰减。
3. 温度变化:温度的垂直变化会导致湍流的衰减,温度层结不利于湍流的发展。
二、湍流衰减的分析方法为了分析大气边界层中湍流的衰减情况,研究者们提出了多种方法和模型,下面介绍一些常用的分析方法:1. 相关性分析:通过分析湍流之间的相关性,可以了解湍流的传播和衰减过程。
相关性分析可以通过测量湍流速度、温度等参数的时间序列数据,并进行相关性计算得到。
2. 地面观测:利用地面观测站点测量湍流参数,如湍流强度、湍流能谱等,通过对观测数据的分析可以得到湍流衰减的信息。
3. 模型模拟:建立湍流衰减的数学模型,通过模拟计算得到湍流在大气边界层中的传播和衰减过程。
常用的模型包括Reynolds平均Navier-Stokes方程和湍流动能方程等。
三、湍流衰减的研究进展近年来,随着观测技术和数值模拟能力的提高,湍流衰减的研究取得了一系列重要的进展:1. 精细观测:通过使用多种精密仪器和观测手段,可以获取更准确的湍流参数数据,从而推动湍流衰减的研究。
2. 大气模式模拟:利用大气模式模拟湍流在大气边界层中的传播和衰减过程,可以揭示湍流衰减的物理机制和动力学过程。
3. 数据分析和统计方法:结合数据分析和统计方法,可以对湍流衰减进行更全面和系统的研究,为湍流的预测和控制提供理论依据。
综上所述,湍流在大气边界层中的衰减是一个复杂的物理过程,受到多种因素的影响。
湍流的特征ppt课件

最新版整理ppt
8
湍流的主要特征
• (5)耗散性(Dissipation)。湍流运动由于分子粘性作用总要耗散能 量,只有不断从外部供给能量,湍流才能维持.随机运动,比如重力波、 声波都不是湍流,因为它们的粘性耗散很小。随机波和湍流的本质区 别是有无耗散。
• (6)连续性(Continuum)。湍流是一种连续介质的运动现象,即使 最小尺度的湍流也远远大于任何的分子长度尺寸,因此满足连续介质 力学的基本规律,例如N-S方程。
• Hinze对湍流的定义为:只提不规则运动不全面,“湍流的 各个量在时间和空间上表现出随机性。
• 周培源:湍流为一种不规则的涡旋(eddy)运动。 • ………… • 到目前为止,科学界还无法给出湍流的严格的科学定义
最新版整理ppt
7
湍流的主要特征
• (1)不规则性(Irregularity)。这是所有湍流的特性,从动力学的观点 来看,湍流必定是不可预测的,研究湍流大多是用统计的方法。
最新版整理ppt
11
从层流到湍流(二)
从层最流新到版整湍理流ppFt risch (1995)
12
Reynolds数
• 层流~湍流的判据
Re UL
• U:特征速度 • L:特征尺度 • v:分子粘性力
UL: 外力 v: 内力
最新版整理ppt
13
最新版整理ppt
14
分析方法
• 未知数多于方程个数
1.1湍流的特征
最新版整理ppt
1
什么是湍流?——湍流现象
最新版整理ppt
2
最新版整理ppt
3
最新版整理ppt
4
平流层 对流层 边界层
最新版整理ppt
大气边界层中的湍流能量谱分析

大气边界层中的湍流能量谱分析大气边界层是地球上大气与地表之间的过渡区域,在大气科学研究中具有重要的意义。
湍流是大气边界层中广泛存在的一种复杂运动形式,而湍流能量谱是湍流研究中常用的分析工具之一。
本文将探讨大气边界层中的湍流能量谱分析方法及其应用。
一、湍流能量谱的基本概念湍流能量谱是描述湍流内部运动能量分布的一种数学工具,它可以分析不同尺度上湍流能量的分布状况。
在大气边界层中,湍流能量谱通常是通过测量风速的时间序列数据得到的。
二、湍流能量谱的计算方法湍流能量谱的计算方法主要包括时间积分法和空间积分法两种。
时间积分法是将风速时间序列数据进行傅里叶变换,得到频谱密度函数。
空间积分法则是将风速场离散化,通过傅里叶变换得到分析波数上的湍流能量谱。
三、湍流能量谱的物理解释湍流能量谱可以帮助我们理解湍流在不同尺度上的能量转移过程。
通常情况下,湍流能量谱呈现出一个范围较宽的能量分布,存在着能量聚集在大尺度和小尺度的现象。
根据湍流能量谱的特点,我们可以进一步分析湍流的动力机制和能量传递规律。
四、湍流能量谱在大气边界层研究中的应用湍流能量谱在大气边界层研究中有广泛的应用。
首先,通过湍流能量谱的分析,我们可以了解大气边界层中湍流的空间分布特征,为风能利用和空气污染传输等问题提供参考依据。
其次,湍流能量谱还可以用于模拟大气边界层湍流,对天气和气候预报、飞行安全等问题具有重要意义。
五、湍流能量谱分析的挑战与展望在湍流能量谱分析中面临着数据质量、计算方法等方面的挑战。
未来的研究可以结合更多的观测数据和模拟方法,提高湍流能量谱分析的精度和可靠性。
此外,研究人员还可以探索湍流能量谱与其他物理量之间的关系,以进一步完善湍流能量谱的理论模型和应用。
六、结论湍流能量谱作为分析大气边界层中湍流特征的重要工具,在大气科学研究中扮演着重要的角色。
通过湍流能量谱的分析,我们可以深入了解湍流在不同尺度上的能量分布特征,揭示湍流的动力机制和能量传递规律。
动力气象学 (8.1)--大气边界层

• 边界条件:
上边界,在离开地面足够高的地方(边界层顶)湍流粘性 力足够小,那里的风变为地转风
当z 时,u ug , v vg
下边界,当z=0时,u=0,v=0
• 为了数学处理方便,还可以进一步简化,取x轴与等压线 平行,有 vg=0
• 引进复数算法求解方程
令 u iv,D (u ug ) i(v vg ) ua iva
(2)风向有规则地随高度右旋;
(3)受地面热力作用影响大,低层大气温度分布呈现出很 大的垂直梯度;
重要性:
(1)人类活动区 (2)43%入射太阳能在此被吸收、而后返回大气 (3)几乎所有水汽在此被接受,并通过水汽提供大气
内能的50% (4)由于摩擦力的存在,几乎消耗整个大气动能的一
半左右 行星边界层既是整个大气的主要能量源,也是大气的动 量汇,它在地球表面和自由大气之间的热量、水汽和动量的 交换中起着重要作用,对天气系统的发展演变有很大影响。
§1.1 常值通量层中的风速垂直分布(对数律和综合幂次律)
• 中性大气中的对数律:
自由大气
u u * ,
z z
边界条件 z z0时,u 0
推出 u u * ln z
z0
Ekman层 (100m-1km)
边 界
层
近地层(2-100m)
贴地层(0-2m)
• 层结大气中的综合幂次律
一、Ekman抽吸
利用不可压连续方程:
u v w 0 w (u v )
x y z
z x y
hT w
hT u v
0
z
dz
0
(
x
边界层重要知识点归纳

边边界界层层重重要要知知识识点点归归纳纳第第一一章章大气边界层的定义:大气的最低部分受下垫面(地面)影响的层次,或者说大气与下垫面相互作用的层次。
大气边界层的厚度差异很大,平均厚度为地面以上约1km 的范围,以湍流运动为主要特征。
还可细分为近地层(大气边界层下部约1/10的厚度内)和Ekman 层。
大气边界层的主要特征:(1)大气边界层的主要运动形态一般是湍流:不规则性和脉动性(2)大气边界层的日变化:气象要素的空间分布具有明显的日变化。
【大气边界层湍流:①机械湍流:风切变,机械运动;②热力湍流:辐射特性的差异;】大气边界层的分层:(1)粘性副层(微观层)(2)近地层(常通量层)(3)Ekman 层(上部摩擦层)【(1).粘性副层(微观层):分子输送过程处于支配地位,分子切应力远大于湍流切应力。
(2).近地层(常通量层):大气受地表动力和热力影响强烈,气象要素随高度变化激烈,运动尺度小,科氏力可略。
(3).Ekman 层(上部摩擦层):在这一层里,湍流粘性力、科氏力和气压梯度力同等重要,需要考虑风随高度的切变。
】大气边界层厚度:边界层厚度的时空变化很大,空间范围从几百米到几千米。
海洋上:由于海水上层强烈混合使海面温度日变化很小。
陆地上,边界层具有轮廓分明、周日循环发展的结构。
大气边界层结构:(1)混合层: (2)残留层:日落前半小时,湍流在混合层中衰减形成的空气层,属中性层结。
(3)稳定边界层:夜间,与地面接触的残留层底部逐渐变为稳定边界层。
其特点为在静力稳定大气中有零散的湍流,虽然夜间近地面层风速常常减弱或静风,但高空200m 左右,风却由于低空急流或夜间急流能达到超地转风。
第二章湍流:流体运动杂乱而无规律性(运动具有脉动性),不同层次的流体质点发生激烈的混合现象,流体质点的运动轨迹杂乱无章,其对应的物理量随空间激烈变化。
雷诺数:——湍流判据,特征Re 数定义: =特征惯性力/特征粘性力;它表示了流体粘性在流动中的相对重要性:(1)Re 》1,粘性力相对小(可忽略),大Re 数流体,弱粘性流;(2)Re 《1,惯性力相对小(可忽略),小Re 数流体,强粘性流; ν/Re UL ≡(3)Re=1,二者同等重要,一般粘性流;湍流的基本特征:(1)随机性;(2)非线性;(3)扩散性;(4)涡旋性;(5)耗散性湍流的定量描述:湍流运动的极不规则性和不稳定性,并且每一点的物理量随时间、空间激烈变化,湍流的杂乱无章极随机性可以用概率论及数理统计的方法加以研究。
湍流与层流_湍流研究概述

第一篇 大气的组成与物理特性 第一章 第二章 第三章 第四章 第五章 大气的气体成份 大气中的粒子群 大气的运动、能量与构造 大气的光学特性 大气的电学特性1第二篇 大气湍流粘性流体的两种形态: 层流和湍流。
层流是流体运动中较简单的状态, 普遍的却是湍流。
2湍流研究的意义湍流的研究与国防建设和国民经济中 的航空、船运、环境保护、气象、化工、 冶金、水利、医学等学科密切相关,如果 能掌握它的运动规律,对它进行合理的应 用和有效的控制,那么对基础研究与实际 应用将有重大的意义。
3湍流研究的成果人们对湍流结构、湍流边界层、湍流 剪切流、湍流的传热传质、湍流扩散、湍 流统计模型、大气湍流、晴空湍流、等离 子湍流、湍流测量等问题进行了广泛的研 究,并取得了丰硕的成果。
4本节的内容湍流的一般定义和描述; 湍流与层流的区别; 湍流理论发展的历史; 湍流理论简介; 湍流的特点; 大气湍流的复杂性; 湍流研究技术的发展。
5湍流的一般定义和描述1. 湍流是随机的(Reynolds,Taylor,Von Karman ,Hinze等),又具有拟序结 构。
2. 流体的湍流运动是由各种大小和涡量 不同的涡旋叠加而成的,其中最大涡 尺度与流动环境密切相关,最小涡尺 度则由粘性确定;流体在运动过程中, 涡旋不断破碎、合并,流体质点轨迹 不断变化。
6湍流的一般定义和描述(续)3. 在某些情况下,流场中流体呈非线性 完全随机的运动;在另一些情况下, 流场中的流体随机运动和拟序结构并 存。
4. 湍流中的特征呈现连续的变化,人们 将N—S方程作为湍流运动的基本方程 。
返回7湍流与层流的区别共同点 区别一:控制方程不同 区别二:性质上不同 两者的联系与转换 返回8粘性流体运动的一般性质(1)运动的有旋性; (2)能量的耗损性; (3)涡旋的扩散性。
返回9流体的控制方程层流是一种有序的确定性的流体运动,流体物 理量除了在分子热运动的微观尺度上有随机 的起伏外,在宏观尺度上都是确定性的。
第9章 大气边界层

?
这些通量可以通过除以湿空气密度而重新定义成运动学形式,
运动学通量 符号 ~ M M 单位
质量 热量 湿度 动量 污染物
a ~ QH QH a C pa
R ~ R
F
a ~ F
~ a
a
m s m K s kg w m kg a s m m s s kg 污 m kg a s
(1)混合层(ML)
• 混合层主要生成机制是对流,所以在晴天,ML的 发展依 赖于地面的太阳加热。(?) • 混合层顶部的稳定层作用?---顶盖,限制对流---卷挟带 • 整个混合层的风都是次地转风,风速分布?(风速向下递 减,在近地面处趋近于零) • 水汽混合比随高度增加而减小,为什么? • 大部分污染物是靠近地球表面
风
垂直输运 厚度
表面层中近似为对数风速廓线,通常 为次地转的,并与等压线相交
湍流占优势 变化于100米到3公里之间,陆上有日 变化
几乎是地转的
平均风和积云尺度占优势 变化小,在8-18公里之间, 时间变化慢
进一步体会边界层重要性:
每天预报实际上是边界层预报; 污染物积聚在边界层中; 雾发生在边界层中; 气团实际上是地球不同部分大气边界层;
边界层厚度与结构
Subsidence(下沉) updrafts Divergence(辐散) 高压(H) (上升)
Convergence(辐合) 低压(L)
低压区边界层 高度如何确定?
边界层厚度与结构
• • • • • • • • • BL(Boundary Layer)边界层 CL(Cloud Layer)云层 FA(Free Atmosphere)自由大气 IBL(Internal Boundary Layer)内边界层 ML(Mixed Layer)混合层 RL(Residual Layer)剩余层 SBL(Stable Boundary Layer)稳定边界层 SCL(Subcloud Layer)云下层 SL(Surface Layer)表面层:占边界层10%的底部区域
大气湍流基础

系综平均,对N个同样的试验求和:
e
A(t, s)
1 N
N 1
Aj (t, s)
j0
各态遍历:对于均匀平稳的湍流而言,时间平均,空间平 均及系综平均这三种平均都相等。
雷诺平均
A A a, B B b A Aa Aa Aa
a 0
AB (A a)(B b)
AB aB Ab ab AB 0 0 ab AB ab
从层流到湍流 Frisch (1995)
Reynolds数
• 层流~湍流的判据
Re UL
• U:特征速度 • L:特征尺度 • v:分子粘性力
UL: 外力 v: 内力
边界层气象--湍流
大气边界层中湍流的成因
• 热力原因:地面的太阳加热使暖空气热泡 上升,形成湍涡。
• 动力原因:地面对气流的摩擦拖曳力产生 风切变,常常演变为湍流。
u j 0 x j uj 0 x j
运动方程:
dw g 1 p
dt
z
取平均:
dw w g dp p
dt
dz
1
d
w w dt
(1
)g ( p
z
p)
1
d
w w dt
g 1
p z
1
p t
g
假设: w 0
1
d
w w dt
g 1
0
湍流统计参数
• 平稳湍流、均匀湍流、各向同性湍流
1、方差 (湍流强度 湍流平均动能) 2、相关函数和相关系数 (同一变量) 3、协方差 (不同变量) 4、湍流尺度 相关系数的积分
作业2:
• U(m/s) 5, 6, 5, 4, 7, 5, 3, 5, 4, 6 • W(m/s) 0, 1, -1, 0, -2, 1, 3, 3, -2, 1 • 求解平均速度, 方差,协方差,相关系数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大气边界层中的湍流结构与特征在大气边界层中,湍流结构与特征是气象学和气候学中一个重要的研究领域。
湍流是大气层中不规则的气流运动,它对于气候变化、空气污染传输、能量传输和风能等方面都有着重要的影响。
本文将从湍流的定义起源、湍流结构、湍流特征以及湍流模拟方法等方面进行探讨。
一、湍流的定义起源
湍流这一概念起源于法国物理学家雷诺(Osborne Reynolds)在19世纪末所做的实验研究。
他发现,当一种流体经过管道或流过某个物体时,流体在局部会出现不规则的波动和回旋现象,这种现象被称为湍流。
湍流是一种具有不规则、无定形的流动状态,其速度变化无法预测,是一种混沌状态。
二、湍流结构
湍流的结构是指湍流中存在的各种大小不等的涡旋。
湍流结构的尺度范围非常广泛,从微观尺度的涡旋到宏观尺度的大涡旋,相互作用形成湍流层次结构。
在大气边界层中,湍流结构主要可以分为三个尺度范围:小尺度湍流、中尺度湍流和大尺度湍流。
1. 小尺度湍流:小尺度湍流是指尺寸小于100米的湍流结构,主要由涡旋交替出现和衰减所组成。
这些小尺度湍流结构的产生是由于地面摩擦力的作用和地面不均匀性所引起。
2. 中尺度湍流:中尺度湍流的尺度范围在100米至10千米左右,
主要由冷暖气流交替出现的湍流结构所组成。
中尺度湍流在大气环流
中起着重要的作用,对于气候表现和气象现象的变化具有一定的影响。
3. 大尺度湍流:大尺度湍流是指尺度大于10千米的湍流结构,通
常由中尺度湍流的相互作用和结合所形成。
大尺度湍流在气象学中占
据重要地位,它直接影响着大气边界层的热力结构和风场分布。
三、湍流特征
湍流具有多种特征,包括二维性、统计性、扩散性和涡旋的结构等。
1. 二维性:在某些特定的条件下,湍流可以表现出二维性,即在一
定的平面内运动。
这种情况通常出现在强有力的外部驱动下,例如地
壳运动或者外部气流的强烈干扰。
2. 统计性:湍流的运动是不稳定的,无法精确预测,但是可以通过
统计方法来研究湍流的平均性质。
湍流的统计特征包括湍流强度、相
关性、频谱等。
3. 扩散性:湍流的运动具有高度混合和扩散的特性,这使得湍流在
大气中的物质传输和能量传输具有高效性。
四、湍流模拟方法
为了深入了解湍流的结构与特征,科学家们发展了多种湍流模拟方法。
目前常用的湍流模拟方法主要包括直接数值模拟(DNS)、大涡
模拟(LES)和雷诺平均纳维-斯托克斯方程模拟(RANS)等。
1. 直接数值模拟(DNS):DNS是一种高度精确的湍流模拟方法,它基于纳维-斯托克斯方程对流体运动进行直接数值求解。
DNS可以精
确地计算各种尺度的涡旋结构和湍流特征。
2. 大涡模拟(LES):LES是一种介于DNS和RANS之间的湍流模拟方法,它将尺度较大的涡旋直接模拟,而将尺度较小的涡旋通过模
型参数化处理。
LES在模拟大尺度湍流结构上有很好的表现,但对小
尺度湍流结构的模拟较差。
3. 雷诺平均纳维-斯托克斯方程模拟(RANS):RANS是一种常用
的湍流模拟方法,它基于雷诺平均假设将湍流场分解成平均分量和涨
落分量,并通过求解雷诺平均纳维-斯托克斯方程来模拟湍流平均流动。
总结:
大气边界层中的湍流结构和特征是气象学和气候学的重要领域之一。
湍流的定义起源于雷诺的实验研究,湍流结构可以分为小尺度湍流、
中尺度湍流和大尺度湍流。
湍流具有二维性、统计性、扩散性和涡旋
的结构等特征。
为了研究湍流,科学家们发展了直接数值模拟、大涡
模拟和雷诺平均纳维-斯托克斯方程模拟等不同的模拟方法。
通过深入
研究湍流结构与特征,我们可以更好地理解大气边界层中的气流运动
以及其对气候和气象现象的影响。