微积分求极限的方法(完整版)
微积分基本公式与计算

微积分基本公式与计算微积分是数学的一个分支,主要研究函数的极限、导数、积分等基本概念和基本运算法则。
本文将介绍微积分的基本公式和计算方法。
1.极限:极限是微积分的基本概念之一,用来描述函数在特定点处的趋势。
极限的计算有以下几个基本公式:-基本极限公式:- $\lim_{x\to c} x = c$:常数函数的极限是其本身。
- $\lim_{x\to c} k f(x) = k \lim_{x\to c} f(x)$:常数倍法则。
- $\lim_{x\to c} (f(x) + g(x)) = \lim_{x\to c} f(x) +\lim_{x\to c} g(x)$:和法则。
- $\lim_{x\to c} (f(x) \cdot g(x)) = \lim_{x\to c} f(x)\cdot \lim_{x\to c} g(x)$:积法则。
- $\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{\lim_{x\to c}f(x)}{\lim_{x\to c} g(x)}$(假设$\lim_{x\to c} g(x) \neq 0$):商法则。
-重要极限:- $\lim_{x\to \infty} \frac{1}{x} = 0$:无穷小的定义。
- $\lim_{x\to 0} \frac{\sin x}{x} = 1$:著名的夹逼定理的应用。
- $\lim_{n\to \infty} (1+\frac{1}{n})^n = e$:自然对数的底数。
2.导数与微分:导数是函数在其中一点处的变化率,表示函数的斜率。
导数的计算有以下几个基本公式:-基本导数公式:- $\frac{d}{dx} (k f(x)) = k \frac{d}{dx} f(x)$:常数倍法则。
- $\frac{d}{dx} (f(x) + g(x)) = \frac{d}{dx} f(x) +\frac{d}{dx} g(x)$:和法则。
微积分中求极限的常用方法_王燕华

=lim [(1+sin
x→∞
2 ) x
sin
]
x
f(x) 存在时 , 式子是分别对分子分母求导数再求极 g(x)
=e
1
注意 :在利用重要公式时要注意条件 lim
x→0
x x =1,lim(1+x) x→∞ sinx
=e , 但 lim
x→∞
sinx 1 x =0 ,lim(1+ ) ≠e. x→0 x x
x →0
ln (1+3xsinx ) tanx
2
=lim
x →0
3x x
2
2
=3.
2. 极限四则运算法则
利用极限四则运算法则的条件是充分而非必要的。 因 此 ,在 对 极 限 四 则 运 算 法 则 进 行 利 用 时 ,一 定 要 逐 一 对 所 给的函数进行验证。 看其是否满足极限四则运算法则条 件 , 若 满 足 只 要 把 x0 代 替 函 数 中 的 x 就 行 了 ; 若 不 满 足 条 件 的 ,不 能 对 其 直 接 利 用 。 例 如 对 于 分 式 函 数 直 接 代 入 后 如 果 分 母 为 零 ,这 样 代 入 就 没 有 意 义 。 我 们 应 对 函 数 进 行 适 当 的 分 解 因 式 、通 分 、分 子 分 母 有 理 化 、分 子 分 母 同 除 最 高 次 幂 、三 角 函 数 等 恒 等 变 形 ,使 其 符 合 条 件 后 ,再 利 用 极 限 四则运算法则。 例 4 : 求 lim
%
2
2 % = 姨5 3
结 论 : ① 在 分 式 函 数 求 极 限 lim
x →x 0
=lim
x →0
3x 1
极限计算的13种方法示例

极限计算的13种方法示例极限是微积分中的重要概念,它描述了函数在某一点附近的行为。
在计算极限时,我们可以利用一些常见的方法来求解。
下面将介绍13种常见的极限计算方法。
一、代入法代入法是极限计算中最简单的方法之一。
当我们需要计算一个函数在某一点的极限时,只需要将该点的横坐标代入函数中,求得纵坐标即可。
二、夹逼定理夹逼定理是一种常用的极限计算方法,它适用于那些难以直接计算的函数。
夹逼定理的核心思想是通过找到两个函数,它们在极限点附近夹住我们要求的函数,从而求得该函数的极限值。
三、无穷小量法无穷小量法是极限计算中常用的方法之一。
它利用了无穷小量的性质,将函数中的高阶无穷小量忽略不计,只考虑最高阶的无穷小量来计算极限。
四、洛必达法则洛必达法则是一种常用的极限计算方法,它适用于求解0/0型和∞/∞型的极限。
该法则的核心思想是将函数的极限转化为两个函数的导数的极限,然后通过求导计算得到极限值。
五、泰勒展开法泰勒展开法是一种常用的近似计算极限的方法。
它利用了泰勒级数展开的性质,将函数在某一点附近进行泰勒展开,然后通过截断级数来计算函数的极限。
六、换元法换元法是一种常用的极限计算方法,它适用于那些存在复杂变量关系的函数。
通过引入新的变量来替代原来的变量,可以简化函数的形式,从而更容易计算极限。
七、分子有理化分子有理化是一种常用的极限计算方法,它适用于那些含有根式的函数。
通过将根式的分子有理化,可以将原函数转化为一个分式,从而更容易计算极限。
八、分部积分法分部积分法是一种常用的极限计算方法,它适用于那些含有积分的函数。
通过将原函数进行分部积分,可以将原函数转化为一个更简单的函数,从而更容易计算极限。
九、换元积分法换元积分法是一种常用的极限计算方法,它适用于那些含有复杂变量关系的函数。
通过引入新的变量来替代原来的变量,可以简化函数的形式,从而更容易计算极限。
十、二重极限法二重极限法是一种常用的极限计算方法,它适用于那些含有多个变量的函数。
求函数极限的方法与技巧

求函数极限的方法与技巧函数极限是微积分中的重要概念,它描述了函数在某个点或者趋向某个点时的变化规律。
求函数极限的方法与技巧有很多,下面将详细介绍。
1. 直接代入法直接代入法是求函数极限最简单的方法之一。
当函数在某一点或者趋向某一点时,可以直接将该点代入函数中进行计算。
如果得到的结果是有限值,则函数在该点的极限存在且等于该有限值;如果得到的结果是无穷大或者不存在,则函数在该点的极限也相应不存在。
要求函数f(x)在x=1时的极限,可以直接计算f(1)的值,如果得到的值是有限的,那么f(x)在x=1时的极限存在且等于f(1)的值;如果得到的值为无穷大或者不存在,那么f(x)在x=1时的极限也相应不存在。
2. 夹逼定理夹逼定理是求函数极限的重要方法之一,它适用于求极限存在的情况。
夹逼定理的思想是通过找到一个比较“简单”的函数序列,将要求的函数夹在这些函数之间,从而利用这些函数的极限值来判断原函数的极限是否存在。
夹逼定理的具体步骤是:(1) 找到两个函数序列g(x)和h(x),它们分别比要求的函数f(x)小和大;(2) 当x趋向某一点a时,g(x)和h(x)的极限分别为L和M;(3) 如果L=M,则函数f(x)在x趋向a时的极限存在且等于L=M。
要求函数f(x)=x^2sin(1/x)在x=0时的极限,可以采用夹逼定理。
我们知道-1≤sin(1/x)≤1,因此-x^2≤x^2sin(1/x)≤x^2,而当x趋向0时,-x^2和x^2两个函数的极限都为0。
根据夹逼定理,可以得到f(x)在x=0时的极限存在且等于0。
3. 分式分解法对于一些复杂的函数,可以通过将其进行分式分解来求解极限。
分式分解法的思想是将函数表示为分子、分母分别进行分解,并利用极限的四则运算性质来求得要求的极限。
要求函数f(x)=(x^2-1)/(x-1)在x=1时的极限,可以将f(x)进行分解得到f(x)=x+1,从而得到函数在x=1时的极限为2。
16种求极限的方法

16种求极限的方法在微积分中,求极限是一项重要的技巧和方法,用于研究函数在其中一点或趋于其中一点时的行为。
求极限的方法有很多种,下面将介绍16种常见的求极限方法。
1.代入法:将待求极限中的变量替换成极限点处的值,如果代入后得到一个有界的数或者可数收敛,则该极限存在。
2.四则运算法则:利用加法、减法、乘法和除法的性质进行极限运算。
例如,如果两个函数的极限都存在,则它们的和、差、积以及商(除数非零)的极限均存在。
3.夹逼定理:如果两个函数在其中一点附近夹住一个函数,并且夹住的函数的极限存在,则被夹住的函数的极限也存在,并且等于夹住的函数的极限。
4.极限的唯一性:如果存在一个数L是函数f在其中一点的极限,那么该极限是唯一的。
5.极限的有界性:如果函数f在其中一点的极限存在,则函数f在该点附近必定有界。
反之,如果函数f在其中一点附近有界,那么该点处的极限必定存在。
6.无穷小量和无穷大量:无穷小量是指当自变量趋于其中一点时,函数值趋近于零的量,无穷大量是指当自变量趋于其中一点时,函数值趋近于无穷的量。
利用无穷小量和无穷大量的性质,可以简化极限的求解过程。
7. 根式求极限:使用L'Hopital法则来解决根式的极限问题,即将根式转化为分式,再求导数。
8.多项式求极限:将多项式的极限转化为无穷小量的极限,利用低阶无穷小量和高阶无穷小量的性质进行极限计算。
9.取对数法:将函数取对数后,利用对数的性质进行极限计算。
10.换元法:通过进行合适的变量替换,将待求极限转化为更容易求解的形式。
11.不等式运算法:通过使用不等式的性质,对函数进行合理的估计,从而求解极限。
12.导数法则:利用导数的性质,对函数进行极限计算。
例如,利用导数的定义和求导法则可以方便地求解一些函数的极限。
13.递推法:对于一些递归定义的数列或函数,可以通过递推法求解其极限。
14.泰勒展开法:利用函数对应点附近的泰勒展开式,将函数的极限转化为级数的极限,进而求解极限。
大一微积分公式大全

大一微积分公式大全一、极限:1、极限的定义:极限是指当表达式中的参数变量的值趋近某一值时,该表达式的值亦趋近某一值。
2、求极限的基本法则:(1)泰勒定理:一个函数f(x)在a处有连续偏导数,则称f()在a处具有极限。
3、极限的计算:(1)霍纳规则:无穷小问题可按和系数之和除以无穷小的次方进行处理──即把无穷小的序列写成可算的结果。
4、极限的应用:(1)无穷级数的收敛性:有若干的级数,若其绝对值的算术级数收敛,则该级数收敛于某一数L;若其绝对值的算术级数不收敛,则该级数不收敛或无穷大。
二、微分:1、微分的定义:微分是以函数的参数变量为基础,表示函数值在这个参数变量变化时,函数值变化量与这个变量变化量之比。
2、微分的基本法则:(1)拉格朗日法则:函数f(x)的导数可求出f'(x);(2)高斯定理:若f(x)是可导的,那么f(x)的导数是f(x)的先验函数的极限。
3、微分的计算:(1)泰勒级数展开∆:用参数x的泰勒级数展开∆函数,对于变量x,ε是非零常量,可以把Δ函数展开成级数。
(2)积分变换法:用积分变换法计算双变量函数的导数,可以把双变量函数的解析的导数表达式可以表示成积分变换的形式。
四、偏微分:1、偏微分的定义:偏微分是指函数中某一变量随另一变量的变化而变化的微分。
2、偏导数的基本法则:(1)利用极值准则求偏导数:若函数f(x,y)有极大值或极小值,则m,n都为0,其中m,n分别代表x,y方向上的偏导数。
(2)利用拉格朗日法则求偏导数:当函数f(x,y)既有x也有y的参数变量时,拉格朗日法则可以用来求解这样的函数的偏导数的值。
3、偏导数的计算:(1)路径积分法:路径积分法是指将函数f(x,y)在区间[a,b]上做路径积分,根据积分公式来求函数f(x,y)的偏导数。
(2)多项式求偏导数:多项式求偏导数是指将函数f(x,y)表示成多项式形式,根据微积分基本法则,求函数f(x,y)的偏导数。
极限的定义与计算方法

极限的定义与计算方法极限是微积分学中的重要概念,用于描述函数在某一点或者无穷远处的行为。
它在物理学、工程学以及其他应用领域中有着广泛的应用。
本文将介绍极限的定义以及计算方法,并对其在实际问题中的应用进行讨论。
一、极限的定义在微积分学中,极限是用来描述函数在某一点或者无穷远处的趋势的数学概念。
通常用符号lim表示。
给定函数f(x),当自变量x无限接近某一点a时,如果函数f(x)的取值趋近于一个固定的值L,那么就说函数f(x)在x趋近a的过程中有极限,即lim(x→a) f(x) = L。
二、函数极限的计算方法要计算函数的极限,可以使用以下主要的方法:1. 代入法:针对简单的函数,我们可以直接将x的值代入函数,然后计算函数的取值。
例如,要计算lim(x→2) (3x^2 + 2x -1),我们可以将x替换为2,然后计算出函数的值。
2. 分式的化简:当函数为分式形式时,可以通过化简的方法得到更简单的表达式,然后再进行计算。
例如,要计算lim(x→1) (x^2-1)/(x-1),我们可以对分子进行因式分解,然后化简分式,最后再代入x=1进行计算。
3. 极限的性质:极限有一些常用的性质,例如四则运算、乘法法则、除法法则等。
根据这些性质,我们可以将复杂的函数转化为简单的函数,然后再进行计算。
例如,要计算lim(x→0) 2x^3 + 3x^2 - 4x,我们可以将函数拆分为lim(x→0) 2x^3 + lim(x→0) 3x^2 - lim(x→0) 4x,然后分别计算每个部分的极限。
4. 单侧极限:当函数在某点处的左极限和右极限不相等时,我们可以使用单侧极限来描述该点的极限。
左极限表示x从左侧趋近于该点时的极限,右极限表示x从右侧趋近于该点时的极限。
三、极限在实际问题中的应用极限的概念不仅仅是数学中的一个抽象概念,它也具有实际应用价值。
以下是几个极限在实际问题中的应用案例:1. 建模和预测:在物理学或者经济学等领域中,研究人员常常需要建立数学模型来描述各种现象和趋势。
微积分第一课(函数极限).

须注意的几点:
(1)上面三类函数的极限, 它们的 定义须满足一定条件, 也就是 :
X的变化趋势 函数的定义域
x
x x
( m , ) ( , m ) ( , )
这就要求我们, 在求这三类函数极限 时, 一定要注意了函数的定义域. 1 如 : f ( x) 的定义域为x 0, 有 3x 1 1 lim 0, 而 lim 不存在. x x 3x 3x 1 当然 lim 也就不存在了. x 3x
-1000 -0.001
-10000 -0.0001
-100000 -0.00001
… …
6
1 fx = x
4
2
-5
5
10
-2
-4
-6
当自变量x取负值并且绝对值无限 增大时,如果函数f ( x)无限趋近于一 个常数a, 就说当x趋向于负无穷大时, 函数f ( x)的极限是a, 记作: lim f ( x) a,
今天我们要讨论的是函 数的" 单侧" 极限, 即自变量x只能从表示x0的点 的一侧无限趋近于x0时函数f ( x )的 极限.
先考虑函数 x 1 y f ( x) 0 x 1 当x 0时的极限.
(当x 0时) (当x 0时) (当x 0时)
3
2
1
-4 -2
x x0
lim f ( x) a, 也可记作: lim f ( x)也叫做函数f ( x)在点x x0
当x x0时,f ( x) a.
x x0
处的极限。
须注意的几点: ( 1 )x x0时,函数f ( x)的极限,是函数 f ( x)在x0处的局部性质。 (2)定义中,“自变量x无限趋近于x0 " 并不要求函数在x x0处一定有意义, 这里包含两点:第一,x趋近于一个定 点x0的极限 lim f ( x) a是从x趋近于
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一 求极限的方法【考点】求极限1、 近几年来的考试必然会涉及求极限的大题目,一般为2-3题12-18分左右,而用极限的概念求极限的题目已不会出现。
一般来说涉及到的方法主要涉及等价量代换、洛必达法则和利用定积分的概念求极限,使用这些方法时要注意条件,如等价量代换是在几块式子乘积时才可使用,洛必达法则是在0比0,无穷比无穷的情况下才可使用,运用极限的四则运算时要各部分极限存在时才可使用等。
2、 极限收敛的几个准则:归结准则(联系数列和函数)、夹逼准则(常用于数列的连加)、单调有界准则、子数列收敛定理(可用于讨论某数列极限不存在)3、 要注意除等价量代换和洛必达法则之外其他辅助方法的运用,比如因式分解,分子有理化,变量代换等等。
4、 两个重要极限0sin lim 1x xx→= 101lim(1)lim(1)x x x x x e x →∞→+=+=,注意变形,如将第二个式子1lim(1)xx x e→+=中的x 变成某趋向于0的函数()f x 以构造“1∞”的形式的典型求极限题目。
5、 一些有助于解题的结论或注意事项需要注意总结,如: (1) 利用归结原则将数列极限转化为函数极限(2) 函数在某点极限存在的充要条件是左右极限存在且相等。
有时可以利用这点进行解题,如111lim x x e-→因左右极限不相等而在这点极限不存在。
(当式子中出现绝对值和e的无穷次方的结构时可以考虑从这个角度出发)(3) 遇到无限项和式求极限时想三种方法:①看是否能直接求出这个和式(如等比数列求和)再求极限 ②夹逼定理③用定积分的概念求解。
(4)如果f(x)/g(x)当x →x0时的极限存在,而当x →x0时g(x)→0,则当x →x0时f(x)也 →0(5)一个重要的不等式:sin x x ≤(0x >) *其中方法②③考到的可能性较大。
6、 有关求极限时能不能直接代入数据的问题。
7、 闭区间上连续函数的性质(最值定理、根的存在性定理、介值定理) 8、 此部分题目属于基本题型的题目,需要尽量拿到大部分的分数。
【例题精解·求极限的方法】方法一:直接通过化简,运用极限的四则运算进行运算。
【例1】求极限 11lim 1m n x x x →--解1212 111(1)()lim lim1(1)()m m mn n nx xx x x xx x x x----→→--++=--++…1…1=mn注:此题通过洛必达法则进行求解也非常方便。
还可通过变量代换构造等价量。
【例2】求极限22lim(1)xx x x→+∞+--解22221lim(1)lim21x xx x xx x x→+∞→+∞+--==++-注:1、遇到“根号加减根号”基本上有两种方法——有理化和采取倒变量的方法。
2、一个最基本的多项式极限112112limn nnm mxna x a x ab x b x b--→+∞++++++……(系数均不为0):①若n>m,则极限为正无穷;②若n<m,则极限为0;③若n=m,则极限为11ab。
(本质为比较次数)要注意的是x是趋向于正无穷,而且分子分母遇到根号时要以根号里x的最高次的12次来计算,如21x+的次数为1。
方法二:利用单调有界准则来证明极限存在并求极限【例3】设112u≥-,112(1,2,...)n nu u n+=+=,证明lim nnu→∞存在并求之方法三:利用夹逼定理——适用于无限项求极限时可放缩的情况。
【例4】求极限(1lim123...n n n n n n→∞++++解 因 (1111=123...=n n nn n n n n n n n n⋅<+++<⋅ 而 lim1=lim =1nn n n →∞→∞故由夹逼定理(1lim 123...n n n n n n→∞++++=1方法四&方法五:等价量代换、洛必达法则——未定式极限。
(化加减为乘除!)【例5】求极限tan 0lim tan x xx e e x x→--解 原式=tan 00(1)(tan )lim lim 1tan tan x x x x x x e e e x x x x x x-→→--==--【例6】求极限1121lim ()x x x x a a+→+∞-解111111222(1)111lim ()=lim (1)lim 1(1)x x xx x x x x x x x a a x aax a-++++→+∞→+∞→+∞--=⋅⋅-=21lim 1ln ln (1)x x a a x x →+∞⋅⋅⋅=+【例7】求极限limx →解 原式=x → =()022tan sin lim4sin 23x x xx x x →-+⋅⋅ =02tan (1cos )lim sin 423x x x x x x x x →-⎛⎫+⋅⋅ ⎪⎝⎭ =302132lim 416123x xx x →=⋅⋅⋅【例8】求极限01cos cos 2cos3lim1cos x x x xx→--解:直接运用洛必达法则和等价量代换可得01cos cos 2cos3lim1cos x x x xx→--=000sin cos 2cos34cos sin 2cos39cos cos 2sin 3limlim lim23x x x x x x x x x x x x x x x→→→++=000sin cos 2cos32cos sin 2cos33cos cos 2sin 3limlim limsin sin sin x x x x x x x x x x x xx x x →→→++= 000sin cos 2cos32cos sin 2cos33cos cos 2sin 3lim lim limx x x x x x x x x x x xx x x →→→++= 000sin cos 2cos34cos sin 2cos39cos cos 2sin 3lim lim lim23x x x x x x x x x x x xx x x →→→++=1+4+9=14【例9】求极限lim log ()abx x x x →+∞+解: 由换底公式,=ln()lim ln a b x x x x →+∞+(∞∞)=lim a b a b x ax bx x x →+∞++=lim a ba bx ax bx x x →+∞++ 若a b ≥,则极限为a ;若a b <,则极限为b ,综上,极限为max{,}a b方法六:幂指函数求极限——取对数再取指数。
【例10】21lim sinnnnn→∞⎛⎫⎪⎝⎭(1)∞解222111sinlim sin=lim sin limn xtn x ttn xn x t+→∞→+∞→⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2sin1sinsinlim11t t tt t t tttt+-⋅⋅-→⎛⎫=+-⎪⎝⎭3200sin0cos11lim lim036t tt t tt te e e++→→--⎛⎫-⎪⎝⎭===【例11】1ln+lim arctan2xxxπ→∞⎛⎫-⎪⎝⎭(0)解+1ln arctan2ln lim()ln+lim arctan=2xxxxxx eππ→∞⎛⎫-⎪∞⎝⎭∞→∞⎛⎫-⎪⎝⎭2211()1()arctan0 21lim lim()10arctan2x xxxxxxxe eππ→+∞→+∞⋅-+--+-==221lim11xxxe e→+∞--+==【例12】求极限cot1limarc xxxex→+∞⎛⎫-⎪⎝⎭❉注意x是趋向正无穷,此时需要先分析底数和指数分别趋向于多少,分析底数易知底数趋向于正无穷。
但是指数arccotx这个函数不是很熟,可以通过图像先分析cotx再分析arccotx趋向于多少,最后得出结论是指数趋于0。
故是一个“0∞”型,所以要用“先取对数再取指数”的方法。
对于之后arccotx 的处理,若用罗比达对其求导则会发现再接下来比较难做,这里给出一个转化为熟悉的,可等加量代换的式子的方法,方法较灵活,需要对三角函数之间的转换有很深的熟悉度。
解 原式=1arccot ln lim x e x x x e⎛⎫- ⎪ ⎪⎝⎭→+∞=1lim arccot ln x x e x x e→+∞⎛⎫- ⎪ ⎪⎝⎭=11lim arctan ln x x e x x e→+∞⎛⎫- ⎪ ⎪⎝⎭=()ln 1ln lim x x e x x e→+∞--∞⎛⎫⎪∞⎝⎭=1lim1xx x e x e e→+∞--=e❉关于第三个等号左右的变化:令cot y arc x =,则1cot tan x y y ==,故1tan y x=,1arctany x =,综上,1cot tan arc x arc x=方法七:运用泰勒定理求极限——适用于直接洛必达不好算时考虑的方法。
【例13】求极限22202lim (cos )x x x x x e →+--解2441()28x x o x =+-+0x →,,23cos 1()02!x x o x x =-+→, 2221()0x e x o x x =++→, 代入原式可得,原式=422420232222()4lim 1()1()2!x x x x o x x x o x x o x →+--++⎡⎤-+---⎢⎥⎣⎦=44044()4lim 3()2x x o x x o x →+-+=16-方法八:通过定积分的概念来求极限【例14】求22222lim (...)149n n n n nn n n n n→+∞++++++++ 解 由于此题无法直接对式子进行化简,也无法用夹逼定理,故想到用定积分的概念来求解,即原式=2222222221lim (...)149n n n n n n n n n n n →+∞++++++++=222211111lim ...1231111n n n n n n n →+∞⎤⎡⎥⎢⎥⎢++++⎥⎢⎛⎫⎛⎫⎛⎫⎛⎫++++⎥⎢ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ =2111lim1nn i n i n →+∞=⎛⎫+ ⎪⎝⎭∑ 此时由定积分的概念可将上面的和式看成被积函数21()1f x x=+在[0,1]上的定积分,故 22222lim (...)149n n n n n n n n n n →+∞++++++++=12011dx x +⎰=4π【例15】求极限1111lim ln 1[(1)(2)...21]lim (!)=lim nn i i nn n nn n n n n n e n n→+∞=→+∞→+∞∑--⋅=解1111[(1)(2)...21](1)(2)...21lim(!)=lim lim nnnn n n n n n n n n n n n n n →+∞→+∞→+∞--⋅--⋅⎡⎤=⎢⎥⎣⎦11231lim (...)nn n n n n n n n→+∞-=⋅⋅⋅11231limln(...)n n n n n n n n n e→+∞-⋅⋅⋅=11lim ln nn i in n e→+∞=∑=1ln xdx e ⎰=10(ln )|1x x x e e --== 【例16】2222221sin sin lim ln nn k k k n k k n n →+∞=⎛⎫-+- ⎪⎝⎭∑ 【分析】此题看似复杂,其实仔细观察可以发现本质仍为无限项的和式求极限,故再次想到用定积分的概念求解。