一次函数的应用教案
鲁教版(五四制)七年级数学上册教案:第六章6.5一次函数的应用 教案

板书设计
教学反思
(第1题) (第2题) (第3题)
当堂达标
1、小亮每天从家去学校上学行走路程为900米,某天他从家去上学时以每分30米速度行走了450米,为了不迟到他加快了速度,以每分45米速度行走完剩下路程,那么小亮行走过路程S(米)与他行走时间t(分)之间函数关系用图象表示正确是().
2、如图1,在长方形 中,动点 从点 出发,沿 → → → 方向运动至点 处停止.设点 运动路程为 , 面积为 ,如果 关于 函数图象如图2所示,则当 时,点 应运动到()
周次
课型
新授课
主备人
课题
6.5一次函数应用
教学目标
1、会用一次函数图象解决实际问题,结合对函数关系分析,尝试对问题
教学难点
结合对函数关系分析,尝试对变量变化规律进行初步预测;
教具准备
导学过程
二次备课
(一)自主尝试
1、自学课本例1,结合图象自己尝试解答问题.
(二)巩固练习
1、如图,平面直角坐标系中,在边长为1正方形 边上有一动点 沿 运动一周,则 纵坐标 与点 走过路程 之间函数关系用图象表示大致是()
2、课本163页随堂练习
三、练习提升
1、汽车工作时油箱中燃油量y(升)与汽车工作时间t(小时)之间函数图象如下中图所示,汽车开始工作时油箱中有燃油升,经过小时耗尽燃油,y与x之间函数关系式为.
提示:(1)油箱什么时候储油最多?(2)一箱汽油可供摩托车行驶距离就是汽油全部用完时行驶距离.
1、模仿例1解答课本161页上问题
2、结合图象解答课本162页议一议问题,并总结:一次函数与一元一次方程关系.
【学法指导】能将简单实际问题转化为数学问题(建立一次函数模型),从而解决实际问题;在利用图象探究方案决策过程中,体会“数形结合”思想在数学应用中重要地位.
一次函数教案优秀3篇

一次函数教案优秀3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!一次函数教案优秀3篇作为一位杰出的老师,就难以避免地要准备教学设计,教学设计是实现教学目标的计划性和决策性活动。
一次函数的应用教案冯海啸

21.4一次函数的应用(第1课时)主备人:冯海啸教学目标:1.经历应用一次函数解决实际问题的过程。
2.学会从文字、表格、图像等各种情境中捕捉数量关系,并恰当地表达出来。
3.学生能通过探究、练习、强化的方法解决求一次函数关系式的问题第一环节 复习引入内容:提问: 1.一次函数的一般形式是什么?如何求一次函数的解析式?2.一次函数的图象有何特征,如何画一次函数的图象?第二环节 初步探究实际情境一:某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒 )的关系如图所示.(1)写出v与t之间的关系式;(2)下滑3秒时物体的速度是多少?实际情境二:假定甲、乙二人在一项赛跑中路程与时间的关系如图所示.(1)这是一次多少米的赛跑?(2)甲、乙二人谁先到达终点?(3)甲、乙二人的速度分别是多少?(4)求甲、乙二人与的函数关系式.内容2:想一想:确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?第三环节 深入探究内容1:例1 在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(千克)的一次函数,一根弹簧不挂物体时长14.5cm;当所挂物体的质量为3kg时,弹簧长16cm。
写出y与x之间的关系式,并求所挂物体的质量为4kg时弹簧的长度.内容2:求函数表达式的步骤有:1.设一次函数表达式.2.根据已知条件列出有关方程.3.解方程.4.把求出的k,b值代回到表达式中即可.第四环节 反馈练习内容:1、某风景区集体门票的收费标准是:20人以内(含20人),每人25元;超过20人,超过部分,每人10元,写出应收门票y(元)与游览人数(人)之间的函数关系式________________。
利用该函数关系计算某班54名学生去该风景区游览时,购门票共花了_______元。
2、甲、乙两人分别骑自行车和摩托车从甲地到乙地(1)谁出发较早,早多长时间?谁到达乙地早?早多长时间(2)两人行驶速度分别是多少?(3)分别求出自行车和摩托车行驶过程的函数解析式?3、今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法.若某户居民每月应交电费(元)与用电量(度)的函数图像是一条折线(如图所示),根据图像解答下列问题:1001306589y(元)x(度)(1)分别写出和时,与的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;第五环节 课时小结谈谈你本节课的收获第六环节 作业布置习题101页A组1、2。
青岛版八年级数学下册10.6一次函数的应用公开课优质教案

1. 我 们前 面 学习 了有关 问题 1:(1)假如你是单位领导,
通过,使 函数的知识,相继我们又 你的单位急需用车,但又不准备买
学生感受一 学习了一次函数的知识, 车,你们准备和一个个体车主或一
次函数在生 那 么 你能举出生活中一 国营出租车公司中的一家签订月租
活中的广泛 次函数的例子吗?
合同,设汽车每月行驶 x 千米,应
展示学生所画图像并及 时进行矫正。
教学过程
教学意图 教师活动
学生活动
媒体应用
现在我们有了函 2)当每月通话时间少于 2 小时
数的图像,从图像中 10 种时,应选择乙公司。
展示学生所
我们能得到什么结论 3)当每月通话时间多于 2 小时 画图像
呢?
10 种时,应选择甲公司。
设问:通过上述两个问 (4)小结:利用一次函数解决实际问题步
(3)现在我提出这样 两个问题,你应该如何回 答?
教学过程
教学意图 教师活动
学生活动
媒体应用
通过“租车”问题的 ②如果该单位估计每月的行程
培养学生 解决,我们发现利用函数 约为 2300 千米,那么这个单位
从实际问题中 图象可以很直观的解决问 租哪家的车合算?
抽象出数学模 题。在我们的生活中还有 二、制作一张手机月通话费用的
一次函数的应用教学设计
课题
10.6 一次函数的应用
教学方法 引导探究法、合作交流法 课时
1 课时
认知 与
技能
1.使学生巩固一次函数的概念和性质。 2.使学生能够将实际问题转化为一次函数的问题。 3.能够根据实际意义准确地列出解析式并画出函数图像。
1.通过利用一次函数解决实际问题的过程,使学生数学抽象思维能
人教版八年级下册第十九章一次函数-求函数解析式及其应用教案

最后,关于教学评价,我认为除了课堂表现和作业完成情况外,还应关注学生在解决问题过程中的思维过程和方法。这样,才能更全面地了解学生的学习情况,及时调整教学策略,提高教学质量。
3.增强学生的数学建模意识:将实际问题转化为数学模型,培养学生的数学建模能力,强化数学与现实生活的联系。
4.培养学生的团队协作和交流能力:在小组讨论和问题解决过程中,鼓励学生相互交流、协作,共同完成任务。
三、教学难点与重点
1.教学重点
-一次函数的定义:强调形如y=kx+b(k≠0,k、b是常数)的函数是一次函数,理解k和b分别代表的意义。
4.一次函数的应用:解决实际问题,如行程问题、价格问题等。
本节课将重点探讨如何求一次函数的解析式及其在实际问题中的应用。
二、核心素养目标
本章节的核心素养目标主要包括以下方面:
1.培养学生的逻辑推理能力:通过分析实际问题,引导学生运用一次函数的解析式进行逻辑推理,解决具体问题。
2.提高学生的数据分析能力:学会从实际问题中提取数据,运用一次函数的知识分析数据,为解决问题提供依据。
人教版八年级下册第十九章一次函数-求函数解析式及其应用教案
一、教学内容
人教版八年级下册第十九章“一次函数”中的求函数解析式及其应用,主要包括以下内容:
1.一次函数的定义:形如y=kx+b(k≠0,k、b是常数)的函数。
2.求一次函数的解析式:通过已知点斜率k和截距b,或两个已知点坐标来求解。
3.一次函数的性质:斜率k的正负与函数的增减性;截距b的几何意义。
八年级数学下册《利用一次函数解决实际问题》教案、教学设计

(3)采用启发式教学法,引导学生通过观察、分析、归纳,发现一次函数的性质;
(4)组织小组合作学习,培养学生的团队协作能力和沟通能力。
2.教学过程:
(1)导入:以生活中的一次函数实例引入新课,让学生感受到数学与生活的紧密联系;
(2)探究:引导学生通过小组讨论、自主探究,从实际问题中抽象出一次函数关系;
3.探究性作业:鼓励学生自主探究一次函数的性质,发现规律,提高学生的探究能力和创新意识。
例题:研究一次函数y=kx+b(k、b为常数,且k≠0)的图像,探讨k、b的取值对图像的影响。
4.小组合作作业:安排一些需要团队合作完成的作业,培养学生的团队协作能力和沟通能力。
例题:小组合作设计一个一次函数应用实例,并撰写解题报告,分析解题过程。
3.一次函数在实际问题中的求解方法。
总之,在本节课的教学过程中,我将注重启发式教学、分层教学和师生互动,努力提高学生的学习兴趣和积极性,确保教学目标的实现。
五、作业布置
为了巩固本章节所学知识,检验学生对一次函数的理解和应用能力,我设计了以下几类作业:
1.基础知识巩固题:包括一次函数的定义、性质、图像等方面的练习,旨在帮助学生巩固一次函数的基本概念。
例题:已知一次函数y=2x+3,求该函数的斜率和截距。
2.实际问题应用题:设计一些与生活息息相关的问题,让学生运用一次函数知识解决,提高学生解决实际问题的能力。
例题:某商店进行打折促销活动,原价为100元的商品,每增加1元,折扣力度增加0.01。请列出商品价格与折扣力度之间的关系,并计算在哪个价格区间购买最划算。
(三)情感态度与价值观
1.增强数学在实际生活中的应用意识,认识到数学知识在解决实际问题中的重要性;
一次函数的性质及应用——教案
一次函数的性质及应用——教案一、教学目标1.了解一次函数的定义及其基本性质;2.掌握一次函数图像的绘制方法;3.了解一次函数与直线的关系;4.能够应用一次函数进行实际问题的求解。
二、教学重难点1.掌握一次函数图像的绘制方法;2.了解一次函数与直线的关系。
三、教学方法讲授法、示范法、归纳法、练习法、探究法。
四、教学过程1.引入问题如果小明每月接受的零花钱是每天2元,他一个月可以得到多少零花钱?如果他一个月要存储70元,则存储周期是多长时间?这两个问题涉及到了什么?我们可以通过什么方法来解决这个问题呢?老师引入问题,鼓励学生反思问题所涉及的数学概念和方法。
2.学习一次函数的定义及其基本性质老师通过教案中相关的图片和例子,介绍了一次函数的定义和基本性质。
包括一次函数的定义、一次函数的图像和图像的性质、一次函数的解析式、一次函数的零点、一次函数的单调性、一次函数的值域、一次函数与直线的关系等。
3.绘制一次函数的图像老师介绍了一次函数的图像的绘制方法。
包括一次函数的图像的横轴和纵轴、一次函数的零点、一次函数的单调性、一次函数的值域、一次函数与直线的关系等。
通过一些实例,老师向学生演示了一次函数的图像如何绘制。
4.一次函数与直线的关系老师通过教案中的实例,向学生介绍了一次函数的图像和直线的关系。
包括一次函数与直线的交点、直线在一次函数图像上的位置、一次函数图像和直线之间的关系等。
5.一次函数的应用老师让学生在教案中进行一些例题练习,例如小明接收每天2元零花钱,问他接受了多少天可以储存70元?学生需要用到一次函数的知识来解决这个问题。
6.总结归纳老师通过教案中相关的总结,帮助学生对一次函数的知识进行总结和归纳。
五、课堂练习1.给定一次函数f(x)=2x+3,求出f(1),f(2),f(3)的值。
2.画出一次函数f(x)=3x+2的图像。
3.如果一次函数f(x)和直线y=2x+1有交点,则它们的交点坐标是多少?4.已知一次函数f(x)的解析式为f(x)=2x-1,当x=4时,求f(x)的值。
《一次函数的应用(3)》教案新部编本1
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《一次函数的应用(3)》教案教学内容北师大版数学八年级上册《一次函数的应用(3)》P93-94.教学目的1、进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题.2、在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.3、在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.4、在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.教学重点一次函数图象的应用.教学难点从函数图象中正确读取信息,能够与实际问题联系起来.教学过程一、情境引入一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2)试求降价前y 与x 之间的关系.(3)由表达式你能求出降价前每千克的土豆价格是多少?(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?通过与上一课时相似的问题,回顾旧知,导入新知识.二、问题解决内容1:如图,1l 反映了某公司产品的销售收入与销售量的关系,2l 反映了该公司产品的销售成本与销售量的关系,根据图意填空:(1)当销售量为2吨时,销售收入=_______元,销售成本=________元;(2)当销售量为6吨时,销售收入=________元,销售成本=________元;(3)当销售量为_______时,销售收入等于销售成本;(4)当销售量________时,该公司赢利;当销售量________时,该公司亏损.(5)1l对应的函数表达式是______________;2l对应的函数表达式是_______________.内容2:深入探究例2我边防局接到情报,近海处有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶(如图),下图中1l,2l分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与时间之间的关系?解:观察图象,得当0=t时,B距海岸0nmile,即0=S,故1l表示B到海岸的距离与追赶时间之间的关系.(2)A,B哪个速度快?解:从0增加到10时,2l的纵坐标增加了2,而1l的纵坐标增加了5,即10min内,A行驶了2海里,B行驶了5nmile,所以B的速度快.(3)15min内B能否追上A?解:可以看出,当15=t时,1l上对应点在2l上对应点的下方.(4)如果一直追下去,那么B能否追上A?解:如图1l,2l相交于点P.因此,如果一直追下去,那么B一定能追上A.(5)当A逃到离海岸2l海里的公海时,B将无法对其进行检查.照此速度,B能否在A逃到公海前将其拦截?解:从图中可以看出,1l与2l交点P的纵坐标小于2l,这说海岸公海AB明在A逃入公海前,我边防快艇B能够追上A.活动目的:培养学生良好的识图能力,进一步体会数与形的关系,建立良好的知识联系.说明:学生在教师的引导下,逐步形成了良好的识图能力.三、反馈练习内容:观察甲、乙两图,解答下列问题:1、填空:两图中的( )图比较符合传统寓言故事《龟免赛跑》中所描述的情节.2、根据1中所填答案的图象填写下表:项目主人公(龟或兔)到达时间(分)最快速度(米/分)平均速度(米/分)红线绿线3、根据1中所填答案的图象求:(1)龟免赛跑过程中的函数关系式(要注明各函数的自变量的取值范围).(2)乌龟经过多长时间追上了免子,追及地距起点有多远的路程?4、甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为y甲(棵),乙班植树的总量为y乙(棵),两班一起植树所用的时间(从甲班开始植树时计时)为x(时),y甲、y乙分别与x之间的部分函数图象如图所示.(1)当06x≤≤时,分别求y甲、y乙与x之间的函数关系式.(2)如果甲、乙两班均保持前6h的工作效率,通过计算说明,当8x=时,甲、乙两班植树的总量之和能否超过260棵.(3)如果6h后,甲班保持前6h的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束.当8x=时,两班之间植树的总量相差20棵,求乙班增加人数后平均每小时植树多少棵.线型y甲y乙y(棵)120四、课时小结内容:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题.通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.意图:引导学生自己小结运用一次函数解决实际问题的主要方法.说明:让学生畅所欲言,相互进行补充,尽量用自己的语言进行归纳总结.五、作业布置习题4.7。
单个一次函数图象的应用 公开课获奖教案 公开课获奖教案
第2课时单个一次函数图象的应用1.掌握单个一次函数图象的应用;(重点)2.了解一次函数与一元一次方程的关系.(难点)一、情境导入如图是某地气温t(℃)随高度h(km)的增加而降低的函数图象.(1)求一次函数的表达式;(2)该地地面气温是多少℃,当高度超过多少时气温就会低于0℃?二、合作探究探究点一:一次函数图象的应用【类型一】利用图象获取信息由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量V(万米3)与干旱的时间t(天)的关系如图所示,则下列说法正确的是( )A.干旱开始后,蓄水量每天减少20万米3B.干旱开始后,蓄水量每天增加20万米3C.干旱开始时,蓄水量为200万米3D.干旱第50天时,蓄水量为1200万米3解析:从图象上观察:当t=0时,V=1200;当t=50时,V=200.所以从干旱开始到第50天,蓄水量减少了1200-200=1000(万米3),则每天减少1000÷50=20(万米3).故选A.方法总结:要认真观察图象,结合题意,弄清各点所表示的意义.探究点二:一次函数与一元一次方程一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为( )A .x =-1B .x =2C .x =0D .x =3解析:首先由函数经过点(0,1)可得b =1,再将点(2,3)代入y =kx +1,可求出k 的值为1,从而可得出一次函数的表达式为y =x +1,再求出方程x +1=0的解为x =-1,故选A.方法总结:此题主要考查了一次函数与一元一次方程的关系,关键是正确利用待定系数法求出一次函数的关系式.三、板书设计一次函数的应用⎩⎪⎨⎪⎧单个一次函数图象的应用一次函数与一元一次方程的关系探究的过程由浅入深,并利用了丰富的实际情景,增加了学生的学习兴趣.教学中要注意层层递进,逐步让学生掌握求一次函数与一元一次方程的关系.教学中还应注意尊重学生的个体差异,使每个学生都学有所获.4.4 一次函数的应用 第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.2.2 平方根 第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点) 2.根据算术平方根的概念求出非负数的算术平方根;(重点) 3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22. 方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质【类型一】解析:首先根据算术平方根的定义进行开方运算,再进行加减运算. 解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】已知x 3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1. 方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4 一次函数的应用 第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5解析:…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。
《一次函数的应用》教案1
《一次函数的应用》教案教学目标一、知识与技能1.能通过函数图象获取信息,发展形象思维;2.能利用函数图象解决简单的实际问题,发展学生的数学应用能力;二、过程与方法1.在亲身的经历与实践探索过程中体会数学问题解决的办法;2.初步体会方程与函数的关系,建立良好的知识联系;三、情感态度和价值观1.进一步体会数学知识与现实生活的密切联系,丰富数学情感;2.树立良好的环境保护意识,引发热爱自然、热爱家乡的情感;教学重点利用函数图象解决简单的实际问题;教学难点体会函数与方程的关系,发展“数形结合”的思想”;教学方法实践探究、启发猜想、讲练结合法课前准备教师准备课件、多媒体;学生准备三角板,练习本;课时安排1课时教学过程一、导入新课1.一次函数图象的画法.通常过,两点画一条,就是函数y=kx+b(k≠0)的图象.2.待定系数法.先设出表达式中的,再根据所给条件,利用确定这些未知数.这种方法叫待定法.3.一次函数的图象与性质.图象:一次函数y=kx+b(k≠0)的图象是一条,通常叫做直线y=kx+b.性质:对于一次函数y=kx+b,当时,y随x的而;当时,y随x的而 .二、新课学习1、画一次函数y=2x+1的图像(1)列表:(2)描点并连线我们知道,世界各国温度的计量单位尚不统一,常用的有摄氏温度(˚C)和华氏温度(F)两种它们之间的换算关系如下表所示:(1)观察上表,如果表中的摄氏温度与华氏温度都看作变量,那么它们之间的函数关系是一次函数吗?你是如何探索的到的?华氏温度y看作x的函数,建立直角坐标系,把表中每一对(x,y)的值作为点的坐标,在直角坐标系中描出表中相应的点,观察这些点是否同在一条直线上(2)你能利用(1)中的图象,写出y与x的函数表达式吗?(3)除了小亮所说的方法外,你能通过分析上表中两个变量间的数量关系,判断它们之间是一次函数关系吗?(4)你能求出华氏温度为0度(即0˚F )时,摄氏温度是多少度?当y=0时,0=1.8x+32,解得x=1609-,所以华氏温度为0 ˚F 时,摄氏温度是1609-˚C.(5)华氏温度的值与对应的摄氏温度的值有相等的可能吗?你会用哪几种方法解决这个问题?与同学交流.有可能相等.当两值相等时1.832y xy x=+=解得4040xy=-=-.即当华氏温度为-40˚F时,摄氏温度为-40˚C ,温度值相等.例1:山青林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,一种树苗每株30元. 根据相关资料,甲、乙两种树苗的成活率分别是85%,90%.(1)如果购买这两种树苗共用去21000元,甲、乙两种树苗各买了多少株?(2)如果为了保证这批树苗的总成活率不低于88%,甲种树苗至多购买多少注?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求最低费用.解(1)设购买甲种树苗x株,乙种树苗y株,根据题意,得800 243021000 x yx y+=+=解得500300 xy==经检验,方程组的解符合题意.所以购买甲种树苗500株,乙种树苗300株.(3)设购买甲种树苗t株,购买树苗的费用为w元,由题意得w=24t+30×(800-t)=-6t+24000,所以w是t的一次函数,且由于k=-6<0,因此w随t增大而减小.由(2)知t≤320,因此,当t最大即t=320时,w最小.这是800-320=480,w=-6×320+24000=22080.所以购买甲种树苗320株、乙种树苗480株,费用最低,最低费用为22080元.在例1的解决过程中,是从现实生活中抽象出数学问题,用数学符号建立函数表达式,表示数学问题中变量之间的数量关系和变化规律.因此函数也是一种重要的数学模型.三、结论总结本节课,我们讨论了一次函数解析式的求法四、课堂练习1.一次函数y=kx+b(k≠0)的图象经过点(3,3)和(1,-1).求它的函数关系式,1.如下图,L1反映了某公司产品的销售收入与销售量的关系,L2反映该公司产品的销售成本与销售量的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【一次函数的应用】
教 学 任 务 分 析
师
北京市民族学校 日期
学
目
标
1. 复习一次函数的基本性质。
2. 利用数形结合探究一次函数图象与实际意
义的对应,体会函数图象所反映出的函数性质。
3. 通过小组出题、编题、讲题,增强学生间
的交流、合作意识和研究能力。
点
探究一次函数图象在实际中的应用
点
一次函数图象的辨析
学
方
法
探究式学习法
具
多媒体
情
分
析
因学生入学方式的不同,使得学生差距较大,
大部分学生基础较差,归纳能力,和语言表达能力
相对较差。因此本节课教学设计重点关注以下问
题:
1. 利用课下小组交流合作的方式。让基础好
的同学带动基础相对差的学生学习。
2. 教学内容以基础知识为主体,并通过习题
渗透数形结合的思想。重在落实。
3. 以学生为主体,锻炼学生的总结归纳能力
和表达能力。
教 学 流 程 安 排
活动流程图 活动内容和目的
活动 1. 基础测试 活动 2. 能力展示 活动 3. 综合运用 活动 4 . 归纳小结 通过设置的问题,对
一次函数的性质进行归类
复习。
以小组为单位,对一
次函数在实际问题中的应
用,进行分类研究。
通过编题,促进学生
对函数与实际问题的联
系,增强函数图像的辨析
能力。
师生共同小结本节课
的内容
教 学 过 程 设 计
问题与情境 师生行为 设
计意
图
活动 1. 基础练习 教师出示题目 , 学生独立回答 , 并说明理由 ? 练习 1 :已知函数 y=(k-2)x |k|-1 +b(k 为常数 ) 是一次函数 , 则 k=_____, 若此函数是正比例函数 , 则 k=_____,b=____. 练习 2 对
一次
函数
进行
系统
的复
习
活动 2. 小组展示 各小组将课前 准备的题目展示出来,待其他小组解答后,进行适当讲解 活动 3. 综合运用 活动 4. (1). 一次函数 y=2x-4 的图象经过 __________ 象限 (2)y 随 x 增大而 ________ (3) 图象与 x 轴交点坐标 ________ 与 Y 轴交点坐标 ________ (4) 图象与 X 轴围成的三角形面积 ? (5) 当 x 在什么取值范围 内 y < 0 (6) .函数 y=2x-4 与 y= -x+2 的图象的交点 M 坐标是 ________. (7). 与一次函数 y=2x-4 平行且过( 0 , 5 )点,求这个函数的解析式 ___________ 学生展示课前给学生布置的复习内容 . 分成小组研究 : 在实际问题中的一次函数图象 第一组 : 一个一次函数图象实际问题的联系 . 第二组 : 分段函数的图象与实际问题的联系 . 第三组 : 两个一次函数的图象与实际问题的联系 . 小组展示后,教师与学生共同对各题进行分析、评价。 教师提供练习: •
复
习一
次函
数和
正比
例函
数的
概
念 .
2
、
总结
一次
函数
的图
象及
性
质。
3
、一
次函
数与
x,y
轴的
交
点 .
4
、理
解两
直线
平行
K
相
归
纳小
结
2、 2004 年 6 月 3 日中央新闻报道 , 为鼓励
居民节约用水 , 北京市将出台新的居民用水收费标
准 : ①若每月每户居民用水不超过 4 立方米 , 则按
每立方米 2 元计算 ; ②若每月每户居民用水超过 4
立方米 , 则超过部分按每立方米 4.5 元计算 ( 不超
过部分仍按每立方米 2 元计算 ). 现假设该市某户居
民某月用水x立方米 , 水费为y元 ,
则x与y的函数图像是 ( )
3 。假定甲、乙两人在一次赛跑中,路程 s 与时
间 t 的关系如图所示,那么下面说法正确的是 ( )
等。
5
、理
解函
数与
方程
的关
系 .
6
、理
解函
数与
不等
式之
间的
关
系。
学
生小
组展
示汇
报。
生生
交
流、
师生
交流
研讨
一次
函数
图象
在实
际问
题中
A .甲比乙先出发
B .乙比甲跑的路程多
C .甲、乙两人的速度相同
D .甲先到达终点
1。根据下面图象想象一个符合图中所刻画的关
系的实际情景,并把它描述出来。
2。根据你编实际情景还能得出哪些信息 。
教师提示:
1.注意图象中的数据。
应符合现实生活。
2 .所编的实际问题应符合函数图象信息。
课堂小结:
1 .对函数图像你有了哪些新的认识?
2 .结合自己学习的实际情况,说说你对函数图
像还有哪些疑惑?
的运
用。
通
过练
习再
次讨
论函
数图
象、
函数
性质
与实
际问
题的
联系
讨
论:
函
数图
象反
映出
的实
际问
题的
意
义。
提
高学
生理
解实
际意
义与
对应
的函
数图
像的
辨析
能
力。
通
过小
组编
题,
学生
间的
交流
增强
对函
数图
像及
函数
意义
的理
解。
通
过小
结明
确本
节的
主要
内
容、
思想
和方
法,
培养
学生
善于
反思
的良
好习
惯。
板书设计
一次函数的应用
1 .形式: y=kx+b(k ≠ 0)
2.K 代表方向
3.b 代表与 y 轴交点的纵坐标
4.必过( 0 , b ) (-b/k,0)
5. 实际问题 数学问题