遗传算法在Matlab环境中的实现
matlab遗传算法工具箱关于离散变量优化算例

matlab遗传算法工具箱关于离散变量优化算例离散优化问题在实际应用中具有重要意义,其中遗传算法是一种常用的解决离散优化问题的方法。
Matlab遗传算法工具箱提供了一系列强大的函数和工具来帮助开发者实现离散变量优化算法。
本文将介绍如何使用Matlab遗传算法工具箱解决离散变量优化问题,并给出一个算例来演示其应用。
1. 算法背景离散优化问题是指在一组有限离散值中寻找最优解的问题。
这些离散值可能代表不同的决策或选择,例如在某个集合中选取最佳的元素组合。
传统的优化算法无法直接应用于离散变量优化问题,而遗传算法则具有较好的适应性。
遗传算法是一种模拟生物进化过程的优化算法,通过模拟基因的交叉、变异和选择来搜索最优解。
2. Matlab遗传算法工具箱简介Matlab遗传算法工具箱是Matlab平台上用于遗传算法优化设计和问题求解的工具包。
它提供了一系列函数和工具,可以简便地实现离散变量优化算法。
其中常用的函数包括:- ga:用于定义遗传算法的参数和问题函数,进行优化计算。
- gamultiobj:用于多目标优化的遗传算法。
- customSelectionFcn:自定义选择函数,用于指定选择操作。
- customCrossoverFcn:自定义交叉函数,用于指定交叉操作。
- customMutationFcn:自定义变异函数,用于指定变异操作。
3. 算例演示假设我们有一个离散优化问题,要在集合{1, 2, 3, 4, 5}中找到一个长度为5的序列,使得序列中所有元素的和最大。
首先,我们需要定义问题函数和适应度函数。
问题函数用于定义问题的约束条件,适应度函数则计算每个个体的适应度值。
```matlabfunction f = problemFunction(x)f = sum(x);endfunction f = fitnessFunction(x)f = -problemFunction(x); % 求和最大化,所以需要取负值end```接下来,我们可以使用Matlab遗传算法工具箱中的`ga`函数进行优化计算。
MATLAB实验遗传算法与优化设计(可编辑)

MATLAB实验遗传算法与优化设计遗传算法与优化设计一实验目的1 了解遗传算法的基本原理和基本操作选择交叉变异2 学习使用Matlab中的遗传算法工具箱 gatool 来解决优化设计问题二实验原理及遗传算法工具箱介绍1 一个优化设计例子图1所示是用于传输微波信号的微带线电极的横截面结构示意图上下两根黑条分别代表上电极和下电极一般下电极接地上电极接输入信号电极之间是介质如空气陶瓷等微带电极的结构参数如图所示Wt分别是上电极的宽度和厚度D是上下电极间距当微波信号在微带线中传输时由于趋肤效应微带线中的电流集中在电极的表面会产生较大的欧姆损耗根据微带传输线理论高频工作状态下假定信号频率1GHz电极的欧姆损耗可以写成简单起见不考虑电极厚度造成电极宽度的增加图1 微带线横截面结构以及场分布示意图1其中为金属的表面电阻率为电阻率可见电极的结构参数影响着电极损耗通过合理设计这些参数可以使电极的欧姆损耗做到最小这就是所谓的最优化问题或者称为规划设计问题此处设计变量有3个WDt它们组成决策向量[W D t] T待优化函数称为目标函数上述优化设计问题可以抽象为数学描述2其中是决策向量x1xn为n个设计变量这是一个单目标的数学规划问题在一组针对决策变量的约束条件下使目标函数最小化有时也可能是最大化此时在目标函数前添个负号即可满足约束条件的解X 称为可行解所有满足条件的X组成问题的可行解空间2 遗传算法基本原理和基本操作遗传算法 Genetic Algorithm GA 是一种非常实用高效鲁棒性强的优化技术广泛应用于工程技术的各个领域如函数优化机器学习图像处理生产调度等遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化算法按照达尔文的进化论生物在进化过程中物竞天择对自然环境适应度高的物种被保留下来适应度差的物种而被淘汰物种通过遗传将这些好的性状复制给下一代同时也通过种间的交配交叉和变异不断产生新的物种以适应环境的变化从总体水平上看生物在进化过程中子代总要比其父代优良因此生物的进化过程其实就是一个不断产生优良物种的过程这和优化设计问题具有惊人的相似性从而使得生物的遗传和进化能够被用于实际的优化设计问题按照生物学知识遗传信息基因Gene 的载体是染色体Chromosome 染色体中一定数量的基因按照一定的规律排列即编码遗传基因在染色体中的排列位置称为基因座Locus在同一个基因座上所有可能的基因就称为等位基因Allele生物所持有的基因以及基因的构成形式称为生物的基因型Genotype而该生物在环境中所呈现的相应性状称为该生物的表现型Phenotype在遗传过程中染色体上的基因能够直接复制给子代从而使得子代具有亲代的特征此外两条染色体之间也通过交叉 Crossover 而重组即两个染色体在某个相同的位置处被截断其前后两串基因交叉组合而形成两个新的染色体在基因复制时也会产生微小的变异Mutation从而也产生了新的染色体因此交叉和变异是产生新物种的主要途径由于自然选择在子代群体新产生的物种或染色体当中只有那些对环境适应度高的才能生存下来即适应度越高的被选择的概率也越大然后又是通过遗传和变异再自然选择一代一代不断进化因此生物遗传和进化的基本过程就是选择即复制交叉和变异遗传算法就是通过模拟生物进化的这几个基本过程而实现的①编码编码是设计遗传算法首要解决的问题在生物进化中选择交叉变异这些基本过程都是基于遗传信息的编码方式进行的即基于染色体的基因型而非表现型因此要模拟生物进化过程遗传算法必须首先对问题的可行解X决策向量进行某种编码以便借鉴生物学中染色体和基因等概念在遗传算法中将每一个决策向量X用一个染色体V来表示3其中每一个vi代表一个基因染色体的长度m不一定等于设计变量的数目n取决于染色体上基因的编码方式一般有两种编码方式二进制编码和浮点数编码如果是二进制编码每一个设计变量xi的真实值用一串二进制符号0和1按照一定的编码规则来表示每个二进制符号就代表一个基因因此染色体长度要远大于设计变量的数目这种由二进制编码构成的排列形式V就是染色体也称个体的基因型而基因型经过解码后所对应的决策向量X即可行解就是个体的表现型如果是浮点数编码每个设计变量用其取值范围内的一个浮点数表示构成染色体的一个基因vi因此个体的编码长度m也就等于决策变量的个数n由于这种编码方式使用的是决策变量的真实值所以也称真值编码方法无论哪种编码方式所有可能的染色体个体V构成问题的搜索空间种群遗传算法对最优解的搜索就是在搜索空间中搜索适应度最高的染色体后面叙述适应度的计算因此通过编码将一个问题的可行解从其解空间转换到了遗传算法能够处理的搜索空间经过个体的编码后就可以进行遗传算法的基本操作选择交叉和变异②选择复制操作选择也就是复制是在群体中选择适应度高的个体产生新群体的过程生物的进化是以集团为主体的与此相应遗传算法的运算对象是有M个个体或染色体组成的集合称为种群M也称为种群规模遗传算法在模拟自然选择时以个体的适应度Fitness高低为选择依据即适应度高的个体被遗传到下一代种群的概率较高而适应度低的个体遗传到下一代的概率则相对较低个体适应度由适应度函数计算适应度函数总是和个体表现型 ie X 的目标函数值f X 关联一般是由目标函数经过一定的变换得到一种最简单的方法就是直接使用目标函数f X 作为适应度函数4选定了适应度函数之后个体适应度也随之确定则在选择操作时个体被选中的概率5其中Fi为个体的适应度这种选择方式称为比例选择也称轮盘赌选择除此之外还有多种选择方法如随机竞争选择均匀选择无回放随机选择等不一一介绍③交叉操作所谓交叉就是以一定的概率交叉概率从群体中选择两个个体染色体按照某种方式交换其部分基因从而形成两个新的个体在遗传算法中它是产生新个体同时也是获得新的优良个体的主要方法它决定了遗传算法的全局搜索能力对于不同的编码方式交叉操作的具体方法也不相同对于浮点数编码一般使用算术交叉对于二进制编码有单点交叉和多点交叉等方式不论何种方式在交叉操作时首先应定义交叉概率Pc这个概率表明种群中参与交叉的个体数目的期望值是M 是种群规模通常交叉概率应取较大的值以便产生较多的新个体增加全局搜索力度但是Pc过大时优良个体被破坏的可能性也越大如果Pc 太小则搜索进程变慢影响算法的运行效率一般建议的取值范围是04–099④变异操作遗传算法中的变异操作就是将染色体上某些基因座上的基因以一定的变异概率Pm用其他的等位基因替代从而形成新的个体对于浮点数编码变异操作就是将变异点处的基因用该基因取值范围内的一个随机数替换对于二进制编码则是将变异点处的基因由1变成00变成1变异操作也有多种方法如均匀变异非均匀变异高斯变异等变异操作的概率Pm要比交叉操作的概率Pc小得多变异只是产生新个体的辅助手段但它是遗传算法必不可少的一个环节因为变异操作决定了算法的局部搜索能力它弥补了交叉操作无法对搜索空间的细节进行局部搜索的不足因此交叉和变异操作相互配合共同完成对搜索空间的全局和局部搜索以上简要介绍了遗传算法的基本原理和操作归纳起来基本遗传算法一般可以表示为一个8元组6式中C 个体的编码方法E 个体适应度评价函数P0 初始种群M 种群规模选择操作交叉操作变异操作是进化终止代数进化终止条件其中有4个运行参数需要预先设定M T PcPm 种群规模M一般取为20100 终止代数T一般取100500交叉概率Pc一般取04099 变异概率Pm一般取0000101最后给出遗传算法的基本步骤①选择二进制编码或浮点数编码把问题的解表示成染色体②随机产生一群染色体个体也就是初始种群③计算每一个个体的适应度值按适者生存的原则从中选择出适应度较大的染色体进行复制再通过交叉变异过程产生更适应环境的新一代染色体群即子代④重复第3步经过这样的一代一代地进化最后就会收敛到最适应环境适应度最大的一个染色体即个体上它就是问题的最优解图2给出了基本遗传算法设计流程图其中t代表当前代数T是进化终止代数图2 基本遗传算法设计流程图3 Matlab遗传算法工具箱 gatoolMatlab的遗传算法工具箱有一个精心设计的图形用户界面可以帮助用户直观方便快速地利用遗传算法求解最优化问题在Matlab命令窗口输入命令gatool可以打开遗传算法工具箱的图形用户界面如图3所示GA工具箱的参数设置步骤如下图3 遗传算法工具1 首先使用遗传算法工具箱必须输入下列信息Fitness function 适应度函数这里指的是待优化的函数也即目标函数该工具箱总是试图寻找目标函数的最小值输入适应度函数的格式为fitnessfun其中符号产生函数fitnessfun的句柄fitnessfun代表用户编写的计算适应度函数目标函数的M文件名该M文件的编写方法如下假定我们要计算Rastrigin函数的最小值7M函数文件确定这个函数必须接受一个长度为2的行向量X也即决策向量向量的长度等于变量数目行向量X的每个元素分别和变量x1和x2对应另外M文件要返回一个标量Z其值等于该函数的值下面是计算Rastrigin函数的M文件代码function Z Ras_fun XZ 20X 1 2X 2 2-10 cos 2piX 1 cos 2piX 2M文件编写保存后再在gatool工具箱界面Fitness function栏输入 Ras_funNumber of variable 变量个数目标函数中的变量数目也即适应度函数输入向量的长度在上例中它的值是22 其次设置遗传算法参数即Options设置以下只介绍部分运行参数的设置其他未提及的参数采用默认设置即可①种群参数 PopulationPopulation size 种群规模每一代中的个体数目一般是20-100之间种群规模大算法搜索更彻底可以增加算法搜索全局最优而非局部最优的概率但是耗时也更长Initial range 初始范围其值是两行的矩阵代表初始种群中个体的搜索范围实际上是决策向量X中每个变量xi的初始搜索范围矩阵的列数等于变量个数Number of variable第一行是每个变量的下限第二行是每个变量的上限如果只输入2 1的矩阵则每个变量的初始搜索范围都一样注意初始范围仅限定初始种群中个体或决策向量的范围后续各代中的个体可以不在初始范围之内初始范围不能设置太小否则造成个体之间的差异过小即种群的多样性降低不利于算法搜索到最优解②复制参数 ReproductionCrossover fraction 交叉概率一般取04099默认08③算法终止准则 Stopping Criteria提供了5种算法终止条件Generations最大的进化代数一般取100500默认是100当遗传算法运行到该参数指定的世代计算终止Time limit指明算法终止执行前的最大时间单位是秒缺省是Inf 无穷大Fitness limit 适应度限当最优适应度值小于或等于此参数值时计算终止缺省是-InfStall generation 停滞代数如果每一代的最佳适应度值在该参数指定的代数没有改善则终止计算缺省是50代Stall time 停滞时间如果每一代的最佳适应度值在该参数指定的时间间隔内没有改善则终止计算缺省是20秒3 设置绘图参数即Plots设置绘图参数Plots工作时可以从遗传算法得到图形数据当选择各种绘图参数并执行遗传算法时一个图形窗口在分离轴上显示这些图形下面介绍其中2个参数Best fitness 选择该绘图参数时将绘制每一代的最佳适应度值和进化世代数之间的关系图如图4的上图所示图中蓝色点代表每一代适应度函数的平均值黑色点代表每一代的最佳值Distance 选择此参数时绘制每一代中个体间的平均距离它反映个体之间的差异程度所以可用来衡量种群的多样性图4的下图显示的即是每一代个体间的平均距离图44 执行算法参数设置好了之后点击工具箱界面上的按钮Star 执行求解器在算法运行的同时Current generation当前代数文本框中显示当前的进化代数通过单击Pause按钮可以使计算暂停之后再点击Resume可以恢复计算当计算完成时Status and results窗格中出现如图5所示的情形图5其中包含下列信息算法终止时适应度函数的最终值即目标函数的最优值Fitness function value 0003909079476983379算法终止原因Optimization terminated imum number of generations exceeded 超出最大进化世代数最终点即目标函数的最优解[x1 x2] [-0004 -000193]两个变量的例子三实验内容1 Rastrigin函数的最小值问题函数表达式如 7 式函数图像如下图6所示它有多个局部极小值但是只有一个全局最小值Rastrigin函数的全局最小值的精确解是0出现在[x1 x2] [0 0]处图6 Rastrigin函数图像使用遗传算法工具箱近似求解Rastrigin函数的最小值首先编写计算适应度函数的M文件然后设置运行参数绘图参数Plots勾选Best fitness和Distance两项其它参数可以使用默认值执行求解器Run solver计算Rastrigin函数的最优值观察种群多样性对优化结果的影响决定遗传算法的一个重要性能是种群的多样性个体之间的距离越大则多样性越高反之则多样性越低多样性过高或过低遗传算法都可能运行不好通过实验调整Population 种群的Initial range 初始范围参数可得到种群适当的多样性取Initial range参数值[1 11]观察Rastrigin函数最小值的计算结果取Initial range参数值[1 100]观察Rastrigin函数最小值的计算结果取Initial range参数值[1 2]观察Rastrigin函数最小值的计算结果2 微带电极欧姆损耗的优化微带电极的欧姆损耗公式可由 1 式表示令设计变量[WDt] [x1 x2 x3] X变量的约束条件如下8根据 1 式和 8 式使用遗产算法工具箱优化设计电极的结构参数W 宽度 D 间距 t 厚度使得电极的欧姆损耗最小 1 式中用到的常数提示对约束条件 8 式的处理可以在编写计算适应度函数的M文件中实现方法是在M文件中引入对每个输入变量值范围的判断语句如果任一变量范围超出 8 式的限制则给该个体的适应度施加一个惩罚使得该个体被遗传到下一代的概率减小甚至为0一般可用下式对个体适应度进行调整9其中F x 是原适应度F x 是调整后的适应度P x 是罚函数为简单计本问题中我们可以给个体的适应度 com件的返回值Z 加上一个很大的数即可如正无穷Inf四思考题1 在遗传算法当中个体的变异对结果有何影响如果没有变异结果又将如何试以Rastrigin函数最小值的计算为例说明取变异概率为0即交叉概率Crossover fraction 102 遗传算法工具箱针对的是最小化函数值问题如果要利用该工具箱计算函数的最大值该如何实现。
matlab遗传算法计算函数区间最大值和最小值

matlab遗传算法计算函数区间最大值和最小值下面是用matlab实现遗传算法计算函数区间最大值和最小值的示例代码:首先定义函数(此处以f(x)=x*sin(10*pi*x)+1为例):matlabfunction y = myfun(x)y = x*sin(10*pi*x)+1;end然后设置遗传算法参数:matlaboptions = gaoptimset('Generations', 1000, 'PopulationSize', 50,'StallGenLimit', 200, 'TolCon', 1e-10);其中,Generations表示遗传算法的迭代次数,PopulationSize表示种群大小,StallGenLimit表示在连续多少代没有改变时停止迭代,TolCon表示收敛精度。
接着,编写遗传算法主函数:matlab[x, fval] = ga(@myfun, 1, [], [], [], [], -1, 2, [], [], options);其中,第一个参数为要优化的函数,第二个参数为变量维度,后面的参数为变量的取值范围。
最后,输出结果:matlabfprintf('Function maximum is %f\n',-fval);fprintf('Function minimum is %f\n',fval);其中,-fval表示函数最大值,fval表示函数最小值。
完整代码如下:matlabfunction y = myfun(x)y = x*sin(10*pi*x)+1;endoptions = gaoptimset('Generations', 1000, 'PopulationSize', 50, 'StallGenLimit', 200, 'TolCon', 1e-10);[x, fval] = ga(@myfun, 1, [], [], [], [], -1, 2, [], [], options);fprintf('Function maximum is %f\n',-fval);fprintf('Function minimum is %f\n',fval);参考资料:[1][2]。
基于Matlab的遗传算法解决TSP问题的报告

报告题目:基于Matlab的遗传算法解决TSP问题说明:该文包括了基于Matlab的遗传算法解决TSP问题的基本说明,并在文后附录了实现该算法的所有源代码。
此代码经过本人的运行,没有发现错误,结果比较接近理论最优值,虽然最优路径图有点交叉。
因为本人才疏学浅,本报告及源代码的编译耗费了本人较多的时间与精力,特收取下载积分,还请见谅。
若有什么问题,可以私信,我们共同探讨这一问题。
希望能对需要这方面的知识的人有所帮助!1.问题介绍旅行商问题(Traveling Salesman Problem,简称TSP)是一个经典的组合优化问题。
它可以描述为:一个商品推销员要去若干个城市推销商品,从一个城市出发,需要经过所有城市后,回到出发地,应如何选择行进路线,以使总行程最短。
从图论的角度看,该问题实质是在一个带权完全无向图中。
找一个权值最小的Hemilton回路。
其数学描述为:设有一个城市集合其中每对城市之间的距离(),i j d c c R +∈,求一对经过C中每个城市一次的路线()12,,n c c c ΠΠΠ⋯使()()()1111min ,,n i n i i d c c d c c −ΠΠΠΠ+=+∑其中()12,,12n n ΠΠΠ⋯⋯是,的一个置换。
2.遗传算法2.1遗传算法基本原理遗传算法是由美国J.Holland 教授于1975年在他的专著《自然界和人工系统的适应性》中首先提出的,它是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。
遗传算法模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。
遗传算法,在本质上是一种不依赖具体问题的直接搜索方法,是一种求解问题的高效并行全局搜索方法。
遗传算法在模式识别、神经网络、图像处理、机器学习、工业优化控制、自适应控制、负载平衡、电磁系统设计、生物科学、社会科学等方面都得到了应用。
引入精英主义的遗传算法MATLAB程序实现

人工智能作业题目:引入精英主义的遗传算法MATLAB程序实现姓名:林俊杰学号: 130120052学院:电气工程与自动化学院专业:控制理论与控制工程年级:2013 级指导教师:李玉蓉2014 年1月8 日一、基本遗传算法遗传算法是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,它借鉴了达尔文的进化论和孟德尔的遗传学说。
基本遗传算法的步骤有:①初始群体的产生②个体编码③适应度汁算④选择运算⑤交叉运算⑥变异运算。
二、引入精英主义的基本遗传算法精英主义(Elitist Strategy)是基本遗传算法的一种优化。
为了防止进化过程中产生的最优解被交叉和变异所破坏,可以将每一代中的最优解原封不动的复制到下一代中。
引入精英主义的遗传算法具有收敛速度快、最优解寻求稳定、有较好的稳定性。
可通过引入精英个数的比例来控制整体的收敛速度,个数越多收敛越快,但过多的精英个数可能会造成算法的局部收敛,反而得到不良结果。
三、基本遗传算法程序运行结果与说明测试程序采用了Rosenbrock函数,该函数有两个局部极大点.20483905),.2f,其中后者为全局最--(=048-)3897.7342048.f和926.2(=048.2,大点。
如图1、2、3所示为基本遗传算法在运行过程中,对最优解的跟踪曲线。
可以看出未改进的基本遗传算法最优解跟踪曲线呈现出震荡,不稳定。
甚至在整个寻求过程都无法找到最后的最优解,这样的遗传算法性能根本无法满足工程及应用要求。
如图4所示基本遗传算法在某一代找到了最优解后,该最优解由于在轮盘选择中未被选中,所以很快的算法失去了该最有解,致使整个求解过程震荡,无结果。
图1 图2图3 图4三、引入精英主义的遗传算法程序运行结果与说明引入精英主义后,很好的解决了该问题。
如图5、6、7、8所示最优解寻求曲线快速的收敛到最优解,整个曲线平整无波动。
具有较好的收敛速度、稳定性。
明显克服了基本遗传算法的震荡不稳定。
遗传算法多目标优化matlab源代码

遗传算法多目标优化matlab源代码遗传算法(Genetic Algorithm,GA)是一种基于自然选择和遗传学原理的优化算法。
它通过模拟生物进化过程,利用交叉、变异等操作来搜索问题的最优解。
在多目标优化问题中,GA也可以被应用。
本文将介绍如何使用Matlab实现遗传算法多目标优化,并提供源代码。
一、多目标优化1.1 多目标优化概述在实际问题中,往往存在多个冲突的目标函数需要同时优化。
这就是多目标优化(Multi-Objective Optimization, MOO)问题。
MOO不同于单一目标优化(Single Objective Optimization, SOO),因为在MOO中不存在一个全局最优解,而是存在一系列的Pareto最优解。
Pareto最优解指的是,在不降低任何一个目标函数的情况下,无法找到更好的解决方案。
因此,在MOO中我们需要寻找Pareto前沿(Pareto Front),即所有Pareto最优解组成的集合。
1.2 MOO方法常见的MOO方法有以下几种:(1)加权和法:将每个目标函数乘以一个权重系数,并将其加和作为综合评价指标。
(2)约束法:通过添加约束条件来限制可行域,并在可行域内寻找最优解。
(3)多目标遗传算法:通过模拟生物进化过程,利用交叉、变异等操作来搜索问题的最优解。
1.3 MOO评价指标在MOO中,我们需要使用一些指标来评价算法的性能。
以下是常见的MOO评价指标:(1)Pareto前沿覆盖率:Pareto前沿中被算法找到的解占总解数的比例。
(2)Pareto前沿距离:所有被算法找到的解与真实Pareto前沿之间的平均距离。
(3)收敛性:算法是否能够快速收敛到Pareto前沿。
二、遗传算法2.1 遗传算法概述遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传学原理的优化算法。
它通过模拟生物进化过程,利用交叉、变异等操作来搜索问题的最优解。
遗传算法及其MATLAB程序代码
遗传算法及其MATLAB程序代码遗传算法及其MATLAB实现主要参考书:MATLAB 6.5 辅助优化计算与设计飞思科技产品研发中⼼编著电⼦⼯业出版社2003.1遗传算法及其应⽤陈国良等编著⼈民邮电出版社1996.6主要内容:遗传算法简介遗传算法的MATLAB实现应⽤举例在⼯业⼯程中,许多最优化问题性质⼗分复杂,很难⽤传统的优化⽅法来求解.⾃1960年以来,⼈们对求解这类难解问题⽇益增加.⼀种模仿⽣物⾃然进化过程的、被称为“进化算法(evolutionary algorithm)”的随机优化技术在解这类优化难题中显⽰了优于传统优化算法的性能。
⽬前,进化算法主要包括三个研究领域:遗传算法、进化规划和进化策略。
其中遗传算法是迄今为⽌进化算法中应⽤最多、⽐较成熟、⼴为⼈知的算法。
⼀、遗传算法简介遗传算法(Genetic Algorithm, GA)最先是由美国Mic-hgan⼤学的John Holland于1975年提出的。
遗传算法是模拟达尔⽂的遗传选择和⾃然淘汰的⽣物进化过程的计算模型。
它的思想源于⽣物遗传学和适者⽣存的⾃然规律,是具有“⽣存+检测”的迭代过程的搜索算法。
遗传算法以⼀种群体中的所有个体为对象,并利⽤随机化技术指导对⼀个被编码的参数空间进⾏⾼效搜索。
其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定等5个要素组成了遗传算法的核⼼内容。
遗传算法的基本步骤:遗传算法是⼀种基于⽣物⾃然选择与遗传机理的随机搜索算法,与传统搜索算法不同,遗传算法从⼀组随机产⽣的称为“种群(Population)”的初始解开始搜索过程。
种群中的每个个体是问题的⼀个解,称为“染⾊体(chromos ome)”。
染⾊体是⼀串符号,⽐如⼀个⼆进制字符串。
这些染⾊体在后续迭代中不断进化,称为遗传。
在每⼀代中⽤“适值(fitness)”来测量染⾊体的好坏,⽣成的下⼀代染⾊体称为后代(offspring)。
遗传算法精英保留策略 matlab
遗传算法精英保留策略 matlab在遗传算法中,精英保留策略是指在每一代进化过程中,保留上一代中表现最优秀的个体,以保证优秀基因的传递和保留。
实现精英保留策略的MATLAB代码如下:```function [newPopulation] = elitePreservation(oldPopulation, eliteIndividuals)% 输入参数:% oldPopulation:上一代的种群% eliteIndividuals:精英个体的数量% 根据适应度对种群进行排序oldPopulation = sortPopulation(oldPopulation);% 选择精英个体elite = oldPopulation(1:eliteIndividuals);% 根据适应度从高到低排序,删除多余个体elite = sortPopulation(elite, 'descend');elite = elite(1:eliteIndividuals);% 将精英个体和其余个体合并为新一代种群newPopulation = [elite;oldPopulation(eliteIndividuals+1:end)];endfunction [sortedPopulation] = sortPopulation(population, sortDirection)% 输入参数:% population:待排序的种群% sortDirection:排序方向,'ascend'表示适应度从低到高排序,'descend'表示适应度从高到低排序(可选参数,默认为'ascend') if nargin < 2sortDirection = 'ascend';end% 计算种群的适应度fitness = calculateFitness(population);% 根据适应度进行排序[~, sortIndex] = sort(fitness, sortDirection);% 根据排序索引重新排序种群sortedPopulation = population(sortIndex, :);endfunction [fitness] = calculateFitness(population)% 输入参数:% population:待计算适应度的种群% 根据具体问题计算个体的适应度,此处假设fitness函数已经实现fitness = fitness(population);end```在代码中,通过调用`elitePreservation`函数即可实现精英保留策略。
遗传算法matlab代码
function youhuafunD=code;N=50; % Tunablemaxgen=50; % Tunablecrossrate=0.5; %Tunablemuterate=0.08; %Tunablegeneration=1;num = length(D);fatherrand=randint(num,N,3);score = zeros(maxgen,N);while generation<=maxgenind=randperm(N-2)+2; % 随机配对交叉A=fatherrand(:,ind(1:(N-2)/2));B=fatherrand(:,ind((N-2)/2+1:end));% 多点交叉rnd=rand(num,(N-2)/2);ind=rnd tmp=A(ind);A(ind)=B(ind);B(ind)=tmp;% % 两点交叉% for kk=1:(N-2)/2% rndtmp=randint(1,1,num)+1;% tmp=A(1:rndtmp,kk);% A(1:rndtmp,kk)=B(1:rndtmp,kk);% B(1:rndtmp,kk)=tmp;% endfatherrand=[fatherrand(:,1:2),A,B];% 变异rnd=rand(num,N);ind=rnd [m,n]=size(ind);tmp=randint(m,n,2)+1;tmp(:,1:2)=0;fatherrand=tmp+fatherrand;fatherrand=mod(fatherrand,3);% fatherrand(ind)=tmp;%评价、选择scoreN=scorefun(fatherrand,D);% 求得N个个体的评价函数score(generation,:)=scoreN;[scoreSort,scoreind]=sort(scoreN);sumscore=cumsum(scoreSort);sumscore=sumscore./sumscore(end);childind(1:2)=scoreind(end-1:end);for k=3:Ntmprnd=rand;tmpind=tmprnd difind=[0,diff(t mpind)];if ~any(difind)difind(1)=1;endchildind(k)=scoreind(logical(difind));endfatherrand=fatherrand(:,childind);generation=generation+1;end% scoremaxV=max(score,[],2);minV=11*300-maxV;plot(minV,'*');title('各代的目标函数值');F4=D(:,4);FF4=F4-fatherrand(:,1);FF4=max(FF4,1);D(:,5)=FF4;save DData Dfunction D=codeload youhua.mat% properties F2 and F3F1=A(:,1);F2=A(:,2);F3=A(:,3);if (max(F2)>1450)||(min(F2)<=900)error('DATA property F2 exceed it''s range(900,1450]')end% get group property F1 of data, according to F2 value F4=zeros(size(F1));for ite=11:-1:1index=find(F2<=900+ite*50);F4(index)=ite;endD=[F1,F2,F3,F4];function ScoreN=scorefun(fatherrand,D)F3=D(:,3);F4=D(:,4);N=size(fatherrand,2);FF4=F4*ones(1,N);FF4rnd=FF4-fatherrand;FF4rnd=max(FF4rnd,1);ScoreN=ones(1,N)*300*11;% 这里有待优化for k=1:NFF4k=FF4rnd(:,k);for ite=1:11F0index=find(FF4k==ite);if ~isempty(F0index)tmpMat=F3(F0index);tmpSco=sum(tmpMat);ScoreBin(ite)=mod(tmpSco,300);endendScorek(k)=sum(ScoreBin);endScoreN=ScoreN-Scorek;遗传算法实例:% 下面举例说明遗传算法 %% 求下列函数的最大值 %% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %% 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01 。
遗传算法介绍并附上Matlab代码
1、遗传算法介绍遗传算法,模拟达尔文进化论的自然选择和遗产学机理的生物进化构成的计算模型,一种不断选择优良个体的算法。
谈到遗传,想想自然界动物遗传是怎么来的,自然主要过程包括染色体的选择,交叉,变异(不明白这个的可以去看看生物学),这些操作后,保证了以后的个基本上是最优的,那么以后再继续这样下去,就可以一直最优了。
2、解决的问题先说说自己要解决的问题吧,遗传算法很有名,自然能解决的问题很多了,在原理上不变的情况下,只要改变模型的应用环境和形式,基本上都可以。
但是遗传算法主要还是解决优化类问题,尤其是那种不能直接解出来的很复杂的问题,而实际情况通常也是这样的。
本部分主要为了了解遗传算法的应用,选择一个复杂的二维函数来进行遗传算法优化,函数显示为y=10*sin(5*x)+7*abs(x-5)+10,这个函数图像为:怎么样,还是有一点复杂的吧,当然你还可以任意假设和编写,只要符合就可以。
那么现在问你要你一下求出最大值你能求出来吗?这类问题如果用遗传算法或者其他优化方法就很简单了,为什么呢?说白了,其实就是计算机太笨了,同时计算速度又超快,举个例子吧,我把x等分成100万份,再一下子都带值进去算,求出对应的100万个y的值,再比较他们的大小,找到最大值不就可以了吗,很笨吧,人算是不可能的,但是计算机可以。
而遗传算法也是很笨的一个个搜索,只不过加了一点什么了,就是人为的给它算的方向和策略,让它有目的的算,这也就是算法了。
3、如何开始?我们知道一个种群中可能只有一个个体吗?不可能吧,肯定很多才对,这样相互结合的机会才多,产生的后代才会多种多样,才会有更好的优良基因,有利于种群的发展。
那么算法也是如此,当然个体多少是个问题,一般来说20-100之间我觉得差不多了。
那么个体究竟是什么呢?在我们这个问题中自然就是x值了。
其他情况下,个体就是所求问题的变量,这里我们假设个体数选100个,也就是开始选100个不同的x值,不明白的话就假设是100个猴子吧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第21卷 第6期1999年12月武 汉 汽 车 工 业 大 学 学 报JOURNALOFWUHANAUTOMOTIVEPOLYTECHNICUNIVERSITYVol.21No.6Dec.1999
遗传算法在MATLAB环境中的实现汪秉文 范 彳真丁 康小海(华中理工大学)
摘 要 探讨了在MATLAB环境中实现遗传算法仿真的方法,并以一个简单的求函数最值的问题作为遗传算法的应用实例,说明遗传算法的全局寻优性及用MATLAB实现仿真的可行性。关键词 遗传算法;MATLAB;全局寻优中图法分类号 TP301.6
遗传算法GA(GeneticAlgorithm)是近几年发展起来的一种崭新的全局优化算法。它借用了生物遗传学的观点,通过自然选择、遗传和变异等作用机制,使每个个体的适应性提高[1]。由美国Mathwork公司于1967年推出的MatrixLabortory(缩写为MATLAB)软件包,是一种功能强,效率高便于进行科学和工程计算的交互式软件包。在此环境下,所解问题的MATLAB语言表述形式和其数学表达形式相同,不需要按传统方法编程[2]。在MATLAB环境下编制一个简单的遗传算法工具库(SGA),就可以利用MATLAB强大的仿真功能,进行遗传算法的各种仿真实验。
1 一个基本的遗传算法遗传算法是将问题的求解表示成“染色体”,从而构成一群“染色体”。将它们置于问题的“环境”中,根据适者生存的原则,从中选择出适应环境的“染色体”进行复制,即再生(reproduction,selection),通过交叉(crossover)、
变异(mutation)两种基因操作产生出新一代更适合环境的“染色体”群,这样一代代不断改进,最后收敛到一个最适合环境的个体上(当然也有其他的收敛准则),求得问题的最佳解[3]。图1给出了GA的流程图[4]。GA有如下3个基本算子:再生(reproduction/selection)。再生算子从群体中按某一概率选择个体,某个体Xi被选择的概率Pi与其适应值成正比。最通常的实现方法是轮盘赌(roulettewheel)模型。交叉(Crossover)。交叉算子将被选中的2个个体的基因链按概率Pc进行交叉,生成2个新的个体,交叉位置是随机的。其中Pc是一个系统参数,即交叉概率。
收稿日期:1999207214.
汪秉文,男,53岁,副教授;武汉,华中理工大学控制科学与工程系(430074).
© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved. 变异(Mutation)。变异算子按一定概率Pm将新个体的基因链的各位进行变异,对二值基因链(0,1编码)来说即是取反。Pm也是一个系统参数,即变异概率。以上各种算子的实现方法是多种多样的,而且许多高级算子正不断提出,以改进GA的某些性能。由于GA的性能具有一定的脆弱性(brittleness),因此GA本身的参数(即系统参数)的选取对GA的运行效果有很大影响。系统参数的选取一般遵循以下原则:
①种群数目N。种群数目会影响GA的有效性。N太小,GA会很差或根本找不出问题的解,因为太小的种群数目不能提供足够的采样点;N太大,会增加计算量,使收敛时间延长。一般种群数目在20~160之间比较合适。②交叉概率Pc。此参数控制着交叉操作的频率。Pc太大,会使高适应值的结构很快破坏掉;Pc太小,搜索会停滞不前。一般Pc取0.25~0.75。③变异概率Pm。它是增大种群多样性的第二因素。Pm太小,不会产生新的基因块;Pm太大,会使GA变成随机搜索。一般Pm取0.01~0.20。
2 SGA库前已述及,MATLAB中最重要的成分是函数,下面简要地介绍一下SGA库中主要的函数及变量。在SGA库中,经常要使用的变量是P
op,它代表一个种群,
是各种遗传算子操作的对象。
Pop
本身是一个维数为popsize×itemsize的矩阵。之所以这样做是考虑到MATLAB处理矩阵的
强大能力。矩阵的每一行是一个维数为itemsize的向量(数组),分别代表一个染色体。由于向量维数itemsize理论上可以无限增大,这就保证了染色体的长度可以根据需要无限增长。种群的大小是popsize,即染色体的个数。SGA中包含如下3个实现基本遗传算法的函数:Crossop,即交叉算子,以概率Pc在两染色体上的随机位置交换子串,格式为Pop=crossop(Pop,Pc),其中参数P
c
代表交叉概率。
Muta,即变异算子,以概率Pm对染色体上任一基因进行干扰,格式为Pop=muta(Pop,
Pm),其中Pm
代表变异概率。
Repro,即繁殖(再生/选择)算子,基本的选择策略是采用轮盘赌模型。轮盘经任意旋转停止后指针所指向区域被选中,所以fi值大的个体被选中的概率就大。该函数格式为[P
op,fp]=
repro(Pop,fp)。其中f
p代表适值(fitness)向量,维数等于种群大小popsize,fp
的第i个元素对应
于Pop的第i行向量,即种群的第i个染色体的适值。要实现遗传算法的功能,还需要以下几个重要的函数:
Initpop,即初始化种群。函数格式为Pop=initpop(popsize,itemsize,m)。式中popsize及itemsize的含义如前所述,字符m是method的缩写,其含义是产生初始种群的染色体串的方式。在本例中,此参数取b代表染色体取二进制串;此参数取d代表染色体取十进制串。Decode,即解码函数。对应于不同的问题域,需定义不同的解码方式(编码过程由手工完成)。Fof,即适值填充函数。函数格式为fp=fof(Pop),其功能是根据种群计算种群的适值向量。这也是一个和问题求解域紧密联系的函数,需要用户根据具体情况编制相应的程序。
62武 汉 汽 车 工 业 大 学 学 报 1999年12月© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.以下函数使用户在调试遗传算法时感到更加方便:
Best,即取最佳个体函数。函数格式为[sam,fit]=best(Pop,fp),其功能是找到种群中适值最大的个体(individual)作为样板sam,并输出其适值fit。Worst,即取最差个体函数。函数格式为[sam,fit]=worst(Pop,fp),其功能是找到种群中适值最小的个体(individual)作为样板sam,并输出其适值fit。Average,即求平均适值函数。函数格式为aver=average(fp),其功能是求取种群的平均适值。Sortpop,即种群排序函数。函数格式为[Pop,fp]=sortpop(Pop,f
p)。其功能是将种群中
的个体按其对应适值的大小从小到大进行重新排列。Seed,即播种函数。其形式为Pop=seed(Pop,p),
其功能是在原种群中以比例
p随机输入
新的种群,以替代原种群中适值最低的相应个体。p为0~1之间的小数。当种群的个体开始收敛而GA仍未得到较好结果时,采用该函数可以使GA进入新的搜索空间,并最终寻找到最佳值。
图2 双峰函数示意图3 应用实例笔者以一个简单的求函数最值问题为例,说明GA的功能及SGA的可用性。函数形式取双峰函数f(x)=1/[(x-0.3)
2
+
0.01]+1/[(x-0.9)2+0.04]-6,
自变量范
围取为[-1,2]。由图2知,当x=0.3时,函数y=f(x)取最大值96.5;当x=0.9时,y=f(x)取局部极大值21.7。采用GA寻优,每个个体的基因解码为自变量x,适值函数取为400K/(C
max-
f(x)),K为114.3,Cmax=100。种群大小N取20,交叉率Pc取0.6,变异率Pm
取0.1。以下是
遗传200代后获得的结果。图3显示了种群中最佳个体适应值增长的情况。由于在再生算子中保留了父代种群中适值最高的个体,所以在图4中几乎看不到适应值减小的现象。图4显示了GA的搜索过程。在一次具有代表性的实验中,第一代种群中适应值最高的染色体经解码后其值为0.55,正好处在函数图像中波谷的O点(见图2),此时GA如向右搜索,则有可能找到一个局部极大点B,但GA向左搜索则会成功地找到全局最大点A,充分显示了GA的全局寻优功能。
4 结束语遗传算法作为一种全局优化算法正在得到广泛的应用,笔者在MATLAB环境下用MAT2LAB语言编制了一个基本的SGA库,并以求函数最大值为应用例子说明了SGA库的应用及遗传算法的全局优化效果。由于MATLAB软件包强大的仿真功能以及良好的可扩充性,在MAT2LAB环境下使用SGA库,是对遗传算法进行仿真研究的一个有力工具。
72第21卷第6期 汪秉文等:遗传算法在MATLAB环境中的实现© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.