2008年成人高等学校招生全国统一考试数学(理工农医类)

合集下载

2008年高考试题——数学理(湖北卷)

2008年高考试题——数学理(湖北卷)

2008年普通高等学校招生全国统一考试(湖北卷)数 学(理工农医类)本试卷共4面,满分150分,考试时间120分钟注意事项:1. 答卷前,考生务必将自己的姓名,准考证号填写在试题卷和答题卡上,并将准考证号条形码粘巾在答题卡上指定位置。

2. 选择题每小题选出答案后,用2B 铅笔将答题卡上,对应题目的答案标号涂写,如写改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。

3. 非选择题用0.5毫米的黑色墨水签字夂答在答题卡上每题对应的答题区域内,答在试题卷上无效。

4. 考试结束,请将本试题卷和答题卡一并上交。

一、选择题:本次题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设()()()1,2,3,4,3,2a b c =-=-=,则()2a b c += A.(-15,12) B.0 C.-3 D.-112. 若非空集合A ,B ,C 满足A ∪B=C ,且B 不是A 的子集,则 A.“x ∈C ”是“x ∈A ”的充分条件但不是必要条件 B. “x ∈C ”是“x ∈A ”的必要条件但不是充分条件 C. “x ∈C ”是“x ∈A ”的充分条件D. “x ∈C ”是“x ∈A ”的充分条件也不是“x ∈A ”必要条件3. 用与球心距离为1的平面去截球,所得的截面面积为π,则球的休积为 A.38πB. 328πC.π28D. 332π4. 函数f (x )=)4323(1122+--++-x x x x n x的定义域为A.(- ∞,-4)[∪2,+ ∞]B.(-4,0) ∪(0,1)C. [-4,0]∪(0,1)]D. [-4,0∪(0,1) 5.将函数()3sin y x θ=-的图象F 按向量(3π,3)平移得到图象F ′,若F ′的一条对称轴是直线x=4π,则θ的一个可能取值是 A.π125 B. π125- C. π1211 D. π12116.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为A.540B.300C.180D.150 7.若f(x)=21ln(2)2x b x -++∞在(-1,+)上是减函数,则b 的取值范围是 A.[-1,+∞] B.(-1,+∞) C.(-∞,-1) D.(-∞,-1)8.已知m ∈N*,a,b ∈R ,若0(1)limm x x ab x→++=,则a ·b = A .-m B .m C .-1 D .19.过点A (11,2)作圆22241640x y x y ++--=的弦,其中弦长为整数的共有A.16条B.17条C.32条D.34条 10.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用2c 1和2c 2分别表示椭轨道Ⅰ和Ⅱ的焦距,用2a 1和2a 2分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①1122a c a c +=+;②1122a c a c -=-;③1212c a a c >;④1212c c a a <. 其中正确式子的序号是A.①③B.②③C.①④D.②④二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上. 11.设z 1是复数,211z z iz =-(其中1z 表示z 1的共轭复数),已知z 2的实部是-1,则z 2的虚部为 .12.在△ABC 中,三个角A ,B ,C 的对边边长分别为a=3,b=4,c=6,则cos cos cos bc A ca B ab C ++的值为 .13.已知函数()()222,962f x x x a f bx x x =++=-+,其中x ∈R ,a ,b 为常数,则方程f (ax+b )=0的解集为 .14.已知函数f(x)=2x ,等差数列{a x }的公差为2.若()2468104f a a a a a ++++=,则()()()()212310log ...f a f a f a f a ⋅⋅⋅⋅⎡⎤⎣⎦= .15.观察下列等式:2122213222111,22111,326111,424ni ni n i i n n i n n n i n n n ====+=++=++∑∑∑ 444311111,52330ni i n n n n ==++-∑ 24,(1)(321),3n n n n a n b a n +-=--+ ……………………………………212112101,nkk k k k k k k k i ia n a n a n a n a n a +--+--==++++⋅⋅⋅++∑可以推测,当x ≥2(k ∈N*)时,1111,,12k k k a a a k +-===+ a k -2= .三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分) 已知函数f (t17()cos (sin )sin (cos ),(,).12g x x f x x f x x ππ=+∈ (Ⅰ)将函数()g x 化简成()[)()sin 0,0,0,2A x B A ωϕωϕπ++>>∈的形式; (Ⅱ)求函数()g x 的值域.17.(本小题满分12分)袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球.ξ表示所取球的标号. (Ⅰ)求ξ的分布列,期望和方差;(Ⅱ)若,1,11a b E D ηξηη=+==,试求a,b 的值.18.(本小题满分12分)如图,在直三棱柱ABC-A 1B 1C 1中,平面111A BC A ABB ⊥侧面.(Ⅰ)求证:AB BC ⊥;(Ⅱ)若直线AC 与平面1A BC 所成的角为θ,二面角1A BC A --的大小为ϕ,试判断θϕ与的大小关系,并予以证明.19.(本小题满分13分)如图,在以点O 为圆心,|AB|=4为直径的半圆ADB 中,OD ⊥AB ,P 是半圆弧上一点, ∠POB=30°,曲线C 是满足MA MB -为定值的动点M 的轨迹,且曲线C 过点P .(Ⅰ)建立适当的平面直角坐标系,求曲线C 的方程; (Ⅱ)设过点D 的直线l 与曲线C 相交于不同的两点E 、F. 若△OEF 的面积不小于...2.2,求直线l 斜率的取值范围.20.(本小题满分12分)水库的蓄水量随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t 的近似函数关系式为V (t )=12(1440)50,010,4(10)(341)50,1012.x t t e t t t t ⎧⎪-+-+<≤⎨⎪--+<≤⎩(Ⅰ)该水库的蓄求量小于50的时期称为枯水期.以1i t i -<<表示第i 月份(i=1,2,…,12),问一年内哪几个月份是枯水期?(Ⅱ)求一年内该水库的最大蓄水量(取e=2.7计算).21.(本小题满分14分)已知数列{}n a 和{}n b 满足:()()112,4,13213nn n n n a a a n b a n λ+==+-=--+,其中λ为实数,n 为正整数.(Ⅰ)对任意实数λ,证明数列{}n a 不是等比数列; (Ⅱ)试判断数列{}n b 是否为等比数列,并证明你的结论;(Ⅲ)设0<a <b ,n S 为数列{}n b 的前n 项和.是否存在实数λ,使得对任意正整数n ,都有n a S b <<?若存在,求λ的取值范围;若不存在,说明理由.参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分. 1.C 2.B 3.B 4.D 5.A 6.D 7.C 8.A 9.C 10.B二、填空题:本题考查基础知识和基本运算,每小题5分,满分25分. 11.1 12.612 13.∅ 14.-6 15. 12k,0 三、解答题:本大题共6小题,共75分.16.本小题主要考查函数的定义域、值域和三角函数的性质等基本知识,考查三角恒等变换、代数式的化简变形和运算能力.(满分12分)解:(Ⅰ)1sin 1cos ()cos sin 1sin 1cos xxg x xxx x--=+++2222(1sin )(1cos )cos sin cos sin x x xx x x--=+ 1sin 1cos cos sin .cos sin x xxx x x--=+17,,cos cos ,sin sin ,12x x x x x π⎛⎤∈π∴=-=- ⎥⎝⎦1sin 1cos ()cos sin cos sin x xg x xx x x--∴=+--sin cos 2x x =+-2.4x π⎛⎫+- ⎪⎝⎭(Ⅱ)由1712x ππ≤<,得55.443x πππ+≤<sin t 在53,42ππ⎛⎤ ⎥⎝⎦上为减函数,在35,23ππ⎛⎤⎥⎝⎦上为增函数,又5535sinsin ,sin sin()sin 34244x πππππ∴≤+<<(当17,2x π⎛⎤∈π ⎥⎝⎦), 即21sin()222sin()23424x x ππ-≤+-∴--≤+--<,<, 故g (x )的值域为)22,3.⎡---⎣17.本小题主要考查概率、随机变量的分布列、期望和方差等概念,以及基本的运算能力.(满分12分)解:(Ⅰ)ξ的分布列为:ξ0 1 2 3 4P12120 110320 15 ∴01234 1.5.22010205E ξ=⨯+⨯+⨯+⨯+⨯=2222211131(0 1.5)(1 1.5)(2 1.5)(3 1.5)(4 1.5) 2.75.22010205ξ=-⨯+-⨯+-⨯+-⨯+-⨯=(Ⅱ)由D a D η=ξ2,得a 2×2.75=11,即 2.a =±又,E aE b η=ξ+所以 当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4.∴2,2a b =⎧⎨=-⎩或2,4a b =-⎧⎨=⎩即为所求.18.本小题主要考查直棱柱、直线与平面所成角、二面角和线面关系等有关知识,同时考查空间想象能力和推理能力.(满分12分) (Ⅰ)证明:如右图,过点A 在平面A 1ABB 1内作 AD ⊥A 1B 于D ,则由平面A 1BC ⊥侧面A 1ABB 1,且平面A 1BC 侧面A 1ABB 1=A 1B ,得AD ⊥平面A 1BC ,又BC ⊂平面A 1BC , 所以AD ⊥BC .因为三棱柱ABC —A 1B 1C 1是直三棱柱, 则AA 1⊥底面ABC , 所以AA 1⊥BC. 又AA 1AD =A ,从而BC ⊥侧面A 1ABB 1,又AB ⊂侧面A 1ABB 1,故AB ⊥BC .(Ⅱ)解法1:连接CD ,则由(Ⅰ)知ACD ∠是直线AC 与平面A 1BC 所成的角,1ABA ∠是二面角A 1—BC —A 的平面角,即1,,ACD ABA ∠=θ∠=ϕ于是在Rt △ADC 中,sin ,AD AC θ=在Rt △ADB 中,sin ,ADABϕ= 由AB <AC ,得sin sin θϕ<,又02πθϕ<,<,所以θϕ<,解法2:由(Ⅰ)知,以点B 为坐标原点,以BC 、BA 、BB 1所在的直线分 别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设AA 1=a ,AC =b , AB =c ,则B (0,0,0),A (0,c ,0),1(0,,),C A c a 于是 221(,0,0),(0,,),BC b c BA c a =-= 221(,,0),(0,0,).AC b c c AA a =--=设平面A 1BC 的一个法向量为n =(x ,y ,z ),则由10,0,n BAn BC ⎧=⎪⎨=⎪⎩得0,0,cy az +=⎧=可取n =(0,-a ,c ),于是0n AC ac AC =>,与n 的夹角β为锐角,则β与θ互为余角. sin cos n AC n AC b a θ-β==11cosBA BA BA BAaϕ==所以sin ϕ=于是由c <b即sin sin ,θϕ<又0,2πθϕ<,<所以,θϕ<19.本小题主要考查直线、圆和双曲线等平面解析几何的基础知识,考查轨迹方程的求法、不等式的解法以及综合解题能力.(满分13分)(Ⅰ)解法1:以O 为原点,AB 、OD 所在直线分别为x 轴、y 轴,建立平面直角坐标系,则A (-2,0),B (2,0),D (0,2),P (1,3),依题意得|MA |-|MB |=|PA |-|PB |=221321)32(2222=)(+--++<|AB |=4. ∴曲线C 是以原点为中心,A 、B 为焦点的双曲线. 设实平轴长为a ,虚半轴长为b ,半焦距为c , 则c =2,2a =22,∴a 2=2,b 2=c 2-a 2=2.∴曲线C 的方程为12222=-y x . 解法2:同解法1建立平面直角坐标系,则依题意可得|MA |-|MB |=|PA |-|PB |<|AB|=4.∴曲线C是以原点为中心,A、B为焦点的双曲线.设双曲线的方程为abyax(12222=->0,b>0).则由.4,11)3(222222=+=-baba解得a2=b2=2,∴曲线C的方程为.12222=-yx(Ⅱ)解法1:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理得(1-K2)x2-4kx-6=0.∵直线l与双曲线C相交于不同的两点E、F,∴,0)1(64)4(,01222>-⨯+-=∆≠-kkk⇔.33,1<<-±≠kk∴k∈(-3,-1)∪(-1,1)∪(1,3).设E(x,y),F(x2,y2),则由①式得x1+x2=kxxkk--=-16,14212,于是|EF|=2212221221))(1()()(xxkxyxx-+=++-=.132214)(1222212212kkkxxxxk--⋅+=-+⋅+而原点O 到直线l 的距离d =212k+,∴S △DEF =.132213221122121222222kk k k k k EF d --=--⋅+⋅+⋅=⋅ 若△OEF 面积不小于22,即S △OEF 22≥,则有 解得.22,022********2≤≤-≤--⇔≥--k k k kk ③综合②、③知,直线l 的斜率的取值范围为[-2,-1]∪(1-,1) ∪(1, 2).解法2:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理,得(1-K 2)x 2-4kx -6=0.∵直线l 与双曲线C 相交于不同的两点E 、F , ∴.0)1(64)4(,01222>-⨯+-=∆≠-k k k ⇔33,1<<-±≠k k .∴k ∈(-3,-1)∪(-1,1)∪(1,3). 设E (x 1,y 1),F (x 2,y 2),则由①式得 |x 1-x 2|=.132214)(22221221kk kx x x x --=-∆=-+ ③当E 、F 在同一去上时(如图1所示), S △OEF =;21212121x x OD x x OD S S ODE ODF -⋅=-⋅=-∆∆ 当E 、F 在不同支上时(如图2所示).+=∆∆ODF OEF S S S △ODE =.21)(212121x x OD x x OD -⋅=+⋅ 综上得S △OEF =,2121x x OD -⋅于是 由|OD |=2及③式,得S △OEF =.132222kk --若△OEF 面积不小于2则有即,22,2≥∆OEF S.22,022*******2≤≤-≤-⇔≥--k k k k k 解得 ④综合②、④知,直线l 的斜率的取值范围为[-2,-1]∪(-1,1)∪(1,2).20.本小题主要考查函数、导数和不等式等基本知识,考查用导数求最值和综合运用数学知识解决实际问题能力.(满分12分)解:(Ⅰ)①当0<t ≤10时,V (t )=(-t 2+14t -40),5050441<+e化简得t 2-14t +40>0,解得t <4,或t >10,又0<t ≤10,故0<t <4. ②当10<t ≤12时,V (t )=4(t -10)(3t -41)+50<50, 化简得(t -10)(3t -41)<0, 解得10<t <341,又10<t ≤12,故 10<t ≤12. 综合得0<t <4,或10<t 12, 故知枯水期为1月,2月,,3月,4月,11月,12月共6个月. (Ⅱ)(Ⅰ)知:V (t )的最大值只能在(4,10)内达到.由V ′(t )=),8)(2(41)42341(41241-+-=++-t t c t t c tt令V ′(t )=0,解得t=8(t=-2舍去).当t 变化时,V ′(t ) 与V (t )的变化情况如下表:故知一年内该水库的最大蓄水量是108.32亿立方米21.本小题主要考查等比数列的定义、数列求和、不等式等基础知识和分类讨论的思想,考查综合分析问题的能力和推理认证能力,(满分14分)(Ⅰ)证明:假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即,094949494)494()332(222=⇔-=+-⇔-=-λλλλλλλ矛盾. 所以{a n }不是等比数列.(Ⅱ)解:因为b n +1=(-1)n +1[a n +1-3(n -1)+21]=(-1)n +1(32a n -2n +14) =32(-1)n ·(a n -3n +21)=-32b n 又b 1x -(λ+18),所以当λ=-18,b n =0(n ∈N +),此时{b n }不是等比数列: 当λ≠-18时,b 1=(λ+18) ≠0,由上可知b n ≠0,∴321-=+n a b b (n ∈N +). 故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-32为公比的等比数列. (Ⅲ)由(Ⅱ)知,当λ=-18,b n =0,S n =0,不满足题目要求. ∴λ≠-18,故知b n = -(λ+18)·(-32)n -1,于是可得 S n =-.321·)18(53⎥⎦⎤⎢⎣⎡+n )-(- λ 要使a <S n <b 对任意正整数n 成立, 即a <-53(λ+18)·[1-(-32)n ]〈b(n ∈N +) ,则令 得)2(1)()32(1)18(53)32(1--=--<+-<--n f b a nnλ ①当n 为正奇数时,1<f (n ),1)(95;35<≤≤n f n 为正偶数时,当 ∴f (n )的最大值为f (1)=35,f (n )的最小值为f (2)= 95,于是,由①式得95a <-53(λ+18),<.1831853--<<--⇔a b b λ当a <b ≤3a 时,由-b -18≥=-3a -18,不存在实数满足题目要求;当b >3a 存在实数λ,使得对任意正整数n ,都有a <S n <b ,且λ的取值范围是(-b -18,-3a -18).。

2008年成人高等学校专升本招生全国统一考试高等数学(二)试题

2008年成人高等学校专升本招生全国统一考试高等数学(二)试题

2008年成人高等学校专升本招生全国统一考试高等数学(二)一、选择题:1~10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上 1.=-+∞→4312x x iml x【答案】:C【解析】:属于极限基本题,分子,分母同除x ,即得32,选C 【点评】:曾在安通系统班及强化班高数课上,极限部分有过大量相关题型练习。

A .41-B. 0C. 32D. 12. 已知)(x f 在1=x 处可导,且3)1(='f ,则0(1)(1)lim h f h f h→+-=A. 0B. 1C. 3D. 6 【答案】:C【解析】:考核导数定义,或用洛必达法则。

选C【点评】:在安通课上导数部分,有详细讲解导数定义及洛必达法则的应用,在串讲篇有重点强调。

3. 设函数='=y nx y 则,1 A.x 1 B. x1- C. x ln D. xe 【答案】:A【解析】: 容易题。

据辅导教材51页导数公式(4)得 【点评】:在安通课上导数部分,有过详细讲解。

4. 已知)(x f 在区间(∞+∞-,)内为单调减函数,且)(x f >)1(f ,则x 的取值范围是A. (1,-∞-)B. (1,∞-)C. (∞+,1)D. (∞+∞-,) 【答案】:D【解析】: 属概念题,选 D 与)(x f >)1(f 无关【点评】:在函数部分,有过详细讲解,在串讲篇有重点强调。

5. 设函数=+=dy e y x则,2 A. ()dx e x2+ B. ()dx x e x2+B. ()dx e x1+ D. dx e x【答案】:D【解析】:属于较容易题. 据辅导教材70页微分公式 (1),(4)。

6.⎰=+dx x )1(cosA. C x x ++sinB. C x x ++-sinC. C x x ++cosD. C x x ++-cos 【答案】:A【解析】:属于容易题. 据辅导教材135页微分公式 7.=⎰-dx x 511A. -2B. -1C. 0D. 1 【答案】: C【解析】:容易题. 据”连续奇函数在对称区间上的定积分为0”. 8. 设函数y x z 32+=,则xz∂∂= A. y x 32+ B. x 2 C. 32+x D.23233y x + 【答案】: B【解析】:属于较容易题. 对2x 求导,3y 看作常数即可得B 选项。

08年高考数学(理)试题及答案(湖南卷)

08年高考数学(理)试题及答案(湖南卷)

绝密★启用前2008年普通高等学校招生全国统一考试(湖南卷)数 学(理工农医类)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数31()i i-等于 A.8B.-8C.8iD.-8i2.“|x -1|<2成立”是“x (x -3)<0成立”的A .充分而不必要条件B.必要不充分条件C .充分必要条件 D.既不充分也不必要条件3.已知变量x 、y 满足条件1,0,290,x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩则x+y 的最大值是A.2B.5C.6D.84.设随机变量ζ服从正态分布N (2,9) ,若P (ζ>c+1)=P (ζ<c -)1,则c =A.1B.2C.3D.45.设有直线m 、n 和平面α、β。

下列四个命题中,正确的是A.若m ∥α,n ∥α,则m ∥nB.若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC.若α⊥β,m ⊂α,则m ⊥βD.若α⊥β,m ⊥β,m ⊄α,则m ∥α6.函数f (x )=sin 2xcos x x 在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是 A.1B.12C.327.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,DC BD = 2,CE EA =2,AF FB =则AD BE CF ++ 与BCA.反向平行B.同向平行C.互相垂直D.既不平行也不垂直8.若双曲线22221x y a b -=(a >0,b >0)上横坐标为32a的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)9.长方体ABCD -A 1B 1C 1D 1的8个顶点在同一球面上,且AB =2, AD AA 1=1, 则顶点A 、B 间的球面距离是B.C.2D.410.设[x ]表示不超过x 的最大整数(如[2]=2, [54]=1),对于给定的n ∈N *,定义[][]2(1)(1)(1)(1)n n n n x C x x x x --+=--+ ,x ∈[)1,+∞,则当x ∈3,32⎡⎫⎪⎢⎣⎭时,函数2n C 的值域是A.16,283⎡⎤⎢⎥⎣⎦B.16,563⎡⎫⎪⎢⎣⎭C.284,3⎛⎫⋃ ⎪⎝⎭[)28,56D.16284,,2833⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦二、填空题:本大题共5小题,每小题5分,共25分。

2008年普通高等学校招生全国统一考试理科数学试题及答案-四川延考卷

2008年普通高等学校招生全国统一考试理科数学试题及答案-四川延考卷

(sin cos ) 2 1 (5)已知 tan ,则 2 cos 2
(A) 2 (B) 2 (C) 3 (D) 3
1 1 (sin cos ) 2 sin cos 1 tan 2 3 ,选 C 解: cos 2 cos sin 1 tan 1 1 2
(6)一个正三棱锥的底面边长等于一个球的半径,该正三棱锥的高等于这个球的直径,则 球的体积与正三棱锥体积的比值为 (A)
8 3 3
(B)
3 6
(C)
3 2
(D) 8 3
解: 设球的半径为 r V1
4 3 3 2 r ;正三棱锥的底面面积 S r , h 2r , 3 4
V 8 3 1 3 2 3 3 ,选 A V2 r 2r r 。所以 1 3 4 6 V2 3
(C)6 个
(D)8 个
解: A 的子集共 2 8 个,含有元素 0 的和不含元素 0 的子集各占一半,有 4 个.选 B (2)已知复数 z
(3 i)(3 i) ,则 | z | 2i
(B)
(A)
5 5
2 5 5
(C) 5
(D) 2 5
解: z
(3 i)(3 i) 10(2 i) 2(2 i) 4 2i | z | 42 22 2 5 2i (2 i )(2 i)
(9)过点 (1,1) 的直线与圆 ( x 2) ( y 3) 9 相交于 A, B 两点,则 | AB | 的最小值为
2 2
(A) 2 3
(B) 4
(C) 2 5
(D) 5
2 2 解: 弦心距最大为 (2 1) (3 1) 5 , | AB | 的最小值为 2 9 5 4

2008年普通高等学校招生全国统一考试数学卷(全国Ⅱ.理)含详解

2008年普通高等学校招生全国统一考试数学卷(全国Ⅱ.理)含详解

2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k kn k k n P k C p p k n -=-= ,,,,一、选择题1.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 2.设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( ) A .223b a = B .223a b =C .229b a =D .229a b =3.函数1()f x x x=-的图像关于( )A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称4.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a5.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值( )A .2-B .4-C .6-D .8-6.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A .929B .1029C .1929D .20297.64(1(1-的展开式中x 的系数是( )A .4-B .3-C .3D .48.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( )A .1BCD .29.设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( ) A. B.C .(25),D.(210.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A .13B.3C.3D .2311.等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( ) A .3B .2C .13-D .12-12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1B .2C .3D .22008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 14.设曲线axy e =在点(01),处的切线与直线210x y ++=垂直,则a = . 15.已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB >,则FA 与FB 的比值等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,5cos 13B =-,4cos 5C =. (Ⅰ)求sin A 的值;(Ⅱ)设ABC △的面积332ABC S =△,求BC 的长. 18.(本小题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为41010.999-.(Ⅰ)求一投保人在一年度内出险的概率p ;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).19.(本小题满分12分)如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在1CC 上且EC E C 31=.(Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小.20.(本小题满分12分)设数列{}n a 的前n 项和为n S .已知1a a =,13nn n a S +=+,*n ∈N .(Ⅰ)设3nn n b S =-,求数列{}n b 的通项公式;(Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.21.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF =,求k 的值;(Ⅱ)求四边形AEBF 面积的最大值. 22.(本小题满分12分) 设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.AB CD EA 1B 1C 1D 12008年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.B 2.A 3.C 4.C 5.D 6.D 7.B 8.B 9.B 10.C 11.A 12.C 二、填空题13.2 14.2 5.3+16.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.1.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 【答案】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M 【高考考点】集合的运算,整数集的符号识别2.设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( ) A .223b a = B .223a b =C .229b a =D .229a b =【答案】A【解析】i b b a ab a i b ab bi a a bi a )3()3(33)(322332233-+-=--+=+,因是实数且 0b ≠,所以2232303a b b b a =⇒=- 【高考考点】复数的基本运算3.函数1()f x x x=-的图像关于( ) A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称【答案】C 【解析】1()f x x x=-是奇函数,所以图象关于原点对称 【高考考点】函数奇偶性的性质4.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a【答案】C【解析】由0ln 111<<-⇒<<-x x e ,令x t ln =且取21-=t 知b <a <c 5.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值( )A .2-B .4-C .6-D .8- 【答案】D【解析】如图作出可行域,知可行域的顶点是A (-2,2)、B(32,32)及C(-2,-2)于是8)(m in -=A z6.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A .929B .1029C .1929D .2029【答案】D【解析】2920330110220210120=+=C C C C C P 7.64(1(1-的展开式中x 的系数是( )A .4-B .3-C .3D .4【答案】B【解析】324156141604262406-=-+=-+C C C C C C 【易错提醒】容易漏掉1416C C 项或该项的负号8.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( )A .1B CD .2【答案】B【解析】在同一坐标系中作出x x f sin )(1=及x x g cos )(1=在]2,0[π的图象,由图象知,当43π=x ,即43π=a 时,得221=y ,222-=y ,∴221=-=y y MN【高考考点】三角函数的图象,两点间的距离【备考提示】函数图象问题是一个常考常新的问题9.设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( )A .B .C .(25),D .(2【答案】B【解析】222222)11(1)1()(a a a a a c e ++=++==,因为a 1是减函数,所以当1a >时 110<<a,所以522<<e ,即52<<e 【高考考点】解析几何与函数的交汇点 10.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( )A .13B .3C D .23【答案】C【解析】连接AC 、BD 交于O ,连接OE ,因OE ∥SD.所以∠AEO 为所求。

2008年普通高等学校招生全国统一考试理科数学试题及答案-山东卷

2008年普通高等学校招生全国统一考试理科数学试题及答案-山东卷

2008年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共60分)参考公式:球的表面积公式:S =4πR 2,其中R 是球的半径.如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率:P n (k )=C kn p k (1-p )n-k (k =0,1,2,…,n ).如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ). 如果事件A 、B 相互独立,那么P (AB )=P (A )·P (B ).一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)满足M ⊆{a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={ a 1,a 2}的集合M 的个数是(A )1 (B)2 (C)3 (D)4 (2)设z 的共轭复数是z ,若z +z =4, z ·z =8,则zz等于 (A )i (B )-i (C)±1 (D) ±i (3)函数y =lncos x (-2π<x <2π=的图象是 ( A )(4)设函数f (x )=|x +1|+|x -a |的图象关于直线x =1对称,则a 的值为(A) 3 (B)2 (C)1 (D)-1(5)已知cos (α-6π)+sin α7sin()6πα+则的值是 (A )-532 (B )532 (C)-54 (D) 54(6)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(A)9π (B )10π (C)11π (D) 12π(7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手。

若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为(A )511 (B )681 (C )3061 (D )4081(8)右图是根据《山东统计年鉴2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎 叶图,图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表 示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数 的平均数为(A )304.6 (B )303.6 (C)302.6 (D)301.6 (9)(X -31x)12展开式中的常数项为(A )-1320 (B )1320 (C )-220 (D)220 (10)设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为(A )1342222=-y x (B)15132222=-y x(C)1432222=-y x (D)112132222=-y x(11)已知圆的方程为X 2+Y 2-6X -8Y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为(A )106 (B )206 (C )306 (D )406(12)设二元一次不等式组⎪⎩⎪⎨⎧≤-+≥+-≥-+0142,080192y x y x y x ,所表示的平面区域为M ,使函数y =a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是(A )[1,3] (B)[2,10] (C)[2,9] (D)[10,9]第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)执行右边的程序框图,若p =0.8,则输出的n = 4 . (14)设函数f (x )=ax 2+c (a ≠0),若)()(01x f dx x f =⎰,0≤x 0≤1,则x 0的值为33. (15)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A , sin A )。

2008年普通高等学校招生全国统一考试(全国卷Ⅱ) 理科数学 解析版

2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k k n kk nP k C p p k n -=-=,,,, 一、选择题1.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,【答案】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M 【高考考点】集合的运算,整数集的符号识别。

【评注】历年来高考数学第一个小题一般都是集合问题,都超简单。

其实集合问题是可以出难题的,但高考中的集合问题比较简单。

需要注意的是:很多复习书都把集合作为高考数学复习的起点,我认为这是不妥当的,高中的集合问题涉及到的集合知识并不多(就是一种表达方式),其难度主要体现在知识的综合性上,学生应当先学习其他知识,再在集合中综合。

2008年普通高等学校招生全国统一考试数学卷(浙江.理)含详解

2008年普通高等学校招生全国统一考试数学(理科)浙江卷一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知a 是实数,iia +-1是纯虚数,则a = (A )1 (B )-1 (C )2 (D )-2(2)已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则()()=A C B B C A u u I Y I (A )∅ (B ){}|0x x ≤ (C ){}|1x x >- (D ){}|01x x x >≤-或 (3)已知a ,b 都是实数,那么“22b a >”是“a >b ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (4)在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是 (A )-15 (B )85 (C )-120 (D )274 (5)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x xy 的图象和直线21=y 的交点个数是(A )0 (B )1 (C )2 (D )4(6)已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a Λ= (A )16(n --41) (B )16(n--21)(C )332(n --41) (D )332(n--21)(7)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(A )3 (B )5 (C )3 (D )5 (8)若,5sin 2cos -=+a a 则a tan =(A )21 (B )2 (C )21- (D )2- (9)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足0)()(=-⋅-c b c a ,则c 的最大值是(A )1 (B )2 (C )2 (D )22 (10)如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是ABPA B CDEFA BCD(A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线二.填空题:本大题共7小题,每小题4分,共28分。

2008高考重庆数学理科试卷含答案(全word版)

绝密★启用前2008年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)数学试题卷(理工农医类)共5页。

满分150分。

考试时间120分钟。

注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,将试题卷和答题卡一并交回。

参考公式:如果事件A 、B 互斥,那么 P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那么P(A ·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (K)=k m P k (1-P)n-k以R 为半径的球的体积V =43πR 3.一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个备选项中,只有一项是符合题目要求的. (1)复数1+22i= (A)1+2i(B)1-2i(C)-1(D)3(2)设m,n 是整数,则“m,n 均为偶数”是“m+n 是偶数”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件(3)圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是(A)相离 (B)相交 (C)外切(D)内切(4)已知函数M ,最小值为m ,则m M的值为(A)14(B)12(C)2(D)2(5)已知随机变量ζ服从正态分布N (3,a 2),则P (3)ζ<= (A)15(B)14(C)13(D)12(6)若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,,则下列说法一定正确的是(A)f (x )为奇函数(B )f (x )为偶函数 (C) f (x )+1为奇函数(D )f (x )+1为偶函数(7)若过两点P 1(-1,2),P 2(5,6)的直线与x 轴相交于点P ,则点P 分有向线段12P P所成的比λ的值为 (A)-13(B) -15(C)15(D)13(8)已知双曲线22221x y ab-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e ,则双曲线方程为 (A )22x a -224ya =1 (B)222215x yaa -=(C)222214xybb-= (D)222215xy bb-=(9)如解(9)图,体积为V 的大球内有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点.V 1为小球相交部分(图中阴影部分)的体积,V 2为大球内、小球外的图中黑色部分的体积,则下列关系中正确的是 (A )V 1=2V (B) V 2=2V(C )V 1> V 2(D )V 1< V 2(10)函数f(x)02x π≤≤) 的值域是(A )[-02] (B)[-1,0] (C )0] (D )0]二、填空题:本大题共6小题,每小题4分,共24分,把答案填写在答题卡相应位置上 (11)设集合U ={1,2,3,4,5},A ={2,4},B={3,4,5},C={3,4},则(A ⋃B)()C ⋂⋃ð= .(12)已知函数f(x)=当x ≠0时) ,点在x =0处连续,则2221limx an a n n→∞+=+ .(13)已知1249a =(a>0) ,则23log a = .(14)设S n =是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16= .(15)直线l 与圆x 2+y 2+2x-4y+a=0(a<3)相交于两点A ,B ,弦AB 的中点为(0,1),则直线l 的方程为 .(16)某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如题(16)图所示的6个点A 、B 、C 、A 1、B 1、C 1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有 种(用数字作答).三、解答题:本大题共6小题,共76分,解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分) 设A B C ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60 ,c =3b.求: (Ⅰ)a c的值;(Ⅱ)cot B +cot C 的值.(18)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为12,且各局胜负相互独立.求:(Ⅰ) 打满3局比赛还未停止的概率;(Ⅱ)比赛停止时已打局数ξ的分别列与期望E ξ.(19)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.)如题(19)图,在A B C 中,B=90 ,AC =152,D 、E 两点分别在AB 、AC 上.使2A D A E D BE C==,DE=3.现将A B C 沿DE 折成直二角角,求:(Ⅰ)异面直线AD 与BC 的距离;(Ⅱ)二面角A-EC-B 的大小(用反三角函数表示).(20)(本小题满分13分.(Ⅰ)小问5分.(Ⅱ)小问8分.)设函数2()(0),f x ax bx c a =++≠曲线y =f (x )通过点(0,2a +3),且在点(-1,f (-1)) 处的切线垂直于y 轴.(Ⅰ)用a 分别表示b 和c ;(Ⅱ)当bc 取得最小值时,求函数g (x )=-f (x )e -x 的单调区间. (21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN +=(Ⅰ)求点P 的轨迹方程; (Ⅱ)若2·1cos P M P N M P N-∠=,求点P 的坐标.(22)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)设各项均为正数的数列{a n }满足321122,(N *)n a a a a a a n ++==∈.(Ⅰ)若214a =,求a 3,a 4,并猜想a 2cos 的值(不需证明);(Ⅱ)记32(N *),n n n b a a a n b =∈≥ 若n ≥2恒成立,求a 2的值及数列{b n }的通项公式.2008年普通高等学校招生全国统一考试(重庆卷)数学试题(理工农医类)答案一、选择题:每小题5分,满分50分. (1)A (2)A (3)B (4)C (5)D (6)C(7)A(8)C(9)D (10)B二、填空题:每小题4分,满分24分. (11)25,(12)13(13)3(14)-72(15)x-y+1=0(16)216三、解答题:满分76分. (17)(本小题13分) 解:(Ⅰ)由余弦定理得2222cos a b c b A =+-=2221117()2,3329c c c c c +-=故3a c=(Ⅱ)解法一:cot cot B C + =cos sin cos sin sin sin B C C BB C+=sin()sin ,sin sin sin sin B C AB C B C+= 由正弦定理和(Ⅰ)的结论得227s i n 11439··1s i ns i n s i 93·3cA aBC A bc c c====故cot cot 9B C +=解法二:由余弦定理及(Ⅰ)的结论有22222271()cos 23c c c a c b B ac +-+-==故sin B===同理可得222222711cos233c c ca b cCab+-+-===-3s i n.C===从而cos coscot cotsin sin9B CB CB C+=+==(18)(本小题13分)解:令,,k k kA B C分别表示甲、乙、丙在第k局中获胜.(Ⅰ)由独立事件同时发生与互斥事件至少有一个发生的概率公式知,打满3局比赛还未停止的概率为12312333111()().224P A C B P B C A+=+=(Ⅱ)ξ的所有可能值为2,3,4,5,6,且121222111(2)()(),222P P A A P B Bξ==+=+=12312333111(3)()().224P P A C C P B C Cξ==+=+=1234123444111(4)()().228P P A C B B P B C A Aξ==+=+=123451234555111(5)()(),2216P P A C B A A P B C A B Bξ==+=+=123451234555111(6)()(),2216P P A C B A C P B C A B Cξ==+=+=故有分布列从而111114723456248161616Eξ=⨯+⨯+⨯+⨯+⨯=(局).(19)(本小题13分)解法一:(Ⅰ)在答(19)图1中,因A D A E D BC E=,故BE ∥BC .又因B =90°,从而AD ⊥DE .在第(19)图2中,因A -DE -B 是直二面角,AD ⊥DE ,故AD ⊥底面DBCE ,从而AD ⊥DB .而DB ⊥BC ,故DB 为异面直线AD 与BC 的公垂线. 下求DB 之长.在答(19)图1中,由2A D A E C BB C==,得2.3D E A D B CA B==又已知DE =3,从而39.22B C D E ==6.AB === 因1, 2.3D B D B A B=故=(Ⅱ)在第(19)图2中,过D 作DF ⊥CE ,交CE 的延长线于F ,连接AF .由(1)知,AD ⊥底面DBCE ,由三垂线定理知AF ⊥FC ,故∠AFD 为二面角A -BC -B 的平面角.在底面DBCE 中,∠DEF =∠BCE ,11552,,322D B E C === 因此4sin .5D B B C E E C == 从而在Rt △DFE 中,DE =3,412sin sin 3.55D F D E D EF D E BC E ====在5R t ,4,tan .3A D AFD AD AFD D F ∆===中 因此所求二面角A -EC -B 的大小为arctan 5.3解法二: (Ⅰ)同解法一.(Ⅱ)如答(19)图3.由(Ⅰ)知,以D 点为坐标原点,D B D E D A、、的方向为x 、 y 、z 轴的正方向建立空间直角坐标系,则D (0,0,0),A (0,0,4),9202C ⎛⎫⎪⎝⎭,,,E (0,3,0).302AD AD ⎛⎫ ⎪⎝⎭ =-2,-,,=(0,0,-4).过D 作DF ⊥CE ,交CE 的延长线于F ,连接AF . 设00(,,0),F x y 从而00(,,0),DF x y =00(,3,0).EF x y DF CE =-⊥由,有0030,20.2D F CE x y =+= 即 ①又由003,.322x y C E EF -= 得 ②联立①、②,解得00364836483648,.,,0,,4.252525252525x y F AF ⎛⎫⎛⎫=-=-=-- ⎪ ⎪⎝⎭⎝⎭即,得因为36483(2)025252AF C E ⎛⎫⎛⎫=--+-= ⎪⎪⎝⎭⎝⎭,故AF C E ⊥,又因D F C E ⊥,所以D F A ∠为所求的二面角A-EC-B 的平面角.因3648,,0,2525D F ⎛⎫=- ⎪⎝⎭有12,4,5D F AD === 所以5tan .3AD AFD D F== 因此所求二面角A-EC-B 的大小为5arctan .3(20)(本小题13分)解:(Ⅰ)因为2(),()2.f x ax bx c f x ax b '=++=+所以 又因为曲线()y f x =通过点(0,2a +3), 故(0)23,(0),2 3.f a f c c a =+==+而从而又曲线()y f x =在(-1,f (-1))处的切线垂直于y 轴,故(1)0,f '-= 即-2a +b =0,因此b=2a .(Ⅱ)由(Ⅰ)得2392(23)4(),44bc a a a =+=+-故当34a =-时,bc 取得最小值-94.此时有33,.22b c =-= 从而233333(),(),42222f x x x f x x '=--+=--2333()()(),422x xg x f x c x x e--=-=+-所以23()(()()(4).4xxg x f x f x ex e --''=-=--令()0g x '=,解得122, 2.x x =-=当(,2),()0,()(,2)x g x g x x '∈-∞-<∈-∞-时故在上为减函数; 当(2,2)()0,()(2,).x g x g x x '∈->∈+∞时,故在上为减函数 当(2,)()0()(2,)x g x g x x '∈+∞<∈+∞时,,故在上为减函数.由此可见,函数()g x 的单调递减区间为(-∞,-2)和(2,+∞);单调递增区间为(-2,2). (21)(本小题12分)解:(Ⅰ)由椭圆的定义,点P 的轨迹是以M 、N 为焦点,长轴长2a =6的椭圆. 因此半焦距c =2,长半轴a =3,从而短半轴b ==所以椭圆的方程为221.95xy+=(Ⅱ)由2,1cos P M P N M P N=- 得cos 2.PM PN M PN PM PN =- ①因为cos 1,MPN P ≠不为椭圆长轴顶点,故P 、M 、N 构成三角形.在△PMN 中,4,M N =由余弦定理有2222cos .M NPMPNPM PN M PN =+- ②将①代入②,得 22242(2).PMPNPM PN =+--故点P 在以M 、N为焦点,实轴长为2213xy -=上.由(Ⅰ)知,点P 的坐标又满足22195xy+=,所以由方程组22225945,3 3.x y x y ⎧+=⎪⎨+=⎪⎩解得22x y ⎧=±⎪⎪⎨⎪=±⎪⎩即P 点坐标为()22222222-、(-)、(-,或(-).(22)(本小题12分)解:(Ⅰ)因2122,2,a a -==故3423123824232,2.a a a a a a ---====由此有0223(2)(2)(2)(2)12342,2,2,2a a a a ----====,故猜想n a 的通项为1(2)*2(N ).n n a n --=∈(Ⅱ)令2log ,2.nS n n n n n x a S x n b ==表示的前项和,则 由题设知x 1=1且*123(N );2n n n x x x n ++=+∈ ①123(2).2n n S x x x n =+++≥≥ ②因②式对n =2成立,有1213,12x x x ≤+=又得21.2x ≥③ 下用反证法证明:2211..22x x ≤>假设由①得21211312()(2).22n n n n n n x x x x x x ++++++=+++ 因此数列12n n x x ++是首项为22x +,公比为12的等比数列.故*121111()(N ).222n n n x x x n +--=-∈ ④又由①知 211111311()2(),2222n x n n n n n x x x x x x x +++++-=--=--因此是112n n x x +-是首项为212x -,公比为-2的等比数列,所以1*1211()(2)(N ).22n n n x x x n -+-=--∈ ⑤由④-⑤得1*221511(2)()(2)(N ).222n n n S x x n --=+---∈ ⑥对n 求和得2*2215111(2)(2)(2)()(N ).2223n n x x x n ---=+---∈ ⑦由题设知21231,22k S x +≥>且由反证假设有21*22221*22221121152)(2)()(N ).22341211151()(2)(2)2(N ).23244k kk kx x k x x x k ++++---≥∈+-≤+--<+∈(从而即不等式22k +1<22364112x x +--对k ∈N *恒成立.但这是不可能的,矛盾.因此x 2≤12,结合③式知x 2=12,因此a 2=2*2将x 2=12代入⑦式得S n =2-112n -(n ∈N*),所以b n =2Sn =22-112n -(n ∈N*)。

2008高考北京数学理科试卷含答案(全word版)

2008年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共40分)注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,那么集合()U A B ð等于( ) A .{}|24x x -<≤ B .{}|34x x x 或≤≥ C .{}|21x x -<-≤ D .{}|13x x -≤≤2.若0.52a =,πlog 3b =,22πlog sin5c =,则( ) A .a b c >>B .b a c >>C .c a b >>D .b c a >>3.“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.若点P 到直线1x =-的距离比它到点(20),的距离小1,则点P 的轨迹为( ) A .圆B .椭圆C .双曲线D .抛物线5.若实数x y ,满足1000x y x y x ⎧-+⎪+⎨⎪⎩,,,≥≥≤则23x yz +=的最小值是( )A .0B .1CD .96.已知数列{}n a 对任意的*p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于( )A .165-B .33-C .30-D .21-7.过直线y x =上的一点作圆22(5)(1)2x y -+-=的两条切线12l l ,,当直线12l l ,关于y x =对称时,它们之间的夹角为( ) A .30B .45C .60D .908.如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设B P x =,MN y =,则函数()y f x =的图象大致是( )A BC DMNP A 1B 1C 1D 12008年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)第Ⅱ卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.已知2()2a i i -=,其中i 是虚数单位,那么实数a = .10.已知向量a 与b 的夹角为120,且4==a b ,那么(2)+ b a b 的值为 .11.若231nx x ⎛⎫+ ⎪⎝⎭展开式的各项系数之和为32,则n = ,其展开式中的常数项为 .(用数字作答)12.如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别为(04)(20)(64),,,,,,则((0))f f = ;(1)(1)limx f x f x∆→+∆-=∆ .(用数字作答)13.已知函数2()cos f x x x =-,对于ππ22⎡⎤-⎢⎥⎣⎦,上的任意12x x ,,有如下条件:①12x x >; ②2212x x >; ③12x x >.其中能使12()()f x f x >恒成立的条件序号是 .14.某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k 棵树种植在点()k k k P x y ,处,其中11x =,11y =,当2k ≥时,111215551255k k k k k k x x T T k k y y T T --⎧⎡--⎤⎛⎫⎛⎫=+--⎪ ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎨--⎛⎫⎛⎫⎪=+- ⎪ ⎪⎪⎝⎭⎝⎭⎩,. ()T a 表示非负实数a 的整数部分,例如(2.6)2T =,(0.2)0T =.按此方案,第6棵树种植点的坐标应为 ;第2008棵树种植点的坐标应为 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数2π()sin sin 2f x x x x ωωω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.16.(本小题共14分)如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥;(Ⅱ)求二面角B AP C --的大小; (Ⅲ)求点C 到平面APB 的距离.17.(本小题共13分)甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量ξ为这五名志愿者中参加A 岗位服务的人数,求ξ的分布列.A CB P18.(本小题共13分)已知函数22()(1)x bf x x -=-,求导函数()f x ',并确定()f x 的单调区间. 19.(本小题共14分)已知菱形ABCD 的顶点A C ,在椭圆2234x y +=上,对角线BD 所在直线的斜率为1. (Ⅰ)当直线BD 过点(01),时,求直线AC 的方程; (Ⅱ)当60ABC ∠=时,求菱形ABCD 面积的最大值. 20.(本小题共13分)对于每项均是正整数的数列12n A a a a :,,,,定义变换1T ,1T 将数列A 变换成数列 1()T A :12111n n a a a --- ,,,,. 对于每项均是非负整数的数列12m B b b b :,,,,定义变换2T ,2T 将数列B 各项从大到小排列,然后去掉所有为零的项,得到数列2()T B ;又定义2221212()2(2)m m S B b b mb b b b =+++++++ .设0A 是每项均为正整数的有穷数列,令121(())(012)k k A T T A k +== ,,,. (Ⅰ)如果数列0A 为5,3,2,写出数列12A A ,;(Ⅱ)对于每项均是正整数的有穷数列A ,证明1(())()S T A S A =;(Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列0A ,存在正整数K ,当k K ≥时,1()()k k S A S A +=.2008年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)参考答案一、选择题(本大题共8小题,每小题5分,共40分)1.D 2.A 3.B 4.D 5.B 6.C 7.C 8.B 二、填空题(本大题共6小题,每小题5分,共30分) 9.1- 10.0 11.5 10 12.2 2-13.②14.(12), (3402), 三、解答题(本大题共6小题,共80分) 15.(共13分) 解:(Ⅰ)1cos 2()22x f x x ωω-=+112cos 222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭.因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤, 因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,. 16.(共14分)解法一:(Ⅰ)取AB 中点D ,连结PD CD ,. AP BP = , PD AB ∴⊥. AC BC = , CD AB ∴⊥. PD CD D = ,ABDPEPAB ∴⊥平面PCD . PC ⊂ 平面PCD , PC AB ∴⊥.(Ⅱ)AC BC = ,AP BP =, APC BPC ∴△≌△. 又PC AC ⊥, PC BC ∴⊥.又90ACB ∠= ,即AC BC ⊥,且AC PC C = ,BC ∴⊥平面PAC .取AP 中点E .连结BE CE ,. AB BP = ,BE AP ∴⊥.EC 是BE 在平面PAC 内的射影, CE AP ∴⊥.BEC ∴∠是二面角B AP C --的平面角.在BCE △中,90BCE ∠=,2BC =,2BE AB ==sin 3BC BEC BE ∴∠==. ∴二面角B AP C --的大小为arcsin3. (Ⅲ)由(Ⅰ)知AB ⊥平面PCD , ∴平面APB ⊥平面PCD .过C 作CH PD ⊥,垂足为H . 平面APB 平面PCD PD =,CH ∴⊥平面APB .CH ∴的长即为点C 到平面APB 的距离.由(Ⅰ)知PC AB ⊥,又PC AC ⊥,且AB AC A = , PC ∴⊥平面ABC . CD ⊂ 平面ABC , PC CD ∴⊥.在Rt PCD △中,12CD AB ==PD ==2PC ∴==.PC CD CH PD ∴== . ABDPH∴点C 到平面APB的距离为3. 解法二:(Ⅰ)AC BC = ,AP BP =, APC BPC ∴△≌△. 又PC AC ⊥, PC BC ∴⊥. AC BC C = ,PC ∴⊥平面ABC . AB ⊂ 平面ABC , PC AB ∴⊥.(Ⅱ)如图,以C 为原点建立空间直角坐标系C xyz -. 则(000)(020)(200)C A B ,,,,,,,,. 设(00)P t ,,.PB AB ==2t ∴=,(002)P ,,. 取AP 中点E ,连结BE CE ,.AC PC = ,AB BP =,CE AP ∴⊥,BE AP ⊥.BEC ∴∠是二面角B AP C --的平面角.(011)E ,,,(011)EC =-- ,,,(211)EB =--,,,cos 3EC EB BEC EC EB∴∠=== . ∴二面角B AP C --的大小为. (Ⅲ)AC BC PC == ,C ∴在平面APB 内的射影为正APB △的中心H ,且CH 的长为点C 到平面APB 的距离. 如(Ⅱ)建立空间直角坐标系C xyz -.2BH HE = ,∴点H 的坐标为222333⎛⎫⎪⎝⎭,,.3CH ∴= . ∴点C 到平面APB的距离为3. 17.(共13分)解:(Ⅰ)记甲、乙两人同时参加A 岗位服务为事件A E ,那么3324541()40A A P E C A ==,即甲、乙两人同时参加A 岗位服务的概率是140. (Ⅱ)记甲、乙两人同时参加同一岗位服务为事件E ,那么4424541()10A P E C A ==,所以,甲、乙两人不在同一岗位服务的概率是9()1()10P E P E =-=. (Ⅲ)随机变量ξ可能取的值为1,2.事件“2ξ=”是指有两人同时参加A 岗位服务,则235334541(2)4C A P C A ξ===.所以3(1)1(2)P P ξξ==-==,ξ的分布列是 18.(共13分)解:242(1)(2)2(1)()(1)x x b x f x x ----'=-3222(1)x b x -+-=-32[(1)](1)x b x --=--. 令()0f x '=,得1x b =-.当11b -<,即2b <时,()f x '的变化情况如下表:当11b ->,即2b >时,()f x '的变化情况如下表:所以,当2b <时,函数()f x 在(1)b -∞-,上单调递减,在(11)b -,上单调递增, 在(1)+∞,上单调递减.当2b >时,函数()f x 在(1)-∞,上单调递减,在(11)b -,上单调递增,在(1)b -+∞,上单调递减.当11b -=,即2b =时,2()1f x x =-,所以函数()f x 在(1)-∞,上单调递减,在(1)+∞,上单调递减.19.(共14分)解:(Ⅰ)由题意得直线BD 的方程为1y x=+. 因为四边形ABCD 为菱形,所以AC BD ⊥. 于是可设直线AC 的方程为y x n =-+.由2234x y y x n⎧+=⎨=-+⎩,得2246340x nx n -+-=. 因为A C ,在椭圆上,所以212640n ∆=-+>,解得n <<. 设A C ,两点坐标分别为1122()()x y x y ,,,, 则1232nx x +=,212344n x x -=,11y x n =-+,22y x n =-+.所以122ny y +=. 所以AC 的中点坐标为344n n ⎛⎫⎪⎝⎭,.由四边形ABCD 为菱形可知,点344n n ⎛⎫⎪⎝⎭,在直线1y x =+上, 所以3144n n=+,解得2n =-. 所以直线AC 的方程为2y x =--,即20x y ++=. (Ⅱ)因为四边形ABCD 为菱形,且60ABC ∠=, 所以AB BC CA ==.所以菱形ABCD 的面积2S =. 由(Ⅰ)可得22221212316()()2n AC x x y y -+=-+-=,所以2316)S n n ⎛=-+<< ⎝⎭.所以当0n =时,菱形ABCD 的面积取得最大值 20.(共13分)(Ⅰ)解:0532A :,,, 10()3421T A :,,,, 1210(())4321A T T A =:,,,; 11()43210T A :,,,,, 2211(())4321A T T A =:,,,.(Ⅱ)证明:设每项均是正整数的有穷数列A 为12n a a a ,,,, 则1()T A 为n ,11a -,21a -, ,1n a -, 从而112(())2[2(1)3(1)(1)(1)]n S T A n a a n a =+-+-+++- 222212(1)(1)(1)n n a a a ++-+-++- .又2221212()2(2)n n S A a a na a a a =+++++++ ,所以1(())()S T A S A -122[23(1)]2()n n n a a a =----+++++ 2122()n n a a a n +-++++ 2(1)0n n n n =-+++=,故1(())()S T A S A =.(Ⅲ)证明:设A 是每项均为非负整数的数列12n a a a ,,,. 当存在1i j n <≤≤,使得i j a a ≤时,交换数列A 的第i 项与第j 项得到数列B , 则()()2()j i i j S B S A ia ja ia ja -=+--2()()0j i i j a a =--≤.当存在1m n <≤,使得120m m n a a a ++==== 时,若记数列12m a a a ,,,为C , 则()()S C S A =. 所以2(())()S T A S A ≤.从而对于任意给定的数列0A ,由121(())(012)k k A T T A k +== ,,, 可知11()(())k k S A S T A +≤.又由(Ⅱ)可知1(())()k k S T A S A =,所以1()()k k S A S A +≤.即对于k ∈N ,要么有1()()k k S A S A +=,要么有1()()1k k S A S A +-≤.因为()k S A 是大于2的整数,所以经过有限步后,必有12()()()k k k S A S A S A ++=== . 即存在正整数K ,当k K ≥时,1()()k k S A S A +=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008 年成人高等学校招生全国统一考试
数 学
(理工农医类)

一、选择题:本大题共 17 小题,每小题 5 分,共 85分。在每小题给出的四个选项中,
选出一项符合题目要求的.

(1)设集合 { } | ||2 Axx =£ , { } |1 Bxx =³- ,则
AB= I
(A){ } | ||1 xx £ (B)
{ } 
| ||2 xx £

(C){ } |12 xx -££ (D)
{ } 
|21 xx -££-

(2)函数 cos 3 x y = 的最小正周期是
(A)6p (B)
3

p

(C)2p (D) 
3

p

(3)抛物线 2 4 yx =- 的准线方程为
(A) 2 x=- (B) 
1 x=-

(C) 2 x= (D) 
1 x=

(4)设甲: 6 x p = ;乙: 1 sin 2 x= ,则
(A)甲是乙的必要条件,但不是乙的充分条件
(B)甲是乙的充分条件,但不是乙的必要条件
(C)甲不是乙的充分条件,也不是乙的必要条件
(D)甲是乙的充分必要条件

(5)若向量 ( ) ,2 ax = r , ( ) 2,3 b =- r ,且a r //b r ,则
x=

(A) 4 3 - (B) 3 - (C)3 (D) 


(6)下列函数中,为奇函数的是

(A) 3 log yx = (B) 
3 x y =

(C) 2 3 yx = (D) 
3sin yx =
(7)函数 () yfx = 的图象与函数 2 x y = 的图象关于直线 yx = 对称,则 
() fx =
(A)2 x (B) 

log (0) xx>

(C)2x (D)
lg(2) (0) xx>
(8)设二次函数 2 yxbxc =++ 的图象过点( ) 1,2 和( ) 2,4 - ,则该函数的解析式为

(A) 2 2 yxx =++ (B) 

21 yxx =+-

(C) 2 12 33 yxx =++ (D) 

12 
33 
yxx =+-

(9)若 1 a> ,则
(A) 1 2 log0 a< (B) 

log0 a<

(C) 1 0 a - < (D) 

10 a -<

(10)已知复数 1 zi =+ ,i为虚数单位,则 

z =

(A)22i + (B)2i (C)22i - (D) 
2i -

(11)在 ABC D 中,若 1 sin 3 A= , 30 AB += o , 4 BC = ,则 
AB =

(A)24 (B)63 (C)23 (D)

(12)过函数 6 y x = 图象上一点P作 x轴的垂线PQ,Q 为垂足,O 为坐标原点,则 
OPQ D
的面积为

(A)6 (B)3 (C)2 (D)

(13)已知正方形ABCD ,以A,C 为焦点,且过B点的椭圆的离心率为

(A) 2 (B) 21 2 + (C) 2 2 (D) 
21 2 -

(14)已知向量 ( ) 2,3,1 a=- r , ( ) 2,0,3 b= r , ( ) 0,0,2 c = r ,则
( ) 
abc +=

rrr

g

(A)8 (B)9 (C)13 (D) 
61 
(15)设某项试验每次成功的概率为 2 3 ,则在2次独立重复试验中,都不成功的概率

(A) 4 9 (B) 1 3 (C) 2 9 (D) 

9
(16)在空间中,下列四个命题中为真命题的一个是
(A)平行于同一条直线的两条直线平行
(B)垂直于同一条直线的两条直线平行
(C)若a 与b是异面直线,b与c 是异面直线,则a 与c 也是异面直线
(D)若直线a //平面a ,直线b//平面a ,则a //

(17)某学生从6门课程中选修3门,其中甲、乙两门课程至少选一门,则不同的选课
方案共有
(A)4种 (B)12种 (C)16种 (D)20种

二、填空题:本大题共 4 小题,每小题4 分,共16分.
(18)曲线 2sin yx = 在点( ) ,0 p 处的切线的斜率为 .
(19)设a 是直线 2 yx =-+ 的倾斜角,则a = .
(20)一个三棱锥的三个侧面与底面都是等边三角形,则其侧面和底面所成角的余弦
值是 .
(21)设随机变量x 的分布列为
x
 

1 2 3 4 


1 6 1 3 1 3 1 

则x 的数学期望Ex = .

三、解答题:本大题共 4 小题,共 49 分.解答应写出推理、演算步骤.
(22)(本小题满分 12 分)
已知等差数列{ } n a 中, 1 9 a = , 38 0 aa += .

(Ⅰ)求数列{ } n a 的通项公式;
(Ⅱ)当n为何值时,数列{ } n a 的前n项和 n S 取得最大值,并求该最大值.
(23)(本小题满分 12 分)
如图,塔PO与地平线AO 垂直,在A点测得塔顶P的仰角 45 PAO Ð= o ,沿AO 方向

前进至B点,测得仰角 60 PBO Ð= o , , AB相距44m,求塔高PO. (精确到0.1m)

(24)(本小题满分 12 分)
已知一个圆的圆心为双曲线 22 1 412 xy -= 的右焦点,并且此圆过原点.
(Ⅰ)求该圆的方程;
(Ⅱ)求直线 3 yx = 被该圆截得的弦长.

(25)(本小题满分 13 分)
已知函数 ()2 fxxx =- .
(Ⅰ)求函数 () yfx = 的单调区间,并指出它在各单调区间上是增函数还是减函数;
(Ⅱ)求函数 () yfx = 在区间[ ] 0,4 上的最大值和最小值. 

P
O B A

相关文档
最新文档