光刻
简述光刻技术

简述光刻技术光刻技术是一种半导体加工技术,它被广泛应用于集成电路制造、平板显示器制造、MEMS(微机电系统)制造以及其他微纳米器件的制造中。
通过光刻技术,可以将图案投影到半导体材料表面上,然后使用化学刻蚀等工艺将图案转移到半导体材料上,从而制作出微小而精密的结构。
光刻技术的发展对现代电子工业的发展起到了关键作用,其不断提升的分辨率和精度,为微电子领域的发展提供了强大的支持。
光刻技术的基本原理是利用光学投影系统将图案投射到半导体材料的表面上。
该图案通常由一个硅片上的光刻透镜形成,这个硅片被称为掩膜,通过掩膜和投影光源的组合来形成所需的图案。
投影光源照射到掩模上的图案,然后通过光学投影系统将图案投影到待加工的半导体材料表面上,形成微小的结构。
在现代的光刻技术中,使用的光源通常是紫外线光源,其波长为193nm或者更短的EUV(极紫外光)光源。
这样的光源具有较短的波长,可以实现更高的分辨率,从而可以制作出更小尺寸的微结构。
光刻机的光学镜头和控制系统也在不断地提升,以满足对分辨率和精度的需求。
光刻技术在半导体制造中的应用主要包括两个方面,一是用于制作集成电路中的各种微小结构,例如晶体管的栅极、金属线路、电容等;二是用于制作各种传感器、MEMS等微纳米器件。
在集成电路制造中,光刻技术通常是在硅片上进行的,硅片经过多道工艺,将图案逐渐转移到硅片上,并最终形成完整的芯片。
在平板显示器制造中,光刻技术则是用于制作液晶显示器的像素结构;而在MEMS器件的制造中,光刻技术则是用于制作微机械结构和微流体结构。
光刻技术的发展受到了许多因素的影响,包括光学技术、光源技术、掩膜制备技术、光刻胶技术等。
在光学技术方面,光学投影系统的分辨率和变像畸变都会直接影响到光刻的精度;在光源技术方面,光刻机所使用的光源的波长和功率都会对分辨率和加工速度有直接影响;掩膜制备技术则影响到了掩模的制备精度和稳定性;光刻胶技术则直接影响到了图案的传输和转移过程。
光刻的工作原理

光刻的工作原理光刻技术是一种用于制造集成电路的重要工艺,其工作原理是利用光的作用将图案投射到硅片上,形成微小的电路结构。
本文将从光刻的原理、设备和应用等方面进行详细介绍。
一、光刻的原理光刻技术是利用光的干涉、衍射和透射等特性实现的。
首先,需要将待制作的电路图案转化为光学遮罩,通常使用光刻胶涂覆在硅片上,然后通过光刻机将光学遮罩上的图案投射到光刻胶上。
光刻胶在光的照射下会发生化学反应,形成光刻胶图案。
接下来,通过将光刻胶暴露在特定的化学溶液中,去除未曝光的光刻胶,得到所需的光刻胶图案。
最后,通过将硅片进行化学腐蚀或沉积等工艺步骤,形成微小的电路结构。
二、光刻的设备光刻机是光刻技术中最关键的设备之一。
光刻机主要由光源、光学系统、对准系统和运动控制系统等部分组成。
光源是产生紫外光的装置,通常使用汞灯或氙灯等。
光学系统由透镜、反射镜和光刻胶图案的投射系统等组成,用于将光学遮罩上的图案投射到光刻胶上。
对准系统是用于确保光刻胶图案和硅片之间的对准精度,通常采用显微镜和自动对准算法等。
运动控制系统是用于控制硅片在光刻机中的移动和旋转等。
三、光刻的应用光刻技术在集成电路制造中有着广泛的应用。
首先,光刻技术是制造集成电路中最关键的工艺之一,可以实现微米甚至纳米级别的电路结构。
其次,光刻技术还可以制作光学元件,如光纤、激光器等。
此外,光刻技术还被应用于平面显示器、传感器、光学存储器等领域。
四、光刻技术的发展趋势随着集成电路制造工艺的不断发展,光刻技术也在不断进步和改进。
首先,光刻机的分辨率越来越高,可以实现更小尺寸的电路结构。
其次,光刻胶的性能也在不断提高,可以实现更高的对比度和较低的残留污染。
此外,光刻技术还在朝着多层光刻、次波长光刻和非接触式光刻等方向发展。
光刻技术是一种利用光的特性制造微小电路结构的重要工艺。
光刻技术的原理是利用光的干涉、衍射和透射等特性实现的,通过光刻机将光学遮罩上的图案投射到光刻胶上,最终形成所需的电路结构。
光刻的应用领域

光刻的应用领域
1. 半导体芯片制造:光刻技术是制造集成电路(IC)的关键步骤之一。
通过将芯片设计投影到硅片上,利用光刻技术进行图形转移,形成微米级的电路结构和器件。
2. 平面显示器制造:光刻技术用于制造液晶显示器(LCD)、有机发光二极管显示器(OLED)等平面显示器。
通过光刻技术,在基板上制造导线、电极、像素点等微细结构。
3. 光子学:光刻技术被广泛应用于制造光学器件和光纤通信设备。
通过光刻技术制造微光学结构,如分光器、光栅、微透镜等。
4. 生物芯片制造:光刻技术可用于制造生物芯片和实验室微芯片。
通过光刻技术制造微细通道、微阀门等微流控结构,实现对微小液滴和生物分子的控制和分析。
5. 微机电系统(MEMS)制造:光刻技术在MEMS制造中起到关键作用。
通过光刻技术制造微米级的机械结构、传感器和执行器,实现微小机械和电子的集成。
6. 光刻制造设备:光刻技术的应用也推动了光刻设备的发展。
光刻机是一种关键的制造设备,能够将光刻胶的图形转移到硅片或其他基板上,并具备高分辨率、高精度和高速度等特性。
光刻的原理

光刻的原理光刻技术是一种利用光照射光刻胶层,并通过显影和蚀刻等工艺步骤,将芯片上的图形转移到硅片上的工艺。
光刻技术在半导体制造、集成电路、光学元件等领域有着广泛的应用,是微纳加工中至关重要的一环。
其原理主要涉及光的衍射、光的折射、光刻胶的光化学反应等多个方面。
在光刻的过程中,首先需要准备一块硅片作为基板,然后在硅片上涂覆一层光刻胶。
光刻胶的种类有很多,常见的有正胶和负胶。
正胶在紫外光照射后会变得容易溶解,而负胶则相反。
接着,通过掩膜板,将原始图形的信息传输到光刻胶上。
掩膜板上的图形是根据设计需求制作的,包括线宽、间距等尺寸参数。
当紫外光照射到光刻胶表面时,光的波长决定了最小可分辨的图形尺寸。
光波长越短,分辨率也就越高。
光照射到光刻胶上后,光会经过掩膜板的图形结构,产生衍射现象,最终在光刻胶表面形成图形。
而光的折射则决定了图形在光刻胶和硅片之间的投影位置,进而决定了最终图形的位置和形状。
光照射后,光刻胶会发生光化学反应,使得光刻胶在显影液中变得容易溶解。
通过显影,去除未经光照射的部分光刻胶,露出基板表面。
接着进行蚀刻,将露出的部分硅片进行蚀刻,形成所需的图形结构。
最后,清洗去除光刻胶残留,完成整个光刻工艺。
光刻技术的原理看似简单,实际操作却十分复杂。
光刻胶的选择、光源的参数、掩膜板的制作等都会影响最终的光刻效果。
而随着微纳加工技术的不断发展,光刻技术也在不断演进,越来越高的分辨率要求和更加复杂的图形结构,都对光刻技术提出了更高的要求。
总的来说,光刻技术作为微纳加工中的一项重要工艺,其原理虽然复杂,但却是实现微纳米级图形的关键。
通过精密的光学系统、优质的光刻胶和精准的掩膜板制作,光刻技术能够实现微米甚至纳米级的图形制作,为现代微电子学和光电子学的发展提供了强大的支持。
随着科技的不断进步,光刻技术也将不断完善和发展,为微纳加工领域的研究和应用带来更多的可能性。
光刻曝光原理

光刻曝光原理
光刻曝光是半导体制造中重要的工艺步骤之一,用于将芯片设计上的图形投影到光刻层上。
其原理可以简单描述为:
1. 光源:使用紫外光作为光源,光的波长通常在250到400纳米之间。
光源应具备足够的亮度和稳定性。
2. 掩模板:在光刻过程中,使用掩模板将芯片设计上的图形模式投影到光刻层上。
掩模板由透过光和阻挡光所组成,在相应区域上形成光刻层的图形。
3. 光刻胶:光刻胶是一种对紫外光敏感的物质,也叫做光刻剂。
光刻胶在曝光后,其化学性质会发生变化,从而实现图形的转移。
4. 曝光:将掩模板放置在光刻胶层上,使紫外光通过掩模板的透过光区域照射到光刻胶上。
光的照射会使光刻胶的敏感部分发生化学反应,从而使光刻胶在该区域上发生溶解或固化。
5. 显影:在曝光后,需要将未曝光部分的光刻胶去除,以显现出芯片设计图形的轮廓。
显影过程中使用显影液,将未曝光区域溶解掉,而曝光过的区域仍然保留。
6. 转移:经过显影后,图形已经转移到光刻胶层上。
然后可以根据需要,通过进一步的步骤,把光刻胶上的图形转移到下一层或进行其他加工。
总结起来,光刻曝光通过使用光源和掩模板,以及光刻胶的敏感性,实现了将芯片设计上的图形投影到光刻层上的过程。
这一关键工艺步骤在半导体制造中起到非常重要的作用。
光刻工艺的三要素

光刻工艺的三要素
1. 光源:光刻工艺需要使用一定波长的紫外线光源来照射光刻胶。
常用的光源包括汞灯、氘灯和氙灯等。
光源的稳定性和强度直接影响着光刻胶的曝光结果。
2. 掩膜:掩膜是用于制作芯片器件图案的模具,通过掩膜上的透明区域将光源发出的光线投射到光刻胶上形成图案。
掩膜的制作需要使用高分辨率的光刻技术,并且透明区域需要具备良好的精确度和对比度。
3. 光刻胶:光刻胶是光刻工艺中的关键材料,它在曝光后会发生化学反应,形成特定的图案。
光刻胶的光敏剂和增感剂决定了其对特定波长光的敏感程度和曝光速度,而胶厚度、粘度和耐化学性等属性则对图案的质量和光刻的可重复性产生影响。
通过光源的照射,掩膜上的图案在光刻胶上形成,然后通过显影、蚀刻等步骤,制作出所需的芯片器件结构。
这三要素的优化和控制是确保光刻过程准确、稳定和高效的关键因素。
光刻工艺流程
光刻工艺流程光刻工艺是半导体制造中至关重要的一步,它通过光刻胶和光刻机将芯片上的图形转移到硅片上。
光刻工艺的精准度和稳定性直接影响着芯片的质量和性能。
下面将介绍光刻工艺的主要流程和关键步骤。
1. 掩膜制备。
在光刻工艺中,首先需要准备好掩膜。
掩膜是一种透明的基板,上面覆盖着光刻胶,并且有芯片图形的透明部分。
掩膜的制备需要经过光刻胶的旋涂、烘烤和曝光三个步骤,以确保掩膜上的图形清晰可见。
2. 曝光。
曝光是光刻工艺中最关键的一步。
在曝光过程中,掩膜上的图形会被光刻机上的紫外光照射到覆盖在硅片上的光刻胶上。
曝光的时间和强度需要精确控制,以确保图形的清晰度和精准度。
3. 显影。
曝光后,需要将硅片放入显影液中进行显影。
显影液会溶解掉光刻胶中未曝光部分的部分,从而在硅片上形成所需的图形。
显影时间的控制非常重要,它直接影响着图形的精准度和清晰度。
4. 清洗。
经过显影后,硅片需要进行清洗。
清洗的目的是去除掉显影液残留在硅片上的化学物质,以及光刻胶的残留物。
清洗后的硅片表面应该干净无尘,确保后续工艺的顺利进行。
5. 检测。
最后,经过光刻工艺的硅片需要进行检测。
检测的主要目的是确认图形的精准度和清晰度是否符合要求。
只有通过检测的硅片才能进入下一步的工艺流程,否则需要进行修正或者重新进行光刻工艺。
光刻工艺流程是半导体制造中不可或缺的一部分,它直接影响着芯片的性能和质量。
通过精确控制每一个步骤,可以确保光刻工艺的稳定性和可靠性。
希望本文对光刻工艺流程有所帮助,谢谢阅读。
光刻的分类
光刻的分类光刻是半导体制造中不可或缺的工艺步骤之一,用于将电路图案转移到硅片或其他基板上。
根据不同的光刻技术和使用的光刻胶材料,可以将光刻分为几个不同的分类。
1. 接触式光刻接触式光刻是最早使用的光刻技术之一,它通过将掩膜与光刻胶直接接触并暴露在紫外线下,将图案转移到基板上。
接触式光刻的特点是成本较低、分辨率相对较低,适用于一些较大尺寸的电路图案制作。
2. 断裂式光刻断裂式光刻是一种高分辨率的光刻技术,它通过使用高能电子束(e-beam)或离子束(ion-beam)来曝光光刻胶。
断裂式光刻具有非常高的分辨率和精度,适用于制作微细结构和高密度电路。
3. 深紫外光刻深紫外光刻是目前半导体制造中使用最广泛的光刻技术之一。
它使用波长较短的紫外光(通常为248 nm或193 nm)来曝光光刻胶,以实现更高的分辨率和更小的特征尺寸。
深紫外光刻技术适用于制作高集成度的微电子器件和芯片。
4. 双重曝光光刻双重曝光光刻是一种组合了两次曝光的光刻技术。
它通过将两个不同的图案在同一个光刻层上进行叠加曝光,从而实现更高分辨率和更复杂的电路设计。
双重曝光光刻技术在微电子制造中得到了广泛应用。
5. 多层光刻多层光刻是一种用于制作多层电路结构的光刻技术。
它通过多次光刻步骤,将不同的电路层次逐层叠加在基板上。
多层光刻技术可实现更高的集成度和更复杂的电路设计。
总结:光刻是半导体制造过程中至关重要的一步,根据不同的技术和材料,可以将光刻分为接触式光刻、断裂式光刻、深紫外光刻、双重曝光光刻和多层光刻等分类。
每种光刻技术都有其适用的场景和特点,选择合适的光刻技术对于半导体制造具有重要意义。
简述光刻工艺的基本流程
简述光刻工艺的基本流程光刻工艺是一种制造微电子器件的关键工艺,其基本流程包括掩膜制备、光刻涂覆、曝光、显影和清洗等步骤。
首先,掩膜制备是光刻工艺的第一步。
在制造出所需的电路图之后,需要将电路图转换成光刻掩膜。
掩膜通常由二氧化硅或是金属等材料制成,这些材料对光的反应特性和刻蚀性能有相对明显的区别。
其次,将制作好的掩膜安装在光刻装置上,并进行光刻涂覆。
光刻涂覆是将光刻胶涂覆在待加工的衬底上的过程。
首先清洗待加工衬底的表面,然后将光刻胶倒入光刻涂覆装置中,并通过旋转或舀取的方式将光刻胶均匀覆盖在衬底上。
光刻胶的厚度和涂覆的均匀性对于后续的曝光质量有着至关重要的影响。
接下来是曝光过程。
将光刻装置调整至曝光模式,控制所需的光刻图形,然后通过光刻装置的曝光光源对光刻胶进行照射。
曝光过程中,光刻胶受到光子能量的激发,产生化学或物理反应。
在曝光过程中,掩膜上的图形通过光刻胶转移到光刻胶层上,形成曝光图形。
曝光的目的是通过光照射将掩膜上的图形转移到光刻胶层上,形成被曝光部分和未被曝光部分。
曝光后,进行显影处理。
显影是将不固化的光刻胶溶解并去除的过程。
使用显影液对已曝光部分的光刻胶进行溶解处理,而未曝光部分的光刻胶不受影响。
显影的目的是去除不需要的光刻胶层,暴露出需要加工的衬底表面。
显影处理后,可形成所需的光刻图形,准备进行下一步的加工。
最后,进行清洗和质检。
清洗是将显影后的衬底进行清洗,去除残留的光刻胶和显影液等杂质。
清洗后的衬底需要经过严格的质检,检查光刻图形是否与预期相一致,以及是否存在缺陷或错误等问题。
如果质检通过,则可进行下一步的加工步骤;如果存在问题,则需要返回到适当的步骤进行修正。
总结来说,光刻工艺的基本流程是:掩膜制备、光刻涂覆、曝光、显影和清洗。
这一系列的步骤使得光刻工艺能够将所需的图形转移到光刻胶层上,从而实现微电子器件的制造。
光刻工艺的流程和工艺参数的选择对于制造高质量的微电子器件至关重要,因此需要在实践中进行不断探索和改进。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光刻技术应用于微加工领域,可以实现高效精确的模板复印,是半导体集成电路制作的重要过程。光刻技术的发展直接影响着微电子工艺的纳米尺度,是精密的微细加工技术。利用光刻可以在衬底上形成立体结构或者在薄膜上刻蚀出凹槽,通常光刻使用UV光,对光刻胶进行变性处理,然后经过显影得到成品。针对不同的衬底或薄膜,不同的样品,光刻所用到的光刻胶,光刻过程中的一些参数、所用到的化学物品都不尽相同,但是整体工艺流程却是一样的。以硅衬底,AZ1518光刻胶为例,光刻技术主要有以下步骤:
* Preparation * 预备工作阶段,首先是对衬底进行清洗。对硅衬底的清洗通常用丙酮(Acetone)清除污迹,再用酒精处理掉丙酮,最后用去离子水(DI water)清洗干净,用氮气吹干样品。为了让光刻胶和衬底可以较为牢固的附着,通常的光刻技术中会使用粘着剂HMDS,它可以使得光刻胶有效的吸附在硅样品表面,不至于让光刻胶在刻蚀过程中脱落,导致工艺精密度变差。
* Photoresist * 甩胶阶段要先对甩胶机(Spincoat)进行速度测试,保证在设定转速下正常运转。为了先使得光刻胶均匀涂满样品,先设定Spincoat在低速下运行几秒钟,使光刻胶均匀涂在样品表面。通常甩胶机在转速1200到4800rpm下持续30到60秒。甩过胶后需要进行烘烤(softbake),在烘烤机(hotplate)上烘烤1分钟,通常设定温度为90到110度之间。Softbake的目的是为了烘干光刻胶,使之成型。
* Exposure * 曝光阶段最重要的是对版,对版的好坏决定了最终样品的结果。对于制作不同类型的样品,有时需要多次对版,这要求每次对版的位置十分精准,才能使得多次光刻不会互相影响。曝光分为接触式曝光和非接触式曝光,区别在于模板和样品是否接触。接触式曝光分辨率高,但容易影响衬底上的光刻胶和模板,通常适用于小规模的实验处理或生产。非接触式曝光设备复杂,精度很高,适合高精度器件生产。
* Developing * 显影是为了去除掉变性的光刻胶,以形成同模板一样的样品表面。光刻胶分为正胶和反胶,正胶在紫外光的照射下会变性,溶于显影液;反胶在照射下的变性不会溶于显影液。这两种胶的选择通常由实验要求所决定。AZ1518是正胶,对应的显影液为FHD-5 developer。显影的时间要求很严,时间越精确最后的效果就越好。而时间参数是由甩胶机的参数、光刻机曝光的时间等等决定的。显影过后用氮气吹干样品。
* Etching * 利用曝光后的样品模式,刻蚀后即可形成需要的样品。在除掉光刻胶后,同样需要烘烤(hardbake),以形成坚固的成品。
如果需要在样品表面制作电极,实行后续的电子束蒸发的技术,在显影之前需要先浸泡Chlorobenzene,用氮气吹干后再进行显影。Chlorobenzene的作用是渗透进变性的光刻胶,使未曝光的光刻胶垂直方向形成梯度,这样可以防止蒸电极时金属连在一起,以致不能用丙酮去除光刻胶。
感谢所有的原文作者,这里我只是略作整理,希望能对新手有所帮助。 光刻工艺 光刻工艺是半导体制造中最为重要的工艺步骤之一。主要作用是将掩膜板上的图形复制到硅片上,为下一步进行刻蚀或者离子注入工序做好准备。光刻的成本约为整个硅片制造工艺的1/3,耗费时间约占整个硅片工艺的40~60%。 光刻机是生产线上最贵的机台,5~15百万美元/台。主要是贵在成像系统(由15~20个直 径为200~300mm的透镜组成)和定位系统(定位精度小于10nm)。其折旧速度非常快,大约3~9万人民币/天,所以也称之为印钞机。光刻部分的主 要机台包括两部分:轨道机(Tracker),用于涂胶显影;扫描曝光机(Scanning ) 光刻工艺的要求:光刻工具具有高的分辨率;光刻胶具有高的光学敏感性;准确地对准;大尺寸硅片的制造;低的缺陷密度。 光刻工艺过程 一般的光刻工艺要经历硅片表面清洗烘干、涂底、旋涂光刻胶、软烘、对准曝光、后烘、显影、硬烘、刻蚀、检测等工序。 1、硅片清洗烘干(Cleaning and Pre-Baking) 方法:湿法清洗+去离子水冲洗+脱水烘焙(热板150~2500C,1~2分钟,氮气保护) 目的:a、除去表面的污染物(颗粒、有机物、工艺残余、可动离子);b、除去水蒸气,是基底表面由亲水性变为憎水性,增强表面的黏附性(对光刻胶或者是HMDS-〉六甲基二硅胺烷)。 2、涂底(Priming) 方法:a、气相成底膜的热板涂底。HMDS蒸气淀积,200~2500C,30秒钟;优点:涂底均匀、避免颗粒污染; b、旋转涂底。缺点:颗粒污染、涂底不均匀、HMDS用量大。 目的:使表面具有疏水性,增强基底表面与光刻胶的黏附性。 3、旋转涂胶(Spin-on PR Coating) 方法:a、静态涂胶(Static)。硅片静止时,滴胶、加速旋转、甩胶、挥发溶剂(原光刻胶的溶剂约占65~85%,旋涂后约占10~20%); b、动态(Dynamic)。低速旋转(500rpm_rotation per minute)、滴胶、加速旋转(3000rpm)、甩胶、挥发溶剂。 决定光刻胶涂胶厚度的关键参数:光刻胶的黏度(Viscosity),黏度越低,光刻胶的厚度越薄;旋转速度,速度越快,厚度越薄; 影响光刻胶厚度均运性的参数:旋转加速度,加速越快越均匀;与旋转加速的时间点有关。 一般旋涂光刻胶的厚度与曝光的光源波长有关(因为不同级别的曝光波长对应不同的光刻胶种类和分辨率): I-line最厚,约0.7~3μm;KrF的厚度约0.4~0.9μm;ArF的厚度约0.2~0.5μm。 4、软烘(Soft Baking) 方法:真空热板,85~120℃,30~60秒; 目的:除去溶剂(4~7%);增强黏附性;释放光刻胶膜内的应力;防止光刻胶玷污设备; 边缘光刻胶的去除(EBR,Edge Bead Removal)。光刻胶涂覆后,在硅片边缘的正反两面都会有光刻胶的堆积。边缘的光刻胶一般涂布不均匀,不能得到很好的图形,而且容易发生剥离(Peeling)而影响其它部分的图形。所以需要去除。 方法:a、化学的方法(Chemical EBR)。软烘后,用PGMEA或EGMEA去边溶剂,喷出少量在正反面边缘出,并小心控制不要到达光刻胶有效区域;b、光学方法(Optical EBR)。即硅片边缘曝光(WEE,Wafer Edge Exposure)。在完成图形的曝光后,用激光曝光硅片边缘,然后在显影或特殊溶剂中溶解 5、对准并曝光(Alignment and Exposure) 对准方法:a、预对准,通过硅片上的notch或者flat进行激光自动对准;b、通过对准标志(Align Mark),位于切割槽(Scribe Line)上。另外层间对准,即套刻精度(Overlay),保证图形与硅片上已经存在的图形之间的对准。 曝光中最重要的两个参数是:曝光能量(Energy)和焦距(Focus)。如果能量和焦距调整不好,就不能得到要求的分辨率和大小的图形。表现为图形的关键尺寸超出要求的范围。 曝光方法:a、接触式曝光(Contact Printing)。掩膜板直接与光刻胶层接触。曝光出来的图形与掩膜板上的图形分辨率相当,设备简单。缺点:光刻胶污染掩膜板;掩膜板的磨损,寿命很低(只能使用5~25次);1970前使用,分辨率〉0.5μm。 b、接近式曝光(Proximity Printing)。掩膜板与光刻胶层的略微分开,大约为10~50μm。可以避免与光刻胶直接接触而引起的掩膜板损伤。但是同时引入了衍射效应,降低了分辨率。1970后适用,但是其最大分辨率仅为2~4μm。 c、投影式曝光(Projection Printing)。在掩膜板与光刻胶之间使用透镜聚集光实现曝光。一般掩膜板的尺寸会以需要转移图形的4倍制作。优点:提高了分辨率;掩膜板的制作更加容易;掩膜板上的缺陷影响减小。 投影式曝光分类: 扫描投影曝光(Scanning Project Printing)。70年代末~80年代初,〉1μm工艺;掩膜板1:1,全尺寸; 步进重复投影曝光(Stepping-repeating Project Printing或称作Stepper)。80年代末~90年代,0.35μm(I line)~0.25μm(DUV)。掩膜板缩小比例(4:1),曝光区域(Exposure Field)22×22mm(一次曝光所能覆盖的区域)。增加了棱镜系统的制作难度。 扫描步进投影曝光(Scanning-Stepping Project Printing)。90年代末~至今,用于≤0.18μm工艺。采用6英寸的掩膜板按照4:1的比例曝光,曝光区域(Exposure Field)26×33mm。优点:增大了每次曝光的视场;提供硅片表面不平整的补偿;提高整个硅片的尺寸均匀性。但是,同时因为需要反向运动,增加了机 械系统的精度要求。 在曝光过程中,需要对不同的参数和可能缺陷进行跟踪和控制,会用到检测控制芯片/控片 (Monitor Chip)。根据不同的检测控制对象,可以分为以下几种:a、颗粒控片(Particle MC):用于芯片上微小颗粒的监控,使用前其颗粒数应小于10颗;b、卡盘颗粒控片(Chuck Particle MC):测试光刻机上的卡盘平坦度的专用芯片,其平坦度要求非常高;c、焦距控片(Focus MC):作为光刻机监控焦距监控;d、关键尺寸控片(Critical Dimension MC):用于光刻区关键尺寸稳定性的监控;e、光刻胶厚度控片(PhotoResist Thickness MC):光刻胶厚度测量;f、光刻缺陷控片(PDM,Photo Defect Monitor):光刻胶缺陷监控。 举例:0.18μm的CMOS扫描步进光刻工艺。 光源:KrF氟化氪DUV光源(248nm) ;数值孔径NA:0.6~0.7; 焦深DOF:0.7μm 分辨率Resolution:0.18~0.25μm(一般采用了偏轴照明OAI_Off- Axis Illumination和相移掩膜板技术PSM_Phase Shift Mask增强);套刻精度Overlay:65nm;产能Throughput:30~60wafers/hour(200mm); 视场尺寸Field Size:25×32mm; 6、后烘(PEB,Post Exposure Baking) 方法:热板,110~1300C,1分钟。 目的:a、减少驻波效应;b、激发化学增强光刻胶的PAG产生的酸与光刻胶上的保护基团发生反应并移除基团使之能溶解于显影液。 7、显影(Development) 方法:a、整盒硅片浸没式显影(Batch Development)。缺点:显影液消耗很大;显影的均匀性差;b、连续喷雾显影(Continuous Spray Development)/自动旋转显影(Auto-rotation Development)。一个或多个喷嘴喷洒显影液在硅片表面,同时硅片低速旋转(100~500rpm)。喷嘴喷雾模式和硅片旋转速度是实现硅片间溶 解率和均匀性的可重复性的关键调节参数。c、水坑(旋覆浸没)式显影(Puddle Development)。喷覆足够(不能太多,最小化背面湿度)的显影液到硅片表面,并形成水坑形状(显影液的流动保持较低,以减少边缘显影速率的变 化)。硅片固定或慢慢旋转。一般采用多次旋覆显影液:第一次涂覆、保持10~30秒、去除;第二次涂覆、保持、去除。然后用去离子水冲洗(去除硅片两面的 所有化学品)并旋转甩干。优点:显影液用量少;硅片显影均匀;最小化了温度梯度。 显影液:a、正性光刻胶的显影液。正胶的显影液位碱性水溶液。KOH和NaOH因为会带来可 动离子污染(MIC,Movable Ion Contamination),所以在IC制造中一般不用。最普通的正胶显影液是四甲基氢氧化铵(TMAH)(标准当量浓度为0.26,温度 15~250C)。在I线光刻胶曝光中会生成羧酸,TMAH显影液中的碱与酸中和使曝光的光刻胶溶解于显影液,而未曝光的光刻胶没有影响;在化学放大光刻 胶(CAR,Chemical Amplified Resist)中包含的酚醛树脂以PHS形式存在。CAR中的PAG产生的酸会去除PHS中的保护基团(t-BOC),从而使PHS快速溶解于TMAH显 影液中。整个显影过程中,TMAH没有同PHS发生反应。b、负性光刻胶的显影液。二甲苯。清洗液为乙酸丁脂或乙醇、三氯乙烯。 显影中的常见问题:a、显影不完全(Incomplete Development)。表面还残留有光刻胶。显影液不足造成;b、显影不够(Under Development)。显影的侧壁不垂直,由显影时间不足造成;c、过度显影(Over Development)。靠近表面的光刻胶被显影液过度溶解,形成台阶。显影时间太长。 8、硬烘(Hard Baking) 方法:热板,100~1300C(略高于玻璃化温度Tg),1~2分钟。 目的:a、完全蒸发掉光刻胶里面的溶剂(以免在污染后续的离子注入环境,例如DNQ酚醛树脂 光刻胶中的氮会引起光刻胶局部爆裂);b、坚膜,以提高光刻胶在离子注入或刻蚀中保护下表面的能力;c、进一步增强光刻胶与硅片表面之间的黏附性;d、进 一步减少驻波效应(Standing Wave Effect)。 常见问题:a、烘烤不足(Underbake)。减弱光刻胶的强度(抗刻蚀能力和离子注入中 的阻挡能力);降低针孔填充能力(Gapfill Capability for the needle hole);降低与基底的黏附能力。b、烘烤过度(Overbake)。引起光刻胶的流动,使图形精度降低,分辨率变差。 另外还可以用深紫外线(DUV,Deep Ultra-Violet)坚膜。使正性光刻胶树脂发生交联形成一层薄的表面硬壳,增加光刻胶的热稳定性。在后面的等离子刻蚀和离子注入(125~2000C)工艺中减少因光刻胶高温