七年级数学下册6.3等可能事件的概率第1课时摸到红球的概率习题课件(新版)北师大版
七年级数学北师大版下册课时练第6章《等可能事件的概率》(含答案解析)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第6单元概率初步等可能事件的概率一、单选题1.四张不透明的卡片,正面标有数字分别是﹣2,3,﹣10,6,除正面数字不同外,其余都相同,将它们背面朝上洗匀后放在桌面上,从中随机抽取一张卡片,则这张卡片正面的数字是﹣10的概率是()A.14B.12C.34D.12.如图,有3张形状、大小、质地均相同的卡片,正面是奥运会吉祥物福娃、冰墩墩、雪容融,背面完全相同.现将这3张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是吉祥物冰墩墩的概率是()A.13B.23C.12D.13.一只不透明的袋子里装有4个黑球,2个白球,每个球除颜色外其它都相同,则事件“从中任意摸出3个球,至少有1个球是黑球”的概率是()A.12B.23C.34D.14.李明用6个球设计了一个摸球游戏,共有四种方案,肯定不能成功的是()A.摸到黄球、红球的概率均为12B.摸到黄球的概率是23,摸到红球、白球的概率均为13C.摸到黄球、红球、白球的概率分别为12、13、16D.摸到黄球、红球、白球的概率都是135.在某市组织的物理实验操作考试中,考试所用实验室共有24个测试位,分成6组,同组4个测试位各有一道相同试题,各组的试题不同,分别标记为A,B,C,D,E,F,考生从中随机抽取一道试题,则某个考生抽到试题A的概率为()A.23B.14C.16D.1246.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A.23B.16C.13D.127.从一副扑克牌中任意抽取1张,下列事件发生的可能性最大的是()A.这张牌是“A”B.这张牌是“大王”C.这张牌是“黑桃”D.这张牌的点数是108.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为()A.310B.110C.19D.18二、填空题9.掷一枚质地均匀的硬币,前9次都是反面朝上,则掷第10次时反面朝上的概率是_____.10.如图,甲、乙、丙3人站在56´网格中的三个格子中,小王随机站在剩下的空格中,与图中3人均不在同一行或同一列的概率是______.11.某校围绕习近平总书记在庆祝中国共产主义青年团成立100周年大会上的重要讲话精神,开展了主题为“我叫中国青年”的线上演讲活动.九年级(1)班共有50人,其中男生有26人,现从中随机抽取1人参加该活动,恰好抽中男生的概率是________.12.从如图的四张印有品牌标志图案的卡片中任取一张,取出印有品牌标志的图案是轴对称图形的卡片的概率是____.三、解答题13.从一副扑克牌中随机抽取一张.(1)它是王牌的概率是多少?(2)它是Q的概率是多少?(3)它是梅花的概率是多少?14.疫苗接种初期,为更好地响应国家对符合条件的人群接种新冠疫苗的号召,某市教育部门随机抽取了某校部分七、八、九年级教师共100名,了解教师的疫苗接种情况,按接种情况可分如下四类:A类﹣只接种了一针疫苗;B类﹣已接种了两针疫苗;C类﹣已接种了三针疫苗;D类﹣还没有接种.需接种完三针全部疫苗才算完成接种任务.得到如下统计图表(不完整):一针两针三针未接种七年级515113八年级210a3九年级21120b(1)求该样本中还未完成接种任务的人数;(2)若要从已经历过疫苗接种的教师中随机选取一名谈谈接种的感受,求被选中的教师恰好已完成三针接种的概率;(3)若该市初中七、八、九年级一共约有8000名教师,根据抽样结果估计未接种的教师约有多少人?(4)若每一个接种类型的教师分别安排在同一天接种(如A类的都在同一天,B 类的都在另一天),若每辆车最多可坐10人,每辆车往返学校医院一次需车费60元,等剩下的所有老师都完成接种任务,还需支付车费至少多少元??15.有两个盒子,分别装有若干个除颜色外都相同的球,第一个盒子装有4个红球和6个白球,第二个盒子装有6个红球和6个白球.分别从这两个盒子中各摸出1个球,请你通过计算来判断从哪一个盒子中摸出白球的可能性大.16.某校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、跳绳课,学生可以根据自己的爱好任选一项,老师根据学生报名情况进行了统计,并绘制了如图所示的尚未完成的频数分布直方图和扇形统计图,请你结合图中的信息,解答下列问题.(1)该校学生报名总人数有多少人?(2)从表中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几?并补全两个统计图;(3)若从中随机抽一名学生,则该学生爱好跳绳的概率是多少?参考答案1.A2.A3.D4.B5.C6.D7.C8.B9.12.10.2911.132512.3413.(1)127;(2)227;(3)135414.(1)样本中还未完成接种任务的人数为55人(2)被选中的教师恰好已完成三针接种的概率为12(3)未接种的教师约有800人(4)还需支付车费至少540元15.第一个盒子摸出白球的可能性大16.(1)400(名)(2)选羽毛球的学生人数为100名,选排球占25%,篮球占10%,图见解析(3)概率为0.4。
第2课时 与摸球相关的概率 课件 2022—2023学年北师大版数学七年级下册

5.规定:在一副去掉大、小王的扑克牌中,牌面 从小到大的顺序为:2、3、4、5、6、7、8、9、
10、J、Q、K、A,且牌面的大小与花色无关.小
明和小颖做摸牌游戏,他们先后从这副去掉
大、小王的扑克牌中任意抽取一张牌(不放
回),谁摸到的牌面大,谁就获胜.
(1)现小明已经摸到的牌面为4,然后小颖
8
摸牌,P(小明获胜)= 51 .
(2)如果随机取出一个球是白球的概率为
1 6
,则应
往纸箱内加放几个红球?
2
解: (1)P(白球)= 5 ;
(2)设应加x个红球,则 2 1 ,
5 x 6
解得x=7.
答:应往纸箱内加放7个红球.
归纳总结
在摸球实验中,某种颜色球出现 的概率,等于该种颜色的球的数量与 球的总数的比,利用这个结论,可以 列方程计算球的个数.
P(小颖获胜)=
40 51
.
(2)现小明已经摸到的牌面为2,然
后小颖摸牌,
P(小明获胜)= 0 .
P(小颖获胜)=
16 17
.
(3)现小明已经摸到的牌面为A,然后小颖
摸牌,
16
P(小明获胜)= 17 . P(小颖获胜)= 0 .
课堂小结
1.计算常见事件发生的概率.
某类(种)事物的出现结果数目 概率(P)= 所有事物出现的可能结果数目
共有5种等可能的结果:红1,红2, 红3,白1,白2.
摸出红球有两种等可能的结果: 红1,红2.
2
P(摸到红球)=
. 5
摸出白球有三种等可能的结果:白1,白2, 白3.
P(摸到白球)=
∵ 2<3,
3, 5
记在149页
2020春北师大版初中数学七年级下册习题课件--第2课时 和摸球有关的概率

1.(2019·绥化)不透明袋子中有 2 个红球和 4 个蓝球,这些球除颜色外无
其他差别,从袋子中随机取出 1 个球是红球的概率是(A )
1
1
A.3
B.4
1
1
C.5
D.6
2.【易错】(2019·青海)一只不透明的布袋中有三种珠子(除颜色以外没
有任何区别),分别是 3 个红珠子,4 个白珠子和 5 个黑珠子,每次只
摸出一个珠子,观察后均放回搅匀,在连续 9 次摸出的都是红珠子的 1
情况下,第 10 次摸出红珠子的概率是 4 .
3.(2019·齐齐哈尔改编)在一个不透明的口袋中,装有一些除颜色外完全 相同的红、白、黑三种颜色的小球.已知袋中有红球 5 个,白球 23 个, 且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为 22 .
易错2019青海一只不透明的布袋中有三种珠子除颜色以外没有任何区别分别是3个红珠子4个白珠子和5个黑珠子每次只续摸出一个珠子观察后均放回搅匀在连续9次摸出的都是红珠子的第情况下第10次摸出红珠子的概率是
数学 第六章 概率初步
3 等可能事件的概率
第2课时 和摸球有关的概率
01 基础题
知识点 和摸球有关的概率
【变式】 (2019·衡阳)在一个不透明布袋里装有 3 个白球、2 个红球和 a 个黄球,这些球除颜色不同其他没有任何区别.若从该布袋里任意摸 出 1 个球,该球是黄球的概率为12,则 a 等于 5 .
6.(2019·贵阳)一个袋中装有 m 个红球,10 个黄球,n 个白球,每个球 除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概 率相同,那么 m 与 n 的关系是 m+n=10 . 7.(2019·成都)一个盒子中装有 10 个红球和若干个白球,这些球除颜色 外都相同.再往该盒子中放入 5 个相同的白球,摇匀后从中随机摸出一 个球.若摸到白球的概率为57,则盒子中原有的白球的个数为 20 .
七年级数学下册6.3.2等可能事件的概率课件2新版北师大版

§6.3 等可能事件的概率(2)
一、创设情境,导入新课
中国福彩七乐彩的设奖方案:
中奖号码〉〉 基 本 号 码 特别号码 ★ ● ● ● ● ● ● ●
● ● ● ● ● ● ● 选7中(7)
一等奖
二等奖
● ● ● ● ● ● ★ 选7中(6+1)
三等奖
● ● ● ● ● ● ○ 选7中(6)
【训练反馈】1.口袋里装有 1个白球和4个红球,5个球除 颜色外其余都完全相同,小明从口袋中摸出一个球。P (摸到白球)=____;P(摸到红球)=______;P(摸 到黑球)=_____;P(摸到白球或红球)=______。 2.从标有号数为1到50的50张卡片中,随意的抽出一张, 其号数为4的倍数的概率是_________。
【实验三】在不透明的盒子里放入2个红球,3个白球. 然后从盒中任 意摸出一球.(摸球之前先让学生判断一下小亮和小丽谁的观点正确.)
小亮
摸出的球不是红球就是白球,所以摸到红球 和摸到白球的可能性相同,也就是
1 P(摸到红球)= 2
红球有2个,白球有3个,将每一个球都 编上号码,1号球(红色),2号球(红 色),3号球(白色),4号球(白球), 5 号球(白色),摸出每一个球的可能 性相同,共有 5 种等可能的结果。摸到 红球可能出现的结果有:摸出 1 号球或 者2号球,共有2种可能的结果。
四、诱导反思、归纳总结:
这节课我学习了…… 这节课我收获了…… 这节课我还有……疑问
五、布置作业,落实目标
必做题:课本第150页 习题6.5 第1、2、4题
选做题: 课第151页 习题6.5 第5题
课堂检测
1、一道单项选择题有A、B、C、D四个备选答案,当你不会做的时候,从中随机 地选一个答案,你答对的概率是 。 2、一副扑克牌,任意抽取其中的一张, ①P(抽到大王)= 。 ②P(抽到3)= 。③P(抽到方块)= 。 3、请你解释一下,打牌的时候,你摸到大王的机会比摸到3的机会小。 4、任意掷一枚均匀的骰子。 ①P(掷出的点数小于4)= 。②P(掷出的点数是奇数)= 。 ③P(掷出的点数是7)= 。 ④P(掷出的点数小于7)= 。 5、规定:在一副去掉大、小王的扑克牌中,牌面从小到大的顺序为: 2、3、4、5、6、7、8、9、10、J、Q、K、A, 且牌面的大小与花色无关。 ①小明和小颖做摸牌游戏,他们先后从这副去掉大、小王的扑克牌中任意抽取一 张牌(不放回),谁摸到的牌面大,谁就获胜。现小明已经摸到的牌面为4,然后 小颖摸牌,P(小明获胜)= 。 P(小颖获胜)= 。 ②若小明已经摸到的牌面为2,然后小颖摸牌, P(小明获胜)= 。(小颖获胜)= 。 ③现小明已经摸到的牌面为A,然后小颖摸牌, P(小颖获胜)= 。P(小明获胜)= 。
北师大版七年级数学下册第六章概率初步第三节等可能事件的概率(无答案)

等可能事件的概率等可能事件1.如图,甲、乙两个转盘转动一次,最终指针指向红色区域(填“是”或“不是”)等可能性事件.2.判断下列随机现象是否属于等可能事件,若是,有几个等可能结果?(1)抛掷火柴盒;(2)从6件正品和2件次品中,随机抽取3件的质量情况;(3)一次射击命中的环数;(4)三枚硬币投抛一次.概率的意义3.某商场利用摸奖开展促销活动,中奖率为,则下列说法正确的是()A.若连续摸奖两次,则都不会中奖B.若连续摸奖两次,则不会都中奖C.若只摸奖一次,则也有可能中奖D.若摸奖三次,则至少中奖一次概率的计算4.在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.5.已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是()A.B.C.D.6.在“践行生态文明,你我一起行动”主题有奖竞赛活动中,903班共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,如果参赛同学抽到每一类别的可能性相同,那么小宇参赛时抽到“生态知识”的概率是()A.B.C.D.7.从单词“happy”中随机抽取一个字母,抽中p的概率为()A.B.C.D.8.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.9.某校某次外出游学活动分为三类,因资源有限,七年级2班分配到25个名额,其中甲类4个、乙类11个、丙类10个,已知该班有50名学生,班主任准备了50个签,其中甲类、乙类、丙类按名额设置、25个空签,采取抽签的方式来确定名额分配,请解决下列问题(1)该班小明同学恰好抽到丙类名额的概率是多少?(2)该班小丽同学能有幸去参加游学活动的概率是多少?(3)后来,该班同学强烈呼吁名额太少,要求抽到甲类的概率要达到20%,则还要争取甲类名额多少个?游戏中的概率游戏的公平性1.一箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球者获得1分,这个游戏是()A. 公平的B. 先摸者得分的可能性大C. 无法判断公平与否D. 后摸者得分的可能性大2.小兰和小青两人做游戏,有一个质量分布均匀的六面体骰子,骰子的六面分别标有1,2,3,4,5,6,如果掷出的骰子的点数是偶数,则小兰赢;如果掷出的骰子的点数是3的倍数,则小青赢,那么游戏规则对有利.3.甲、乙两人玩抽扑克牌游戏,他们准备了13张从A(1)到K的牌,并规定甲抽到10至K的牌,那么算甲胜,如果抽到的是10以下的牌,则算乙胜,这种游戏对甲乙来说(填“公平”或“不公平”)4.将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上放在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为m,然后放回洗匀,背面朝上放在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为n,组成一数对(m,n).(1)请写出(m,n)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽一次卡片,卡片上数字之和为奇数则甲赢,数字之和为偶数则乙赢.你认为这个游戏公平吗?请说明理由.游戏设计5.某口袋中有10个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜,要使游戏对甲、乙双方公平,则x应该是()A.3B.4C.1D.26.用10个除颜色外完全相同的球设计一个摸球游戏.(1)使得摸到红球的概率是,摸到白球的概率也是;(2)使得摸到红球的概率是,摸到白球和黄球的概率都是.7.在一个不透明的袋子里装有10个除号码外其余都相同的小球,每个小球的号码分别是1,2,3,4,5,6,7,8,9,10将它们充分摇匀,并从中任意摸出一个小球.规定摸出小球号码能被3整除时,甲获胜;摸出小球号码能被5整除时,乙获胜;这个游戏对甲乙双方公平么?请说明理由.如果不公平,应该如何修改游戏规则才能对双方公平?(游戏对双方公平的原则是:双方获胜的概率相等)面积中的概率几何中的概率1.如图是一个可以自由转动的正六边形转盘,其中两个正三角形涂有阴影,转动指针,指针落在有阴影的区域内的概率为()A.B.C.D.2.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是()A.B.C.D.3.如图是计算机中的一种益智小游戏“扫雷”的画面,在一个9×9的小方格的正方形雷区中,随机埋藏着10颗地雷,每个小方格内最多只能埋藏1颗地雷.小红在游戏开始时首先随机地点击一个方格,该方格中出现了数字“3”,其意义表示该格的外围区域(图中阴影部分,记为A区域)有3颗地雷;接着,小红又点击了左上角第一个方格,出现了数字“1”,其外围区域(图中阴影部分)记为B区域;“A区域与B区域以及出现数字‘1’和‘3’两格”以外的部分记为C区域.小红在下一步点击时要尽可能地避开地雷,那么她应点击A、B、C中的哪个区域?请说明理由.均分转盘中的概率4.在如图所示的正方形和圆形组成的盘面上投掷飞镖,飞镖落在阴影区域的概率是()A.B.C.D.5.二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是.6.某商人制成了一个如图所示的转盘游戏,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,若指针指向字母“A”,则收费2元,若指针指向字母“B”,则奖3元;若指针指向字母“C”,则奖1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?转盘中的概率不均分转盘中的概率1.如图,把一个圆形转盘按1:2:3:4的比例分成A,B,C,D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为()A.B.C.D.2.转动下列名转盘,指针指向红色区域的概率最大的是()A.B.C.D.3.如图,转动的转盘停止转动后,指针指向白色区域的概率是.4.某商场为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费200元(含200元)以上,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折,七折区域,顾客就可以获得此项优惠,如果指针恰好在分割线上时,则需重新转动转盘.(1)某顾客正好消费220元,他转一次转盘,他获得九折八折、七折优惠的概率分别是多少?(2)某顾客消费中获得了转动一次转盘的机会,实际付费168元,请问他消费所购物品的原价应为多少元.5.(1)图①是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少?(2)请在图②中设计一个转盘:自由转动这个转盘,当它停止转动时,指针落在红色区域的概率为,落在白色区域的概率为,落在黄色区域的概率为.其他问题中的概率6.如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成27个大小相同的小正方体,从这些小正方体中任意取出一个,求取出的小正方体;(1)只有一面涂有颜色的概率;(2)至少有两面涂有颜色的概率;(3)各个面都没有颜色的概率.练习1.笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A.B.C.D.2.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.3.在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6B.7C.8D.94.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.5.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是.6.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号1,2,3,4,5,随机摸出一个小球,摸出的小球标号为奇数的概率是.7.若随机掷一枚均匀的骰子,骰子的6个面上分别刻有1,2,3,4,5,6点,则点数不小于3的概率是.8.一个袋中装有m个红球,10个黄球,n个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m与n的关系是.9.今年“五一”假期期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖;指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)“五一”这天有1800人参与这项活动,估计获得一等奖的人数是多少?10.永辉超市进行有奖促销活动.活动规则:购买500元商品就可以获得一次转转盘的机会(转盘分为5个扇形区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以获得该区域相应等级奖品一件.商场工作人员在制作转盘时,将获奖扇形区域圆心角分配如下表:奖次特等奖一等奖二等奖三等奖圆心角1°36°53°150°促销公告:凡购买我商场商品均有可能获得下列大奖特等奖:彩电一台一等奖;自行车一辆二等奖:圆珠笔一支三等奖:卡通画一张(1)获得圆珠笔的概率是多少?(2)不获奖的概率是多少?(3)如果不用转盘,请设计一种等效试验方案.(要求写清楚替代工具和实验规则)。
北师大版七年级下数学第六章《概率初步》全套课件

个 元素中任取2个的组合数 结果出现的可能性都相等.
C2 100
,由于是任意抽取,这些
(1)由于在100件产品中有95件合格品,取到2件合格的
C 结果数,就是从95个元素中任取2个的组合数 2 记 95 “任取2件,都是合格品”为事件A1,那么事件A1的概率
P( A1)
C925 C1200
893 990
解(1)由于储蓄卡的密码是一个四位数字号码,且每位上的
数字有从0到9这10种取法,根据分步计数原理,这种号码共有 104个,又由于是随意按下一个四位数字号码,按下哪一个号
码的可能性相等,可得到正好按对这张储蓄卡密码的概率
P1
1 104
答:正好按对这张储蓄卡的密码的概率只有 1/ 104
(2)按四位数字号码的最后一位数字,有10种按法,由于 最后一位数字是随意按下的,按下其中各个数字的可能性相
由于甲抽到选择题、乙抽到判断题的结果数是
C61·C41,记“甲抽到选择题、乙抽到判断题”为 事件A,那么事件A的概率为
P(A)=CC_16_011_··_CC_49_11 =
__4_
15
例题讲解
例7、甲乙两人参加普法知识竞赛,共有10个不同的题目, 其中选择题6个,判断题4个,甲乙两人依次各抽一题。 (2)甲乙两人至少有1人抽到选择题的概率是多少?
_1_3_
15
课堂练习
1、盒中有100个铁钉,其中有90个是合格的,10 个是不合格的,从中任意抽取10个,其中没有一
个不合格铁钉的概率为( D )
A 0.9
B _1__ 9
C 0.1
D C__90_1_0 C10010
2、袋中装有大小相同的4个白球和3个球,从