【精品】2018最新年河南省周口市扶沟县九年级上学期数学期中试卷及解析

合集下载

河南省周口市 九年级上学期期中考试数学试题【精品】

河南省周口市    九年级上学期期中考试数学试题【精品】

2017---2018学年上期期中九年级考试 数学试卷1.将方程22(3)(4)10x x x +-=-化为一般形式为 【 】A .22140x x --=B .22140x x ++=C .22140x x +-=D . 22140x x -+=2.下列二次函数中,其顶点坐标是(3,-2)的是 【 】 A .2(3)2y x =-+ B . 2(3)2y x =++C .2(3)2y x =--D .2(3)2y x =+- 3.如图汽车标志中不是中心对称图形的是 【 】ABCD4.已知2是关于的一元二次方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则△ABC 的周长为 【 】 A .10 B .14 C .10或14 D .8或105.如图,CD 是⊙O 的直径,弦AB ⊥CD 于点E ,若AB =10cm , CE ︰ED =1︰5,则⊙O 的半径是 【 】 A .cm B .C .D .6. 平面直角坐标系中,线段OA 的两个端点的坐标 分别为O (0,0),A (-3,5),将线段OA 绕点O 旋转180°到O A'的位置,则点A'的坐标为 【 】A .(3,-5)B .(3,5)C .(5,-3)D .(-5,-3)7.在一次排球联赛中,每两个代表队之间都要进行一场比赛,共要比赛28场,共有多少个代表队参加比赛?设有个代表队参加比赛,则可列方程第5题图D【 】A .(1)x -=28B .2(1)x -=28C .(1)x +=28D .12(1)x -=28 8.已知将二次函数212y x bx c =++的图象向左平移2个单位长度,再向下平移1个单位长度,所得函数图象的解析式为214102y x x =-+,则b 、c 的值为 【 】A .b =6,c =21B .b =6,c =-21C .b =-6,c =21D .b =-6,c =-219.当满足不等式组244,11(6)(6)32x x x x ì<-ïïïíï->-ïïî时,方程2250x x --=的根是 【 】 A .1± B .1 C .1- D .1+10.小颖从如图所示的二次函数2(0)y ax bx c a =++? 的图象中,观察得出了下列信息:①0ab >;②0a b c ++<;③20b c +>;④240a b c -+>;⑤32a b =.你认为其中正确信息的个数有 【 】 A .2个 B .3个 C .4个 D .5个二、填空题( 每小题3分,共15分)11.二次函数21y mx =、22y nx =的图象如图所示,则m n (填“>”或“<”).12.如图,将△ABC 绕其中一个顶点逆时针连续 旋转1n °、2n °、3n °后所得到的三角形和 △ABC 的对称关系是 . 13.已知直角三角形的两边长、y 满足2160x -+,则该直角三角形的第三边长为 .14. 如图,点E 是△ABC 的内心,AE 的延长线和△ABC 的外接圆相交于点D .连接BD ,BE ,CE ,若∠CBD =32°,则∠BEC 的度数为 .15. 如图,边长为4的正方形ABCD 内接于⊙O ,点E 是ºAB上的一动点(不与点A 、B 1nx 2第12题图CBAn 2°n 3°n 1°第14题图ED CBAHC DF重合),点F 是ºBC上的一点,连接OE ,OF ,分别与交AB ,BC 于点G ,H ,且 ∠EOF =90°,连接GH ,有下列结论:①ººAEBF =;②△OGH 是等腰直角三角形; ③四边形OGBH 的面积随着点E 位置的变化而变化;④△GBH 周长的最小值为4+.其中正确的 是 .(把你认为正确结论的序号都填上)三、解答题:(本大题共8个小题,满分75分)16.(8分)先化简,再求值:21()1a a --÷2221a aa a +-+,其中a 是方程220x x +-=的解.17.(9分)关于的一元二次方程2(3)220x k x k -+++=. (1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求的取值范围.18.(9分)某服装店用3000元购进一批儿童服装,按80﹪的利润率定价无人购买,决定降价出售,但仍无人购买,结果又一次降价后才售完,但仍盈利45.8﹪.若两次降价的百分率相同,问每次降价的百分率是多少?19.(9分)如图,⊙O 中,直径AB =2,弦AC1)求∠BAC 的度数;(2)若另有一条弦AD,试在图中作出弦AD ,并求∠BAD 的度数; (3)你能求出∠CAD 的度数吗?20.(9分)如图,在平面直角坐标系Oy 中,点A 的坐标为(-2,0),等边三角形AOC 经过平移或轴对称或旋转都可以得到△OBD .21cnjy(1)△AOC 沿轴向右平移可得到△OBD ,则平移的距离是 个单位长度; △AOC 与△BOD 关于某直线对称,则对称轴是 ;△AOC 绕原点O 顺时针旋转可得到△DOB ,则旋转角至少是 °. (2)连接AD ,交OC 于点E ,求∠AEO 的度数.AB21.(10分)已知二次函数224233y x x =--.(1)将其配方成2()y a x h k =-+的形式, 并写出它的图象的开口方向、顶点坐标、 对称轴.(2)在如图所示的直角坐标系中画出函数 图象,并指出当0y <时的取值范围. (3)当04x #时,求出y 的最小值及最大值.22.(10分)将两个全等的直角三角形ABC 和DBE 按图(1)方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .(1)求证:CFEF ;(2)若将图(1)中的△DBE 绕点B 按顺时针方向旋转角α,且0?α60<?,其它条件不变,如图(2).请你直接写出AF +EF 与DE 的大小关系:AF +EF DE .(填“>”“”或“<”)21·com(3)若将图(1)中的△DBE 绕点B 按顺时针方向旋转角β,且60?β180<?,其它条件不变,如图(3).请你写出此时AF 、EF 与DE 之间的数量关系,并加以证明.图(3)图(2)图(1)ABC D E FA BCDE F F EDCBA23.(11分)已知二次函数2=-++的图象过点A(3,0)、C(-1,0).y x bx c(1)求二次函数的解析式;(2)如图,二次函数的图象与y轴交于点B,二次函数图象的对称轴与直线AB交于点P,求P点的坐标;(3)在第一象限内的抛物线上有一点Q,当△QAB的面积最大时,求点Q的坐标.2017---2018学年上期期中九年级 数学参考答案及评分标准一、选择题(每小题3分,共30分)16.原式 …………4分解方程220x x +-=得12x =-,21x =,∵1a ¹,∴2a =-,原式 . …………………8分17.(1)∵D =2(3)4(22)k k +-+=2(1)k - ……………………2分∴不论k 取任何实数值时,2(1)k -≥ 0,即D ≥ 0 …………………4分∴该方程总有两个实数根. ……………………5分(2)解方程得= ,得,12x =,21x k =+,………………7分若方程总有一根小于1,则11k +<,则0k <, (8)分221(1)(1)(1)a a a a a a a -++=?--21(1)(1)(1)a a a a a a +-=?-+21a a-=2213(2)4--==--3(1)2k k +?∴的取值范围是0k <. ……………………9分18.解:设每次降价的百分率为, ……………………1分则3000(1+80%)(1-)2-3000=3000×45.8% ………………5分 解之得:1=0.1,2=1.9, ……………………7分 ∵降价率不超过100%,∴只取=0.1, ……………………8分 ∴每次降价的百分率为10% . ……………………9分 19.(1)连接BC ,∵AB 是直径,∴∠ACB =90°,在R t △ACB 中,BC1,∴BC = AB , ∴∠BAC =30°.………………3分 (2)如图,弦AD 1,AD 2即为所求,连接OD 1,∵22221112OD OA +=+=,2212AD ==,221OD OA +=21AD ,且1OD =OA ,即△A 1OD 为等腰直角三角形,∴∠BAD 1=45°,同理∠BAD 2=45°,即∠BAD =45°, ........................7分 (3)由(2)可知∠CAD =45°±30°, ∴∠CAD =15°或75°. (9)20.(1)2,y 轴,120°……………………3分(2)∵∠COD =180°-60°-60°=60°∴∠AOC =∠DOC , 又OA =OD , ∴OC ⊥AD ,∴∠AEO =90°.……………………9分21.(1)∴ (212)A BD 2224233y x x =--22(23)3x x =--22(1)43x 轾=--犏臌228(1)33x --y =∴抛物线的开口向上, …………………3分顶点坐标为(1, ) …………………4分对称轴为直线=1. …………………5分 (2)函数图象如图所示, …………………7分 由图象可知当0y <时,的取值范围为13x -<<. …………………8分(3)由图象可知当04x #时,图象的最低点为(1,),最高点为(4, ) y 的最小值为 , …………………9分y 的最大值为 .…………………10分22.(1)证明:如图(1)连接BF , ∵R t △ABC ≌R t △DBE , ∴BC =BE ,又BF =BF ,∴R t △BCF ≌R t △BEF ,(HL ) ∴CFEF .…………………4分 (2)= …………………5分(3)AF -EF =DE , …………………6分 证明:如图(3),连接BF ,由(1)证明可知:CFEF ,又DEAC ,由图可知AF -CF =AC ,∴AF -EF =DE .………………10分 23.(1)把点A (3,0)、C (-1,0)代入2y x bx c =-++中,得 解得∴抛物线的解析式为223y x x =-++. (3)83-83-103C AB图(3)图(2)图(1)D E FABCDE F F EDCBA10,930b c b c ì--+=ïïíï-++=ïî2,3b c ì=ïïíï=ïî83-103分(2)在223y x x =-++中,当=0时y =3 ∴B (0,3),设直线AB 的解析式为y kx b =+,∴ ,∴ ,∴直线AB 的解析式为3y x =-+, …………………6分当=1时,y =2,∴P (1,2). …………………7分(3)设Q (m ,223m m -++),△QAB 的面积为S ,………………8分连接QA ,QB ,OQ ,则S =S S S OBQ OAQ OAB +-V V V=又∵3OA OB ==,∴S = =…………………10分∴当 时S 最大,此时223m m -++= ,∴Q ( , ). …………………11分 3,30b k b ì=ïïíï+=ïî1,3k b ì=-ïïíï=ïî2111(23)222OB m OA m m OA OB ??++-g 213(233)2m m m 创-++-23(3)2m m --23327()228m =--+32m =15415432。

河南省周口市九年级(上)期中数学试卷

河南省周口市九年级(上)期中数学试卷

九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列式子运算正确的是()A. 3−2=1B. 8=42C. 13=3D. 12+3+12−3=42.已知y=0是关于y的一元二次方程(m-1)y2+my+4m2-4=0的一个根,那么m的值是()A. 0B. 1C. −1D. ±13.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.已知AC=5,BC=2,那么sin∠ACD=()A. 53B. 23C. 255D. 524.关于x的一元二次方程(m-2)x2+(2m+1)x+m-2=0有两个不相等的正实数根,则m的取值范围是()A. m>34B. m>34且m≠2C. −12<m<2D. 34<m<25.一个不透明的盒子中装有1个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A. 16B. 13C. 12D. 236.化简4x2−4x+1-(1−3x)2得()A. 2B. −4x+4C. xD. 5x−27.河堤的横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:3,则AB的长是()A. 53B. 5C. 103D. 108.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A. 3B. 4C. 5D. 69.如图:把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC面积的一半,若AB=2,则此三角形移动的距离AA′是()A. 2−1B. 22C. 1D. 1210.如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边A2B2C2D2,…,如此进行下去,得到四边形A n B n C n D n.下列结论正确的有()①四边形A2B2C2D2是矩形;②四边形A4B4C4D4是菱形;③四边形A5B5C5D5的周长是a+b4,④四边形A n B n C n D n的面积是ab2n+1.A. ①②③B. ②③④C. ①②D. ②③二、填空题(本大题共5小题,共15.0分)11.若二次根式2x+12x+1有意义,则x的取值范围是______.12.方程3x2=x的解为______.13.在△ABC中,∠C=90°,如果AC=4,sin B=23,那么BC=______.14.如图,矩形EFGH内接于△ABC,且边FG落在BC边上若BC=3,AD=2,EF=23EH,则矩形EFGH的面积为______.15.如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边的C′处,并且C′D∥BC,则CD的长是______.三、计算题(本大题共1小题,共10.0分)16.解方程:(1)-2x2+3x=1(2)(3x+1)2=9x+3四、解答题(本大题共7小题,共65.0分)17.计算:(1)(24+0.5)-(18−6);(2)15+2-(3−2)0+20-(12)-1+sin60°18.已知关于x的方程mx2-(m+2)x+2=0.(1)求证:方程总有实数根;(2)若方程有两个实数根,且都是整数,求正整数m值.19.如图,AE是位于公路边的电线杆,为了使拉线CDE不影响汽车的正常行驶,电力部门在公路的另一边竖立了一根水泥撑杆BD,用于撑起拉线.已知公路的宽AB为8米,电线杆AE的高为12米,水泥撑杆BD高为6米,拉线CD与水平线AC的夹角为67.4°.求拉线CDE的总长L(A、B、C三点在同一直线上,电线杆、水泥杆的大小忽略不计).(参考数据:sin67.4°≈1213,cos67.4°≈513,tan67.4°≈125)20.如图,四边形ABCD的对角线AC,BD交于点F,点E是BD上一点,且∠BAC=∠BDC=∠DAE.(1)求证:△ABE∽△ACD;(2)若BC=2,AD=6,DE=3,求AC的长.21.春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?22.有四张卡片(背面完全相同),分别写有数字1、2、-1、-2,把它们背面朝上洗匀后,甲同学抽取一张记下这个数字后放回洗匀,乙同学再从中抽出一张,记下这个数字,用字母b、c分别表示甲、乙两同学抽出的数字.(1)用列表法求关于x的方程x2+bx+c=0有实数解的概率;(2)求(1)中方程有两个相等实数解的概率.23.如图,已知△ABC是边长为6cm的等边三角形,动点P,Q同时从B,A两点出发,分别沿BA,AC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)如图①,当t为何值时,AP=3AQ;(2)如图②,当t为何值时,△APQ为直角三角形;(3)如图③,作QD∥AB交BC于点D,连接PD,当t为何值时,△BDP与△PDQ 相似?答案和解析1.【答案】D【解析】解:A、和不是同类二次根式,不能计算,故A错误;B、=2,故B错误;C、=,故C错误;D、=2-+2+=4,故D正确.故选:D.根据二次根式的性质化简二次根式:=|a|;根据二次根式分母有理化的方法“同乘分母的有理化因式”,进行分母有理化;二次根式的加减实质是合并同类二次根式.此题考查了根据二次根式的性质进行化简以及二次根式的加减乘除运算,能够熟练进行二次根式的分母有理化.2.【答案】C【解析】解:把y=0代入(m-1)y2+my+4m2-4=0得:4m2-4=0,即m2-1=0解得:m1=1,m2=-1当m=1时,关于y的方程由于二次项系数为0不再是一元二次方程,所以m=-1.故选:C.把解代入所给的方程,求出m的值.本题考查了一元二次方程的定义和一元二次方程的解法,难度不大.本题易错,容易出现求出m就作答,忽略需满足方程是一元二次方程的条件.3.【答案】A【解析】解:在Rt△ABC中,222∵∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B.∴sin∠ACD=sinB==.故选:A.根据勾股定理可求出斜边长.易证∠ACD=∠B,sinB=.考查三角函数的定义及灵活进行等量转换的能力.4.【答案】D【解析】解:根据题意得m-2≠0且△=(2m+1)2-4(m-2)(m-2)>0,解得m>且m≠2,设方程的两根为a、b,则a+b=->0,ab==1>0,而2m+1>0,∴m-2<0,即m<2,∴m的取值范围为<m<2.故选:D.根据一元二次方程的定义和根的判别式的意义得到m-2≠0且△=(2m+1)2-4(m-2)(m-2)>0,解得m>且m≠2,再利用根与系数的关系得到->0,则m-2<0时,方程有正实数根,于是可得到m的取值范围为<m<2.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了根与系数的关系.5.【答案】C【解析】解:从中随机摸出一个小球,恰好是黄球的概率为=,故选:C.直接根据概率公式求解.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.6.【答案】C【解析】解:∵1-3x≥0,∴x≤,则2x-1≤-,原式=-(1-3x)=1-2x-1+3x=x,故选:C.先由二次根式有意义的条件得出x的取值范围,再判断出2x-1的取值范围,继而根据二次根式的性质化简可得.本题主要考查二次根式的乘除法,解题的关键是掌握二次根式的乘除运算顺序和运算法则及二次根式的性质与二次根式有意义的条件.7.【答案】D【解析】解:∵迎水坡AB的坡比1:,∴tan∠BAC===,解得:AC=5(m),则AB===10(m).故选:D.直接利用坡比的定义得出AC的长,进而得出答案.此题主要考查了解直角三角形的应用,正确得出AC的长是解题关键.8.【答案】C【解析】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD-MD=6-1=5.过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN 求出MD的长,由OD-MD即可求出OM的长.此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.9.【答案】A【解析】解:设BC与A′C′交于点E,由平移的性质知,AC∥A′C′∴△BEA′∽△BCA∴S△BEA′:S△BCA=A′B2:AB2=1:2∵AB=∴A′B=1∴AA′=AB-A′B=-1故选:A.利用相似三角形面积的比等于相似比的平方先求出A′B,再求AA′就可以了.本题利用了相似三角形的判定和性质及平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.10.【答案】B【解析】解:①连接A1C1,B1D1.∵在四边形ABCD中,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;∴A1D1∥B1C1,A1B1∥C1D1,∴四边形A1B1C1D1是平行四边形;∵AC丄BD,∴四边形A1B1C1D1是矩形,∴B1D1=A1C1(矩形的两条对角线相等);∴A2D2=C2D2=C2B2=B2A2(中位线定理),∴四边形A2B2C2D2是菱形;故本选项错误;②由①知,四边形A2B2C2D2是菱形;∴根据中位线定理知,四边形A4B4C4D4是菱形;故本选项正确;③根据中位线的性质易知,A5B5=A3B3=A1B1=AC,B5C5=B3C3=B1C1=BD,∴四边形A5B5C5D5的周长是2×(a+b)=,故本选项正确;④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,∴S=ab÷2;四边形ABCD由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,四边形A n B n C n D n的面积是,故本选项正确;综上所述,②③④正确.故选:B.首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形A n B n C n D n的面积与四边形ABCD的面积间的数量关系来求其面积.本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.11.【答案】x>−12【解析】解:∵二次根式有意义,∴2x+1>0,解得:x>-,∴x的取值范围是:x>-.故答案为:x>-.直接利用二次根式有意义的条件分析得出答案.此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.12.【答案】x1=0,x2=13【解析】解:原方程可化为:3x2-x=0,x(3x-1)=0,x=0或3x-1=0,解得:x1=0,x2=.可先移项,然后运用因式分解法求解.本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.13.【答案】25【解析】解:∵在△ABC中,∠C=90°,AC=4,sinB=,∴sinB===,∴AB=6,∴BC===2.故答案是2.先根据正弦函数的定义求出AB,再利用勾股定理求出BC即可.本题考查了正弦函数的定义:在Rt△ABC中,∠C=90°,我们把锐角A的对边a 与斜边c的比叫做∠A的正弦,记作sinA.即sinA=∠A的对边除以斜边=.也考查了勾股定理.14.【答案】32【解析】解:∵EF⊥FG,AD⊥BC∴AD∥EF∴=,∵EH∥BC∴=,∴+=+,且BC=3,AD=2,EF=EH.∴=1=+∴EH=,则EF=1∴矩形EFGH的面积=EF×EH=,故答案为:.由题意可得AD∥EF,可证=,由EH∥BC可证=,即+=+=1,可求EF,EH的长,即可求矩形EFGH的面积.此题考查了相似三角形的判定和性质,矩形的性质,平分线分线段成比例,利用相似三角形的性质解决问题是本题的关键.15.【答案】409【解析】解:设CD=x,根据C′D∥BC,且有C′D=EC,可得四边形C′DCE是菱形;即Rt△ABC中,AC==10,EB=x;故可得BC=x+x=8;解得x=.故答案为:.先判定四边形C′DCE是菱形,再根据菱形的性质计算.本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.16.【答案】解:(1)-2x2+3x=1,方程整理得:2x2-3x+1=0,分解因式得:(2x-1)(x-1)=0,解得:x=12或x=1;(2)(3x+1)2=9x+3,方程整理得:9x2-3x-2=0,分解因式得:(3x-2)(3x+1)=0,解得:x=23或x=-13.【解析】(1)方程整理后,利用因式分解法求出解即可;(2)方程整理后,利用因式分解法求出解即可.此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.17.【答案】解:(1)原式=26+22-24+6=36+24;(2)原式=5-2-1+25-2+32=35-5+32.【解析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用分母有理化、零指数幂好、负整数指数幂和特殊角的三角函数值计算.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【答案】解:(1)证明:当m=0时,方程变形为-2x+2=0,解得x=1;当m≠0时,△=(m+2)2-4m•2=(m-2)2≥0,方程有两个实数解,所以不论m为何值,方程总有实数根;(2)由方程mx2-(m+2)x+2=0,得:(x-1)(mx-2)=0,则x-1=0或mx-2=0,解得:x1=1,x2=2m,因为方程有两个实数根,且都是整数,所以正整数m的值为1或2.【解析】(1)分类讨论:当m=0时,方程为一元一次方程,有一个实数解;当m≠0时,计算判别式得到△=(m-2)2≥0,则方程有两个实数解,于是可判断不论m为何值,方程总有实数根;(2)利用因式分解法求得x1=1,x2=,根据方程的两个根均为整数且m为正整数,据此可得.本题主要考查根的判别式及一元二次方程的解,熟练掌握根的判别式及一元二次方程的解的定义是解题的关键.19.【答案】解:在Rt△DBC中,sin∠DCB=BDCD,∴CD=BDsin∠DCB=6sin67.4∘=61213=6.5(m).作DF⊥AE于F,则四边形ABDF为矩形,∴DF=AB=8,AF=BD=6,∴EF=AE-AF=6,在Rt△EFD中,ED=EF2+DF2=62+82=10(m).∴L=10+6.5=16.5(m)【解析】根据sin∠DCB=,得出CD的长,再根据矩形的性质得出DF=AB=8,AF=BD=6,进而得出拉线CDE的总长L.此题主要考查了解直角三角形以及矩形的性质,得出CD的长度以及EF的长是解决问题的关键.20.【答案】解:(1)证法一:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.又∵∠BAC=∠BDC,∠BFA=∠CFD,∴180°-∠BAC-∠BFA=180°-∠BDC-∠CFD,即∠ABE=∠ACD.∴△ABE∽△ACD.证法二:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.又∵∠BEA=∠DAE+∠ADE,∠ADC=∠BDC+∠ADE,∠DAE=∠BDC,∴∠AEB=∠ADC.∴△ABE∽△ACD.(2)∵△ABE∽△ACD,∴ABAC=AEAD.又∵∠BAC=∠DAE,∴△ABC∽△AED,∴BCDE=ACAD,∴AC=BCDE⋅AD=23×6=4.【解析】(1)由∠BAC=∠DAE,易得∠BAE=∠CAD,又由∠BAC=∠BDC,∠BFA=∠CFD,可证得∠ABE=∠ACD,即可证得:△ABE∽△ACD.(2)由△ABE∽△ACD,可得=,又由∠BAC=∠DAE,则可证得△ABC∽△AED,然后由相似三角形的对应边成比例,求得答案.此题考查了相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.21.【答案】解:设该单位这次共有x名员工去天水湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.可得方程[1000-20(x-25)]x=27000.整理得x2-75x+1350=0,解得x1=45,x2=30.当x1=45时,1000-20(x-25)=600<700,故舍去x1;当x2=30时,1000-20(x-25)=900>700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游.【解析】首先根据共支付给春秋旅行社旅游费用27 000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x名员工去天水湾风景区旅游.即可由对话框,超过25人的人数为(x-25)人,每人降低20元,共降低了20(x-25)元.实际每人收了[1000-20(x-25)]元,列出方程求解.此类题目贴近生活,有利于培养学生应用数学解决生活中实际问题的能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.∵关于x的方程x2+bx+c=0有实数解,即b2-4c≥0,∴关于x的方程x2+bx+c=0有实数解的有(1,-1),(1,-2),(2,1),(2,-1),(2,-2),(-1,-1),(-1,-2),(-2,1),(-2,-1),(-2,-2)共10种情况,∴关于x的方程x2+bx+c=0有实数解的概率为:1016=58;(2)(1)中方程有两个相等实数解的有(-2,1),(2,1),∴(1)中方程有两个相等实数解的概率为:216=18.【解析】(1)根据题意列表,然后根据表格求得所有等可能的结果与关于x的方程x2+bx+c=0有实数解的情况数,根据即可概率公式求解;(2)首先求得(1)中方程有两个相等实数解的情况,然后即可根据概率公式求解.此题考查了列表法求概率与一元二次方程根的情况的判定.注意△>0,有两个不相等的实数根,△=0,有两个相等的实数根,△<0,没有实数根.23.【答案】解:(1)由题意知,AQ=2t,BP=t,∵△ABC是边长为6cm的等边三角形,∴∠A=60°,AB=6,∴AP=AB-BP=6-t,∵AP=3AQ,∴6-t=3×2t,∴t=67,即:t=67秒时,AP=3AQ;(2)由(1)知,∠A=60°,AQ=2t,AP=6-t,∵△APQ为直角三角形,①当∠APQ=90°时,AQ=2AP,∴2t=2(6-t),∴t=3秒,②当∠AQP=90°时,AP=2AQ,∴6-t=2×2t,∴t=65秒,即:t=3秒或65秒时,△APQ是直角三角形;(3)由题意知,AQ=2t,BP=t,∴AP=6-t,∵△ABC是等边三角形,∴∠A=∠C=60°,∵QD∥AB,∴∠PDQ=∠BPD,∠QDB=∠A=60°,∴△CDQ是等边三角形,∴CD=CQ,∴BD=AQ=2t,∵△BDP与△PDQ相似,∴①当△BPD∽△PDQ时,∴∠B=∠DPQ=60°,∴∠APQ=∠BDP,∵∠A=∠B,∴△APQ∽△BDP,∴APBD=AQBP,∴6−t2t=2tt,∴t=65秒,②当△BPQ∽△QDP时,∴∠B=∠DQP=60°,∵DQ∥AB,∴∠APQ=DQP=60°,∵∠A=60°,∴△APQ是等边三角形,∴AP=AQ,∴6-t=2t,∴t=2秒,即:t=65秒或2秒时,△BDP与△PDQ相似.【解析】(1)先表示出AQ=2t,AP=6-t,利用AP=3AQ建立方程求解即可得出结论;(2)分两种情况,利用含30度角的直角三角形的性质(30度角所对的直角边是斜边的一半)建立方程求解即可得出结论;(3)先表示出BD=2t,再分两种情况:①当△BPD∽△PDQ时,判断出∠APQ=∠BDP,进而判断出△APQ∽△BDP,得出比例式建立方程求解;②当△BPQ∽△QDP时,得出∠B=∠DQP=60°,进而判断出△APQ是等边三角形,得出AP=AQ建立方程求解即可得出结论.此题是相似形综合题,主要考查了直角三角形的性质,相似三角形的判定和性质,用方程的思想解决问题是解本题的关键.。

周口市九年级上册期中试卷检测题

周口市九年级上册期中试卷检测题

周口市九年级上册期中试卷检测题一、初三数学 一元二次方程易错题压轴题(难)1.如图,在长方形ABCD 中,边AB 、BC 的长(AB <BC )是方程x 2-7x +12=0的两个根.点P 从点A 出发,以每秒1个单位的速度沿△ABC 边 A →B →C →A 的方向运动,运动时间为t (秒).(1)求AB 与BC 的长;(2)当点P 运动到边BC 上时,试求出使AP 长为10时运动时间t 的值;(3)当点P 运动到边AC 上时,是否存在点P ,使△CDP 是等腰三角形?若存在,请求出运动时间t 的值;若不存在,请说明理由.【答案】(1) AB =3,BC =4;(2) t =4;(3) t 为10秒或9.5秒或535秒时,△CDP 是等腰三角形.【解析】试题分析:(1)解一元二次方程即可求得边长;(2)结合图形,利用勾股定理求解即可; (3)根据题意,分为:PC =PD ,PD =PC ,PD =CD ,三种情况分别可求解.试题解析:(1)∵x 2-7x +12=(x -3)(x -4)=0∴1x =3或2x =4 .则AB =3,BC =4(2)由题意得()223t-310?+=()∴14t =,22t =(舍去)则t =4时,AP 10.(3)存在点P ,使△CDP 是等腰三角形.①当PC =PD =3时, t =3431++ =10(秒). ②当PD =PC(即P 为对角线AC 中点)时,AB =3,BC =4. 2234+=5,CP 1=12AC =2.5 ∴t=34 2.51++ =9.5(秒)③当PD =CD =3时,作DQ⊥AC 于Q. 1341221552DQ ⨯⨯==⨯,22129355PQ ⎛⎫=-= ⎪⎝⎭ ∴PC=2PQ =185∴183453515t ++==(秒) 可知当t 为10秒或9.5秒或535秒时,△CDP 是等腰三角形. 2.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34 ;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点,∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根.∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0.解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0.则x 1+x 2=2k-1,x 1•x 2=k 2+1,∵=== 32-, 解得:k=-1或k= 13-(舍去),∴k=﹣13.计算题(1)先化简,再求值:21x x -÷(1+211x -),其中x=2017.(2)已知方程x2﹣2x+m﹣3=0有两个相等的实数根,求m的值.【答案】(1)2018;(2)m=4【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21xx-÷(1+211x-)=22211 11 x xx x-+÷--=()() 2211 1x xxx x+-⋅-=x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x2﹣2x+m﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.4.有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)【答案】(1)⑤;(2)x1=2n,x2=﹣4n.【解析】【分析】(1)根据移项要变号,可判断;(2)先把常数项移到方程的右边,再把方程两边都加上一次项系数的一半,使左边是一个完全平方式,然后用直接开平方法求解.【详解】解:(1)小静的解法是从步骤⑤开始出现错误的,故答案为⑤;(2)x2+2nx﹣8n2=0,x2+2nx=8n2,x2+2nx+n2=8n2+n2,(x+n)2=9n2,x+n=±3n,x1=2n,x2=﹣4n.5.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC和△DEF,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF 的斜边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:①∠FCD的最大度数为;②当FC∥AB时,AD= ;③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;④△FCD的面积s的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F 作FH ⊥AC 于点H ,设AD=x ,由②知DH=3,FH=,则HC=.在Rt △CFH 中,根据勾股定理,得. ∵以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形,且FC 为斜边, ∴,即,解得.④设AD=x ,易知,即. 而, 当时,;当时,.∴△FCD 的面积s 的取值范围是. 考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.二、初三数学 二次函数易错题压轴题(难)6.如图,抛物线()250y ax bx a =+-≠经过x 轴上的点1,0A 和点B 及y 轴上的点C ,经过B C 、两点的直线为y x n =+.(1)求抛物线的解析式.(2)点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,PBE △的面积最大并求出最大值. (3)过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B C 、重合)作直线AM 的平行线交直线BC 于点Q .若点A M N Q 、、、为顶点的四边形是平行四边形,求点N 的横坐标.【答案】(1)265y x x =-+- (2)2t =;2(3)5412或4或5412【解析】【分析】(1)先确定A 、B 、C 三点的坐标,然后用待定系数法解答即可;(2)先求出AB 、BC 的长并说明△BOC 是等腰直角三角形,再求出点P 到BC 的高d 为()24542d BP sin t =⋅︒=-,则12PBE S BE d =⨯⨯)()122244222t t t =⨯⨯-=-,再根据二次函数的性质即可确定最大值; (3)先求出2454222AM AB sin =⋅︒=⨯=N 作直线AM 的平行线交直线BC 于点,Q 则,再说明四边形AMNQ 是平行四边形,得到22NQ AM ==;再过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H 结合题意说明NQH 为等腰直角三角形,求得22884NH NQ HQ =+=+=;设()2,65N m m m -+-,则(),0G m , (),5H m m -,最后分点N 在x 轴上方时、点N 在x 轴下方且5m >时和1m <三种情况解答即可.【详解】解:()1因为直线y x n =+经过B C 、两点,且点B 在x 轴上,点C 在y 轴上, ∵()(),,00,B n C n -∴抛物线25y ax bx =+-经过点1,0A ,点(),0B n -,点()0,C n ,∴250505a b an bn n +-=⎧⎪--=⎨⎪-=⎩,解得51,6n a b =-⎧⎪=-⎨⎪=⎩所以抛物线的解析式为265y x x =-+-.()2∵()()()1,05,0,0,,5,A B C -∴4,AB BC BOC ==为等腰直角三角形,∴45,ABC ∠=由题意得4,2,02BP t BE t t =-=<≤点P 到BE的距离()4542d BP sin t =⋅︒=- 所以12PBE S BE d =⨯⨯)()1244222t t t t =⨯⨯-=-; ∵二次函数()()42f t t =-的函数图象开口向下,零点为0和4, ∴0422t +==时, ∴()()()22422maxf t f ==⨯⨯-=即2t =时,PBE △的面积最大,且最大值为()3由题意得454AM AB sin =⋅︒== 过点N 作直线AM 的平行线交直线BC 于点,Q 则,NQ BC ⊥∵点,A M N Q 、、为顶点的四边形是平行四边形,∴NQ AM ==过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H∵:5BC l y x =-,∴NQH 为等腰直角三角形,∴22884,NH NQ HQ =+=+=设()2,65N m m m -+-,则(),0G m ,(),5H m m -,①点N 在x 轴上方时,此时()()2655,NH m m m =-+--- ∴()()26554m m m -+---=,即()()140,m m --= 解得1m =(舍,因为此时点N 与点A 重合)或4m =;②点N 在x 轴下方且5m >时,此时()()2565,NH m m m =---+-∴()()25654m m m ---+-=,即2540,m m --= 解得54152m -=<(舍)或5412m += ③点N 在x 轴下方且1m <时,此时()()2565,NH m m m =---+-∴()()25654m m m ---+-=,即2540,m m --=解得5412m -=或5412m +=(舍)综上所述,5414,2m m +==,5412m -=符合题意, 即若点,A M N Q 、、为顶点的四边形是平行四边形,点N 的横坐标为541-或4或541+.【点睛】本题主要考查了二次函数的性质、平行四边形的判定与性质,掌握二次函数的性质以及分类讨论思想是解答本题的关键7.如图,在平面直角坐标系x O y中,抛物线y = ax2+ bx + c经过A、B、C三点,已知点A (-3,0),B(0,3),C(1,0).(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;(3)在直线x = -2上是否存在点M,使得∠MAC = 2∠MCA,若存在,求出M点坐标.若不存在,说明理由.【答案】(1)y=-x2-2x+3;(2)点(-32,154),△PDE的周长最大;(3)点M(-2,3)或(-2,3【解析】【分析】(1)将A、B、C三点代入,利用待定系数法求解析式;(2)根据坐标发现,△AOB是等腰直角三角形,故只需使得PD越大,则△PDE的周长越大.联立直线AB与抛物线的解析式可得交点P坐标;(3)作点A关于直线x=-2的对称点D,利用∠MAC = 2∠MCA可推导得MD=CD,进而求得ME的长度,从而得出M坐标【详解】解:(1)∵抛物线y=ax2+bx+c经过点A(-3,0),B(0,3),C(1,0),∴9303a b cca b c-+=⎧⎪=⎨⎪++=⎩,解得:123abc=-⎧⎪=-⎨⎪=⎩,所以,抛物线的解析式为y=-x2-2x+3;(2)∵A(-3,0),B(0,3),∴OA=OB=3,∴△AOB是等腰直角三角形,∴∠BAO=45°,∵PF⊥x轴,∴∠AEF=90°-45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PD 越大,△PDE 的周长越大,易得直线AB 的解析式为y=x+3,设与AB 平行的直线解析式为y=x+m ,联立223y x m y x x =+⎧⎨=--+⎩,消掉y 得,x 2+3x+m-3=0, 当△=9-4(m-3)=0,即m=214时,直线与抛物线只有一个交点,PD 最长, 此时x=-32,y=154,∴点(-32,154),△PDE 的周长最大;(3)设直线x=-2与x 轴交于点E ,作点A 关于直线x=-2的对称点D ,则D (-1,0),连接MA ,MD ,MC .∴MA=MD ,∠MAC=∠MDA=2∠MCA ,∴∠CMD=∠DCM∴MD=CD=2 , ∴3∴点M (-23)或(-2,3【点睛】本题是动点和最值的考查,在解决动点问题时,寻找出不变量来分析是解题关键,最值问题,通常利用对称来简化分析8.如图,若抛物线y =x 2+bx+c 与x 轴相交于A ,B 两点,与y 轴相交于点C ,直线y =x ﹣3经过点B ,C .(1)求抛物线的解析式;(2)点P 是直线BC 下方抛物线上一动点,过点P 作PH ⊥x 轴于点H ,交BC 于点M ,连接PC .①线段PM 是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P 运动的过程中,是否存在点M ,恰好使△PCM 是以PM 为腰的等腰三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.【答案】(1)y=x2﹣2x﹣3;(2)①有,94;②存在,(2,﹣3)或(32,2﹣2)【解析】【分析】(1)由直线表达式求出点B、C的坐标,将点B、C的坐标代入抛物线表达式,即可求解;(2)①根据PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94即可求解;②分PM=PC、PM=MC两种情况,分别求解即可.【详解】解:(1)对于y=x﹣3,令x=0,y=﹣3,y=0,x=3,故点B、C的坐标分别为(3,0)、(0,﹣3),将点B、C的坐标代入抛物线表达式得:9303b cc++=⎧⎨=-⎩,解得:32 cb=-⎧⎨=-⎩,故抛物线的表达式为:y=x2﹣2x﹣3;(2)设:点M(x,x﹣3),则点P(x,x2﹣2x﹣3),①有,理由:PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94,∵﹣1<0,故PM有最大值,当x=32时,PM最大值为:94;②存在,理由:PM2=(x﹣3﹣x2+2x+3)2=(﹣x2+3x)2;PC2=x2+(x2﹣2x﹣3+3)2;MC2=(x﹣3+3)2+x2;(Ⅰ)当PM=PC时,则(﹣x2+3x)2=x2+(x2﹣2x﹣3+3)2,解得:x=0或2(舍去0),故x=2,故点P(2,﹣3);(Ⅱ)当PM=MC时,则(﹣x2+3x)2=(x﹣3+3)2+x2,解得:x=0或2(舍去0和2),故x =3﹣2,则x 2﹣2x ﹣3=2﹣42, 故点P (3﹣2,2﹣42).综上,点P 的坐标为:(2,﹣3)或(3﹣2,2﹣42). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.9.如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠交x 轴于点(2,0),(3,0)A B -,交y 轴于点C ,且经过点(6,6)D --,连接,AD BD .(1)求该抛物线的函数关系式;(2)△ANM 与ABD ∆是否相似?若相似,请求出此时点M 、点N 的坐标;若不存在,请说明理由;(3)若点P 是直线AD 上方的抛物线上一动点(不与点,A D 重合),过P 作//PQ y 轴交直线AD 于点Q ,以PQ 为直径作⊙E ,则⊙E 在直线AD 上所截得的线段长度的最大值等于 .(直接写出答案)【答案】(1)2113442y x x =--+;(2)点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32);(3)QH 有最大值,当x=2-时,其最大值为125. 【解析】 【分析】(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式即可求解; (2)分∠MAB=∠BAD 、∠MAB=∠BDA ,两种大情况、四种小情况,分别求解即可; (3)根据题意,利用二次函数的性质和三角函数,QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+=23392055x x --+,即可求解. 【详解】解:(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式并解得:14a =-, 故函数的表达式为:2113442y x x =--+…①, 则点C (0,32);(2)由题意得:AB=5,AD=10,BD=, ①∠MAN=∠ABD 时, (Ⅰ)当△ANM ∽△ABD 时, 直线AD 所在直线的k 值为34,则直线AM 表达式中的k 值为34-,则直线AM 的表达式为:3(2)4y x =--,故点M (0,32),AD AB AM AN =,则AN=54,则点N (34,0); (Ⅱ)当△AMN ∽△ABD 时,同理可得:点N (-3,0),点M (0,32),故点M (0,32)、点N (34,0)或点M (0,32),N (-3,0);②∠MAN=∠BDA 时,(Ⅰ)△ABD ∽△NMA 时,∵AD ∥MN ,则tan ∠MAN=tan ∠BDA=12, AM :y=12-(x-2),则点M (-1,32)、点N (-3,0); (Ⅱ)当△ABD ∽△MNA 时,AD BDAM AN==, 解得:AN=94,故点N (14-,0)、M (-1,32); 故:点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32); 综上,点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32); (3)如图所示,连接PH ,由题意得:tan ∠PQH=43,则cos ∠PQH=35, 则直线AD 的表达式为:y=3342x -, 设点P (x ,2113442x x --+),则点Q (x ,3342x -), 则QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+ =23392055x x --+ =2312(2)205x -++, ∵3020-<, 故QH 有最大值,当x=2-时,其最大值为125. 【点睛】本题考查的是二次函数综合应用,涉及到一次函数、圆的基本知识,解直角三角形,相似三角形的判定和性质,其中(2)需要分类求解共四种情况,避免遗漏.10.平面直角坐标系xOy 中,对于任意的三个点A 、B 、C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的“三点矩形”.在点A ,B ,C 的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A ,B ,C 的“最佳三点矩形”.如图1,矩形DEFG ,矩形IJCH 都是点A ,B ,C 的“三点矩形”,矩形IJCH 是点A ,B ,C 的“最佳三点矩形”.如图2,已知M (4,1),N (﹣2,3),点P (m ,n ).(1)①若m =1,n =4,则点M ,N ,P 的“最佳三点矩形”的周长为 ,面积为;②若m=1,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=﹣2x+4上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,且当点M,N,P的“最佳三点矩形”面积为12时,﹣2≤m≤﹣1或1≤m≤3,直接写出抛物线的解析式.【答案】(1)①18,18;②或5;(2)①最小值为12,;②点的坐标为或;(3),或.【解析】【分析】(1)①根据题意,易得M、N、P的“最佳三点矩形”的周长和面积②先求出和的值,再根据m=1以及M、N、P的“最佳三点矩形”的面积是24,可分析出此矩形的邻边长分别为6、4进而求出n的值(2)①结合图形,易得M、N、P的“最佳三点矩形”的面积的最小值,分别将对应的值代入y=-2x+4即可求出m的取值范围②当M、N、P的“最佳三点矩形”为正方形时,易得边长为6,将对应的值代入y=-2x+4即可求出P点坐标(3)根据题意画出图像,易得抛物线的解析式【详解】解:(1)①如图,过P做直线AB平行于x轴,过N做直线AC平行于y轴,过M做MB平行于y轴,分别交于点A(-2,4)、C(-2,1)、B(4,1)则AC=BM=3,AB=CM=6故周长=(3+6)=18,面积=3=18故M、N、P的“最佳三点矩形”的周长和面积分别为18,18;②∵M(4,1),N(-2,3)∴,又∵m=1,点M、N、P的“最佳三点矩形”的面积为24∴此矩形的邻边长分别为6,4∴n=-1或5(2)如图1,①易得点M、N、P的“最佳三点矩形”的面积的最小值为12;分别将y=3,y=1代入y=-2x+4,可得x分别为,结合图象可知:②当点M、N、P的“最佳三点矩形”为正方形,边长为6,分别将y=7,y=-3代入y=-2x+4,可得分别为,点P的坐标为(,7)或(,-3)(3)如图2,y=+或y=+【点睛】此题比较灵活,读懂题意,画出图像求解是解题关键三、初三数学旋转易错题压轴题(难)11.直线m∥n,点A、B分别在直线m,n上(点A在点B的右侧),点P在直线m上,AP=13AB,连接BP,将线段BP绕点B顺时针旋转60°得到BC,连接AC交直线n于点E,连接PC,且ABE为等边三角形.(1)如图①,当点P在A的右侧时,请直接写出∠ABP与∠EBC的数量关系是,AP 与EC的数量关系是.(2)如图②,当点P在A的左侧时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.(3)如图②,当点P在A的左侧时,若△PBC的面积为93,求线段AC的长.【答案】(1)∠ABP=∠EBC,AP=EC;(2)成立,见解析;(3)7 7【解析】【分析】(1)根据等边三角形的性质得到∠ABE=60°,AB=BE,根据旋转的性质得到∠CBP=60°,BC=BP,根据全等三角形的性质得到结论;(2)根据等边三角形的性质得到∠ABE=60°,AB=BE,根据旋转的性质得到∠CBP=60°,BC=BP,根据全等三角形的性质得到结论;(3)过点C作CD⊥m于D,根据旋转的性质得到△PBC是等边三角形,求得PC=3,设AP=CE=t,则AB=AE=3t,得到AC=2t,根据平行线的性质得到∠CAD=∠AEB=60°,解直角三角形即可得到结论.【详解】解:(1)∵△ABE是等边三角形,∴∠ABE=60°,AB=BE,∵将线段BP绕点B顺时针旋转60°得到BC,∴∠CBP=60°,BC=BP,∴∠ABP=60°﹣∠PBE,∠CBE=60°﹣∠PBE,即∠ABP=∠EBC,∴△ABP≌△EBC(SAS),∴AP=EC;故答案为:∠ABP=∠EBC,AP=EC;(2)成立,理由如下,∵△ABE是等边三角形,∴∠ABE=60°,AB=BE,∵将线段BP绕点B顺时针旋转60°得到BC,∴∠CBP=60°,BC=BP,∴∠ABP=60°﹣∠PBE,∠CBE=60°﹣∠PBE,即∠ABP=∠EBC,∴△ABP≌△EBC(SAS),∴AP=EC;(3)过点C作CD⊥m于D,∵将线段BP绕点B顺时针旋转60°得到BC,∴△PBC是等边三角形,∴34PC293∴PC=3,设AP=CE=t,则AB=AE=3t,∴AC=2t,∵m∥n,∴∠CAD=∠AEB=60°,∴AD=12AC=t,CD33,∵PD2+CD2=PC2,∴(2t)2+3t2=9,∴t 37(负值舍去),∴AC=2t=77.【点睛】本题主要考查等边三角形的判定及性质、旋转的性质应用、三角形全等的判定及性质、勾股定理等相关知识点,解题关键在于找到图形变化过程中存在的联系,类比推理即可得解.12.探究:如图1和图2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,直接写出线段BE、DF和EF之间的数量关系;②如图2,若∠B、∠D都不是直角,但满足∠B+∠D=180°,线段BE、DF和EF之间的结论是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由.(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=22.点D、E均在边BC边上,且∠DAE=45°,若BD=1,求DE的长.【答案】(1)①EF=BE+DF;②成立,理由详见解析;(2)DE=53.【解析】【分析】(1)①根据旋转的性质得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;②根据旋转的性质作辅助线,得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,求出C、D、G 在一条直线上,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;(2)如图3,同理作旋转三角形,根据等腰直角三角形性质和勾股定理求出∠ABC=∠C=45°,BC=4,根据旋转的性质得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD =∠DAE=45°,证△FAD≌△EAD,根据全等得出DF=DE,设DE=x,则DF=x,BF=CE=3﹣x,根据勾股定理得出方程,求出x即可.【详解】解:(1)∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∠B=∠ADG=90°,∵∠ADC=90°,∴∠ADC+∠ADG=90°∴F、D、G共线,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中,∵AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=DF+DG=BE+DF,故答案为:EF=BE+DF;②成立,理由:如图2,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴C、D、G在一条直线上,与①同理得,∠EAF=∠GAF=45°,在△EAF和△GAF中,∵AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∵△ABC中,AB=AC=2,∠BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:BC22AB AC+4,如图3,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,则AF =AE ,∠FBA =∠C =45°,∠BAF =∠CAE , ∵∠DAE =45°,∴∠FAD =∠FAB +∠BAD =∠CAE +∠BAD =∠BAC ﹣∠DAE =90°﹣45°=45°, ∴∠FAD =∠DAE =45°,在△FAD 和△EAD 中AD AD FAD EAD AF AE =⎧⎪∠=∠⎨⎪=⎩,∴△FAD ≌△EAD (SAS ), ∴DF =DE , 设DE =x ,则DF =x , ∵BC =4,∴BF =CE =4﹣1﹣x =3﹣x , ∵∠FBA =45°,∠ABC =45°, ∴∠FBD =90°,由勾股定理得:DF 2=BF 2+BD 2, x 2=(3﹣x )2+12, 解得:x =53, 即DE =53. 【点睛】本题考查了四边形的综合题,旋转的性质,全等三角形的性质和判定,勾股定理的应用,此题是开放性试题,运用类比的思想;首先在特殊图形中找到规律,然后再推广到一般图形中,对学生的分析问题,解决问题的能力要求比较高.13.已知如图1,在ABC 中,90ABC ∠=︒,BC AB =,点D 在AC 上,DF AC ⊥交BC 于F ,点E 是AF 的中点.(1)写出线段ED 与线段EB 的关系并证明;(2)如图2,将CDF 绕点C 逆时针旋转()090a α︒<<︒,其它条件不变,线段ED 与线段EB 的关系是否变化,写出你的结论并证明;(3)将CDF 绕点C 逆时针旋转一周,如果6BC =,32CF =,直接写出线段CE 的范围.【答案】(1)ED EB =,DE BE ⊥,证明见解析;(2)结论不变,理由见解析;(3)最大值22= 最小值322=. 【解析】 【分析】(1)在Rt △ADF 中,可得DE=AE=EF ,在Rt △ABF 中,可得BE=EF=EA ,得证ED=EB ;然后利用等腰三角形的性质以及四边形ADFB 的内角和为180°,可推导得出∠DEB=90°; (2)如下图,先证四边形MFBA 是平行四边形,再证△DCB ≌△DFM ,从而推导出△DMB 是等腰直角三角形,最后得出结论;(3)如下图,当点F 在AC 上时,CE 有最大值;当点F 在AC 延长线上时,CE 有最小值. 【详解】(1)∵DF ⊥AC ,点E 是AF 的中点 ∴DE=AE=EF ,∠EDF=∠DFE ∵∠ABC=90°,点E 是AF 的中点 ∴BE=AE=EF ,∠EFB=∠EBF ∴DE=EB ∵AB=BC , ∴∠DAB=45°∴在四边形ABFD 中,∠DFB=360°-90°-45°-90°=135°∠DEB=∠DEF+∠FEB=180°-2∠EFD+180°-2∠EFB=360°-2(∠EFD+∠EFB) =360°-2×135°=90° ∴DE ⊥EB(2)如下图,延长BE 至点M 处,使得ME=EB ,连接MA 、ME 、MF 、MD 、FB 、DB ,延长MF 交CB 于点H∵ME=EB,点E是AF的中点∴四边形MFBA是平行四边形∴MF∥AB,MF=AB∴∠MHB=180°-∠ABC=90°∵∠DCA=∠FCB=a∴∠DCB=45°+a,∠CFH=90°-a∵∠DCF=45°,∠CDF=90°∴∠DFC=45°,△DCF是等腰直角三角形∴∠DFM=180°-∠DFC-∠CFH=45°+a∴∠DCB=∠DFM∵△ABC和△CDF都是等腰直角三角形∴DC=DF,BC=AB=MF∴△DCB≌△DFM(SAS)∴∠MDF=∠BDC,DB=DM∴∠MDF+∠FDB=∠BDC+∠FDB=90°∴△DMB是等腰直角三角形∵点E是MB的中点∴DE=EB,DE⊥EB(3)当点F在AC上时,CF有最大值,图形如下:∵BC=6,∴在等腰直角△ABC中,AC=62∵CF=32,∴AF=32∴CE=CF+FE=CF+12AF922=当点F在AC延长线上时,CE有最小值,图形如下:同理,CE=EF-CF322 =【点睛】本题考查三角形的旋转变换,用到了等腰直角三角形的性质和平行四边形的性质,解题关键是构造并证明△BDM是等腰直角三角形.14.(特例发现)如图1,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.(延伸拓展)如图2,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,射线GA交EF于点H.若AB=kAE,AC=kAF,请思考HE与HF之间的数量关系,并直接写出你的结论.(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,AC=kAF,上一问的结论还成立吗?并证明你的结论.(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且∠IHJ=∠AGB=θ=60°,k=2;求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.【解析】试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.试题解析:(1)特例发现,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,∴FQ=AG,∴PE=FQ;(2)延伸拓展,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(3)深入探究,如图2,在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(4)应用推广,如图3,在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,∴∠EHM=∠FHN.∵∠AEF=∠AFE,∴△HEM∽△HFN,∴,∵EH=FH,∴,且∠MHN=∠HFN=60°,∴△MHN∽△HFN,∴△MHN∽△HFN∽△MEH,在△HMN中,∠MHN=60°,根据三角形中大边对大角,∴要MN最小,只有△HMN是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN∴MN∥EF,∵△AEF为等边三角形,∴MN为△AEF的中位线,∴MN min=EF=×2=1.考点:1.几何变换综合题;2.三角形全等及相似的判定性质.15.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD中点.(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.【答案】(1)△FGH是等边三角形;(261;(3)△FGH的周长最大值为32(a+b),最小值为32(a﹣b).【解析】试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;(3)首先证明△GFH的周长=3GF=32BD,求出BD的最大值和最小值即可解决问题;试题解析:解:(1)结论:△FGH是等边三角形.理由如下:如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC,∵EG=GB,EF=FD,∴FG=12BD,GF∥BD,∵DF=EF,DH=HC,∴FH=12EC,FH∥EC,∴FG=FH,∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60°∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形.(2)如图2中,连接AF、EC.易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,∴AF2221-3,在Rt△ABF中,BF22AB AF-6,∴BD=CE=BF﹣DF61,∴FH=12EC=612.(3)存在.理由如下.由(1)可知,△GFH是等边三角形,GF=12BD,∴△GFH的周长=3GF=32BD,在△ABD中,AB=a,AD=b,∴BD的最小值为a﹣b,最大值为a+b,∴△FGH的周长最大值为3 2(a+b),最小值为32(a﹣b).点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.四、初三数学圆易错题压轴题(难)16.如图,△ABC内接于⊙O,点D在AB边上,CD与OB交于点E,∠ACD=∠OBC;(1)如图1,求证:CD⊥AB;(2)如图2,当∠BAC=∠OBC+∠BCD时,求证:BO平分∠ABC;(3)如图3,在(2)的条件下,作OF⊥BC于点F,交CD于点G,作OH⊥CD于点H,连接FH并延长,交OB于点P,交AB边于点M.若OF=3,MH=5,求AC边的长.【答案】(1)见解析;(2)见解析;(3)AC=48 5【解析】【分析】(1)根据直径所对的圆周角是直角,得出∠FCB=90°,再根据“同弧所对的圆周角相等”得出∠A=∠F,再根据已知条件得∠3=90°,得CD⊥AB;(2)延长BO交AC于K,由已知可得∠A=∠5,由∠A+∠2=90°得∠5+∠2=90°,根据三角形的内角和定理及外角定理得出∠9=∠1得出BO平分∠ABC;(3)延长BO交AC于点K,延长CD交⊙O于点N,联结BN,由条件可得CH=NH,BF=CF,从而HF是△CBN的中位线,HF∥BN,得出∠OEH=∠EHM又由∠OEH+∠EOH=∠EHM+∠OHP=90°可得HM=OB=5,在Rt△OBF中,根据勾股定理可得BF=4,解出BC=8,sin∠OBC=35,所以可得AC=2CK,CK=BC•sin∠OBC=245得AC=48 5.【详解】解:(1)如图1,令∠OBC=∠1,∠ACD=∠2延长BO交⊙O于F,连接CF.∵BF是⊙O的直径,∴∠FCB=90°∴∠1+∠F=90°,∵弧BC=弧BC,∴∠A=∠F又∵∠1=∠2,∴∠2+∠A=90°,∴∠3=90°,∴CD⊥AB(2)如图2,令∠OBC=∠1,∠BCD=∠4延长BO交AC于K∵∠A=∠1+∠4,∠5=∠1+∠4,∴∠A=∠5,∵∠A+∠2=90°,∴∠5+∠2=90°,∴∠6=90°∵∠7=180°﹣∠3=90°,∴∠6=∠7,又∵∠5=∠8,∴∠9=∠2∵∠2=∠1,∴∠9=∠1,∴BO平分∠ABC(3)如图3,延长BO交AC于点K,延长CD交⊙O于点N,联结BN∵OH⊥CN,OF⊥BC∴CH=NH,BF=CF∴HF是△CBN的中位线,HF∥BN∴∠FHC=∠BNC=∠BAC∵∠BAC=∠OEH,∠FHC=∠EHM∴∠OEH=∠EHM设EM、OE交于点P∵∠OEH+∠EOH=∠EHM+∠OHP=90°∴∠EOH=∠OHP∴OP=PH∵∠ADC=∠OHC=90°∴AD∥OH∴∠PBM=∠EOH,∠BMP=∠OHP∴PM=PB∴PM+PH=PB+OP∴HM=OB=5在Rt△OBF中,根据勾股定理可得BF=4∴BC=8,sin∠OBC=3 5∵∠A+∠ABO=∠DEB+∠ABO=90°∴∠AKB+∠CKB=90°∴OK⊥ACAC=2CK,CK=BC•sin∠OBC=24 5∴AC=48 5【点睛】此题主要考查了圆的综合应用以及三角形的内角和定理及外角定理和勾股定理、三角函数等知识,理解同弧所对的圆周角相等是解题关键.17.四边形ABCD内接于⊙O,连接AC、BD,2∠BDC+∠ADB=180°.(1)如图1,求证:AC=BC;(2)如图2,E为⊙O上一点,AE=BE,F为AC上一点,DE与BF相交于点T,连接AT,若∠BFC=∠BDC+12∠ABD,求证:AT平分∠DAB;(3)在(2)的条件下,DT=TE,AD=8,BD=12,求DE的长.【答案】(1)见解析;(2)见解析;(3)2【解析】【分析】(1)只要证明∠CAB=∠CBA即可.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.想办法证明TL=TH即可解决问题.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.证明△EAG≌△TDH(AAS),推出AG=DH,证明Rt△TDR≌Rt△TDH(HL),推出DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,由S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,可得AQ=52h,再根据sin∠BDE=sin∠ADE,sin∠AED=sin∠ABD,构建方程组求出m即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,即∠ADB+∠BDC+∠ABC=180°,∵2∠BDC+∠ADB=180°,∴∠ABC=∠BDC,∵∠BAC=∠BDC,∴∠BAC=∠ABC,∴AC=BC.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∵∠BFC=∠BAC+∠ABF,∠BAC=∠BDC,∴∠BFC=∠BDC+∠ABF,∵∠BFC=∠BDC+12∠ABD,∴∠ABF=12∠ABD,∴BT平分∠ABD,∵AE=BE。

周口市九年级上册期中试卷检测题

周口市九年级上册期中试卷检测题

周口市九年级上册期中试卷检测题一、初三数学 一元二次方程易错题压轴题(难)1.如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =?若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒25OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.【答案】(1)t=1;(2)存在,143t =,理由见解析;(3)可能,3455t ≤≤或4533t ≤≤或35t ≤≤理由见解析 【解析】 【分析】(1)用待定系数法求出直线AC 的解析式,根据题意用t 表示出点H 的坐标,代入求解即可;(2)根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,用待定系数法求出直线AB 的解析式,求出点H 落在BC 边上时的t 值,求出此时重叠面积为169﹤9136,进一步求出重叠面积关于t 的表达式,代入解t 的方程即可解得t 值;(3)由已知求得点D (2,1),AC=结合图形分情况讨论即可得出符合条件的时长. 【详解】(1)由题意,A(0,2),B(-4,0),C(4,0), 设直线AC 的函数解析式为y=kx+b , 将点A 、C 坐标代入,得:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩, ∴直线AC 的函数解析式为122y x =-+, 当点H 落在AC 边上时,点E(3-t ,0),点H (3-t ,1), 将点H 代入122y x =-+,得: 11(3)22t =--+,解得:t=1;(2)存在,143t =,使得9136S =. 根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4, 设直线AB 的函数解析式为y=mx+n , 将点A 、B 坐标代入,得:402m n n -+=⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩, ∴直线AC 的函数解析式为122y x =+, 当t ﹥4时,点E (3-t ,0)点H (3-t ,t-3),G(0,t-3), 当点H 落在AB 边上时,将点H 代入122y x =+,得: 13(3)22t t -=-+,解得:133t =;此时重叠的面积为221316(3)(3)39t -=-=, ∵169﹤9136,∴133﹤t ﹤5, 如图1,设GH 交AB 于S ,EH 交AB 于T,将y=t-3代入122y x =+得:1322t x -=+, 解得:x=2t-10, ∴点S(2t-10,t-3),将x=3-t 代入122y x =+得:11(3)2(7)22y t t =-+=-, ∴点T 1(3,(7))2t t --, ∴AG=5-t ,SG=10-2t ,BE=7-t ,ET=1(7)2t -, 211(7)24BET S BE ET t ∆==-, 21(5)2ASGS AG SG t ∆==- 所以重叠面积S=AOB BET ASG S S S ∆∆∆--=4-21(7)4t --2(5)t -=2527133424t t -+-, 由2527133424t t -+-=9136得:1143t =,29215t =﹥5(舍去), ∴143t =;(3)可能,35≤t≤1或t=4. ∵点D 为AC 的中点,且OA=2,OC=4, ∴点D (2,1),AC=255 易知M 点在水平方向以每秒是4个单位的速度运动; 当0﹤t ﹤12时,M 在线段OD 上,H 未到达D 点,所以M 与正方形不相遇; 当12﹤t ﹤1时, 12+12÷(1+4)=35秒, ∴t =35时M 与正方形相遇,经过1÷(1+4)=15秒后,M 点不在正方行内部,则3455t ≤≤; 当t=1时,由(1)知,点F 运动到原E 点处,M 点到达C 处; 当1≤t≤2时,当t=1+1÷(4-1)=43秒时,点M 追上G 点,经过1÷(4-1)=13秒,点M 都在正方形EFGH 内(含边界),4533t ≤≤ 当t=2时,点M 运动返回到点O 处停止运动,当 t=3时,点E 运动返回到点O 处, 当 t=4时,点F 运动返回到点O 处, 当35t ≤≤时,点M 都在正方形EFGH 内(含边界), 综上,当3455t ≤≤或4533t ≤≤或35t ≤≤时,点M 可能在正方形EFGH 内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.2.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨52m %,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了920m 元,购买数量在原计划基础上增加15m %,最终,在两个网站的实际消费总额比原计划的预算总额增加了152m %,求出m 的值.【答案】(1)120;(2)20. 【解析】试题分析:(1)本题介绍两种解法:解法一:设标价为x 元,列不等式为0.8x •80≤7680,解出即可;解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a 个礼盒,表示在“大众点评”网上的购买实际消费总额:120a (1﹣25%)(1+52m %),在“美团”网上的购买实际消费总额:a [120(1﹣25%)﹣920m ](1+15m %);根据“在两个网站的实际消费总额比原计划的预算总额增加了152m %”列方程解出即可. 试题解析:(1)解:解法一:设标价为x 元,列不等式为0.8x •80≤7680,x ≤120; 解法二:7680÷80÷0.8=96÷0.8=120(元). 答:每个礼盒在花店的最高标价是120元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a 个礼盒,由题意得:120×0.8a (1﹣25%)(1+52m %)+a [120×0.8(1﹣25%)﹣920m ](1+15m %)=120×0.8a (1﹣25%)×2(1+ 152m %),即72a (1+ 52m %)+a (72﹣ 920m )(1+15m %)=144a (1+152m %),整理得:0.0675m 2﹣1.35m =0,m 2﹣20m =0,解得:m 1=0(舍),m 2=20. 答:m 的值是20.点睛:本题是一元二次方程的应用,第二问有难度,正确表示出“大众点评”或“美团”实际消费总额是解题关键.3.已知关于x 的方程24832x nx n --=和()223220x n x n -+-+=,是否存在这样的n 值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,请求出这样的n 值;若不存在,请说明理由?【答案】存在,n=0. 【解析】 【分析】在方程①中,由一元二次方程的根与系数的关系,用含n 的式子表示出两个实数根的差的平方,把方程②分解因式,建立方程求n ,要注意n 的值要使方程②的根是整数. 【详解】 若存在n 满足题意.设x1,x2是方程①的两个根,则x 1+x 2=2n ,x 1x 2=324n +-,所以(x 1-x 2)2=4n 2+3n+2,由方程②得,(x+n-1)[x-2(n+1)]=0,①若4n2+3n+2=-n+1,解得n=-12,但1-n=32不是整数,舍.②若4n2+3n+2=2(n+2),解得n=0或n=-14 (舍),综上所述,n=0.4.(本题满分10分)如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A、B,直线CD与x轴、y轴分别交于点C、D,AB与CD相交于点E,线段OA、OC的长是一元二次方程-18x+72=0的两根(OA>OC),BE=5,tan∠ABO=.(1)求点A,C的坐标;(2)若反比例函数y=的图象经过点E,求k的值;(3)若点P在坐标轴上,在平面内是否存在一点Q,使以点C,E,P,Q为顶点的四边形是矩形?若存在,请写出满足条件的点Q的个数,并直接写出位于x轴下方的点Q的坐标;若不存在,请说明理由.【答案】(1)、A(12,0),C(﹣6,0);(2)、k=36;(3)、6个;Q1(10,﹣12),Q2(﹣3,6﹣3).【解析】试题分析:(1)、首先求出方程的解,根据OA>OC求出两点的坐标;(2)、根据∠ABO的正切值求出OB的长度,根据Rt△AOB得出AB的长度,作EM⊥x轴,根据三角形相似得出点E的坐标,然后求出k的值;(3)、分别以CE为矩形的边,在点C、E处设计直角,垂线与两坐标轴相交,得到点P,进而得到点Q;以CE为矩形对角线,则以CE的中点为圆心做圆,与两坐标轴相交,得到点P,再得点Q.试题解析:(1)由题意,解方程得:x1=6,x2=12.∵OA>OC,∴OA=12,OC=6.∴A(12,0),C(﹣6,0);(2)∵tan∠ABO=,∠AOB=90°∴∴OB=16.在Rt△AOB中,由勾股定理,得AB=20∵BE=5,∴AE=15.如图1,作EM⊥x轴于点M,∴EM∥OB.∴△AEM∽△ABO,∴,即:∴EM=12,AM=9,∴OM=12﹣9=3.∴E(3,12).∴k=36;(3)满足条件的点Q的个数是6,x轴的下方的Q1(10,﹣12),Q2(﹣3,6﹣3);方法:如下图①分别以CE为矩形的边,在点C、E处设计直角,垂线与两坐标轴相交,得到点P,进而得到点Q;(有三种)②以CE为矩形对角线,则以CE的中点为圆心做圆,与两坐标轴相交,得到点P,再得点Q;(有三种)如图①∵E(3,12),C(﹣6,0),∴CG=9,EG=12, ∴EG 2=CG•GP , ∴GP=16, ∵△CPE 与△PCQ 是中心对称,∴CH=GP=16,QH=FG=12, ∵OC=6, ∴OH=10, ∴Q (10,﹣12),如图②作MN ∥x 轴,交EG 于点N ,EH ⊥y 轴于点H ∵E (3,12),C (﹣6,0), ∴CG=9,EG=12, ∴CE=15, ∵MN=CG=, 可以求得PH=3﹣6,同时可得PH=QR ,HE=CR ∴Q (﹣3,6﹣3),考点:三角形相似的应用、三角函数、一元二次方程.5.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上. ①当PA ⊥NA ,且PA=NA 时,求此时点P 的坐标;②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P 2﹣1,2);②P (﹣32,154) 【解析】试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c cba++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得x=21-(舍去)或x=21--,∴点P (21--,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形 =12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P(32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.二、初三数学 二次函数易错题压轴题(难)6.在平面直角坐标系中,O 为坐标原点,抛物线L :y =ax 2﹣4ax (a >0)与x 轴正半轴交于点A .抛物线L 的顶点为M ,对称轴与x 轴交于点D . (1)求抛物线L 的对称轴.(2)抛物线L :y =ax 2﹣4ax 关于x 轴对称的抛物线记为L ',抛物线L '的顶点为M ',若以O 、M 、A 、M '为顶点的四边形是正方形,求L '的表达式.(3)在(2)的条件下,点P 在抛物线L 上,且位于第四象限,点Q 在抛物线L '上,是否存在点P 、点Q 使得以O 、D 、P 、Q 为顶点的四边形是平行四边形,若存在,求出点P 坐标,若不存在,请说明理由.【答案】(1)2x =;(2)2122y x x =-+ ;(3)存在,P 点的坐标为()33,3+或()33,3--或()13,3-或()13,3+-或31,2⎛⎫- ⎪⎝⎭【解析】 【分析】(1)根据抛物线的对称轴公式计算即可.(2)利用正方形的性质求出点M ,M ′的坐标即可解决问题. (3)分OD 是平行四边形的边或对角线两种情形求解即可. 【详解】解:(1)∵抛物线L :y =ax 2﹣4ax (a >0), ∴抛物线的对称轴x =﹣42aa-=2. (2)如图1中,对于抛物线y =ax 2﹣4ax ,令y =0,得到ax 2﹣4ax =0, 解得x =0或4, ∴A (4,0),∵四边形OMAM ′是正方形, ∴OD =DA =DM =DM ′=2,∴M((2,﹣2),M′(2,2)把M(2,﹣2)代入y=ax2﹣4ax,可得﹣2=4a﹣8a,∴a=12,∴抛物线L′的解析式为y=﹣12(x﹣2)2+2=﹣12x2+2x.(3)如图3中,由题意OD=2.当OD为平行四边形的边时,PQ=OD=2,设P(m,12m2﹣2m),则Q[m﹣2,﹣12(m﹣2)2+2(m﹣2)]或[m+2,﹣12(m+2)2+2(m+2)],∵PQ∥OD,∴12m2﹣2m=﹣12(m﹣2)2+2(m﹣2)或12m2﹣2m=﹣12(m+2)2+2(m+2),解得m=33,∴P33或(333或(133和33,当OD是平行四边形的对角线时,点P的横坐标为1,此时P(1,﹣32 ),综上所述,满足条件的点P的坐标为33或(333或(133)和33)或(1,﹣32 ).【点睛】本题属于二次函数综合题,考查了二次函数的性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题7.如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=6x(x>0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?【答案】(1)y=﹣x2+2x+3;(2)N(57,0),F(0,53);(3)t=9﹣15【解析】【分析】(1)由已知求出D点坐标,将点A(-1,0)和D(2,3)代入y=ax2+bx+3即可;(2)作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;(3)设P(0,t),作△PBD的外接圆N,当⊙N与y轴相切时,∠BPD的度数最大;【详解】解;(1)C(0,3)∵CD⊥y,∴D点纵坐标是3.∵D在y=6x上,∴D(2,3),将点A(﹣1,0)和D(2,3)代入y=ax2+bx+3,∴a=﹣1,b=2,∴y=﹣x2+2x+3;(2)M(1,4),B(3,0),作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;∴M'(﹣1,4),D'(2,﹣3),∴M'D'直线的解析式为y=﹣73x+53,∴N(57,0),F(0,53);(3)设P(0,t).∵△PBO和△CDP都是直角三角形,tan∠CDP=32t-,tan∠PBO=3t,令y=tan∠BPD=3233123t tt t-+--,∴yt2+t﹣3yt+6y﹣9=0,△=﹣15y2+30y+1=0时,y=151515-+-舍)或y=151515+,∴t=32﹣12×1y,∴t=9﹣∴P(0,9﹣.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,利用轴对称求最短距离,学会利用辅助圆解决问题,属于中考压轴题.8.定义:在平面直角坐标系中,O为坐标原点,设点P的坐标为(x,y),当x<0时,点P的变换点P′的坐标为(﹣x,y);当x≥0时,点P的变换点P′的坐标为(﹣y,x).(1)若点A(2,1)的变换点A′在反比例函数y=kx的图象上,则k= ;(2)若点B(2,4)和它的变换点B'在直线y=ax+b上,则这条直线对应的函数关系式为,∠BOB′的大小是度.(3)点P在抛物线y=x2﹣2x﹣3的图象上,以线段PP′为对角线作正方形PMP'N,设点P 的横坐标为m,当正方形PMP′N的对角线垂直于x轴时,求m的取值范围.(4)抛物线y=(x﹣2)2+n与x轴交于点C,D(点C在点D的左侧),顶点为E,点P在该抛物线上.若点P的变换点P′在抛物线的对称轴上,且四边形ECP′D是菱形,求n的值.【答案】(1) -2;(2) y=13x+103,90;(3) m<0,m=12+或m=32;(4) n=﹣8,n=﹣2,n=﹣3.【解析】【分析】(1)先求出A的变换点A′,然后把A′代入反比例函数即可得到结论;(2)确定点B′的坐标,把问题转化为方程组解决;(3)分三种情形讨论:①当m<0时;②当m≥0,PP'⊥x轴时;③当m≥0,MN⊥x轴时.(4)利用菱形的性质,得到点E与点P'关于x轴对称,从而得到点P'的坐标为(2,﹣n).分两种情况讨论:①当点P在y轴左侧时,点P的坐标为(﹣2,﹣n),代入抛物线解析式,求解即可;②当点P在y轴右侧时,点P的坐标为(﹣n,﹣2).代入抛物线解析式,求解即可.【详解】(1)∵A(2,1)的变换点为A′(-1,2),把A′(-1,2)代入y=kx中,得到k=-2.故答案为:-2.(2)点B(2,4)的变换点B′(﹣4,2),把(2,4),(﹣4,2)代入y=ax+b中.得到:2442a ba b+=⎧⎨-+=⎩,解得:13103ab⎧=⎪⎪⎨⎪=⎪⎩,∴11033y x=+.∵OB 2=2224+=20,OB ′2=2224+=20,BB ′2=22(42)(24)--+-=40,∴OB 2+OB ′2=BB ′2,∴∠BOB ′=90°.故答案为:y =13x +103,90. (3)①当m <0时,点P 与点P '关于y 轴对称,此时MN 垂直于x 轴,所以m <0. ②当m ≥0,PP '⊥x 轴时,则点P '的坐标为(m ,m ),点P 的坐标为(m ,﹣m ). 将点P (m ,﹣m )代入y =x 2﹣2x ﹣3,得:﹣m =m 2﹣2m ﹣3.解得:12m m ==(不合题意,舍去).所以m = ③当m ≥0,MN ⊥x 轴时,则PP '∥x 轴,点P 的坐标为(m ,m ).将点P (m ,m )代入y =x 2﹣2x ﹣3,得:m =m 2﹣2m ﹣3.解得:123322m m ==(不合题意,舍去).所以m =.综上所述:m 的取值范围是m <0,m 或m . (4)∵四边形ECP 'D 是菱形,∴点E 与点P '关于x 轴对称.∵点E 的坐标为(2,n ),∴点P '的坐标为(2,﹣n ).①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ).代入y =(x ﹣2)2+n ,得:﹣n =(﹣2﹣2)2+n ,解得:n =﹣8.②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入y =(x ﹣2)2+n ,得:﹣2=(﹣n ﹣2)2+n .解得:n 1=﹣2,n 2=﹣3.综上所述:n 的值是n =﹣8,n =﹣2,n =﹣3.【点睛】本题是二次函数综合题、一次函数的应用、待定系数法、变换点的定义等知识,解题的关键是理解题意,学会用分类讨论的射线思考问题,学会用方程的思想思考问题,属于中考压轴题.9.如图,已知二次函数1L :()22311y mx mx m m =+-+≥和二次函数2L :()2341y m x m =--+-()1m ≥图象的顶点分别为M 、N ,与x 轴分别相交于A 、B 两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1)函数()22311y mx mx m m =+-+≥的顶点坐标为______;当二次函数1L ,2L 的y 值同时随着x 的增大而增大时,则x 的取值范围是_______;(2)判断四边形AMDN 的形状(直接写出,不必证明);(3)抛物线1L ,2L 均会分别经过某些定点;①求所有定点的坐标;②若抛物线1L 位置固定不变,通过平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是多少?【答案】(1)()1,41m --+,13x ;(2)四边形AMDN 是矩形;(3)①所有定点的坐标,1L 经过定点()3,1-或()1,1,2L 经过定点()5,1-或()1,1-;②抛物线2L 应平移的距离是423+423-.【解析】【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M 的坐标;结合函数图象填空; (2)利用抛物线解析式与一元二次方程的关系求得点A 、D 、M 、N 的横坐标,可得AD 的中点为(1,0),MN 的中点为(1,0),则AD 与MN 互相平分,可证四边形AMDN 是矩形;(3)①分别将二次函数的表达式变形为1:(3)(1)1L y m x x =+-+和2:(1)(5)1L y m x x =----,通过表达式即可得出所过定点;②根据菱形的性质可得EH 1=EF=4即可,设平移的距离为x ,根据平移后图形为菱形,由勾股定理可得方程即可求解.【详解】解:(1)12b x a=-=-,顶点坐标M 为(1,41)m --+, 由图象得:当13x 时,二次函数1L ,2L 的y 值同时随着x 的增大而增大. 故答案为:(1,41)m --+;13x ;(2)结论:四边形AMDN 是矩形.由二次函数21:231(1)L y mx mx m m =+-+和二次函数22:(3)41(1)L y m x m m =--+-解析式可得:A 点坐标为41(1m m --0),D 点坐标为41(3m m -+,0), 顶点M 坐标为(1,41)m --+,顶点N 坐标为(3,41)m -,AD ∴的中点为(1,0),MN 的中点为(1,0),AD ∴与MN 互相平分,∴四边形AMDN 是平行四边形,又AD MN =,∴□AMDN 是矩形;(3)①二次函数21:231(3)(1)1L y mx mx m m x x =+-+=+-+,故当3x =-或1x =时1y =,即二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41(1)(5)1L y m x m m x x =--+-=----,故当1x =或5x =时1y =-,即二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,②二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,如图:四个定点分别为(3,1)E -、(1,1)F ,(1,1)H -、(5,1)G -,则组成四边形EFGH 为平行四边形,∴FH ⊥HG ,FH=2,HM=4-x ,设平移的距离为x ,根据平移后图形为菱形,则EH 1=EF=H 1M=4,由勾股定理可得:FH 2+HM 2=FM 2,即22242(4)x =+-, 解得:43x =±抛物线1L 位置固定不变,通过左右平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是423+423-.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.10.在平面直角坐标系中,二次函数y =ax 2+bx +2的图象与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C .(1)求这个二次函数的关系解析式;(2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使△ACP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由;【答案】(1)224233y x x =--+;(2)存在,点P 35,22⎛⎫- ⎪⎝⎭,使△PAC 的面积最大;(3)存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形.Q 点坐标为:Q 1(2,3),Q 2(3,1),Q 3(﹣1,﹣1),Q 4(﹣2,1).【解析】【分析】(1)直接把点A (﹣3,0),B (1,0)代入二次函数y =ax 2+bx+2求出a 、b 的值即可得出抛物线的解析式;(2)设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2,连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .根据三角形的面积公式得出△PAC 的表达式,再根据二次函数求最大值的方法得出其顶点坐标即可;(3)以BC 为边,在线段BC 两侧分别作正方形,正方形的其他四个顶点均可以使得“△BCQ 是以BC 为腰的等腰直角三角形”,因此有四个点符合题意要求,再过Q 1点作Q 1D ⊥y 轴于点D ,过点Q 2作Q 2E ⊥x 轴于点E ,根据全等三角形的判定定理得出△Q 1CD ≌△CBO ,△CBO ≌△BQ 2E ,故可得出各点坐标.【详解】(1)∵抛物线y =ax 2+bx+2过点A (﹣3,0),B (1,0),∴093202a b a b =-+⎧⎨=++⎩ 2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩解得∴二次函数的关系解析式为y =﹣23x 2﹣43x+2; (2)存在.∵如图1所示,设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2. 连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .则PM =﹣23m 2﹣43m+2.,PN =﹣m ,AO =3. ∵当x =0时,y =﹣23×0﹣43×0+2=2, ∴OC =2,∴S △PAC =S △PAO +S △PCO ﹣S △ACO =12AO•PM+12CO•PN ﹣12AO•CO =12×3×(﹣23m 2﹣43m+2)+12×2×(﹣m )﹣12×3×2 =﹣m 2﹣3m∵a =﹣1<0∴函数S △PAC =﹣m 2﹣3m 有最大值∴当m =﹣2b a =﹣32时,S △PAC 有最大值. ∴n =﹣23m 2﹣43m+2=﹣23×(﹣32)2﹣43×(﹣32)+2=52,∴存在点P(﹣32,52),使△PAC的面积最大.(3)如图2所示,以BC为边在两侧作正方形BCQ1Q2、正方形BCQ4Q3,则点Q1,Q2,Q3,Q4为符合题意要求的点.过Q1点作Q1D⊥y轴于点D,过点Q2作Q2E⊥x轴于点E,∵∠1+∠2=90°,∠2+∠3=90°,∠3+∠4=90°,∴∠1=∠3,∠2=∠4,在△Q1CD与△CBO中,∵11324Q C BC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△Q1CD≌△CBO,∴Q1D=OC=2,CD=OB=1,∴OD=OC+CD=3,∴Q1(2,3);同理可得Q4(﹣2,1);同理可证△CBO≌△BQ2E,∴BE=OC=2,Q2E=OB=1,∴OE=OB+BE=1+2=3,∴Q2(3,1),同理,Q3(﹣1,﹣1),∴存在点Q,使△BCQ是以BC为腰的等腰直角三角形.Q点坐标为:Q1(2,3),Q2(3,1),Q3(﹣1,﹣1),Q4(﹣2,1).【点睛】本题考查的是二次函数综合题,涉及到用待定系数法求二次函数解析式,二次函数极值、全等三角形的判定与性质,正方形及等腰直角三角形的性质等知识,涉及面较广,难度较大.三、初三数学 旋转易错题压轴题(难)11.阅读材料并解答下列问题:如图1,把平面内一条数轴x 绕原点O 逆时针旋转角00)90(θ︒︒<<得到另一条数轴,y x 轴和y 轴构成一个平面斜坐标系.xOy规定:过点P 作y 轴的平行线,交x 轴于点A ,过点P 作x 轴的平行线,交y 轴于点B ,若点A 在x 轴对应的实数为a ,点B 在y 轴对应的实数为b ,则称有序实数对(),a b 为点P 在平面斜坐标系xOy 中的斜坐标.如图2,在平面斜坐标系xOy 中,已知60θ︒=,点P 的斜坐标是()3,6,点C 的斜坐标是()0,6.(1)连接OP ,求线段OP 的长;(2)将线段OP 绕点O 顺时针旋转60︒到OQ (点Q 与点P 对应),求点Q 的斜坐标; (3)若点D 是直线OP 上一动点,在斜坐标系xOy 确定的平面内以点D 为圆心,DC 长为半径作D ,当⊙D 与x 轴相切时,求点D 的斜坐标,【答案】(1)37OP =2)点Q 的斜坐标为(9,3-);(3)点D 的斜坐标为:(32,3)或(6,12). 【解析】【分析】 (1)过点P 作PC ⊥OA ,垂足为C ,由平行线的性质,得∠PAC=60θ=︒,由AP=6,则AC=3,33PC =OP 的长度;(2)根据题意,过点Q 作QE ∥OC ,QF ∥OB ,连接BQ ,由旋转的性质,得到OP=OQ ,∠COP=∠BOQ ,则△COP ≌△BOQ ,则BQ=CP=3,∠OCP=∠OBQ=120°,然后得到△BEQ是等边三角形,则BE=EQ=BQ=3,则OE=9,OF=3,即可得到点Q的斜坐标;(3)根据题意,可分为两种情况进行分析:①当OP和CM恰好是平行四边形OMPC的对角线时,此时点D是对角线的交点,求出点D的坐标即可;②取OJ=JN=CJ,构造直角三角形OCN,作∠CJN的角平分线,与直线OP相交与点D,然后由所学的性质,求出点D的坐标即可.【详解】解:(1)如图,过点P作PC⊥OA,垂足为C,连接OP,∵AP∥OB,∴∠PAC=60θ=︒,∵PC⊥OA,∴∠PCA=90°,∵点P的斜坐标是()3,6,∴OA=3,AP=6,∴1 cos602ACAP︒==,∴3AC=,∴226333PC=-=,336OC=+=,在Rt△OCP中,由勾股定理,得226(33)37OP=+=;(2)根据题意,过点Q作QE∥OC,QF∥OB,连接BQ,如图:由旋转的性质,得OP=OQ,∠POQ=60°,∵∠COP+∠POA=∠POA+∠BOQ=60°,∴∠COP=∠BOQ,∵OB=OC=6,∴△COP≌△BOQ(SAS);∴CP=BQ=3,∠OCP=∠OBQ=120°,∴∠EBQ=60°,∵EQ∥OC,∴∠BEQ=60°,∴△BEQ是等边三角形,∴BE=EQ=BQ=3,∴OE=6+3=9,OF=EQ=3,∵点Q在第四象限,∴点Q的斜坐标为(9,3 );(3)①取OM=PC=3,则四边形OMPC是平行四边形,连接OP、CM,交点为D,如图:由平行四边形的性质,得CD=DM,OD=PD,∴点D为OP的中点,∵点P的坐标为(3,6),∴点D的坐标为(32,3);②取OJ=JN=CJ,则△OCN是直角三角形,∵∠COJ=60°,∴△OCJ是等边三角形,∴∠CJN=120°,作∠CJN的角平分线,与直线OP相交于点D,作DN⊥x轴,连接CD,如图:∵CJ=JN,∠CJD=∠NJD,JP=JP,∴△CJD≌△NJD(SAS),∴∠JCD=∠JND=90°,则由角平分线的性质定理,得CD=ND;过点D作DI∥x轴,连接DJ,∵∠DJN=∠COJ=60°,∴OI∥JD,∴四边形OJDI是平行四边形,∴ID=OJ=JN=OC=6,在Rt△JDN中,∠JDN=30°,∴JD=2JN=12;∴点D的斜坐标为(6,12);综合上述,点D的斜坐标为:(32,3)或(6,12).【点睛】本题考查了坐标与图形的性质,解直角三角形,旋转的性质,全等三角形的判定和性质,角平分线的性质等知识,解题的关键是理解题意,正确寻找圆心D的位置来解决问题,属于中考创新题型.注意运用分类讨论的思想进行解题.12.小明研究了这样一道几何题:如图1,在△ABC中,把AB点A顺时针旋转α (0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,请问△AB′C′边B′C′上的中线AD与BC的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠A+∠B=120°,BC=12,CD=6,DA3边形内部是否存在点P,使△PDC与△PAB之间满足小明探究的问题中的边角关系?若存在,请画出点P的位置(保留作图痕迹,不需要说明)并直接写出△PDC的边DC上的中线PQ的长度;若不存在,说明理由.【答案】(1)①12;②4(2) AD=12BC,理由见解析(3)存在,313【解析】【分析】(1)①由已知条件可得AD⊥B′C′,由α+β=180°可得∠BAC+∠B′AC′=180°,已知∠BAC=60°,可求得∠B′AC′=120°继而∠B′=∠C′=30°,可得AD=12AB′=12BC②当∠BAC=90°时,可得∠B′AC′=∠BAC=90°,△B′AC′是直角三角形,可证得△BAC≌△B′AC′,推出对应边相等,已知BC=8求出AD的长.(2)先做辅助线,延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:因为B′D=DC′,AD=DM,对角线相互平分,可得四边形AC′MB′是平行四边形,得出对应边相等,由∠BAB′+∠CAC′=180°推得∠BAC=∠AB′M,可证明△BAC≌△AB′M,所以BC=AM,AD=12 BC;(3)先做辅助线,作线段BC的垂直平分线交BE于P,即为点P的位置;延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O假设P点存在,再证明理由.根据已知角可得出△DCM是直角三角形,∠MDC=30°,可得出CM3DM3在;∵CD=6,∠DCM=90°,∠MDC=30°,∠M=90°﹣∠MDC=60°,可求得EM=12 BMDE=EM﹣DM﹣由已知DAAE=DE且BE⊥AD,可得PF是线段BC的垂直平分线,证得PA=PD因为PB=PC,PF∥CD,可求得CF=12BC,利用线段长度可求得∠CDF=60°利用全等三角形判定定理可证得△FCP≌△CFD(AAS),进而证得四边形CDPF是矩形,得∠CDP=90°,∠ADP =60°,可得△ADP是等边三角形,求出DQ、DP,在Rt△PDQ中可求得PQ长度.【详解】(1)①∵△ABC是等边三角形∴AB=BC=AC=AB′=AC′,∠BAC=60°∵DB′=DC′∴AD⊥B′C′∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∴∠B′AC′=180°﹣∠BAC=180°﹣60°=120°∴∠B′=∠C′=30°∴AD=12AB′=12BC故答案:1 2②∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∵∠BAC=90°∴∠B′AC′=∠BAC=90°在△BAC和△B′AC′中,''"90"AB ABBAC B ACAC AC=⎧⎪∠=∠=︒⎨⎪=⎩∴△BAC≌△B′AC′(SAS)∴BC=B′C′∵B′D=DC′∴AD=12B′C′=12BC=4故答案:4(2)AD与BC的数量关系:AD=12BC;理由如下:延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴∠B′AC′+∠AB′M=180°,AC′=B′M=AC,∵∠BAB′+∠CAC′=180°,∴∠BAC+∠B′AC′=180°,∴∠BAC=∠AB′M,在△BAC和△AB′M中,'''AC B MBAC AB MAB AB=⎧⎪∠=∠⎨⎪=⎩,∴△BAC≌△AB′M(SAS),∴BC=AM,∴AD=12BC;(3)存在;作BE⊥AD于E,作线段BC的垂直平分线交BE于P,即为点P的位置;理由如下:延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O,如图4所示:∵∠A+∠B=120°,∴∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵CD=6,∠DCM=90°,∠MDC=30°,∴CM3DM3,∠M=90°﹣∠MDC=60°,在Rt△BEM中,∵∠BEM=90°,BM=BC+CM333,∠MBE=90°﹣∠M=30°,∴EM=12BM3∴DE=EM﹣DM333∵DA3∴AE=DE,∵BE⊥AD,∴PA=PD,∵PF 是线段BC 的垂直平分线, ∴PB =PC ,PF ∥CD ,在Rt △CDF 中,∵CD =6,CF =12BC =63, ∴tan ∠CDF =CF CD =636=3, ∴∠CDF =60°,∴∠MDF =∠MDC +∠CDF =30°+60°=90°,∴∠ADF =90°=∠AEB ,∴∠CBE =∠CFD ,∵∠CBE =∠PCF ,∴∠CFD =∠PCF =30°,∵∠CFD +∠CDF =90°,∠PCF +∠CPF =90°,∴∠CPF =∠CDF =60°,在△FCP 和△CFD 中,CPF CDF PCF CFD CF CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△FCP ≌△CFD (AAS ),∴CD =PF ,∵CD ∥PF ,∴四边形CDPF 是矩形,∴∠CDP =90°,∴∠ADP =∠ADC ﹣∠CDP =60°,∴△ADP 是等边三角形,∴∠APD =60°,∵∠BPF =∠CPF =90°﹣30°=60°,∴∠BPC =120°,∴∠APD +∠BPC =180°,∴△PDC 与△PAB 之间满足小明探究的问题中的边角关系;在Rt △PDQ 中,∵∠PDQ =90°,PD =DA =63,DN =12CD =3, ∴PQ =22DQ DP +=223(63)+=313. 【点睛】本题考查了三角形的边旋转的问题,旋转前后边长不变,根据已知角度变化,求得线段之间关系.在证明某点知否存在时,先假设这点存在,能求出相关线段或坐标,即证实存在性.13.综合与实践问题情境在一节数学活动课上,老师带领同学们借助几何画板对以下题目进行了研究.如图1,MN是过点A的直线,点C为直线MN外一点,连接AC,作∠ACD=60°,使AC=DC,在MN上取一点B,使∠DBN=60°.观察发现(1)根据图1中的数据,猜想线段AB、DB、CB之间满足的数量关系是;(2)希望小组认真思考后提出一种证明方法:将CB所在的直线以点C为旋转中心,逆时针旋转60°,与直线MN交于点E,即可证明(1)中的结论. 请你在图1中作出线段CE,并根据此方法写出证明过程;实践探究(3)奋进小组在继续探究的过程中,将点C绕点A逆时针旋转,他们发现当旋转到图2和图3的位置时,∠DBN=120°,线段AB、BD、CB的大小发生了变化,但是仍然满足一定的数量关系,请你直接写出这两种关系:在图2中,线段AB、DB、CB之间满足的数量关系是;在图3中,线段AB、DB、CB之间满足的数量关系是;。

河南省周口市九年级上学期期中数学试卷

河南省周口市九年级上学期期中数学试卷

河南省周口市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)把一元二次方程化成一般式之后,其二次项系数与一次项分别是()A . 2,-3B . -2,-3C . 2,-3xD . -2,-3x2. (2分)方程有两个实数根,则k的取值范围是().A . k≥1B . k≤1C . k>1D . k<13. (2分) (2019八上·遵义期末) 下列图案中,不是轴对称图形的是()A .B .C .D .4. (2分)(2017·赤峰模拟) 已知二次函数y=kx2﹣7x﹣7的图象与x轴有两个交点,则k的取值范围为()A . k>﹣B . k>﹣且k≠0C . k≥﹣D . k≥﹣且k≠05. (2分)如图,CD是⊙0的直径,A,B是⊙0上的两点,若∠ADC=70°,则∠ABD的度数为()A . 50°B . 40°C . 30°D . 20°6. (2分)如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C,设点A′的坐标为(a,b),则点A 的坐标为()A . (-a,-b)B . (-a,-b-1)C . (-a,-b+1)D . (-a,-b-2)7. (2分)如图所示,抛物线顶点坐标是P(1,3),则函数y随自变量x的增大而减小的x的取值范围是()A . x>3B . x<3C . x>1D . x<18. (2分)把二次函数y=x2-4x+3化成y=a(x-h)2+k的形式是()A . y=(x-2)2-1B . y=(x+2)2-1C . y=(x-2)2+7D . y=(x+2)2+79. (2分)在同一坐标系中一次函数y=ax﹣b和二次函数y=ax2+bx+c的图象可能为()A .B .C .D .10. (2分)(2018·深圳模拟) 如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长等于()A .B .C .D .11. (2分)下列方程没有实数根的是()A . x2+4x=0B . x2+x﹣1=0C . x2﹣2x+3=0D . (x﹣2)(x﹣3)=1212. (2分)(2013·百色) 在反比例函数y= 中,当x>0时,y随x的增大而增大,则二次函数y=mx2+mx 的图象大致是图中的()A .B .C .D .二、填空题 (共6题;共7分)13. (1分)关于x的一元二次方程x2+(m2+4m)x+m2﹣m﹣1=0的两根互为相反数,则m=________ .14. (2分)已知函数y=-3(x-2)2+4,当x=________时,函数取得最大值为________.15. (1分)如图,在矩形ABCD中,AB=, AD=10.连接BD,∠DBC的角平分线BE交DC于点E,现把△B CE 绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当射线BE′和射线BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为________ .16. (1分)观察下列各图中小球的摆放规律,若第n个图中小球的个数为y,则y与n的函数关系式为________17. (1分)如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为________.18. (1分)如图,在平面直角坐标系中,抛物线y=经过平移得到抛物线y=,其对称轴与两段抛物线所围成的阴影部分的面积为________.三、解答题 (共7题;共82分)19. (10分) (2017九上·深圳期中) 解下列方程:(1) x2−2x−7=0(2) 2(x−1)2=1−x20. (5分)如图,四边形OBCD中的三个顶点在⊙O上,点A是⊙O上的一个动点(不与点B、C、D重合).(1)若点A在优弧上,且圆心O在∠BAD的内部,已知∠BOD=120°,求∠OBA+∠ODA度数(2)若四边形OBCD为平行四边形.①当圆心O在∠BAD的内部时,求∠OBA+∠ODA的度数;②当圆心O在∠BAD的外部时,请画出图形并直接写出∠OBA与∠ODA的数量关系.21. (10分) (2018九上·荆州期末) 已知函数的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1.①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.22. (10分) (2019八上·江海期末) 如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB 的中点.如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.(1)若点Q与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?23. (12分) (2015八下·江东期中) 如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q分别从A、B 同时出发,其中任意一点到达目的地后,两点同时停止运动,求:(1)经过6秒后,BP=________cm,BQ=________cm;(2)经过几秒后,△BPQ是直角三角形?(3)经过几秒△BPQ的面积等于 cm2?24. (20分)(2017·三门峡模拟) 如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.25. (15分)(2017·房山模拟) 如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.图1 图2 备用图(1)求证:AE=BG(2)将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°)如图2所示,判断(1)中的结论是否仍然成立?如果仍成立,请给予证明;如果不成立,请说明理由;(3)若BC=DE=4,当旋转角α为多少度时,AE取得最大值?直接写出AE取得最大值时α的度数,并利用备用图画出这时的正方形DEFG,最后求出这时AF的值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共82分)19-1、19-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、24-4、25-1、25-2、25-3、。

周口市九年级上学期期中数学试卷

周口市九年级上学期期中数学试卷

周口市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题. (共10题;共20分)1. (2分)若关于x的一元二次方程(m﹣2)x2+3x+m2﹣3m+2=0的常数项为0,则m等于()A . 0B . 1C . 2D . 1或22. (2分) (2017八下·金堂期末) 观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是().A .B .C .D .3. (2分) (2020七下·新乡期中) 如图,长方形 ABCD 中,AB=6,第一次平移长方形 ABCD 沿 AB 的方向向右平移 5 个单位长度,得到长方形,第 2次平移长方形沿的方向向右平移 5个单位长度,得到长方形,…,第n 次平移长方形沿的方向向右平移 5 个单位长度,得到长方形(n>2),若的长度为 2026,则 n 的值为()A . 407B . 406C . 405D . 4044. (2分)二次函数y=ax2+bx+c的图象如图所示,则函数值y<0时x的取值范围是()A . x<﹣1B . x>3C . ﹣1<x<3D . x<﹣1或x>35. (2分)三角形两边长分别为3和6,第三边是方程x2-6x+8=0的解,则这个三角形的周长是()A . 11B . 13C . 11或13D . 不能确定6. (2分)近年来,全国房价不断上涨,某市201 4年4月份的房价平均每平方米为6600元,比2012年同期的房价平均每平方米上涨了2000元,假设这两年该市房价的平均增长率均为x,则关于x的方程为()A . (1+x)2=2000B . 2000(1+x)2=6600C . (6600﹣200)(1+x)=6600D . (6600﹣2000)(1+x)2=66007. (2分)(2019·赤峰模拟) 某地区2010年投入教育经费2500万元,预计到2012年共投入8000万元.设这两年投入教育经费的年平均增长率为x ,则下列方程正确是()A . 2500+2500(1+x)+2500(1+x)2=8000B . 2500x2=8000C . 2500(1+x)2=8000D . 2500(1+x)+2500(1+x)2=80008. (2分)(2017·岳池模拟) 如图,是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac ②2a+b=0③c﹣a<0 ④若点B(﹣4,y1)、C(1,y2)为函数图象上的两点,则y1<y2 ,其中正确结论是()A . ②④B . ②③C . ①③D . ①④9. (2分)(2020·菏泽) 如图,将绕点顺时针旋转角,得到,若点E恰好在的延长线上,则等于()A .B .C .D .10. (2分) (2019七下·宽城期末) 如图,将△ABC绕点C按顺时针方向旋转90°得到△EDC.若点A、D、E 在同一条直线上,,则 ADC的大小为()A . 60°B . 5°C . 70°D . 75°二、填空题: (共4题;共4分)11. (1分)(2020·烟台) 如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为________.12. (1分)某小区2013年绿化面积为2000平方米,计划2015年绿化面积要达到2880平方米.如果每年绿化面积的增长率相同,那么这个增长率是________.13. (1分) (2019八下·鄞州期末) 如图,矩形中,,,点是矩形的边上的一动点,以为边,在的右侧构造正方形,连结,则的最小值为________.14. (1分) (2018九上·康巴什期中) 已知二次函数的图象和轴有交点,则的取值范围是________.三、解答题 (共9题;共100分)15. (10分) (2019八下·西湖期末) 解方程:(1) x2=14(2) x( x﹣1)=(x﹣2)216. (10分)(2020·北京模拟) 已知关于x的一元二次方程(m﹣2)x2+2mx+m+3=0 有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.17. (10分) (2019八下·昭通期中) 已知,求值:(1)(2)18. (10分) (2016九上·封开期中) 如图,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.(1)求证:CF=CH;(2)△ABC不动,将△EDC绕点C旋转到∠BCE=45°,证明:四边形ACDM是菱形.19. (15分)某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售利润为Y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16200元,请分析合理的方案共有多少种?(3)实际进货时,厂家对电冰箱出厂价下调K(0<K<150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案.20. (10分)(2019·秦安模拟) 一商家按标价销售工艺品时,每件可获利元,按标价的八五新销售工艺品件与将标价降低元销售这种工艺品件所获利润相等.(1)该工艺品每件的进价、标价分别是多少?(2)若每件工艺品按此进价进货,标价销售,商家每天可卖出工艺品件,若每件工艺品降价元,则每天可多卖出该工艺品件,间每件降价多少元销售,每天获得利润最大?获得最大利润是多少元?21. (10分) (2019八下·大冶期末) 如图,在正方形ABCD中,对角线AC,BD相较于点O,的角平分线BF交CD于点E,交AC于点F(1)求证:;(2)若,求AB的值22. (10分) (2019九上·柯桥月考) 已知:如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C.过点C作CD∥x轴,交抛物线的对称轴于点D.(1)求该抛物线的解析式;(2)若将该抛物线向下平移m个单位,使其顶点落在D点,求m的值.23. (15分)(2020·长沙模拟) 如图1,已知抛物线y=ax2+2x+c(a≠0),与y轴交于点A(0,6),与x 轴交于点B(6,0).(1)求这条抛物线的表达式及其顶点坐标;(2)设点P是抛物线上的动点,若在此抛物线上有且只有三个P点使得△PAB的面积是定值S ,求这三个点的坐标及定值S .(3)若点F是抛物线对称轴上的一点,点P是(2)中位于直线AB上方的点,在抛物线上是否存在一点Q ,使得P、Q、B、F为顶点的四边形是平行四边形?若存在,请直接写出点Q的坐标;若不存请说明理由.参考答案一、选择题. (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题: (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共9题;共100分)15-1、15-2、16-1、16-2、17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-3、。

河南省周口市九年级上学期数学期中考试试卷 (1)附答案解析

九年级上学期数学期中考试试卷一、单项选择题1.以下方程中,一定是关于x的一元二次方程的是〔〕A. x2﹣y=2B. 2x2﹣x=xC. ax2﹣3x+3=0D. 3x2﹣2x=3x22.以下说法中正确的选项是〔〕A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是正方形C. 平行四边形的对角线平分一组对角D. 矩形的对角线相等且互相平分3.假设,那么的值是( )A. -16B. 16C. -4D. 44.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,那么符合这一结果的实验可能是〔〕A. 掷一枚正六面体的骰子,出现1点的概率B. 抛一枚硬币,出现正面的概率C. 从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D. 任意写一个整数,它能被2整除的概率5.关于x的方程(2-a)x2+5x-3=0有实数解,那么整数a的最大值是( )A. 1B. 2C. 3D. 46.如图,那么添加以下一个条件后,仍无法判定的是〔〕A. B. C. D.7.如图,一同学在湖边看到一棵树,他目测出自己与树的距离为20m,树的顶端在水中的倒影距自己5m 远,该同学的身高为1.7m,那么树高为〔〕m.A. 3.4B. 5.1C. 6.8D. 8.58.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如下列图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是〔〕A. x2+65x-350=0B. x2+130x-1400=0C. x2-130x-1400=0D. x2-65x-350=09.如图,在Rt△ABC中,∠C=90°,AD=BD,CE=2BE.过B作BF∥CD交AE的延长线为F.当BF=1时,AB 的长为〔〕A. 4B. 5C. 6D. 710.如图,在菱形ABCD中,∠A=60°,点E,F分别为AD,DC上的动点,∠EBF=60°,点E从点A向点D 运动的过程中,AE+CF的长度〔〕.A. 逐渐增加B. 逐渐减小C. 保持不变且与EF的长度相等D. 保持不变且与AB的长度相等二、填空题11.一元二次方程的一个根为,那么________.12.某居委会组织两个检查组,分别对“居民体温〞和“居民平安出行〞的情况进行抽查.假设这两个检查组在辖区内的某三个小区中各自随机抽取一个小区进行检查,那么他们恰好抽到同一个小区的概率________.13.如图,是内任意一点,分别为上的点,且与是位似三角形,位似中心为.假设那么与的位似比为________.14.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.假设线段AB=4cm,那么线段BC= cm.15.如图,正方形的边长为5,,连结,那么线段的长为________.三、解答题16.请用适宜的方法解方程〔1〕〔2〕17.一个不透明的口袋里装有分别标有汉字“喜〞、“迎〞、“峰〞、“会〞的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.〔1〕假设从中任取一个球,求球上的汉字刚好是“峰〞的概率;〔2〕从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“喜迎〞或“峰会〞的概率.18.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点E是斜边AB上的一个动点,连接CE,过点B,C分别作BD∥CE,CD∥BE,BD与CD相交于点D.〔1〕当CE⊥AB时,求证:四边形BECD是矩形;〔2〕填空:①当BE的长为________时,四边形BECD是菱形;②在①的结论下,假设点P是BC上一动点,连接AP,EP,那么AP+EP的最小值为________.19.关于x的一元二次方程x2+mx+m﹣1=0.〔1〕求证:无论m为何值,方程总有两个实数根;〔2〕假设方程只有一个根为负数,求m的取值范围.20.如图,在平行四边形中,过点作垂足为,连接为线段上一点,且.〔1〕求证:;〔2〕假设,求的长.21.水果店老板以每斤2元的价格购进某种水果假设干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,老板决定降价销售.〔1〕假设这种水果每斤售价降低元,那么每天的销售量是___________斤(用含的代数式表示,需要化简);〔2〕销售这种水果要想每天盈利300元,老板需将每斤的售价定为多少元?22.〔1〕如图1,四边形和都是正方形,将正方形绕点按顺时针方向旋转,记旋转角为那么图中与的数量关系是________,与的位置关系是________;〔2〕如图2,四边形和都是矩形,且,将矩形绕点按顺时针方向旋转,记旋转角为图中与的数量和位置关系分别是什么?请仅就图2的情况给出证明;23.在矩形中,是射线上的点,连接,将沿直线翻折得.〔1〕如图1,点恰好在上,求证:;〔2〕假设以点为顶点的三角形是直角三角形,那么的长为________答案解析局部一、单项选择题1.【答案】 B【解析】【解答】A .是二元二次方程,故本选项不符合题意;B .是一元二次方程,故本选项符合题意;C .当a≠0时是一元二次方程,当a=0时不是一元二次方程,故本选项不符合题意;D .是一元一次方程,不是一元二次方程,故本选项不符合题意;故答案为:B .【分析】根据一元二次方程的定义进行判断.2.【答案】 D【解析】【解答】解:A 、∵对角线相等的平行四边形是矩形,∴A 选项不正确;B 、∵对角线互相垂直的矩形是正方形,∴B 不正确;C 、∵平行四边形的对角线互相平分,菱形和正方形的每条对角线平分一组对角,∴C 不正确;D 、∵矩形的对角线互相平分且相等,∴D 正确.故答案为:D.【分析】〔1〕根据矩形的判定"对角线相等的平行四边形是矩形"可判断求解;〔2〕根据正方形的判定"对角线互相垂直的矩形是正方形"可判断求解;〔3〕根据平行四边形的性质"平行四边形的对角线互相平分"可判断求解;〔4〕根据矩形的性质“矩形的对角线互相平分且相等〞可判断求解.3.【答案】 C【解析】【解答】解: ∵,∴, ∴m=-10, 25-n=19,∴n=6,∴m+n=-10+6=-4.故答案为:C.【分析】利用完全平方公式将右式展开,然后根据二次方程的每项系数相等列式求出m 、n 值,那么的值可求.4.【答案】 C【解析】【解答】解:A 、掷一枚正六面体的骰子,出现1点的概率为 ,故此选项错误; B 、掷一枚硬币,出现正面朝上的概率为 ,故此选项错误;C、从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:= ≈0.33;故此选项正确;D、任意写出一个整数,能被2整除的概率为,故此选项错误.应选:C.【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.5.【答案】D【解析】【解答】解:∵关于x的方程(2−a)x2+5x−3=0有实数根,∴①当2−a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;②当2−a≠0即a≠2时,此时方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,∴△=25+12(2−a)≥0,解之得a≤ ,∴整数a的最大值是4.故答案为:D.【分析】根据题意“关于x的方程〞可知这个方程可以是一元一次方程,也可以是一元二次方程,所以可分两种情况讨论求解:①当2−a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;②当2−a≠0即a≠2时,此时方程为一元二次方程,根据一元二次方程的根的判别式"①当b2-4ac>0时,方程有两个不相等的实数根;②当b2-4ac=0时,方程有两个相等的实数根;③当b2-4ac<0时,方程没有实数根"可得关于a的不等式,解不等式即可求解.6.【答案】A【解析】【解答】解:∵∠1=∠2,∴∠BAC=∠DAE.A、,∠B与∠ADE的大小无法判定,∴无法判定△ABC∽△ADE,故本选项符合题意;B、,又∠BAC=∠DAE,∴△ABC∽△ADE,故本选项不符合题意;C、,∠BAC=∠DAE,∴△ABC∽△ADE,故本选项不符合题意;D. ,∠BAC=∠DAE,∴△ABC∽△ADE,故本选项不符合题意.故答案为:A.【分析】〔1〕根据相似三角形的判定“两组对应边的比相等且这两边的夹角相等的两个三角形相似〞并结合题意可判断求解;〔2〕根据相似三角形的判定“两组对应边的比相等且这两边的夹角相等的两个三角形相似〞并结合题意可判断求解;〔3〕根据相似三角形的判定“两个角对应相等的两个三角形相似〞并结合题意可判断求解;〔4〕根据相似三角形的判定“两个角对应相等的两个三角形相似〞并结合题意可判断求解.7.【答案】B【解析】【解答】解:由相似三角形的性质,设树高x米,那么,∴x=5.1m.故答案为:B.【分析】由题意易得三角形相似,根据相似三角形的性质可得比例式求解.8.【答案】A【解析】【解答】解:依题意得:〔80+2x〕〔50+2x〕=5400,即4000+260x+4x2=5400,化简为:4x2+260x-1400=0,即x2+65x-350=0.故答案为:A.【分析】由图可得相等关系“矩形挂图的长×宽=挂图的面积5400〞列关于x的一元二次方程,解这个方程即可求解.9.【答案】B【解析】【解答】证明:如图,∵BF∥CD,∴△CEO∽△BEF,∴,且BF=1,CE=2BE,∴CO=2,∵BF∥CD,∴,且AD=BD,∴OD=BF=,∴CD=CO+OD=,∵∠ACB=90°,AD=BD,∴AB=2CD=5,故答案为:B.【分析】通过证明△CEO∽△BEF,可得,可求CO=2,由平行线分线段成比例可求OD的长,即可求CD的长,由直角三角形斜边的中线等于斜边的一半可求解.10.【答案】D【解析】【解答】解:连接BD∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°∴△ABD是等边三角形∴AB=BD,∠ABD=60°∵DC∥AB∴∠CDB=∠ABD=60°∴∠A=∠CDB∵∠EBF=60°∴∠ABE+∠EBD=∠EBD+∠DBF∴∠ABE=∠DBF∵∴△ABE≌△DBF〔AAS〕∴AE=DF∴AE+CF=DF+CF=CD=AB故答案为:D.【分析】连接BD,由菱形的性质根据有一个角等于60度的等腰三角形是等边三角形可得△ABD是等边三角形,由等边三角形的性质用角角边可证△ABE≌△DBF,由全等三角形的性质可得AE=DF,由线段的构成得AE+CF=DF+CF=CD=AB可求解.二、填空题11.【答案】-3【解析】【解答】解:∵一元二次方程x2-mx-4=0的一个根为1,∴1-m-4=0,即-m-3=0,解得m=-3.故答案为:-3.【分析】由题意把x=1代入一元二次方程可得关于m的方程,解之即可求解.12.【答案】【解析】【解答】解:由题意得:由树状图可得两个检查组在辖区内抽到同一个小区的概率为:;故答案为:.【分析】根据题意画出树状图,由树状图的信息可知所有可能的结果有9种,符合题意的有3种,用概率公式计算即可求解.13.【答案】【解析】【解答】解:∵∴∵△ABC与△DEF是位似三角形,位似中心为O.∴△ABC与△DEF的位似比为:故答案为:.【分析】由比例的性质和条件可得,再根据位似图形的性质可求解.14.【答案】12【解析】【解答】解:如图,过点A作AE⊥CE于点E,交BD于点D,∵练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴,即,∴BC=12cm.故答案为:12.【分析】过点A作AE⊥CE于点E,交BD于点D,根据平行线分线段成比例可得,代入计算即可解答.15.【答案】【解析】【解答】解:如图,延长BG交CH于点E,∵正方形的边长为5,,∴AG2+BG2=AB2,∴∠AGB=90°,在△ABG和△CDH中,∴△ABG≌△CDH〔SSS〕,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,∴△ABG≌△BCE〔ASA〕,∴BE=AG=4,CE=BG=3,∠BEC=∠AGB=90°,∴GE=BE-BG=4-3=1,同理可得HE=1,在Rt△GHE中,故答案为:.【分析】延长BG交CH于点E,由正方形的性质用边边边可证△ABG≌△CDH,由全等三角形的性质可得∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,由线段的构成得GE=BE-BG可求得GE的值,同理可求得HE的值,在直角三角形GHE中,用勾股定理可求得GH的值.三、解答题16.【答案】〔1〕解:,,解得:〔2〕解:,解得:【解析】【分析】〔1〕由题意用因式分解法可将原方程化为两个一元一次方程求解;〔2〕由题意可将〔x+2〕看作一个整体,再用因式分解法可将原方程化为两个一元一次方程求解.17.【答案】〔1〕解:∵有汉字“喜〞、“迎〞、“峰〞、“会〞的四个小球,任取一球,共有4种不同结果,∴球上汉字是“峰〞的概率为〔2〕解:画树状图如下:所有等可能的情况有12种,其中取出的两个球上的汉字恰能组成“喜迎〞或“峰会〞的情况有4种,取出的两个球上的汉字恰能组成“喜迎〞或“峰会〞的概率:【解析】【分析】〔1〕由概率公式可求解;〔2〕由题意画出树状图,由树状图的信息可知所有等可能的情况有12种,其中取出的两个球上的汉字恰能组成“喜迎〞或“峰会〞的情况有4种,再根据概率公式可求解.18.【答案】〔1〕证明:如下列图:∵BD∥CE,CD∥BE,∴四边形BDCE是平行四边形,∵CE⊥AB,∴∠BEC=90°,∴四边形BECD是矩形;〔2〕;【解析】【解答】解:〔2〕①当BE的长为时,四边形BECD是菱形.理由如下:连接ED,与BC交于点O,∵四边形BDCE是平行四边形,当BC和DE互相垂直平分时,四边形BDCE是菱形,BO=BC=3,OE=AC=2,∴根据勾股定理,得BE===.故答案为:.②连接AD,与BC交于点P,连接PE,此时PD=PE,AP+EP最小,∴AP+PE=AP+PD=AD,过点D作DF垂直于AC的延长线于点F,得矩形ODFC,∴CF=OD=2,DF=OC=3,∴AF=AC+CF=6,∴在Rt△ADF中,根据勾股定理,得AD===3 .∴AP+EP的最小值为3 .故答案为:3 .【分析】〔1〕根据矩形的判定:有一个角是直角的平行四边形是矩形即可证明;〔2〕①根据菱形的判定定理:对角线互相垂直的平行四边形是菱形即可求解;②根据对称性:连接ED 交BC于点P,此时AP+EP=AD最小,再过点D作DF垂直AC的延长线于点F,根据勾股定理即可求解.19.【答案】〔1〕证明:∵△=m2﹣4×〔m﹣1〕=m2﹣4m+4=〔m﹣2〕2≥0,∴无论m为何值,方程总有两个实数根〔2〕解:由求根公式可得,当时,解得或,当时,解得或,综上所述,无论m取何值时,该方程的解为x=﹣1或x=﹣m+1,假设方程有一个根为负数,那么,解得.故m的取值范围为【解析】【分析】〔1〕根据根的判别式求出△的值,再进行判断即可;〔2〕求方程两根,结合条件那么可求得m的取值范围.20.【答案】〔1〕证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC.∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C.∴△ADF∽△DEC〔2〕解:∵四边形ABCD是平行四边形,∴CD=AB=8.∵△ADF∽△DEC,∴∴DE=16.∵AD∥BC,AE⊥BC,∴AE⊥AD.在Rt△ADE中,∠EAD=90°,DE=16,AD=12,∴【解析】【分析】〔1〕由平行四边形的性质用有两个角对应相等的两个三角形相似可求解;〔2〕由〔1〕中的相似三角形可得比例式,由此可求得DE的值,在Rt△ADE中,用勾股定理可求解.21.【答案】〔1〕〔100+200x〕〔2〕解:设这种水果每斤售价降低x元,根据题意得:〔4-2-x〕〔100+200x〕=300,解得:或x=1,当时,销售量是当x=1时,销售量是100+200=300〔斤〕.∵每天至少售出260斤,∴x=1.4-1=3,答:老板需将每斤的售价定为3元.【解析】【解答】解:〔1〕将这种水果每斤的售价降低x元,那么每天的销售量是:〔斤〕;故答案为:〔100+200x〕;【分析】〔1〕根据销售量=讲价前的销售量+降价后多出的销售量可求解;〔2〕设这种水果每斤售价降低x元,根据相等关系“ 每斤水果的利润×销售量=每天的利润300〞可列关于x的方程,解这个方程可求解.22.【答案】〔1〕AG=CE;AG⊥CE〔2〕解:CE=2AG,理由如下:∵四边形和都是矩形,∴∠ABC=∠GBE=90°,∴∠ABG+∠GBC=90°,∠GBC+∠CBE=90°,∴∠ABG=∠CBE,∵,∴△ABG∽△CBE,∴,∴CE=2AG【解析】【解答】解:〔1〕∵四边形和都是正方形,∴AB=CB,BG=BE,∠ABC=∠GBE=90°,∴∠ABG+∠GBC=90°,∠CBE+∠GBC=90°,∴∠ABG=∠CBE,∴△ABG≌△CBE〔SAS〕,∴AG=CE,延长AG交BC、CE与点H、M,如下列图:∴∠GAB=∠ECB,∵∠GAB+∠AHB=90°,∠AHB=∠CHM,∴∠ECB+∠CHM=90°,∴AM⊥CE,即AG⊥CE,故答案为:AG=CE,AG⊥CE;【分析】〔1〕延长AG交BC、CE与点H、M,由正方形的性质用边角边可证△ABG≌△CBE,由全等三角形的性质可得AG=CE,再结合和垂线的定义可求解;〔2〕CE=2AG,理由如下:由矩形的性质根据有两个角对应相等的两个三角形相似可得△ABG∽△CBE,由相似三角形的性质可得比例式,结合可求解.23.【答案】〔1〕证明:在矩形ABCD中,∠B=∠C=∠D=90°,由折叠可得:∠D=∠EFA=90°,∵∠EFA=∠C=90°,∴∠CEF+∠CFE=∠CFE+∠AFB=90°,∴∠CEF=∠AFB,在△ABF和△FCE中∵∠AFB=∠CEF,∠B=∠C=90°,∴△ABF∽△FCE〔2〕或或5或15【解析】【解答】解:〔2〕设DE=x,∵以点E、F、C为顶点的三角形是直角三角形,∴①当点E在线段CD上时,∠DAE<45°,∴∠AED>45°,由折叠知,∠AEF=∠AED>45°,∴∠DEF=∠AED+∠AEF>90°,∴∠CEF<90°,∴只有∠EFC=90°或∠ECF=90°,Ⅰ、当∠EFC=90°时,如图2,由折叠知,∠AFE=∠D=90°,∴∠AFE+∠EFC=90°,∴点A,F,C在同一条线上,即:点F在矩形的对角线AC上,在Rt△ACD中,AD=5,CD=AB=3,根据勾股定理得由折叠知,EF=DE=x,AF=AD=5,在Rt△ECF中,EF2+CF2=CE2,∴∴∴Ⅱ、当∠ECF=90°时,如图3,点F在BC上,由折叠知,EF=DE=x,AF=AD=5,在Rt△ABF中,根据勾股定理得,∴CF=BC-BF=1,在Rt△ECF中,根据勾股定理得,CE2+CF2=EF2,∴〔3-x〕2+12=x2,∴∴②当点E在DC延长线上时,CF在∠AFE内部,而∠AFE=90°,∴∠CFE<90°,∴只有∠CEF=90°或∠ECF=90°,Ⅰ、当∠CEF=90°时,如图4,由折叠知,AD=AF=5,∠AFE=90°=∠D=∠CEF,∴四边形AFED是正方形,∴DE=AF=5;Ⅱ、当∠DCF=90°时,如图5,∵∠ABC=∠BCD=90°,∴点F在CB的延长线上,∴∠ABF=90°,由折叠知,EF=DE=x,AF=AD=5,在Rt△ABF中,根据勾股定理得,∴CF=BC+BF=9,在Rt△ECF中,根据勾股定理得,CE2+CF2=EF2,∴〔x-3〕2+92=x2,∴x=15,即:DE=15,综上所述,DE的长为或或5或15故答案为:或或5或15.【分析】〔1〕由矩形的性质根据两个角对应相等的两个三角形相似可求解;〔2〕设DE=x,由题意可知以点E、F、C为顶点的三角形是直角三角形,分析题意和图形可分种情况:①当点E在线段CD上时,∠DAE<45°,结合折叠的性质可得只有∠EFC=90°或∠ECF=90°,分别把这两种情况用勾股定理可求解;②当点E在DC延长线上时,CF在∠AFE内部,而∠AFE=90°,结合折叠的性质可得只有∠CEF=90°或∠ECF=90°,分别把这两种情况用勾股定理可求解.。

周口市九年级上学期数学期中考试试卷

周口市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、 (共10题;共20分)1. (2分) (2018九上·东台月考) 抛物线y=2(x-3)2-1的顶点坐标是()A . (3,1)B . (3,-1)C . (-3,1)D . (-3,-1)2. (2分) (2016九上·温州期末) 现有背面完全相同的四张扑克牌,牌面数字分别是2,3,4,5,洗匀后背面朝上,则从中任意翻开一张是2的倍数的概率为()A .B .C .D .3. (2分)(2018·邵阳) 如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A . 80°B . 120°C . 100°D . 90°4. (2分) (2019八上·昭通期末) 函数y=(m+2) +2x+1是二次函数,则m的值为()A . ﹣2B . 0C . ﹣2或1D . 15. (2分) (2018九上·防城港期末) 下列说法正确的是()A . 三点确定一个圆B . 三角形的外心到三角形各顶点的距离相等C . 相等的圆心角所对的弧相等D . 圆内接四边形的对角互余6. (2分) (2019九上·萧山月考) 某校举行以“我为词霸”为主题的英语单词比赛.决赛阶段只剩下甲,乙,丙,丁四名同学,则甲.乙同学获得前两名的概率是()A .B .C .D .7. (2分)如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣, m)(m>0),则有()A . a=b+2kB . a=b﹣2kC . k<b<0D . a<k<08. (2分)如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为()A .B .C .D .9. (2分)(2020·常德) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.其中正确结论的个数是()A . 4B . 3C . 2D . 110. (2分) (2017九上·青龙期末) 扇形的弧长为20πcm,面积为240πcm2 ,那么扇形的半径是()A . 6cmB . 12cmC . 24cmD . 28cm二、填空题 (共6题;共11分)11. (1分) (2019九上·义乌月考) 函数y=x2+2x﹣8与y轴的交点坐标是________.12. (4分)在下列事件中:①投掷一枚均匀的硬币,正面朝上;②投掷一枚均匀的骰子,6点朝上;③任意找367人中,至少有2人的生日相同;④打开电视,正在播放广告;⑤小红买体育彩票中奖;⑥北京明年的元旦将下雪;⑦买一张电影票,座位号正好是偶数;⑧到2020年世界上将没有饥荒和战争;⑨抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;⑩在标准大气压下,温度低于0℃时冰融化;⑪如果a , b为实数,那么a +b=b+a;⑫抛掷一枚图钉,钉尖朝上.确定的事件有________;随机事件有________,在随机事件中,你认为发生的可能性最小的是________,发生的可能性最大的是________.(只填序号)13. (2分)已知:PA、PB、EF分别切⊙O于A、B、D,若PA=15cm,那么△PEF周长是________cm.若∠P=50°,那么∠EOF=________.14. (1分)(2017·苏州模拟) 无论m为何值,二次函数y=x2+(2﹣m)x+m的图象总经过定点________.15. (1分) (2016九上·鼓楼期末) 某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是________m.16. (2分) (2019九下·义乌期中) 如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD,则有:(1)AD=________CD(填数量关系);(2)△ACD面积的最大值为________.三、解答题 (共8题;共96分)17. (5分)如图,直线AB交x轴于点B,交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°,AD:AB=1:2.(1)求点D的坐标;(2)求经过O、D、B三点的抛物线的函数关系式.18. (20分)(2018·黄冈模拟) 抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.19. (5分) (2018九上·北京期末) 如图,AB为⊙O的直径,弦CD⊥AB于点E,连接BC.若AB=6,∠B=30°,求弦CD的长.20. (15分)已知二次函数y=﹣x2+2x+k+2与x轴的公共点有两个.(1)求k的取值范围;(2)当k=1时,求抛物线与x轴的公共点A和B的坐标及顶点C的坐标;(3)观察图象,当x取何值时y>0.21. (11分) (2019九上·利辛月考) 某公司研制出新产品,该产品的成本为每件2400元.在试销期间,购买不超过10件时,每件销售价为3000元;购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为2600元。

河南省周口市九年级上学期期中数学试卷

河南省周口市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共26分)1. (2分)(2020·椒江模拟) 如图,在平面直角坐标系中,点A(1,2),在x轴上任取一点B,过点B作x轴的垂线BC.分别以A,B为圆心,大于 AB长为半径画弧,两弧相交于点D,E,连接DE,直线BC,DE相交于点P.设点P(x,y),则y关于x的函数关系用图象表示为()A .B .C .D .2. (2分)如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是y=﹣ x2+ x+,则该运动员此次掷铅球的成绩是()A . 6mB . 12mC . 8mD . 10m3. (2分) (2020九上·乌兰察布期中) 一次函数与二次函数在同一坐标系中的图像可能是()A .B .C .D .4. (2分)如图,A,B,E为⊙0上的点,⊙O的半径OC⊥AB于点D,若∠CEB=30°,OD=1,则AB的长为()A .B . 4C . 2D . 65. (2分) (2019九上·吉林月考) 如图,A、B、C、D四个点均在⊙O上,顺次连结A、B、C、O、D .若OD∥BC ,∠COD=40°,则∠A的大小为()A . 40°B . 50°C . 60°D . 70°6. (2分)(2020·新泰模拟) 下列命题错误的是()A . 平分弦的直径垂直于弦B . 三角形一定有外接圆和内切圆C . 等弧对等弦D . 经过切点且垂直于切线的直线必经过圆心7. (2分)已知A,B两地相距4千米,上午8:00,甲从A地出发步行到B地,上午8:20乙从B地出发骑自行车到A地,甲,乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示,由图中的信息可知,乙到达A地的时间为()A . 上午8:30B . 上午8:35C . 上午8:40D . 上午8:458. (2分)(2017·烟台) 如图,▱ABCD中,∠B=70°,BC=6,以AD为直径的⊙O交CD于点E,则的长为()A . πB . πC . πD . π9. (2分) (2017九上·松北期末) 若将抛物线y=2x2向上平移3个单位,所得抛物线的解析式为()A . y=2x2+3B . y=2x2﹣3C . y=2(x﹣3)2D . y=2(x+3)210. (2分) (2014九上·临沂竞赛) 已知二次函数的图象开口向上,与 x轴的交点坐标是(1,0),对称轴x=-1.下列结论中,错误的是()A . abc<0B . b=2aC . a+b+c=0D . 2a+b11. (1分)(2018·遵义模拟) 如图,在圆O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D、E,若AC=2cm,则圆O的半径为________cm.12. (1分) (2018八上·无锡期中) 如图,Rt△ABC中,∠C=90°,点P为AC边上的一点,延长BP至点D,使得AD=AP,当AD⊥AB时,过D作DE⊥AC于E,AB-BC=4,AC=8,则△ABP面积为________.13. (1分) (2020九上·越城月考) 将抛物线y=x2+1的图像先向左平移2个单位,再向下平移3个单位,所得抛物线的解析式是________.14. (1分) (2018九上·浙江月考) 初三数学课本上,用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x...-10123...y...105212...根据表格上的信息回答问题:求二次函数y=ax2+bx+c的图象关于y轴对称的函数解析式是________15. (1分)(2020·永嘉模拟) 如图,直线y= x+6与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.16. (1分) (2017七下·宁波期中) 观察下列等式:32-12=8×1;52-32=8×2;72-52=8×3;…,请用含正整数n的等式表示你所发现的规律:________.二、解答题 (共6题;共55分)17. (5分) (2018九上·宜阳期末) 将一个边长为a的正方形纸片卷起来,恰好可以围住一个圆柱的侧面;又在这个正方形纸片上剪下最大的一个扇形,卷起来,恰好可以围住一个圆锥的侧面,那么该圆柱和圆锥两者的底面半径之比为多少?(如果保留π)18. (5分) (2019七下·长沙期末) 如图,己知 AB P CF , D 是 AB 上一点,DF 交 AC 于点 E ,若 AB = BD + CF . 求证:点 E 为线段 DF 的中点.19. (10分)(2019·兰州) 如图,AC=8,分别以A,C为圆心,以长度5为半径作弧,两条弧分别相交于点B 和D,依次连接A,B,C,D,连接BD交AC于点0.(1)判断四边形ABCD的形状并说明理由(2)求BD的长.20. (10分) (2020八上·嘉祥月考) 已知:E是∠AOB的平分线上一点,EC⊥OA ,ED⊥OB,垂足分别为C、D。

河南省周口市九年级上学期数学期中考试试卷

河南省周口市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为()A . x1=-1,x2=3B . x1=-2,x2=3C . x1=1,x2=3D . x1=-3,x2=12. (2分) (2016九上·恩施月考) 在平面直角坐标系中,点A(1,3)关于原点O对称的点A′的坐标为()A . (﹣1,3)B . (1,﹣3)C . (3,1)D . (﹣1,﹣3)3. (2分) (2017八上·江门月考) 下列图形中是轴对称图形的是()A .B .C .D .4. (2分)下列关于一元二次方程的四种解法叙述不正确的是()A . 公式法B . 配方法C . 加减法D . 因式分解法5. (2分)如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是()A . 2B . 3C . 4D . 56. (2分)如图,是由绕点0逆时针旋转30后得到的图形,若点D恰好落在AB上,且∠AOC 的度数为100 ,则∠DOB的度数是().A . 45°B . 35°C . 50°D . 40°7. (2分)将二次函数y=x2+1的图象向右平移1个单位,则平移后的二次函数的解析式为()A . y=x2B . y=(x﹣1)2C . y=(x﹣1)2+1D . y=(x+1)2+18. (2分)关于x的一元二次方程ax2﹣bx+3=0的一个根为x=2,则代数式4b﹣8a+3的值为()A . -3B . 3C . 6D . 99. (2分)(2017·达州模拟) 一个盒子里有完全相同的三个小球,球上分别标上数字﹣1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是()A .B .C .D .10. (2分)如图所示是某公园为迎接“中国﹣﹣南亚博览会”设置的一休闲区.∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A . 米2B . 米2C . 米2D . 米211. (2分) (2016九上·崇仁期中) 如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A . (6,0)B . (6,3)C . (6,5)D . (4,2)12. (2分) (2018九上·台州开学考) 某果园2014年水果产量为100吨,2016年水果产量为144吨,求该果园水果产量的年平均增长率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018学年河南省周口市扶沟县九年级(上)期中数学试卷
一、选择题(每小题3分,共24分)
1.(3分)若3是关于方程x2﹣5x+c=0的一个根,则这个方程的另一个根是()
A.﹣2B.2C.﹣5D.5
2.(3分)将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()
A.y=(x+1)2+4B.y=(x+1)2+2C.y=(x﹣1)2+4D.y=(x﹣1)2+2
3.(3分)如图,四边形ABCD是正方形,△ADE绕着点A旋转90°后到达△ABF的位置,连接EF,则△AEF的形状是()
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等边三角形
4.(3分)如图,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于()
A.55°B.60°C.65°D.80°
5.(3分)四边形ABCD的对角线相交于O,且AO=BO=CO=DO,则这个四边形()
A.仅是轴对称图形
B.仅是中心对称图形
C.既是轴对称图形又是中心对称图形
D.既不是轴对称图形,又不是中心对称图形
6.(3分)二次函数y=2x2+mx+8的图象如图所示,则m的值是()
A.﹣8B.8C.±8D.6
7.(3分)用一条长为40cm的绳子围成一个面积为acm2的长方形,a的值不可能为()A.20B.40C.100D.120
8.(3分)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()
A.6B.4C.3D.3
二、填空题(每小题3分,共21分)
9.(3分)以2和﹣3为根的一元二次方程是.
10.(3分)如图,点A点B的坐标分别是(0,1),(a,b),将线段AB绕A旋转180°后得到线段AC,则点C的坐标为.
11.(3分)在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个,搅匀后,从中同时摸出2个小球,请你写出这个实验中的一个可能事件:.12.(3分)小张掷一枚硬币,结果是一连4次掷出正面朝上,那么他第5次掷硬币时,出现正面。

相关文档
最新文档