基于单片机的智能温室大棚控制系统

合集下载

基于单片机的智能温室大棚系统设计与实现

基于单片机的智能温室大棚系统设计与实现

基于单片机的智能温室大棚系统设计与实现【摘要】这篇文章主要介绍了基于单片机的智能温室大棚系统的设计与实现。

在分析了研究背景、研究目的以及意义。

接着在正文部分详细介绍了系统框架设计、温度控制模块设计、湿度控制模块设计、光照控制模块设计以及数据采集与远程监控模块设计。

在分析了实验结果、系统的优缺点,以及未来展望。

通过这篇文章,读者可以了解到基于单片机的智能温室大棚系统在农业生产中的重要性和应用前景,以及相关技术的研究进展和发展方向。

【关键词】智能温室大棚系统、单片机、温度控制、湿度控制、光照控制、数据采集、远程监控、实验结果、优缺点、未来展望。

1. 引言1.1 研究背景为了解决传统温室大棚存在的问题,本研究将利用单片机技术,设计和实现一种智能温室大棚系统。

通过传感器采集温度、湿度、光照等环境参数,并通过单片机进行实时监测和控制,可以有效地优化温室大棚的环境参数,提高蔬菜的生长质量和产量。

我们还将实现远程监控功能,使种植者可以随时随地监测温室环境,并进行远程操作,极大地简化了管理和作业流程。

本研究旨在设计和实现一种基于单片机的智能温室大棚系统,以解决传统温室大棚存在的问题,提升温室蔬菜的种植效率和产量。

希望通过本研究的实施,为温室大棚的智能化和数字化发展提供理论和技术支撑,推动现代农业的进步和发展。

1.2 研究目的研究目的是设计并实现一套基于单片机的智能温室大棚系统,旨在提高温室种植环境的智能化程度,提高作物的产量和质量。

通过对温度、湿度、光照等环境参数的实时监测和控制,实现对温室内部环境的精确调控,为植物的生长提供最佳的条件。

通过数据采集和远程监控功能,实现对温室环境的实时监测和远程控制,方便农户对温室进行远程管理,提高生产效率和经济效益。

本研究旨在为温室大棚种植提供一种智能化的解决方案,为农业生产提供技术支持,推动农业生产方式的现代化和智能化进程。

1.3 意义智能温室大棚系统的设计与实现在现代农业生产中具有重要的意义。

基于单片机的智能温室大棚系统设计与实现

基于单片机的智能温室大棚系统设计与实现

基于单片机的智能温室大棚系统设计与实现本文介绍了一种基于单片机的智能温室大棚系统的设计与实现。

首先,介绍了温室大棚的基本结构和功能,然后分析了智能温室大棚系统的需求,提出了系统的设计方案。

在系统的设计中,使用了STM32单片机作为核心控制芯片,采用传感器监测温度、湿度、光照等环境参数,并通过控制温度、湿度、通风、灌溉、光照等设备来实现对温室大棚环境的智能控制。

最后,介绍了系统的实现和测试结果。

关键词:智能温室大棚,单片机,传感器,控制系统1. 引言随着人口的增长和城市化的进程,越来越多的人们开始关注食品安全和健康饮食,对有机蔬菜和水果的需求日益增加。

传统的农业生产方式已经无法满足人们的需求,因此,温室大棚成为了一种重要的农业生产方式,它可以有效地提高农作物的产量和质量,同时还能减少对环境的污染。

然而,传统的温室大棚也存在一些问题,比如无法保障温室大棚内的气候环境,只能根据经验和感觉调整气候和湿度,而且需要大量的人工操作。

为了解决这些问题,本文设计了一种基于单片机的智能温室大棚系统,可以实现对温室大棚内的温度、湿度、通风、灌溉和光照等环境参数的自动控制,从而提高农作物的产量和质量,减少对环境的污染。

2. 温室大棚的基本结构和功能温室大棚是一种在固定结构下,利用透明材料覆盖在地面上的设施,以调节气候、光照和水分等条件,增加农作物生长的生产环境。

温室大棚一般由骨架结构和外覆材料组成。

骨架结构主要由钢架和支撑系统构成,外覆材料可以使用玻璃、聚碳酸酯板、薄膜等材料。

温室大棚的主要功能包括以下几个方面:(1)调节光照:温室大棚内的光照主要由太阳光和人工光源提供。

通过控制光照强度和光照时间,可以促进农作物的生长和发育。

(2)调节温度和湿度:温室大棚内的空气温度和湿度对农作物的生长和发育影响很大。

因此,需要通过控制加热、制冷、通风等设备来调节温度和湿度。

(3)灌溉和施肥:温室大棚内的农作物需要适当的水和肥料才能生长健康。

基于STM32单片机的温室大棚监控系统开发

基于STM32单片机的温室大棚监控系统开发

引言
随着现代农业的发展,温室大棚在农业生产中发挥着越来越重要的作用。温室 大棚能够提供适宜的土壤和气候条件,使得农作物可以在不同的季节正常生长。 然而,温室大棚的环境条件对农作物的生长有着至关重要的影响。为了确保农 作物的高产和优质,需要对温室大棚的环境进行智能控制,包括温度、湿度、 光照等因素。
3.实用性:系统的设计和实现均考虑到实际应用场景,使得操作简单便捷。系 统的能耗较低,适于在电池供电条件下长时间运行。
谢谢观看
关键词:
1、STM32单片机:STM32系列单片机是意法半导体公司推出的一款基于ARM Cortex-M内核的32位单片机,具有高性能、低功耗、易于开发等特点。
2、温室大棚:温室大棚是一种用于农业生产的高效设施,可以为农作物提供 适宜的生长环境,通过控制光照、温度、湿度等因素,提高农作物的产量和品 质。
2、传感器选择:传感器是监控系统的核心部件,直接影响着数据的准确性和 系统的稳定性。温室内需要监测的温度、湿度、光照等参数,选择相应的传感 器进行数据采集。
3、电路设计:电路设计是系统开发的重要环节,需要考虑各模块之间的接口 和连接方式,保证系统的稳定性和可靠性。
程序开发:
1、初始化程序:初始化程序主要用于配置STM32单片机的引脚、时钟等基本 参数,以及初始化传感器等外设。
基于STM32单片机的温室大棚监控系统 开发
基本内容
随着现代农业的发展,温室大棚在农业生产中发挥着越来越重要的作用。为了 提高温室大棚的产量和效益,监控系统的应用逐渐成为一种趋势。本次演示将 围绕基于STM32单片机的温室大棚监控系统开发,介绍该系统的背景、意义、 关键词、系统设计、程序开发、系统调试、系统应用和结论。
2、用户反馈:用户反馈是评价系统优劣的重要标准。在实际应用中,用户对 温室大棚监控系统的稳定性、可靠性、实用性等方面给出了较高的评价。例如, 有用户反映该系统能够根据环境参数自动调节温室设备,大大减轻了他们的劳 动强度。

基于STM32的智慧农业大棚系统设计

基于STM32的智慧农业大棚系统设计

STM32单片机
STM32单片机是一种先进的32位微控制器,被广泛应用于各种嵌入式系统中。 它具有高性能、低功耗、易于开发和维护等特点,适用于各种环境下的高效数 据处理和控制任务。在温室大棚控制系统中,STM32单片机可以作为主控制器, 负责采集和处理各种传感器数据,根据预设算法实现对环境因素的调控。
(2)传感器和执行器的选型和接口设计:根据大棚环境因素的监测和控制需 求,选择适当的传感器和执行器型号,并设计相应的接口电路。
(3)数据传输模块的设计:根据实际需要,可以采用有线或无线方式进行数 据传输。如有线传输可选用RS485或CAN总线等方式;如无线传输可选用 Zigbee、NB-IoT或LoRa等技术。
总结本次演示所述,基于STM32的智能农业大棚系统设计具有以下优点:
1、使用STM32作为核心控制器,数据处理能力强,适用于各种复杂的控制场 景;
2、系统结构完整,包括数据采集、处理、控制和反馈等环节,能够实现对大 棚环境的实时监测与控制;
3、电源模块稳定可靠,可适应 各种环境下的电源供给需求。
引言:
随着科技的不断发展,智能化技术逐渐应用于各个领域,其中智慧农业也是其 中的一个重要方向。智慧农业是指通过物联网、传感器、云计算、大数据等先 进技术,实现农业生产的智能化、精细化、高效化和可视化。智慧农业大棚系 统作为智慧农业的一个重要组成部分,可以对大棚内的环境因素进行实时监测 和控制,提高农作物的产量和质量,
系统设计
1、硬件设计
基于STM32温室大棚控制系统的主要硬件包括STM32单片机、各类传感器(如 温度、湿度、光照强度等)、执行器(如通风机、遮阳帘、加湿器等)和人机 界面等。传感器和执行器与STM32单片机之间通过串口或I2C通信进行数据传 输和控制操作。同时,为了方便用户的使用,系统还设计了友好型的人机界面, 用于实时显示传感器数据和执行器状态,以及远程控制温室大棚的环境因素。

基于单片机的温室大棚自动控制系统毕业设计论文

基于单片机的温室大棚自动控制系统毕业设计论文

毕业设计论文基于单片机的温室大棚自动控制系统【摘要】本系统由单片机STC89C52、温度检测电路、湿度检测电路、光照度检测电路、键盘扫描电路、时钟电路、传感器电路以及继电器控制电路等部分组成。

系统采用STC89C52单片机,功能强、功耗低、价格低、稳定可靠、应用广泛、通用性强等特点。

论文完成了以STC89C52单片机为核心对空气温度、土壤湿度、光照度进行数据的采集、处理、显示等系统的基本框图、工作原理和继电器控制的设计的阐述。

该系统对植物生长过程中的土壤湿度、环境温度、光照度进行了实时地、连续地检测、直观地显示并进行自动地控制。

克服了传统的人工测量方法不能进行连续测量的弊端,节省了工作量,并避免了人为的疏漏或错误造成的不必要的损失。

【关键词】单片机、湿敏传感器、数字温度传感器、光敏电阻、继电器控制。

目录1.绪论 (5)1.1选题背景 (5)1.2国内外的发展现状 (5)1.3课题内容、目的及思路 (5)1.4设计过程及工艺要求 (5)2.方案的比较和选择 (6)2.1湿度传感器的选择 (6)2.2温度传感器的选择 (7)2.3光照度传感器的选择 (8)3系统的总体设计 (9)3.1确定系统任务 (9)3.2系统的组成和工作原理 (9)3.3元件的特性 (12)3.3.1 STC89C52特点 (12)3.3.2AD0804特点 (13)4.电路设计 (13)4.1湿度测量电路 (13)4.2温度测量电路 (14)4.3光照度测量电路 (15)4.4数据显示电路 (15)4.5复位电路 (16)4.6键盘电路 (16)4.7继电器控制电路 (17)5.软件设计 (18)5.1主程序流程图 (18)5.2.参数测量子程序流程图 (20)5.3.键盘扫描子程序流程 (20)6.总结.................................................................................................................................. 错误!未定义书签。

基于单片机的温室大棚监测系统的设计_概述说明

基于单片机的温室大棚监测系统的设计_概述说明

基于单片机的温室大棚监测系统的设计概述说明1. 引言1.1 概述温室大棚是指通过建立一个人工环境,用于培植和保护作物的设施。

随着社会技术的发展,越来越多的农业生产使用了温室大棚来提高作物的生长和产量。

而温室大棚监测系统则是一种采用单片机技术设计的系统,旨在实现对温室内各项指标的实时检测与控制。

通过监测温度、光照强度等关键参数,并根据需求实施相应的控制手段,可以为种植者提供全天候、精确化的管理信息,并有效提高作物的生长质量和产量。

1.2 文章结构本文将首先介绍文章的整体结构,包括各个章节的内容安排。

接着将分别详细阐述温室大棚监测系统设计中涉及到的单片机选择与介绍、温度监测与控制功能设计以及光照强度检测与反馈设计等方面内容。

在此基础上,我们还将深入讨论系统硬件组成与连接方法,包括温度传感器接口设计与实现、光照强度传感器接口设计与实现以及数据传输和通信模块选型与设计。

而在程序算法与逻辑控制设计方面,将详细描述温度监测程序算法及控制逻辑设计原理、光照强度检测程序算法及控制逻辑设计原理,以及数据处理和显示程序设计方法的选择与实现等内容。

最后,我们将给出结论与展望部分,总结评价本次设计成果,并提出存在的问题分析及改进方向建议。

同时,还将展望未来发展趋势和应用前景,并提出相应的分析和预测。

1.3 目的本文的主要目的是介绍基于单片机的温室大棚监测系统的设计原理和方法。

通过该系统的搭建和实施,可以帮助农民更好地管理温室大棚内环境,提高作物生长效果并增加产量。

同时,本文还旨在通过研究单片机技术在温室大棚监测系统中的应用,探索其在农业生产中的潜力和前景。

在发展趋势展望中,我们也将对未来可能涌现出的新技术和创新进行一定程度上的推断和预测。

2. 温室大棚监测系统设计:温室大棚监测系统是一种基于单片机的智能化系统,旨在实现对温室大棚环境参数的实时监测与控制。

本部分将详细介绍该系统的设计方案。

2.1 单片机选择与介绍:在温室大棚监测系统中,单片机扮演了核心的角色。

基于单片机的温室恒温控制系统设计

基于单片机的温室恒温控制系统设计

单片机的温室恒温控制系统设计的基本步骤关于单片机的温室恒温控制系统设计可以通过以下步骤来实现:
1、硬件设计:
选择合适的单片机控制器,如Arduino、Raspberry Pi等。

连接温度传感器,例如DS18B20数字温度传感器,用于检测温室内的温度。

连接执行器,如继电器或开关,用于控制加热器或通风扇等设备。

2、软件设计:
编写单片机的控制程序。

该程序应该能够读取温度传感器的值,并根据设定的温度范围来控制执行器的状态。

设计算法来判断何时开启或关闭加热器或通风扇。

例如,如果温度低于设定的最低温度,开启加热器;如果温度高于设定的最高温度,开启通风扇。

实现PID控制算法以实现更精确的温度控制。

PID控制算法可以根据当前温度和目标温度来调整执行器的输出,以尽量接近目标温度并保持稳定。

3、用户界面设计:
设计一个用户界面,可以通过按钮、旋钮或触摸屏等与温室控制系统进行交互。

在用户界面上提供设置目标温度、显示当前温度和控制状态等功能。

4、连接电路:
连接温度传感器和执行器到单片机的相应引脚。

根据需要连接其他外部组件,如显示器或报警器。

5、测试和优化:
测试控制系统的功能和性能,确保温度能够在设定的范围内保持稳定。

如有必要,调整控制算法和参数以优化系统的响应和稳定性。

以上是基于单片机的温室恒温控制系统设计的基本步骤。

具体的实现细节和算法会根据具体需求和硬件平台的不同而有所差异。

在设计过程中,还需要考虑安全性、可靠性和可扩展性等因素,并遵循相关的电气和软件规范。

基于单片机的智能温室控制系统设计

基于单片机的智能温室控制系统设计

基于单片机的智能温室控制系统设计
基于单片机的智能温室控制系统是一种高效、精准的农业环境控制系统。

该系统利用单片机作为核心控制器,通过各类传感器对温室内部环境参数进行实时监测,并根据预设的控制策略自动调节温室环境,以满足植物生长的需求。

系统主要包括传感器模块、单片机控制模块、执行机构模块和通信模块。

传感器模块负责采集温室内部的环境参数,如温度、湿度、光照强度等;单片机控制模块对传感器数据进行分析处理,并根据控制策略发送控制命令给执行机构;执行机构模块包括加热、通风、灌溉等设备,用于调节温室环境;通信模块用于将传感器数据和控制命令传输给远程监控中心或用户终端。

在设计过程中,需要考虑系统的稳定性、可靠性和可扩展性。

同时,还需要针对不同的温室类型和植物品种进行个性化的控制策略设置,以提高系统的适应性和实用性。

基于单片机的智能温室控制系统可以实现对温室内部环境的精准控制,提高农作物的产量和品质,减少人工干预,降低生产成本,具有广阔的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要温室是现代农业生产所必需的基本设备,用它有效地控制温度、光照、湿度、二氧化碳浓度等是改变植物生长环境、为植物生长创造最佳条件、避免外界四季变化和恶劣气候对其影响的前提。

本设计以STC89C52单片机为核心完成了对空气温度、土壤湿度、光照度进行数据的采集、处理、显示等系统的基本框图、工作原理和继电器控制的设计的工作。

主要内容有:(1)通过单片双端集成温度传感器AD590采集实时温度。

(2)通过湿度传感器HS1100采集实时湿度。

(3)通过固态电化学性二氧化碳传感器TGS4160采集二氧化碳浓度。

(4)判断采集到的参数值与设置值是否一致,并进行继电器控制。

通过以上设计可以对植物生长过程中的土壤湿度、环境温度、光照度以及二氧化碳浓度进行了实时地、连续地检测、直观地显示并进行自动地控制。

克服了传统的人工测量方法不能进行连续测量的弊端,节省了工作量,并避免了人为的疏漏或错误造成的不必要的损失。

关键词:单片机温度传感器湿度传感器二氧化碳传感器In this paperGreenhouse is essential for modern agriculture basic equipment, use it to effectively control, such as temperature, light, humidity, carbon dioxide concentration is to change the plant growth environment, create the best condition for plant growth, avoid the seasons change and the influence of bad weather. This design to STC89C52 single-chip microcomputer as the core to complete the air temperature, soil moisture, and light for data acquisition, processing and display system of the basic block diagram, working principle and the design of relay control work. Main contents are: (1) by monolithic integrated temperature sensor AD590 to collect real-time temperature. (2) by the humidity sensor HS1100 gathering real-time humidity. (3) through solid electric chemical carbon dioxide sensor TGS4160 collecting carbon dioxide concentrations. (4) determine whether collected parameter value and set value, and relay control.Through the above can be designed for plants to grow in the process of soil humidity, environment temperature, light and co2 concentration in real time, continuous detection, display visually and automatically control. Overcomes the traditional continuous measurement of the shortcomings of manual measurement method does not, and save the workload, and avoid the unnecessary loss caused by the omission or human error. Key words:SCM temperature sensor humidity sensor carbon dioxide sensor目录1.绪论 (1)1.1 课题背景及研究意义 (1)1.2 国内外温室控制技术发展概况 (2)1.2.1国外状况 (3)1.2.2国内状况 (3)1.3 选题的目的和意义 (3)2. 温室大棚自动控制系统控制方案设计 (5)2.1 控制方案设计 (5)2.2 系统硬件结构 (6)2.3 温室大棚的硬件组成 (7)2.3.1 传感器 (7)2.3.2 单片机控制系统和微机系统 (10)2.4 温室大棚的软件组成 (11)2.4.1 单片机软件设计 (11)2.5 测试系统的组成及原理 (13)2.5.1 测试系统的设计 (13)(1)温度测量电路 (13)(2)湿度测量电路 (14)(3)CO2含量测量电路 (15)2.5.2 微处理器系统 (16)2.6 程序模块 (16)2.6.1 主程序 (16)2.6.2 显示子程序 (16)2.6.3 A /D转换测量子程序 (17)2.6.4 显示数据转换子程序 (17)3.温室大棚的数据采集系统 (18)3.1 系统设计 (18)3.1.1 系统组成 (18)3.1.2 系统工作原理 (19)3.2 系统软件设计 (19)3.2.1 上位机软件设计 (19)3.2.2 下位机软件设计 (19)3.3 误差分析 (19)3.4 可靠性设计 (19)3.4.1 硬件可靠性设计 (20)3.4.2 软件可靠性设计 (20)4.温室大棚监测控制系统 (21)4.1 系统的总体结构和特点 (21)4.1.1 系统的总体结构 (21)4.2 主要特点 (22)4.2.1 信号检测的多元化 (22)4.2.2 信号检测的连续化 (22)4.2.3数据采集与处理的实时化 (22)4.2.4系统功能的易扩充性 (22)4.3硬件结构 (22)4.4系统软件设计 (23)4.4.1控制系统软件结构 (23)4.4.2软件的实现 (24)5.总结 (25)致谢 (26)英汉互译 (27)参考文献 (35)附主程序流程图 (36)第1章绪论1.1 课题背景及研究意义中国农业的发展必须走现代化农业这条道路,随着国民经济的迅速增长,农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。

现代化农业生产中的重要一环就是对农业生产环境的一些重要参数进行检测和控制。

例如:空气的温度、湿度、二氧化碳含量、土壤的含水量等。

在农业种植问题中,温室环境与生物的生长、发育、能量交换密切相关,进行环境测控是实现温室生产管理自动化、科学化的基本保证,通过对监测数据的分析,结合作物生长发育规律,控制环境条件,使作物达到优质、高产、高效的栽培目的。

以蔬菜大棚为代表的现代农业设施在现代化农业生产中发挥着巨大的作用。

大棚内的温度、湿度与二氧化碳含量等参数,直接关系到蔬菜和水果的生长。

国外的温室设施己经发展到比较完备的程度,并形成了一定的标准,但是价格非常昂贵,缺乏与我国气候特点相适应的测控软件。

而当今大多数对大棚温度、湿度、二氧化碳含量的检测与控制都采用人工管理,这样不可避免的有测控精度低、劳动强度大及由于测控不及时等弊端,容易造成不可弥补的损失,结果不但大大增加了成本,浪费了人力资源,而且很难达到预期的效果。

因此,为了实现高效农业生产的科学化并提高农业研究的准确性,推动我国农业的发展,必须大力发展农业设施与相应的农业工程,科学合理地调节大棚内温度、湿度以及二氧化碳的含量,使大棚内形成有利于蔬菜、水果生长的环境,是大棚蔬菜和水果早熟、优质高效益的重要环节。

目前,随着蔬菜大棚的迅速增多,人们对其性能要求也越来越高,特别是为了提高生产效率,对大棚的自动化程度要求也越来越高。

由于单片机及各种电子器件性价比的迅速提高,使得这种要求变为可能。

当前农业温室大棚大多是中、小规模,要在大棚内引人自动化控制系统,改变全部人工管理的方式,就要考虑系统的成本,因此,针对这种状况,结合郊区农户的需要,设计了一套低成本的温湿度自动控制系统。

该系统采用传感器技术和单片机相结合,由上位机和下位机( 都用单片机实现) 构成,采用485接口进行通讯,实现温室大棚自动化控制。

中国农业的发展必须走现代化农业这条道路,随着国民经济的迅速增长,农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。

现代化农业生产中的重要一环就是对农业生产环境的一些重要参数进行检测和控制。

例如:空气的温度、湿度、二氧化碳含量、土壤的含水量等。

在农业种植问题中,温室环境与生物的生长、发育、能量交换密切相关,进行环境测控是实现温室生产管理自动化、科学化的基本保证,通过对监测数据的分析,结合作物生长发育规律,控制环境条件,使作物达到优质、高产、高效的栽培目的。

以蔬菜大棚为代表的现代农业设施在现代化农业生产中发挥着巨大的作用。

大棚内的温度、湿度与二氧化碳含量等参数,直接关系到蔬菜和水果的生长。

国外的温室设施己经发展到比较完备的程度,并形成了一定的标准,但是价格非常昂贵,缺乏与我国气候特点相适应的测控软件。

而当今大多数对大棚温度、湿度、二氧化碳含量的检测与控制都采用人工管理,这样不可避免的有测控精度低、劳动强度大及由于测控不及时等弊端,容易造成不可弥补的损失,结果不但大大增加了成本,浪费了人力资源,而且很难达到预期的效果。

因此,为了实现高效农业生产的科学化并提高农业研究的准确性,推动我国农业的发展,必须大力发展农业设施与相应的农业工程,科学合理地调节大棚内温度、湿度以及二氧化碳的含量,使大棚内形成有利于蔬菜、水果生长的环境,是大棚蔬菜和水果早熟、优质、高效益的重要环节。

目前,随着蔬菜大棚的迅速增多,人们对其性能要求也越来越高,特别是为了提高生产效率,对大棚的自动化程度要求也越来越高。

由于单片机及各种电子器件性价比的迅速提高,使得这种要求变为可能。

1.2国内外温室控制技术发展概况1.2.1国外状况世界发达国家如荷兰、美国、以色列等大力发展集约化的温室产业,温室内温度、光照、水、气、肥实现了计算机调控,从品种选择、栽培管理到采收包装形成了一整套完整的规范化技术体系。

美国是最早发明计算机的国家,也是将计算机应用于温室控制和管理最早、最多的国家之一。

相关文档
最新文档