2018年高考一轮人教版A数学理科 第9章 第4节 课时分层训练57

合集下载

2018版高考数学全国用,文科一轮专题练习:专题9 平面

2018版高考数学全国用,文科一轮专题练习:专题9 平面

1.直线ax +2y -1=0与x +(a -1)y +2=0平行,则a 等于( ) A.32 B .2 C .-1D .2或-12.直线(a +2)x +(1-a )y -3=0与直线(a -1)x +(2a +3)y +2=0互相垂直,则a 等于( ) A .-1 B .1 C .±1D .-323.(2016·北京东城区模拟)已知直线l 1:x +ay +6=0和l 2:(a -2)x +3y +2a =0,则l 1∥l 2的充要条件是a 等于( ) A .3 B .1 C .-1D .3或-14.已知b >0,直线(b 2+1)x +ay +2=0与直线x -b 2y -1=0互相垂直,则ab 的最小值为( ) A .1 B .2 C .2 2D .2 35.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( ) A.1710 B.175 C .8D .26.过点⎝⎛⎭⎫0,73与点(7,0)的直线l 1,过点(2,1)与点(3,k +1)的直线l 2,与两坐标轴围成的四边形内接于一个圆,则实数k 的值为( ) A .-3 B .3 C .-6D .67.已知点A (1,-2),B (m,2),且线段AB 垂直平分线的方程是x +2y -2=0,则实数m 的值是( ) A .-2 B .-7 C .3D .18.已知直线l 的倾斜角为34π,直线l 1经过点A (3,2)和B (a ,-1),且直线l 1与直线l 垂直,直线l 2的方程为2x +by +1=0,且直线l 2与直线l 1平行,则a +b 等于( ) A .-4 B .-2 C .0 D .2二、填空题9.已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为________. 10.定义点P (x 0,y 0)到直线l :Ax +By +C =0(A 2+B 2≠0)的有向距离为d =Ax 0+By 0+C A 2+B 2.已知点P 1,P 2到直线l 的有向距离分别是d 1,d 2,给出以下命题: ①若d 1-d 2=0,则直线P 1P 2与直线l 平行; ②若d 1+d 2=0,则直线P 1P 2与直线l 平行; ③若d 1+d 2=0,则直线P 1P 2与直线l 垂直; ④若d 1·d 2<0,则直线P 1P 2与直线l 相交. 其中正确命题的序号是________.11.已知等差数列{a n }的首项a 1=1,公差d =-12,若直线x +y -3a n =0和直线2x -y +2a n-1=0的交点M 在第四象限,则满足条件的a n 的值为________.12.已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0互相平行,则2a +3b 的最小值为________.答案精析1.D [由题意得a (a -1)-2×1=0(a ≠1),即a 2-a -2=0,所以a =2或-1.故选D.] 2.C [(a +2)(a -1)+(1-a )(2a +3)=0,解得a =±1,故选C.]3.C [由⎩⎪⎨⎪⎧1×3-(a -2)a =0,2a -6(a -2)≠0,得a =-1.]4.B [由已知两直线垂直得(b 2+1)-ab 2=0,即ab 2=b 2+1.两边同除以b , 得ab =b 2+1b =b +1b .由基本不等式,得b +1b ≥2b ·1b=2,当且仅当b =1时等号成立. 故选B.]5.D [∵63=m 4≠14-3,∴m =8,直线6x +my +14=0可化为3x +4y +7=0,两平行线之间的距离d =|-3-7|32+42=2.故选D.] 6.B [直线l 1,直线l 2与两坐标轴围成的四边形内接于一个圆,说明l 1⊥l 2,73-00-7·k +1-13-2=-1,k =3.故选B.]7.C [由已知k AB =2,即4m -1=2,解得m =3.]8.B [由直线l 的倾斜角为3π4,得l 的斜率为-1,l 1的斜率为33-a,∵直线l 1与l 垂直,∴33-a=1,得a =0,又直线l 2的斜率为-2b ,∵l 1∥l 2,∴-2b =1,b =-2,因此a +b =-2,故选B.] 9.-13或-79解析 由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1,解得a =-13或-79.10.④解析 当d 1=d 2=0时,命题①②③均不正确;当d 1·d 2<0时,P 1,P 2在直线的异侧,故命题④正确. 11.0或-12解析 联立方程⎩⎪⎨⎪⎧x +y -3a n =0,2x -y +2a n -1=0,解得⎩⎨⎧x =a n +13,y =8a n-13,即两直线交点为M (a n +13,8a n -13),由于交点在第四象限,故⎩⎨⎧a n +13>0,8a n-13<0,解得-1<a n <18,由于a n =a 1+(n -1)d =-n 2+32,所以-1<-n 2+32<18,即114<n <5,所以n =3,4,则a 3=0,a 4=-12.12.25解析 由两直线互相平行可得a (b -3)=2b ,即2b +3a =ab ,2a +3b =1,又 a ,b 为正数,所以2a +3b =(2a +3b )·(2a +3b )=13+6a b +6ba ≥13+26a b ·6ba=25, 当且仅当a =b =5时等号成立, 故2a +3b 的最小值为25.。

2018版高考数学文理通用新课标一轮复习课时达标检测:

2018版高考数学文理通用新课标一轮复习课时达标检测:

课时达标检测(四十七) 抛 物 线练基础小题——强化运算能力]1.若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( ) A .圆 B .椭圆 C .双曲线D .抛物线解析:选D 依题意,点P 到直线x =-2的距离等于它到点(2,0)的距离,故点P 的轨迹是抛物线.2.设抛物线y 2=-12x 上一点P 到y 轴的距离是1,则点P 到该抛物线焦点的距离是( )A .3B .4C .7D .13解析:选B 依题意,点P 到该抛物线的焦点的距离等于点P 到其准线x =3的距离,即等于3+1=4.3.若抛物线y 2=2x 上一点M 到它的焦点F 的距离为32,O 为坐标原点,则△MFO 的面积为( )A.22B.24 C.12 D.14解析:选B 由题意知,抛物线的准线方程为x =-12.设M (a ,b ),由抛物线的定义可知,点M 到准线的距离为32,所以a =1,代入抛物线方程y 2=2x ,解得b =±2,所以S △MFO =12×12×2=24. 4.设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为△ABC 的重心,则|FA |+|FB |+|FC |的值为( )A .1B .2C .3D .4解析:选C 依题意,设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),又焦点F ⎝⎛⎭⎫12,0,所以x 1+x 2+x 3=3×12=32,则|FA |+|FB |+|FC |=⎝⎛⎭⎫x 1+12+⎝⎛⎭⎫x 2+12+x 3+12=(x 1+x 2+x 3)+32=32+32=3. 5.直线l 过抛物线x 2=2py (p >0)的焦点,且与抛物线交于A ,B 两点,若线段AB 的长是6,AB 的中点到x 轴的距离是1,则此抛物线方程是________.解析:设A (x 1,y 1),B (x 2,y 2),则|AB |=y 1+y 2+p =2+p =6,∴p =4.即抛物线方程为x 2=8y .答案:x 2=8y练常考题点——检验高考能力]一、选择题1.抛物线y 2=2px (p >0)的准线截圆x 2+y 2-2y -1=0所得弦长为2,则p =( ) A .1 B .2 C .4D .6解析:选B 抛物线y 2=2px (p >0)的准线为x =-p2,而圆化成标准方程为x 2+(y -1)2=2,圆心M (0,1),半径r =2,圆心到准线的距离为p 2,所以⎝⎛⎭⎫p 22+⎝⎛⎭⎫222=(2)2,解得p =2.2.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( )A .1B .2C .4D .8解析:选A 由题意知抛物线的准线为x =-14.因为|AF |=54x 0,根据抛物线的定义可得x 0+14=|AF |=54x 0,解得x 0=1,故选A.3.已知抛物线y 2=8x 的焦点为F ,直线y =k (x -2)与此抛物线相交于P ,Q 两点,则1|FP |+1|FQ |=( ) A.12B .1C .2D .4解析:选A 设P (x 1,y 1),Q (x 2,y 2),由题意可知直线y =k (x -2)过抛物线焦点(2,0),所以|PF |=x 1+2,|QF |=x 2+2,则1|FP |+1|FQ |=1x 1+2+1x 2+2=x 1+x 2+4x 1x 2+2(x 1+x 2)+4.联立直线与抛物线方程消去y ,得k 2x 2-(4k 2+8)x +4k 2=0,可知x 1x 2=4,故1|FP |+1|FQ |=x 1+x 2+4x 1x 2+2(x 1+x 2)+4=x 1+x 2+42(x 1+x 2)+8=12.4.设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5.若以MF 为直径的圆过点(0,2),则抛物线C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x解析:选C 由已知得抛物线的焦点F ⎝⎛⎭⎫p 2,0,设点A (0,2),抛物线上点M (x 0,y 0),则AF =⎝⎛⎭⎫p 2,-2,AM =⎝⎛⎭⎫y 22p ,y 0-2.由已知得,AF ·AM =0,即y 20-8y 0+16=0,因而y 0=4,M ⎝⎛⎭⎫8p ,4.由|MF |=5得,8p +p2=5,又p >0,解得p =2或p =8,所以抛物线C 的方程为y 2=4x 或y 2=16x .5.(2017·长春模拟)过抛物线y 2=2px (p >0)的焦点F 且倾斜角为120°的直线l 与抛物线在第一、四象限分别交于A ,B 两点,则|AF ||BF |的值等于( ) A.13 B.23 C.34D.43解析:选A 记抛物线y 2=2px 的准线为l ′,如图,作AA 1⊥l ′,BB 1⊥l ′,AC ⊥BB 1,垂足分别是A 1,B 1,C ,则有cos ∠ABB 1=|BC ||AB |=|BB 1|-|AA 1||AF |+|BF |=|BF |-|AF ||AF |+|BF |,即cos 60°=|BF |-|AF ||AF |+|BF |=12,由此得|AF ||BF |=13.6.已知抛物线y 2=2px (p >0)与圆(x -a )2+y 2=r 2(a >0)有且只有一个公共点,则( ) A .r =a =p B .r =a ≤p C .r <a ≤pD .r <a =p解析:选B 当r <a 时,根据圆与抛物线的对称性可知,圆(x -a )2+y 2=r 2(a >0)与抛物线y 2=2px (p >0)要么没有公共点,要么有两个或四个公共点,与题意不符;当r >a 时,易知圆与抛物线有两个公共点,与题意不符;当r =a 时,圆与抛物线交于原点,要使圆与抛物线有且只有一个公共点,必须使方程(x -a )2+2px =r 2(x ≥0)有且仅有一个解x =0,可得a ≤p .二、填空题7.抛物线y 2=2px (p >0)上横坐标为6的点到此抛物线焦点的距离为10,则该抛物线的焦点到准线的距离为________.解析:设抛物线的准线方程为x =-p 2(p >0),则根据抛物线的性质有p2+6=10,解得p=8,所以抛物线的焦点到准线的距离为8.答案:88.(2017·邢台模拟)已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为________.解析:由题意知,抛物线的准线l :y =-1,过A 作AA 1⊥l 于A 1,过B 作BB 1⊥l 于B 1,设弦AB 的中点为M ,过M 作MM 1⊥l 于M 1.则|MM 1|=|AA 1|+|BB 1|2.|AB |≤|AF |+|BF |(F 为抛物线的焦点),即|AF |+|BF |≥6,则|AA 1|+|BB 1|≥6,即2|MM 1|≥6,所以|MM 1|≥3,故M 到x 轴的最短距离为3-1=2.答案:29.(2015·荆门质检)已知F 是抛物线y 2=4x 的焦点,A ,B 是抛物线上两点,若△AFB是正三角形,则△AFB 的边长为________.解析:由题意可知A ,B 两点一定关于x 轴对称,且AF ,BF 与x 轴夹角均为30°,由于y 2=4x 的焦点为(1,0),由⎩⎪⎨⎪⎧y =33(x -1),y 2=4x ,化简得y 2-43y -4=0,解得y =23+4或y =23-4,所以△AFB 的边长为8+43或8-4 3.答案:8+43或8-4 310.经过抛物线C 的焦点F 作直线l 与抛物线C 交于A ,B 两点,如果A ,B 在抛物线C 的准线上的射影分别为A 1,B 1,那么∠A 1FB 1为________.解析:由抛物线定义可知|BF |=|BB 1|,|AF |=|AA 1|,故∠BFB 1=∠BB 1F ,∠AFA 1=∠AA 1F .又∠OFB 1=∠BB 1F ,∠OFA 1=∠AA 1F ,故∠BFB 1=∠OFB 1,∠AFA 1=∠OFA 1,所以∠OFA 1+∠OFB 1=12×π=π2,即∠A 1FB 1=π2.答案:π2三、解答题11.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥FA ,垂足为N ,求点N 的坐标.解:(1)抛物线y 2=2px 的准线为x =-p 2,于是4+p2=5,∴p =2,∴抛物线方程为y 2=4x .(2)由(1)知点A 的坐标是(4,4), 由题意得B (0,4),M (0,2).又∵F (1,0),∴k FA =43.∵MN ⊥FA ,∴k MN =-34.∴FA 的方程为y =43(x -1),MN 的方程为y =-34x +2,联立⎩⎨⎧y =43(x -1),y =-34x +2,解方程组得x =85,y =45,∴点N 的坐标为⎝⎛⎭⎫85,45.12.如图,已知抛物线C :y 2=2px (p >0),焦点为F ,过点G (p,0)作直线l 交抛物线C 于A ,M 两点,设A (x 1,y 1),M (x 2,y 2).(1)若y1y2=-8,求抛物线C的方程;(2)若直线AF与x轴不垂直,直线AF交抛物线C于另一点B,直线BG交抛物线C 于另一点N.求证:直线AB与直线MN斜率之比为定值.解:(1)设直线AM的方程为x=my+p,代入y2=2px得y2-2mpy-2p2=0,则y1y2=-2p2=-8,得p=2.∴抛物线C的方程为y2=4x.(2)证明:设B(x3,y3),N(x4,y4).由(1)可知y3y4=-2p2,y1y3=-p2.又直线AB的斜率k AB=y3-y1x3-x1=2py1+y3,直线MN的斜率k MN=y4-y2x4-x2=2py2+y4,∴k ABk MN=y2+y4y1+y3=-2p2y1+-2p2y3y1+y3=-2p2y1y 3y1+y 3y1+y3=2.故直线AB与直线MN斜率之比为定值.。

2018年高考数学理人教A版一轮复习习题:第九章 解析几

2018年高考数学理人教A版一轮复习习题:第九章 解析几

考点规范练45直线的倾斜角、斜率与直线的方程基础巩固1.设直线ax+by+c=0的倾斜角为α,且sin α+cos α=0,则a,b满足()A.a+b=1B.a-b=1C.a+b=0D.a-b=02.已知{a n}是等差数列,a4=15,S5=55,则过点P(3,a3),Q(4,a4)的直线斜率为()A.4B.C.-4D.-143.直线l经过点A(1,2),在x轴上的截距的取值范围是(-3,3),则其斜率的取值范围是()A. B.∪(1,+∞)C.(-∞,1)∪D.(-∞,-1)∪4.一次函数y=-x+的图象同时经过第一、二、四象限的必要不充分条件是()A.m>1,且n>1B.mn>0C.m>0,且n<0D.m>0,且n>05.设A,B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是()A.x+y-5=0B.2x-y-1=0C.2x-y-4=0D.2x+y-7=06.若ab>0,且A(a,0),B(0,b),C(-2,-2)三点共线,则ab的最小值为.7.一条直线经过点A(2,-),并且它的倾斜角等于直线y=x的倾斜角的2倍,则这条直线的一般式方程是.8.设直线l的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6,根据下列条件分别求m的值.(1)直线l经过定点P(2,-1);(2)直线l在y轴上的截距为6;(3)直线l与y轴平行;(4)直线l与y轴垂直.9.已知直线l过点P(0,1),且与直线l1:x-3y+10=0和l2:2x+y-8=0分别交于点A,B(如图).若线段AB被点P平分,求直线l的方程.能力提升10.若点(m,n)在直线4x+3y-10=0上,则m2+n2的最小值是()A.2B.2C.4D.2〚导学号37270358〛11.若直线ax+by=ab(a>0,b>0)过点(1,1),则该直线在x轴,y轴上的截距之和的最小值为()A.1B.2C.4D.8 〚导学号37270359〛12.已知直线l过点M(1,1),且与x轴,y轴的正半轴分别相交于A,B两点,O为坐标原点.当|MA|2+|MB|2取得最小值时,求直线l的方程.高考预测13.过点A(1,4)引一条直线l,它与x轴,y轴的正半轴的交点分别为(a,0)和(0,b),当a+b取得最小值时,求直线l的方程.〚导学号37270360〛参考答案考点规范练45直线的倾斜角、斜率与直线的方程1.D解析由sin α+cos α=0,得=-1,即tan α=-1.又因为tan α=-,所以-=-1.即a=b,故应选D.2.A解析∵{a n}为等差数列,S5=55,∴a1+a5=22,∴2a3=22,∴a3=11.又a4=15,∴k PQ==4.3.D解析设直线的斜率为k,如图,过定点A的直线经过点B时,直线l在x轴上的截距为3,此时k=-1;过定点A的直线经过点C时,直线l在x轴上的截距为-3,此时k=,满足条件的直线l的斜率范围是(-∞,-1)4.B解析因为y=-x+经过第一、二、四象限,所以-<0,>0,即m>0,n>0,但此为充要条件,因此,其必要不充分条件为mn>0,故选B.5.A解析易知A(-1,0).∵|PA|=|PB|,∴P在AB的中垂线即x=2上.∴B(5,0).∵PA,PB关于直线x=2对称,∴k PB=-1.∴l PB:y-0=-(x-5),即x+y-5=0.6.16解析根据A(a,0),B(0,b)确定直线的方程为=1,又C(-2,-2)在该直线上,故=1,所以-2(a+b)=ab.又ab>0,故a<0,b<0.根据基本不等式ab=-2(a+b)≥4,从而0(舍去)或4,故ab≥16,当且仅当a=b=-4时取等号.即ab的最小值为16.7x-y-3=0解析因为直线y=x的倾斜角为30°,所以所求直线的倾斜角为60°,即斜率k=tan 60°=又该直线过点A(2,-),故所求直线为y-(-)=(x-2),即x-y-3=0.8.解 (1)由于点P在直线l上,即点P的坐标(2,-1)适合方程(m2-2m-3)x+(2m2+m-1)y=2m-6,把点P的坐标(2,-1)代入方程,得2(m2-2m-3)-(2m2+m-1)=2m-6,解得m=(2)令x=0,得y=,根据题意可知=6,解得m=-或m=0.(3)直线与y轴平行,则有解得m=(4)直线与y轴垂直,则有解得m=3.9.解∵点B在直线l2:2x+y-8=0上,∴可设点B的坐标为(a,8-2a).∵点P(0,1)是线段AB的中点,∴点A的坐标为(-a,2a-6).又点A在直线l1:x-3y+10=0上,∴将A(-a,2a-6)代入直线l1的方程,得-a-3(2a-6)+10=0,解得a=4.∴点B的坐标是(4,0).因此,过P(0,1),B(4,0)的直线l的方程为=1,即x+4y-4=0.10.C解析 (方法一)因为点(m,n)在直线4x+3y-10=0上,所以4m+3n-10=0.欲求m2+n2的最小值可先求的最小值.而表示4m+3n-10=0上的点(m,n)到原点的距离,如图.当过原点和点(m,n)的直线与直线4m+3n-10=0垂直时,原点到点(m,n)的距离最小,最小值为2.故m2+n2的最小值为4.(方法二)由题意知点(m,n)为直线上到原点最近的点,直线与两坐标轴交于A,B,在Rt△OAB中,OA=,OB=,斜边AB=,斜边上的高h即为所求m2+n2的算术平方根,∴S△OAB=OA·OB=AB·h,∴h==2,∴m2+n2的最小值为h2=4.11.C解析∵直线ax+by=ab(a>0,b>0)过点(1,1),∴a+b=ab,即=1,∴直线在x轴、y轴上的截距之和a+b=(a+b)=2+≥2+2=4,当且仅当a=b=2时等号成立.∴该直线在x轴,y轴上的截距之和的最小值为4.12.解设直线l的斜率为k,则k<0,直线l的方程为y-1=k(x-1),则A,B(0,1-k),所以|MA|2+|MB|2=+12+12+(1-1+k)2=2+k2+2+2=4,当且仅当k2=,即k=-1时,|MA|2+|MB|2取得最小值4, 此时直线l的方程为x+y-2=0.13.解 (方法一)由题意,设直线l:y-4=k(x-1),且k<0,则a=1-,b=4-k.故a+b=5+5+4=9,当且仅当k=-2时等号成立.此时直线l的方程为y=-2x+6.(方法二)设l:=1(a>0,b>0).由于l经过点A(1,4),故=1,则a+b=(a+b)=5+9,当且仅当,即b=2a时等号成立,此时a=3,b=6.故所求直线l的方程为=1,即y=-2x+6.。

2018年高考数学(理)人教A版一轮复习习题第九章解析几何考点规范练47Word版含答案

2018年高考数学(理)人教A版一轮复习习题第九章解析几何考点规范练47Word版含答案

考点规范练47圆的方程基础巩固1.(2016全国甲卷,理4)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-B.-C.D.22.已知实数x,y满足(x+5)2+(y-12)2=122,则x2+y2的最小值为()A.2B.1C.D.3.过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.104.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是()A.(x-2)2+(y+1)2=1B.(x-2)2+(y+1)2=4C.(x+4)2+(y-2)2=4D.(x+2)2+(y-1)2=15.已知圆C的圆心在曲线y=上,圆C过坐标原点O,且分别与x轴、y轴交于A,B两点,则△OAB 的面积等于()A.2B.3C.4D.86.如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为;(2)圆C在点B处的切线在x轴上的截距为.7.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.8.(2016河北唐山一模)直线l:=1与x轴、y轴分别相交于点A,B,O为坐标原点,则△OAB 的内切圆的方程为.9.已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2x-y=0的距离为,则圆C的方程为.10.已知圆C的圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点P(3,-2),求圆C的方程.11.在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(1)求圆心P的轨迹方程;(2)若点P到直线y=x的距离为,求圆P的方程.能力提升12.若直线l过点P且被圆x2+y2=25截得的弦长是8,则直线l的方程为()A.3x+4y+15=0B.x=-3或y=-C.x=-3D.x=-3或3x+4y+15=013.已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x 轴上的动点,则|PM|+|PN|的最小值为()A.5-4B.-1C.6-2D.〚导学号37270361〛14.已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是,半径是.15.在以O为原点的平面直角坐标系中,点A(4,-3)为△OAB的直角顶点,已知|AB|=2|OA|,且点B的纵坐标大于0.(1)求的坐标;(2)求圆x2-6x+y2+2y=0关于直线OB对称的圆的方程.高考预测16.已知平面区域恰好被面积最小的圆C:(x-a)2+(y-b)2=r2及其内部所覆盖,则圆C的方程为.参考答案考点规范练47圆的方程1.A解析因为圆的方程可化为(x-1)2+(y-4)2=4,所以圆心坐标为(1,4).由点到直线的距离公式,得d==1,解得a=-,故选A.2.B解析设P(x,y),则点P在圆(x+5)2+(y-12)2=122上,则圆心C(-5,12),半径r=12,x2+y2=2=|OP|2,又|OP|的最小值是|OC|-r=13-12=1,所以x2+y2的最小值为1.3.C解析设圆的方程为x2+y2+Dx+Ey+F=0,将点A,B,C代入,得解得则圆的方程为x2+y2-2x+4y-20=0.令x=0得y2+4y-20=0,设M(0,y1),N(0,y2),则y1,y2是方程y2+4y-20=0的两根,由根与系数的关系,得y1+y2=-4,y1y2=-20,故|MN|=|y1-y2|==44.A解析设圆上任一点为Q(x0,y0),PQ的中点为M(x,y),则解得因为点Q在圆x2+y2=4上,所以=4,即(2x-4)2+(2y+2)2=4,化简得(x-2)2+(y+1)2=1.5.C解析设圆心的坐标是圆C过坐标原点,∴|OC|2=t2+,∴圆C的方程为(x-t)2+=t2+令x=0,得y1=0,y2=,∴点B的坐标为;令y=0,得x1=0,x2=2t,∴点A的坐标为(2t,0),∴S△OAB=|OA|·|OB|=|2t|=4,即△OAB的面积为4.6.(1)(x-1)2+(y-)2=2(2)-1-解析 (1)由题意可设圆心C坐标为(1,b),取AB中点为P,连接CP,CB,则△BPC为直角三角形,得|BC|=r==b,故圆C的标准方程为(x-1)2+(y-)2=2.(2)由(1)得,C(1,),B(0,+1),则k BC=-1.圆C在点B处的切线方程为y=x++1,令y=0,得x=--1,即切线在x轴上的截距为-1-7.(x-1)2+y2=2解析因为直线mx-y-2m-1=0恒过定点(2,-1),所以圆心(1,0)到直线mx-y-2m-1=0的最大距离为d=,所以半径最大时为r=,所以半径最大的圆的标准方程为(x-1)2+y2=2.8.(x-1)2+(y-1)2=1解析由直线方程=1与x轴,y轴分别相交于点A,B,如图.设△OAB的内切圆的圆心为M(m,m).直线方程=1可化简为3x+4y-12=0,由点M到直线l的距离等于m得=m,解得m=1.故△OAB的内切圆的方程为(x-1)2+(y-1)2=1.9.(x-2)2+y2=9解析设圆心C的坐标为(a,0)(a>0),则,即a=2.又点M(0,)在圆C上,则圆C的半径r==3.故圆C的方程为(x-2)2+y2=9.10.解 (方法一)如图,设圆心C(x0,-4x0),依题意得=1,则x0=1,即圆心C的坐标为(1,-4),半径r=2,故圆C的方程为(x-1)2+(y+4)2=8.(方法二)设所求圆C的方程为(x-x0)2+(y-y0)2=r2,根据已知条件得解得因此所求圆C的方程为(x-1)2+(y+4)2=8.11.解 (1)设P(x,y),圆P的半径为r.由题设y2+2=r2,x2+3=r2,从而y2+2=x2+3.故P点的轨迹方程为y2-x2=1.(2)设P(x0,y0),由已知得又P在双曲线y2-x2=1上,从而得由此时,圆P的半径r=由此时,圆P的半径r=故圆P的方程为x2+(y+1)2=3或x2+(y-1)2=3.12.D解析若直线l的斜率不存在,则该直线的方程为x=-3,代入圆的方程解得y=±4,故直线l被圆截得的弦长为8,满足条件;若直线l的斜率存在,不妨设直线l的方程为y+=k(x+3),即kx-y+3k-=0.因为直线l被圆截得的弦长为8,所以半弦长为4,又圆的半径为5,则圆心(0,0)到直线l的距离为,解得k=-,此时直线方程为3x+4y+15=0.13.A解析圆C1,C2的图象如图所示.设P是x轴上任意一点,则|PM|的最小值为|PC1|-1,同理|PN|的最小值为|PC2|-3,则|PM|+|PN|的最小值为|PC1|+|PC2|-4.作C1关于x轴的对称点C1'(2,-3),连接C1'C2,与x轴交于点P,连接PC1,可知|PC1|+|PC2|的最小值为|C1'C2|,则|PM|+|PN|的最小值为5-4,故选A.14.(-2,-4)5解析由题意,可得a2=a+2,解得a=-1或a=2.当a=-1时,方程为x2+y2+4x+8y-5=0,即(x+2)2+(y+4)2=25,故圆心为(-2,-4),半径为5;当a=2时,方程为4x2+4y2+4x+8y+10=0,即+(y+1)2=-不表示圆.15.解 (1)设=(x,y),由|AB|=2|OA|,=0,得解得若=(-6,-8),则y B=-11与y B>0矛盾.舍去,即=(6,8).(2)圆x2-6x+y2+2y=0,即(x-3)2+(y+1)2=()2,其圆心为C(3,-1),半径r==(4,-3)+(6,8)=(10,5),∴直线OB的方程为y=x.设圆心C(3,-1)关于直线y=x的对称点的坐标为(a,b),则解得故所求的圆的方程为(x-1)2+(y-3)2=10.16.(x-2)2+(y-1)2=5解析由题意知,此平面区域表示的是以O(0,0),P(4,0),Q(0,2)所构成的三角形及其内部,所以覆盖它且面积最小的圆是其外接圆.因为△OPQ为直角三角形,所以圆心为斜边PQ的中点(2,1),半径r=,所以圆C的方程为(x-2)2+(y-1)2=5.。

【新步步高】2018版高考数学(理)一轮复习第九章解析几何9.7

【新步步高】2018版高考数学(理)一轮复习第九章解析几何9.7

→ → (3)中证明QA· QB=0.
课时作业
1.(2017· 昆明调研)已知抛物线C的顶点是原点O,焦点F在x轴的正半轴 → → =-12,那么 上,经过F的直线与抛物线C交于A、B两点,如果 OA · OB 抛物线C的方程为 答案
0交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物
线C于点Q.
(1)求抛物线C的焦点坐标; (2)若抛物线C上有一点R(xR,2)到焦点F的距离为3,求此时m的值; (3)是否存在实数m,使△ABQ是以Q为直角顶点的直角三角形?若存在,
求出m的值;若不存在,请说明理由.
思维点拨 规范解答 答题模板
考点自测
1.(2016· 四川)抛物线y2=4x的焦点坐标是 A.(0,2) C.(2,0) B.(0,1) D.(1,0)
答案
解析
a ∵对于抛物线y2=ax,其焦点坐标为 ,0 , 4 ∴对于y2=4x,焦点坐标为(1,0).
2.(2016· 甘肃张掖一诊)过抛物线y2=4x的焦点的直线l交抛物线于P(x1,
思考辨析 判断下列结论是否正确(请在括号中打“√”或“×”)
(1)平面内与一个定点 F和一条定直线l的距离相等的点的轨迹一定是抛
物线.( × )
(2)方程y=ax2(a≠0)表示的曲线是焦点在 x轴上的抛物线,且其焦点坐 a a 标是( ,0),准线方程是x=- .( × ) 4 4 (3)抛物线既是中心对称图形,又是轴对称图形.( × ) p 2 (4)AB为抛物线y =2px(p>0)的过焦点F( ,0)的弦,若A(x1,y1),B(x2, 2 2 p y2),则x1x2= ,y1y2=-p2,弦长|AB|=x1+x2+p.( √ ) 4

2018高考一轮数学浙江专版练习第9章 第5节 课时分层训练56 含答案 精品

2018高考一轮数学浙江专版练习第9章 第5节 课时分层训练56 含答案 精品

课时分层训练(五十六)古典概型A组基础达标(建议用时:30分钟)一、选择题1.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为()A.12 B.13C.23 D.56C[设两本不同的数学书为a1,a2,1本语文书为b.则在书架上的摆放方法有a1a2b,a1ba2,a2a1b,a2ba1,ba1a2,ba2a1,共6种,其中数学书相邻的有4种.因此2本数学书相邻的概率P=46=23.]2.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()【导学号:51062349】A.15 B.25C.825 D.925B[设另外三名学生分别为丙、丁、戊.从5名学生中随机选出2人,有(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共10种情形,其中甲被选中的有(甲,乙),(甲,丙),(甲,丁),(甲,戊),共4种情形,故甲被选中的概率P=410=25.]3.(2017·绍兴模拟)一对年轻夫妇和其两岁的孩子做游戏,让孩子把分别写有“1”“3”“1”“4”的四张卡片随机排成一行,若卡片按从左到右的顺序排成“1314”,则孩子会得到父母的奖励,那么孩子受到奖励的概率为()A.112 B.512C.712 D.56A[先从4个位置中选一个排4,再从剩下的位置中选一个排3,最后剩下的2个位置排1.∴共有4×3×1=12种不同排法. 又卡片排成“1314”只有1种情况, 故所求事件的概率P =112.]4.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) 【导学号:51062350】A.18B.38C.58D.78D [4名同学各自在周六、周日两天中任选一天参加公益活动的情况有24=16(种),其中仅在周六(周日)参加的各有1种,∴所求概率为1-1+116=78.]5.如图9-5-2,三行三列的方阵中有九个数a ij (i =1,2,3;j =1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )⎝ ⎛⎭⎪⎫a 11 a 12 a 13a 21 a 22 a 23a 31a 32a 33 图9-5-2 A.37 B.47 C.114D.1314D [从九个数中任取三个数的不同取法共有C 39=84(种),因为取出的三个数分别位于不同的行与列的取法共有C 13·C 12·C 11=6(种),所以至少有两个数位于同行或同列的概率为1-684=1314.]二、填空题6.在集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =n π3,n =1,2,3,…,10中任取一个元素,所取元素恰好满足方程cos x =12的概率是________. 【导学号:51062351】15 [基本事件总数为10,满足方程cos x =12的基本事件数为2,故所求概率为P =210=15.]7.从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________.16[从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则有2,3;2,8;2,9;3,8;3,9;8,9;3,2;8,2;9,2;8,3;9,3;9,8,共12种取法,其中log a b 为整数的有(2,8),(3,9)两种,故P =212=16.]8.在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________.13[记“两人都中奖”为事件A , 设中一、二等奖及不中奖分别记为1,2,0,那么甲、乙抽奖结果有(1,2),(1,0),(2,1),(2,0),(0,1),(0,2),共6种.其中甲、乙都中奖有(1,2),(2,1),共2种,所以P (A )=26=13.]三、解答题9.(2017·浙江五校联考)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A 1,A 2,A 3,A 4,A 5,A 6.现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设A 为事件“编号为A 5和A 6的两名运动员中至少有1人被抽到”,求事件A 发生的概率.[解] (1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.5分 (2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.10分②编号为A 5和A 6的两名运动员中至少有1人被抽到的所有可能结果为{A 1,A 5},{A 1,A 6},{A 2,A 5},{A 2,A 6},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共9种.因此,事件A 发生的概率P (A )=915=35.15分10.(2017·浙江湖州检测)一个盒子里装有若干个均匀的红球和白球,每个球被取到的概率相等.若从盒子里随机取一个球,取到的球是红球的概率为13;若一次从盒子里随机取两个球,取到的球至少有一个是白球的概率为1011.(1)该盒子里的红球、白球分别为多少个?(2)若一次从盒子中随机取出3个球,求取到的白球个数不少于红球个数的概率. 【导学号:51062352】[解] (1)设该盒子里有红球m 个,有白球n 个, 根据题意得⎩⎪⎨⎪⎧m m +n=13,1-C 2mC 2m +n=1011,4分解方程组得m =4,n =8, ∴红球4个,白球8个.7分(2)设“从盒子中任取3个球,取到的白球个数不少于红球个数”为事件A ,则P (A )=C 38+C 28·C 14C 312=4255,13分 因此,从盒子中任取3个球,取到的白球个数不少于红球个数的概率为4255.15分B 组 能力提升 (建议用时:15分钟)1.(2017·浙江杭州模拟)某同学先后投掷一枚质地均匀的骰子两次,第一次向上的点数记为x ,第二次向上的点数记为y ,在直角坐标系xOy 中,以(x ,y )为坐标的点落在直线2x -y =1上的概率为( )A.112B.19C.536 D.16A[先后掷两次骰子的结果共6×6=36种.以(x,y)为坐标的点落在直线2x-y=1上的结果有(1,1),(2,3),(3,5),共3种,故所求概率为336=1 12.]2.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a,放回后,乙从此口袋中再摸出一个小球,其号码为b,则使不等式a-2b+4<0成立的事件发生的概率为________.14[由题意知(a,b)的所有可能结果有4×4=16个.其中满足a-2b+4<0的有(1,3),(1,4),(2,4),(3,4)共4种结果.故所求事件的概率P=416=14.]3.先后掷一枚质地均匀的骰子,分别记向上的点数为a,b.事件A:点(a,b)落在圆x2+y2=12内;事件B:f(a)<0,其中函数f(x)=x2-2x+3 4.(1)求事件A发生的概率;(2)求事件A,B同时发生的概率. 【导学号:51062353】[解](1)先后掷一枚质地均匀的骰子,有6×6=36种等可能的结果.2分满足落在圆x2+y2=12内的点(a,b)有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)共6个.所以事件A发生的概率P(A)=636=16.6分(2)由f(a)=a2-2a+34<0,得12<a<32.又a∈{1,2,3,4,5,6},知a=1.所以事件A,B同时发生时,有(1,1),(1,2),(1,3)共3种情形.10分故事件A,B同时发生的概率为P(AB)=336=112.15分。

2018版高考数学(人教A版理科)一轮复习课时跟踪检测4含答案

课时跟踪检测(四)1.下图中可作为函数y=f(x)的图象的是( )A BC D答案:D解析:由函数的定义知,只有D是“多对一”函数,而A,B,C 均为“一对多”,故选D.2.已知f错误!=2x-5,且f(a)=6,则a的值为()A.-错误!B.错误!C.43D.-错误!答案:B解析:令t=错误!x-1,则x=2t+2,f(t)=2(2t+2)-5=4t-1,由f(a)=6知,4a-1=6,解得a=错误!.3.若二次函数g(x)满足g(1)=1,g(-1)=5,且图象过原点,则g (x)的解析式为()A.g(x)=2x2-3x B.g(x)=3x2-2xC.g(x)=3x2+2x D.g(x)=-3x2-2x答案:B解析:设g(x)=ax2+bx+c(a≠0),∵g(1)=1,g(-1)=5,且图象过原点,∴错误!解得错误!∴g(x)=3x2-2x。

4.下列函数中,与函数y=错误!的定义域相同的函数为( )A.y=1sin x B.y=错误!C.y=x e x D.y=错误!答案:D解析:函数y=错误!的定义域为{x|x≠0}.A项,y=错误!的定义域为{x|x≠kπ,k∈Z};B项,y=错误!的定义域为{x|x>0};C项,y=x e x的定义域为R;D项,y=错误!的定义域为{x|x≠0}.5.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=错误!则f(f(-16))=( )A.-错误!B.-错误!C.错误!D.错误!答案:C解析:因为f(x)为奇函数,所以f(f(-16))=-f(f(16))=-f(4)=-cos 错误!=错误!,故选C。

6.已知f(x)=错误!则f(-2 016)=()A.810 B.809C.808 D.806答案:B解析:f(-2 016)=f(-2 011)+2=f(-2 006)+4=…=f(-1)+403×2=f(4)+404×2=808+sin错误!=809.7.已知函数f(x)=x|x|,若f(x0)=4,则x0的值为( ) A.-2 B.2C.-2或2 D.错误!答案:B解析:当x≥0时,f(x)=x2,f(x0)=4,即x错误!=4,解得x0=2。

2018版高考数学一轮复习第九章解析几何课时跟踪检测50理新人教A版

课时跟踪检测(五十)[高考基础题型得分练]1.[2017²浙江温州十校联考]对任意的实数k ,直线y =kx -1与圆C :x 2+y 2-2x -2=0的位置关系是( )A .相离B .相切C .相交D .以上三个选项均有可能 答案:C解析:直线y =kx -1恒经过点A (0,-1),圆x 2+y 2-2x -2=0的圆心为C (1,0),半径为3,而|AC |=2<3,故直线y =kx -1与圆x 2+y 2-2x -2=0相交.2.已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-8答案:B解析:将圆的方程化为标准方程为(x +1)2+(y -1)2=2-a ,所以圆心为(-1,1),半径r =2-a ,圆心到直线x +y +2=0的距离d =|-1+1+2|2=2,故r 2-d 2=4,即2-a -2=4,所以a =-4,故选B.3.[2017²辽宁大连期末]圆x 2+y 2+2y -3=0被直线x +y -k =0分成两段圆弧,且较短弧长与较长弧长之比为1∶3,则k =( )A.2-1或-2-1 B .1或-3 C .1或- 2 D. 2答案:B解析:由题意知,圆的标准方程为x 2+(y +1)2=4. 较短弧所对圆周角是90°,所以圆心(0,-1)到直线x +y -k =0的距离为22r = 2. 即|1+k |2=2,解得k =1或-3. 4.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( ) A .21B .19C .9D .-11答案:C解析:圆C 1的圆心C 1(0,0),半径r 1=1,圆C 2的方程可化为(x -3)2+(y -4)2=25-m , 所以圆心C 2(3,4),半径r 2=25-m , 从而|C 1C 2|=32+42=5.由两圆外切,得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9,故选C.5.[2017²江西南昌模拟]已知过定点P (2,0)的直线l 与曲线y =2-x 2相交于A ,B 两点,O 为坐标原点,当S △AOB =1时,直线l 的倾斜角为( )A .150°B .135°C .120°D .不存在答案:A解析:由于S △AOB =12³2³2sin ∠AOB =1,∴sin ∠AOB =1,∴∠AOB =π2, ∴点O 到直线l 的距离OM 为1,而OP =2,OM =1,在直角△OMP 中,∠OPM =30°, ∴直线l 的倾斜角为150°,故选A.6.[2017²山东青岛一模]过点P (1,3)作圆O :x 2+y 2=1的两条切线,切点分别为A 和B ,则弦长|AB |=( )A. 3 B .2 C. 2 D .4答案:A解析:如图所示,∵PA ,PB 分别为圆O :x 2+y 2=1的切线,∴AB ⊥OP .∵P (1,3),O (0,0), ∴|OP |=1+3=2. 又∵|OA |=1,在Rt △APO 中,cos ∠AOP =12,∴∠AOP =60°,∴|AB |=2|OA |sin ∠AOP = 3.7.若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12 B .1 C.22D. 2答案:D解析:因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2=|c |2|c |=22, 因此根据直角三角形勾股定理,弦长的一半就等于1-⎝⎛⎭⎪⎫222=22,所以弦长为 2. 8.直线l 与圆x 2+y 2+2x -4y +a =0(a <3)相交于A ,B 两点,若弦AB 的中点为(-2,3),则直线l 的方程为( )A .x +y -3=0B .x +y -1=0C .x -y +5=0D .x -y -5=0答案:C解析:设直线的斜率为k ,又弦AB 的中点为(-2,3), 所以直线l 的方程为kx -y +2k +3=0,由x 2+y 2+2x -4y +a =0得圆的圆心坐标为(-1,2), 所以圆心到直线的距离为2,所以|-k -2+2k +3|k 2+1=2,解得k =1, 所以直线l 的方程为x -y +5=0.9.[2017²河北唐山模拟]过点A (3,1)的直线l 与圆C :x 2+y 2-4y -1=0相切于点B ,则CA →²CB →=________.答案:5解析:解法一:由已知得,圆心C (0,2),半径r =5,△ABC 是直角三角形,|AC |= 3-0 2+ 1-2 2=10,|BC |=5, ∴cos ∠ACB =BC AC=510,∴CA →²CB →=|CA →||CB →|cos ∠ACB =5.解法二:CA →²CB →=(CB →+BA →)²CB →=CB →2+BA →²CB →, 由于|BC |=5,AB ⊥BC , 因此CA →²CB →=5+0=5.10.已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.答案:4±15解析:依题意,圆C 的半径是2,圆心C (1,a )到直线ax +y -2=0的距离等于32³2=3,于是有|a +a -2|a 2+1=3,即a 2-8a +1=0,解得a =4±15. 11.若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是为________.答案:⎝ ⎛⎭⎪⎫-33,0∪⎝⎛⎭⎪⎫0,33 解析:整理曲线C 1的方程得,(x -1)2+y 2=1,故曲线C 1为以点C 1(1,0)为圆心,1为半径的圆;曲线C 2则表示两条直线,即x 轴与直线l :y =m (x +1),显然x 轴与圆C 1有两个交点,依题意知直线l 与圆相交,故有圆心C 1到直线l 的距离d =|m 1+1 -0|m 2+1<r =1,解得m∈⎝ ⎛⎭⎪⎫-33,33, 又当m =0时,直线l 与x 轴重合,此时只有两个交点,应舍去. 故m ∈⎝ ⎛⎭⎪⎫-33,0∪⎝⎛⎭⎪⎫0,33. 12.过点M (1,2)的直线l 与圆C :(x -3)2+(y -4)2=25交于A ,B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程是________.答案:x +y -3=0解析:依题意得,当∠ACB 最小时,圆心C 到直线l 的距离达到最大,此时直线l 与直线CM 垂直,又直线CM 的斜率为1, 因此所求直线l 的方程是y -2=-(x -1),即x +y -3=0.[冲刺名校能力提升练]1.[2017²辽宁沈阳一模]直线y =x +4与圆(x -a )2+(y -3)2=8相切,则a 的值为( ) A .3 B .2 2 C .3或-5 D .-3或5答案:C解析:解法一:联立⎩⎪⎨⎪⎧y =x +4, x -a 2+ y -3 2=8,消去y 可得,2x 2-(2a -2)x +a 2-7=0,则由题意可得Δ=[-(2a -2)]2-4³2³(a 2-7)=0, 整理可得a 2+2a -15=0,解得a =3或-5.解法二:因为(x -a )2+(y -3)2=8的圆心为(a,3),半径为22,所以由直线y =x +4与圆(x -a )2+(y -3)2=8相切知,圆心到直线的距离等于半径,所以|a -3+4|12+ -12=22,即|a +1|=4,解得a =3或-5.2.[2017²新疆乌鲁木齐一诊]在圆x 2+y 2+2x -4y =0内,过点(0,1)的最短弦所在直线的倾斜角是( )A.π6 B.π4 C.π3D.3π4答案:B解析:由题意知,圆心为(-1,2),过点(0,1)的最长弦(直径)斜率为-1,且最长弦与最短弦垂直,∴过点(0,1)的最短弦所在直线的斜率为1,即倾斜角是π4.3.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)答案:D解析:设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,两式相减,得(y 1+y 2)²(y 1-y 2)=4(x 1-x 2),当直线l 的斜率不存在时,符合条件的直线l 必有两条; 当直线l 的斜率k 存在时,如图,x 1≠x 2,则有y 1+y 22²y 1-y 2x 1-x 2=2,即y 0²k =2, 由CM ⊥AB ,得k ²y 0-0x 0-5=-1, y 0²k =5-x 0,2=5-x 0,x 0=3,即M 必在直线x =3上,将x =3代入y 2=4x ,得y 2=12, ∴-23<y 0<23, ∵点M 在圆上,∴(x 0-5)2+y 20=r 2,r 2=y 20+4<12+4=16, 又y 20+4>4,∴4<r 2<16,∴2<r <4.故选D.4.[2017²云南名校联考]已知圆O :x 2+y 2=1,P 为直线x -2y +5=0上的动点,过点P 作圆O 的一条切线,切点为A ,则|PA |的最小值为________.答案:2解析:过O 作OP 垂直于直线x -2y +5=0, 过P 作圆O 的切线PA ,连接OA , 易知此时|PA |的值最小. 由点到直线的距离公式,得 |OP |=|1³0-2³0+5|1+22= 5. 又|OA |=1,所以|PA |=|OP |2-|OA |2=2.5.如图,已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P .(1)求圆A 的方程;(2)当|MN |=219时,求直线l 的方程. 解:(1)设圆A 的半径为R .由于圆A 与直线l 1:x +2y +7=0相切, ∴R =|-1+4+7|5=2 5.∴圆A 的方程为(x +1)2+(y -2)2=20.(2)①当直线l 与x 轴垂直时,易知x =-2符合题意; ②当直线l 的斜率存在时,设直线l 的方程为y =k (x +2). 即kx -y +2k =0. 连接AQ ,则AQ ⊥MN .∵|MN |=219,∴|AQ |=20-19=1, 则由|AQ |=|k -2|k 2+1=1,得k =34,∴直线l :3x -4y +6=0.故直线l 的方程为x =-2或3x -4y +6=0. 6.已知圆O :x 2+y 2=4和点M (1,a ).(1)若过点M 有且只有一条直线与圆O 相切,求实数a 的值,并求出切线方程;(2)若a =2,过点M 作圆O 的两条弦AC ,BD 互相垂直,求|AC |+|BD |的最大值. 解:(1)由条件知点M 在圆O 上, 所以1+a 2=4,则a =± 3.当a =3时,点M 为(1,3),k OM =3,k 切=-33, 此时切线方程为y -3=-33(x -1), 即x +3y -4=0,当a =-3时,点M 为(1,-3),k OM =-3,k 切=33, 此时切线方程为y +3=33(x -1), 即x -3y -4=0.所以所求的切线方程为x +3y -4=0或x -3y -4=0. (2)设O 到直线AC ,BD 的距离分别为d 1,d 2(d 1,d 2≥0), 则d 21+d 22=OM 2=3.又有|AC |=24-d 21,|BD |=24-d 22, 所以|AC |+|BD |=24-d 21+24-d 22.则(|AC |+|BD |)2=4³(4-d 21+4-d 22+24-d 21²4-d 22) =4³[5+216-4 d 21+d 22 +d 21d 22] =4³(5+24+d 21d 22). 因为2d 1d 2≤d 21+d 22=3, 所以d 21d 22≤94,当且仅当d 1=d 2=62时等号成立, 所以4+d 21d 22≤52,所以(|AC |+|BD |)2≤4³⎝ ⎛⎭⎪⎫5+2³52=40.所以|AC |+|BD |≤210, 即|AC |+|BD |的最大值为210.。

2018年高考数学人教A版一轮复习课时分层提升练 九 2-6幂函数与二次函数 含解析 精品

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课时分层提升练九幂函数与二次函数(25分钟60分)一、选择题(每小题5分,共35分)1.(2017·合肥模拟)已知幂函数f错误!未找到引用源。

的图象过点错误!未找到引用源。

,则f错误!未找到引用源。

的值为( ) A.错误!未找到引用源。

B.64 C.2错误!未找到引用源。

D.错误!未找到引用源。

【解析】选A.设幂函数f(x)=xα,则4α=错误!未找到引用源。

⇒α=-错误!未找到引用源。

,则f(8)=错误!未找到引用源。

=错误!未找到引用源。

=错误!未找到引用源。

.2.(2017·泰安模拟)若函数f(x)=x2-ax-a在区间[0,2]上的最大值为1,则实数a等于( )A.-1B.1C.2D.-2【解析】选B.因为函数f(x)=x2-ax-a的图象为开口向上的抛物线, 所以函数的最大值在区间的端点取得,因为f(0)=-a,f(2)=4-3a,所以错误!未找到引用源。

或错误!未找到引用源。

解得a=1.3.(2017·郑州模拟)设abc>0,二次函数f(x)=ax2+bx+c的图象可能是( )【解析】选D. A项,因为a<0,-错误!未找到引用源。

<0,所以b<0. 又因为abc>0,所以c>0,由图知f(0)=c<0,故A错;B项,因为a<0,-错误!未找到引用源。

>0,所以b>0,又因为abc>0,所以c<0,而f(0)=c>0,故B错;C项,因为a>0,-错误!未找到引用源。

<0,所以b>0,又因为abc>0,所以c>0,而f(0)=c<0,故C错;D项,因为a>0,-错误!未找到引用源。

>0,所以b<0,又因为abc>0,所以c<0,由图知f(0)=c<0.【加固训练】设b>0,二次函数y=ax2+bx+a2-1的图象为下列之一,则a的值为( )A.错误!未找到引用源。

[配套K12]2018版高考数学一轮复习 第九章 解析几何 课时跟踪检测50 理 新人教A版

课时跟踪检测(五十)[高考基础题型得分练]1.[2017·浙江温州十校联考]对任意的实数k ,直线y =kx -1与圆C :x 2+y 2-2x -2=0的位置关系是( )A .相离B .相切C .相交D .以上三个选项均有可能 答案:C解析:直线y =kx -1恒经过点A (0,-1),圆x 2+y 2-2x -2=0的圆心为C (1,0),半径为3,而|AC |=2<3,故直线y =kx -1与圆x 2+y 2-2x -2=0相交.2.已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-8答案:B解析:将圆的方程化为标准方程为(x +1)2+(y -1)2=2-a ,所以圆心为(-1,1),半径r =2-a ,圆心到直线x +y +2=0的距离d =|-1+1+2|2=2,故r 2-d 2=4,即2-a -2=4,所以a =-4,故选B.3.[2017·辽宁大连期末]圆x 2+y 2+2y -3=0被直线x +y -k =0分成两段圆弧,且较短弧长与较长弧长之比为1∶3,则k =( )A.2-1或-2-1 B .1或-3 C .1或- 2 D. 2答案:B解析:由题意知,圆的标准方程为x 2+(y +1)2=4. 较短弧所对圆周角是90°,所以圆心(0,-1)到直线x +y -k =0的距离为22r = 2. 即|1+k |2=2,解得k =1或-3. 4.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( ) A .21 B .19C .9D .-11答案:C解析:圆C 1的圆心C 1(0,0),半径r 1=1, 圆C 2的方程可化为(x -3)2+(y -4)2=25-m , 所以圆心C 2(3,4),半径r 2=25-m , 从而|C 1C 2|=32+42=5.由两圆外切,得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9,故选C.5.[2017·江西南昌模拟]已知过定点P (2,0)的直线l 与曲线y =2-x 2相交于A ,B 两点,O 为坐标原点,当S △AOB =1时,直线l 的倾斜角为( )A .150°B .135°C .120°D .不存在答案:A解析:由于S △AOB =12×2×2sin ∠AOB =1,∴sin ∠AOB =1,∴∠AOB =π2, ∴点O 到直线l 的距离OM 为1,而OP =2,OM =1,在直角△OMP 中,∠OPM =30°, ∴直线l 的倾斜角为150°,故选A.6.[2017·山东青岛一模]过点P (1,3)作圆O :x 2+y 2=1的两条切线,切点分别为A 和B ,则弦长|AB |=( )A. 3 B .2 C. 2 D .4答案:A解析:如图所示,∵PA ,PB 分别为圆O :x 2+y 2=1的切线,∴AB ⊥OP .∵P (1,3),O (0,0), ∴|OP |=1+3=2. 又∵|OA |=1,在Rt △APO 中,cos ∠AOP =12,∴∠AOP =60°,∴|AB |=2|OA |sin ∠AOP = 3.7.若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12 B .1 C.22D. 2答案:D解析:因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2=|c |2|c |=22, 因此根据直角三角形勾股定理,弦长的一半就等于1-⎝⎛⎭⎪⎫222=22,所以弦长为 2. 8.直线l 与圆x 2+y 2+2x -4y +a =0(a <3)相交于A ,B 两点,若弦AB 的中点为(-2,3),则直线l 的方程为( )A .x +y -3=0B .x +y -1=0C .x -y +5=0D .x -y -5=0答案:C解析:设直线的斜率为k ,又弦AB 的中点为(-2,3), 所以直线l 的方程为kx -y +2k +3=0,由x 2+y 2+2x -4y +a =0得圆的圆心坐标为(-1,2), 所以圆心到直线的距离为2,所以|-k -2+2k +3|k 2+1=2,解得k =1, 所以直线l 的方程为x -y +5=0.9.[2017·河北唐山模拟]过点A (3,1)的直线l 与圆C :x 2+y 2-4y -1=0相切于点B ,则CA →·CB →=________.答案:5解析:解法一:由已知得,圆心C (0,2),半径r =5,△ABC 是直角三角形,|AC |=-2+-2=10,|BC |=5,∴cos ∠ACB =BC AC=510,∴CA →·CB →=|CA →||CB →|cos ∠ACB =5.解法二:CA →·CB →=(CB →+BA →)·CB →=CB →2+BA →·CB →, 由于|BC |=5,AB ⊥BC , 因此CA →·CB →=5+0=5.10.已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.答案:4±15解析:依题意,圆C 的半径是2,圆心C (1,a )到直线ax +y -2=0的距离等于32×2=3,于是有|a +a -2|a 2+1=3,即a 2-8a +1=0,解得a =4±15. 11.若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是为________.答案:⎝ ⎛⎭⎪⎫-33,0∪⎝⎛⎭⎪⎫0,33 解析:整理曲线C 1的方程得,(x -1)2+y 2=1,故曲线C 1为以点C 1(1,0)为圆心,1为半径的圆;曲线C 2则表示两条直线,即x 轴与直线l :y =m (x +1),显然x 轴与圆C 1有两个交点,依题意知直线l 与圆相交,故有圆心C 1到直线l 的距离d =|m+-0|m 2+1<r =1,解得m∈⎝ ⎛⎭⎪⎫-33,33, 又当m =0时,直线l 与x 轴重合,此时只有两个交点,应舍去. 故m ∈⎝ ⎛⎭⎪⎫-33,0∪⎝⎛⎭⎪⎫0,33. 12.过点M (1,2)的直线l 与圆C :(x -3)2+(y -4)2=25交于A ,B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程是________.答案:x +y -3=0解析:依题意得,当∠ACB 最小时,圆心C 到直线l 的距离达到最大,此时直线l 与直线CM 垂直,又直线CM 的斜率为1, 因此所求直线l 的方程是y -2=-(x -1),即x +y -3=0.[冲刺名校能力提升练]1.[2017·辽宁沈阳一模]直线y =x +4与圆(x -a )2+(y -3)2=8相切,则a 的值为( ) A .3 B .2 2 C .3或-5 D .-3或5答案:C解析:解法一:联立⎩⎪⎨⎪⎧y =x +4,x -a 2+y -2=8,消去y 可得,2x 2-(2a -2)x +a 2-7=0,则由题意可得Δ=[-(2a -2)]2-4×2×(a 2-7)=0, 整理可得a 2+2a -15=0,解得a =3或-5.解法二:因为(x -a )2+(y -3)2=8的圆心为(a,3),半径为22,所以由直线y =x +4与圆(x -a )2+(y -3)2=8相切知,圆心到直线的距离等于半径,所以|a -3+4|12+-2=22,即|a +1|=4,解得a =3或-5.2.[2017·新疆乌鲁木齐一诊]在圆x 2+y 2+2x -4y =0内,过点(0,1)的最短弦所在直线的倾斜角是( )A.π6 B.π4 C.π3D.3π4答案:B解析:由题意知,圆心为(-1,2),过点(0,1)的最长弦(直径)斜率为-1,且最长弦与最短弦垂直,∴过点(0,1)的最短弦所在直线的斜率为1,即倾斜角是π4.3.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)答案:D解析:设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,两式相减,得(y 1+y 2)·(y 1-y 2)=4(x 1-x 2),当直线l 的斜率不存在时,符合条件的直线l 必有两条; 当直线l 的斜率k 存在时,如图,x 1≠x 2,则有y 1+y 22·y 1-y 2x 1-x 2=2,即y 0·k =2, 由CM ⊥AB ,得k ·y 0-0x 0-5=-1, y 0·k =5-x 0,2=5-x 0,x 0=3,即M 必在直线x =3上,将x =3代入y 2=4x ,得y 2=12, ∴-23<y 0<23, ∵点M 在圆上,∴(x 0-5)2+y 20=r 2,r 2=y 20+4<12+4=16, 又y 20+4>4,∴4<r 2<16,∴2<r <4.故选D.4.[2017·云南名校联考]已知圆O :x 2+y 2=1,P 为直线x -2y +5=0上的动点,过点P 作圆O 的一条切线,切点为A ,则|PA |的最小值为________.答案:2解析:过O 作OP 垂直于直线x -2y +5=0, 过P 作圆O 的切线PA ,连接OA , 易知此时|PA |的值最小. 由点到直线的距离公式,得 |OP |=|1×0-2×0+5|1+22= 5. 又|OA |=1,所以|PA |=|OP |2-|OA |2=2.5.如图,已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P .(1)求圆A 的方程;(2)当|MN |=219时,求直线l 的方程. 解:(1)设圆A 的半径为R .由于圆A 与直线l 1:x +2y +7=0相切, ∴R =|-1+4+7|5=2 5.∴圆A 的方程为(x +1)2+(y -2)2=20.(2)①当直线l 与x 轴垂直时,易知x =-2符合题意; ②当直线l 的斜率存在时,设直线l 的方程为y =k (x +2). 即kx -y +2k =0. 连接AQ ,则AQ ⊥MN .∵|MN |=219,∴|AQ |=20-19=1, 则由|AQ |=|k -2|k 2+1=1,得k =34,∴直线l :3x -4y +6=0.故直线l 的方程为x =-2或3x -4y +6=0. 6.已知圆O :x 2+y 2=4和点M (1,a ).(1)若过点M 有且只有一条直线与圆O 相切,求实数a 的值,并求出切线方程;(2)若a =2,过点M 作圆O 的两条弦AC ,BD 互相垂直,求|AC |+|BD |的最大值. 解:(1)由条件知点M 在圆O 上, 所以1+a 2=4,则a =± 3.当a =3时,点M 为(1,3),k OM =3,k 切=-33, 此时切线方程为y -3=-33(x -1), 即x +3y -4=0,当a =-3时,点M 为(1,-3),k OM =-3,k 切=33, 此时切线方程为y +3=33(x -1), 即x -3y -4=0.所以所求的切线方程为x +3y -4=0或x -3y -4=0. (2)设O 到直线AC ,BD 的距离分别为d 1,d 2(d 1,d 2≥0), 则d 21+d 22=OM 2=3.又有|AC |=24-d 21,|BD |=24-d 22, 所以|AC |+|BD |=24-d 21+24-d 22.则(|AC |+|BD |)2=4×(4-d 21+4-d 22+24-d 21·4-d 22) =4×[5+216-d 21+d 22+d 21d 22] =4×(5+24+d 21d 22). 因为2d 1d 2≤d 21+d 22=3, 所以d 21d 22≤94,当且仅当d 1=d 2=62时等号成立, 所以4+d 21d 22≤52,所以(|AC |+|BD |)2≤4×⎝ ⎛⎭⎪⎫5+2×52=40.所以|AC |+|BD |≤210, 即|AC |+|BD |的最大值为210.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 课时分层训练(五十七) 变量间的相关关系与统计案例 A组 基础达标 (建议用时:30分钟) 一、选择题 1.四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:

①y与x负相关且y^=2.347x-6.423;②y与x负相关且y^=-3.476x+5.648;③y与x正相关且y^=5.437x+8.493;④y与x正相关且y^=-4.326x-4.578. 其中一定不正确...的结论的序号是 ( ) A.①② B.②③ C.③④ D.①④ D [由正负相关性的定义知①④一定不正确.] 2.两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R2如下,其中拟合效果最好的模型是 ( ) A.模型1的相关指数R2为0.98 B.模型2的相关指数R2为0.80 C.模型3的相关指数R2为0.50 D.模型4的相关指数R2为0.25 A [相关指数R2越大,拟合效果越好,因此模型1拟合效果最好.] 3.第31届夏季奥林匹克运动会,中国获26金,18银,26铜共70枚奖牌居奖牌榜第二,并打破3次世界记录.由此许多人认为中国进入了世界体育强国之列,也有许多人持反对意见.有网友为此进行了调查,在参加调查的2 548名男性公民中有1 560名持反对意见,2 452名女性公民中有1 200人持反对意见,在运用这些数据说明中国的奖牌数是否与中国进入体育强国有无关系时,用什么方法最有说服力( ) 2

A.平均数与方差 B.回归直线方程 C.独立性检验 D.概率 C [由于参加讨论的公民按性别被分成了两组,而且每一组又被分成了两种情况:认为有关与无关,故该资料取自完全随机统计,符合2×2列联表的要求.故用独立性检验最有说服力.] 4.(2015·福建高考)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x(万元) 8.2 8.6 10.0 11.3 11.9

支出y(万元) 6.2 7.5 8.0 8.5 9.8

根据上表可得回归直线方程y^=b^x+a^,其中b^=0.76,a^=y-b^x.据此估计,该社区一户年收入为15万元家庭的年支出为( ) A.11.4万元 B.11.8万元 C.12.0万元 D.12.2万元

B [由题意知,x=8.2+8.6+10.0+11.3+11.95=10,

y=6.2+7.5+8.0+8.5+9.85=8, ∴a^=8-0.76×10=0.4, ∴当x=15时,y^=0.76×15+0.4=11.8(万元).] 5.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表: 男 女 总计 爱好 40 20 60

不爱好 20 30 50

总计 60 50 110

由K2=nad-bc2a+bc+da+cb+d,

算得K2=110×40×30-20×20260×50×60×50≈7.8. 附表: 3

P(K2≥k0) 0.050 0.010 0.001

k0 3.841 6.635 10.828 参照附表,得到的正确结论是( ) A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” C.有99%以上的把握认为“爱好该项运动与性别有关” D.有99%以上的把握认为“爱好该项运动与性别无关” C [根据独立性检验的定义,由K2≈7.8>6.635,可知我们在犯错误的概率不超过0.01的前提下,即有99%以上的把握认为“爱好该项运动与性别有关”.] 二、填空题 6.(2017·西安质检)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回

归方程y^=0.67x+54.9. 零件数x(个) 10 20 30 40 50

加工时间y(min) 62 75 81 89

现发现表中有一个数据看不清,请你推断出该数据的值为________. 【导学号:01772370】 68 [由x=30,得y=0.67×30+54.9=75. 设表中的“模糊数字”为a, 则62+a+75+81+89=75×5,即a=68.] 7.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表: 理科 文科 总计 男 13 10 23

女 7 20 27

总计 20 30 50

已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025. 4

根据表中数据,得到K2=50×13×20-10×7223×27×20×30≈4.844. 则认为选修文科与性别有关系出错的可能性为________. 5% [∵K2≈4.844,根据假设检验的基本原理,应该断定“是否选修文科与性别之间有关系”成立,并且这种判断出错的可能性约为5%.] 8.(2017·长沙雅礼中学质检)某单位为了了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表: 气温(℃) 18 13 10 -1 用电量(度) 24 34 38 64

由表中数据得回归直线方程y^=b^x+a^中的b^=-2,预测当气温为-4 ℃时,用电量为________℃. 【导学号:01772371】

68 [根据题意知x=18+13+10+-14=10,y=24+34+38+644=40,因为回归直线过样本点的中心,所以a^=40-(-2)×10=60,所以当x=-4时,y=(-2)×(-4)+60=68,所以用电量为68度.] 三、解答题 9.(2017·石家庄质检)微信是现代生活进行信息交流的重要工具,据统计,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余的员工每天使用微信的时间在一小时以上,若将员工分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,那么使用微信的人中75%是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,那么经常使用

微信的员工中23是青年人. (1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出2×2列联表: 青年人 中年人 总计 经常使用微信 不经常使用微信 总计 5

(2)由列联表中所得数据判断,是否有99.9%的把握认为“经常使用微信与年龄有关”?

附:K2=nad-bc2a+bc+da+cb+d. P(K2≥k0) 0.010 0.001

k0 6.635 10.828 [解] (1)由已知可得,该公司员工中使用微信的有200×90%=180(人), 经常使用微信的有180-60=120(人),

其中青年人有120×23=80(人), 使用微信的人中青年人有180×75%=135(人), 所以2×2列联表: 青年人 中年人 总计 经常使用微信 80 40 120

不经常使用微信 55 5 60

总计 135 45 180

5分 (2)将列联表中数据代入公式可得:

K2=180×80×5-55×402120×60×135×45≈13.333, 由于13.333>10.828,所以有99.9%的把握认为“经常使用微信与年龄有关” . 12分 10.为了研究某种细菌在特定环境下随时间变化的繁殖情况,得如下试验数据: 天数t(天) 3 4 5 6 7

繁殖个数y(千个) 2.5 3 4 4.5 6

(1)求y关于t的线性回归方程; (2)利用(1)中的回归方程,预测t=8时的细菌繁殖个数. 附:回归直线的斜率和截距的最小二乘法估计公式分别为: 6

b^=∑n i=1 ti-tyi-y∑n i=1 ti-t2,a^=y-b^t. [解] (1)由表中数据计算得, t=5,y=4,∑n i=1 (ti-t)(yi-y)=8.5,∑n i=1 (ti-t)2=10, 2分

b^=∑n i=1 ti-tyi-y∑n i=1 ti-t2=0.85, a^=y-b^t=4-0.85×5=-0.25. 所以回归方程为y^=0.85t-0.25. 5分 (2)将t=8代入(1)的回归方程中得

y^=0.85×8-0.25=6.55. 10分 故预测t=8时,细菌繁殖个数为6.55千个. 12分 B组 能力提升 (建议用时:15分钟) 1.根据如下样本数据: x 3 4 5 6 7 8 y 4.0 2.5 -0.5 0.5 -2.0 -3.0

得到的回归方程为y^=bx+a,则( ) A.a>0,b>0 B.a>0,b<0 C.a<0,b>0 D.a<0,b<0 B [作出散点图如下:

观察图象可知,回归直线y^=bx+a的斜率b<0,当x=0时,y^=a>0.故a

相关文档
最新文档