最新-高考试题—磁场及答案 精品

合集下载

高考物理带电粒子在磁场中的运动的技巧及练习题及练习题(含答案)

高考物理带电粒子在磁场中的运动的技巧及练习题及练习题(含答案)

高考物理带电粒子在磁场中的运动的技巧及练习题及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0 152mv Bql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动粒子在电场中的运动时间00sin35l ltv vα==根据题意得,粒子在磁场中运动时间也为t,则2Tt=又22mTqBπ=解得0253mvBqlπ=设粒子在磁场中做圆周运动的半径为r,则0v t rπ=解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=2.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.3.如图所示为电子发射器原理图,M 处是电子出射口,它是宽度为d 的狭缝.D 为绝缘外壳,整个装置处于真空中,半径为a 的金属圆柱A 可沿半径向外均匀发射速率为v 的电子;与A 同轴放置的金属网C 的半径为2a.不考虑A 、C 的静电感应电荷对电子的作用和电子之间的相互作用,忽略电子所受重力和相对论效应,已知电子质量为m ,电荷量为e.(1)若A 、C 间加速电压为U ,求电子通过金属网C 发射出来的速度大小v C ;(2)若在A 、C 间不加磁场和电场时,检测到电子从M 射出形成的电流为I ,求圆柱体A 在t 时间内发射电子的数量N.(忽略C 、D 间的距离以及电子碰撞到C 、D 上的反射效应和金属网对电子的吸收)(3)若A 、C 间不加电压,要使由A 发射的电子不从金属网C 射出,可在金属网内环形区域加垂直于圆平面向里的匀强磁场,求所加磁场磁感应强度B 的最小值. 【答案】(1)22e eUv v m=+4alt N ed π=(3) 43mv B ae = 【解析】 【分析】(1)根据动能定理求解求电子通过金属网C 发射出来的速度大小;(2)根据=neI t求解圆柱体A 在时间t 内发射电子的数量N ;(3)使由A 发射的电子不从金属网C 射出,则电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切,由几何关系求解半径,从而求解B. 【详解】(1)对电子经 CA 间的电场加速时,由动能定理得221122e e U mv mv =- 解得:22e eUv v m=+(2)设时间t 从A 中发射的电子数为N ,由M 口射出的电子数为n , 则 =ne I t224d dNn N a aππ==⨯解得4altN edπ=(3)电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切时,对应的磁感应强度为B .设此轨迹圆的半径为 r ,则222(2)a r r a -=+2v Bev m r=解得:43mvB ae=4.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。

高中物理:磁场测试题(含答案)

高中物理:磁场测试题(含答案)

高中物理:磁场测试题(含答案)
1. 磁场中硬币的行为
一枚硬币在磁场中被放置在水平面上。

磁场方向指向纸面内,硬币受力情况如何?
A. 硬币不受力,保持静止。

B. 硬币受力向下,向外滚动。

C. 硬币受力向上,向内滚动。

D. 硬币受力向下,向内滚动。

答案:C
2. 带电粒子在磁场中的运动
一个带正电的粒子以与磁场垂直的速度进入磁场,磁场方向指向纸面内。

粒子在磁场中将运动成什么轨迹?
A. 圆形轨迹。

B. 直线轨迹。

C. 椭圆轨迹。

D. 螺旋轨迹。

答案:A
3. 磁感应强度的定义
磁感应强度的定义是什么?
A. 单位长度内的磁感应线数目。

B. 磁力对单位电荷的大小。

C. 磁场中单位面积垂直于磁力方向的大小。

D. 空间单位体积内的磁感应线数目。

答案:C
4. 磁场中电流的力学效应
在两根平行导线通过电流时,它们之间产生一个磁场。

这个磁场对导线有哪种力学效应?
A. 两根导线之间会相互吸引。

B. 两根导线之间会相互排斥。

C. 导线上会产生电压。

D. 导线会受到一个恒定的力。

答案:D
5. 磁场中的电流计测量原理
磁场中的电流计测量原理基于什么原理?
A. 磁感应强度和导线长度成正比。

B. 磁场中电流的方向与电流计示数成反比。

C. 电流计受力与磁感应强度成正比。

D. 磁感应强度和电流的大小成正比。

答案:C。

高考物理最新电磁学知识点之磁场经典测试题附答案

高考物理最新电磁学知识点之磁场经典测试题附答案

高考物理最新电磁学知识点之磁场经典测试题附答案一、选择题1.如图所示为研究某种带电粒子的装置示意图,粒子源射出的粒子束以一定的初速度沿直线射到荧光屏上的O 点,出现一个光斑.在垂直于纸面向里的方向上加一磁感应强度为B 的匀强磁场后,粒子束发生偏转,沿半径为r 的圆弧运动,打在荧光屏上的P 点,然后在磁场区域再加一竖直向下,场强大小为E 的匀强电场,光斑从P 点又回到O 点,关于该粒子(不计重力),下列说法正确的是A .粒子带负电B .初速度为B v EC .比荷为2q B r m ED .比荷为2qE m B r2.如图所示,有abcd 四个离子,它们带等量的同种电荷,质量不等.有m a =m b <m c =m d ,以不等的速度v a <v b =v c <v d 进入速度选择器后有两种离子从速度选择器中射出,进入B 2磁场,由此可判定( )A .射向P 1的是a 离子B .射向P 2的是b 离子C .射到A 1的是c 离子D .射到A 2的是d 离子3.如图所示,边长为L 的等边三角形导线框用绝缘细线悬挂于天花板,导线框中通一逆时针方向的电流,图中虚线过ab 边中点和ac 边中点,在虚线的下方有一垂直于导线框向里的匀强磁场,此时导线框通电处于静止状态,细线的拉力为F 1;保持其他条件不变,现虚线下方的磁场消失,虚线上方有相同的磁场同时电流强度变为原来一半,此时细线的拉力为F 2 。

已知重力加速度为g ,则导线框的质量为A .2123F F g +B .212 3F F g -C .21F F g -D .21 F F g+ 4.如图,一带电粒子在正交的匀强电场和匀强磁场中做匀速圆周运动。

已知电场强度为E ,方向竖直向下,磁感应强度为B ,方向垂直于纸面向外。

粒子圆周运动的半径为R ,若小球运动到最高点A 时沿水平方向分裂成两个粒子1和2,假设粒子质量和电量都恰好均分,粒子1在原运行方向上做匀速圆周运动,半径变为3R ,下列说法正确的是( )A .粒子带正电荷B .粒子分裂前运动速度大小为REB gC .粒子2也做匀速圆周运动,且沿逆时针方向D .粒子2做匀速圆周运动的半径也为3R5.有关洛伦兹力和安培力的描述,正确的是( )A .通电直导线在匀强磁场中一定受到安培力的作用B .安培力是大量运动电荷所受洛伦兹力的宏观表现C .带电粒子在匀强磁场中运动受到的洛伦兹力做正功D .通电直导线在磁场中受到的安培力方向与磁场方向平行6.如图所示,在半径为R 的圆形区域内,有匀强磁场,磁感应强度为B ,方向垂直于圆平面(未画出)。

高考物理《磁场》真题练习含答案

高考物理《磁场》真题练习含答案

高考物理《磁场》真题练习含答案1.[2024·全国甲卷](多选)如图,一绝缘细绳跨过两个在同一竖直面(纸面)内的光滑定滑轮,绳的一端连接一矩形金属线框,另一端连接一物块.线框与左侧滑轮之间的虚线区域内有方向垂直纸面的匀强磁场,磁场上下边界水平.在t=0时刻线框的上边框以不同的初速度从磁场下方进入磁场.运动过程中,线框始终在纸面内且上下边框保持水平.以向上为速度的正方向,下列线框的速度v随时间t变化的图像中可能正确的是()答案:AC解析:线框在减速进入磁场的过程中,对线框受力分析,根据牛顿第二定律有mg+B2L2vR-T=ma,对物块受力分析,根据牛顿第二定律有T-Mg=Ma,联立解得a=B2L2v(M+m)R-M-mM+mg,则随着速度的减小,加速度不断减小,B错误;结合B项分析可知,若匀强磁场区域高度与线框宽度相等且物块质量与线框质量相等,则线框在磁场中一直做加速度逐渐减小的减速运动,出磁场后匀速运动,则A选项的图像可能正确;若匀强磁场区域高度大于线框宽度且物块质量与线框质量相等,则线框进磁场和出磁场阶段均做加速度逐渐减小的减速运动,完全在磁场中运动时不受安培力,做匀速运动,完全出磁场后,也做匀速运动,则C选项的图像可能正确;D选项的图像中线框出磁场后匀加速,说明物块质量大于线框质量,但在此情况下,结合B项分析可知,存在第二段匀速阶段时,不会存在第三段减速阶段,D错误.2.[2023·新课标卷]一电子和一α粒子从铅盒上的小孔O竖直向上射出后,打到铅盒上方水平放置的屏幕P上的a和b两点,a点在小孔O的正上方,b点在a点的右侧,如图所示.已知α粒子的速度约为电子速度的110,铅盒与屏幕之间存在匀强电场和匀强磁场,则电场和磁场方向可能为()A.电场方向水平向左、磁场方向垂直纸面向里B.电场方向水平向左、磁场方向垂直纸面向外C.电场方向水平向右、磁场方向垂直纸面向里D.电场方向水平向右、磁场方向垂直纸面向外答案:C解析:假设电子打在a点,即其所受电场力与洛伦兹力大小相等,方向相反,故eE=evB,由于α粒子的速度v′小于电子的速度v,所以2eE>2ev′B,α粒子经过电、磁组合场后向右偏转,即其所受合力方向向右,由于α粒子带正电,所以电场方向水平向右,AB错误;电子所受电场力水平向左,则其所受洛伦兹力水平向右,则磁场方向垂直纸面向里,D 错误,C正确.假设α粒子打在a点,同样可以得出C正确.3.[2023·全国乙卷]如图,一磁感应强度大小为B的匀强磁场,方向垂直于纸面(xOy平面)向里,磁场右边界与x轴垂直.一带电粒子由O点沿x正向入射到磁场中,在磁场另一侧的S点射出,粒子离开磁场后,沿直线运动打在垂直于x轴的接收屏上的P点;SP=l,S与屏的距离为l2,与x轴的距离为a.如果保持所有条件不变,在磁场区域再加上电场强度大小为E的匀强电场,该粒子入射后则会沿x轴到达接收屏.该粒子的比荷为()A.E2aB2B.EaB2C.B2aE2D.BaE2答案:A解析:由题知,一带电粒子由O点沿x正向入射到磁场中,在磁场另一侧的S点射出,则根据几何关系可知粒子做圆周运动的半径r=2a则粒子做圆周运动有qvB=m v2r则有qm=v 2a·B如果保持所有条件不变,在磁场区域再加上电场强度大小为E的匀强电场,该粒子入射后则会沿x轴到达接收屏,则有Eq=qvB联立有qm=E2a·B2故选A.4.[2023·湖南卷]如图,真空中有区域Ⅰ和Ⅱ,区域Ⅰ中存在匀强电场和匀强磁场,电场方向竖直向下(与纸面平行),磁场方向垂直纸面向里,等腰直角三角形CGF区域(区域Ⅱ)内存在匀强磁场,磁场方向垂直纸面向外.图中A、C、O三点在同一直线上,AO与GF 垂直,且与电场和磁场方向均垂直.A点处的粒子源持续将比荷一定但速率不同的粒子射入区域Ⅰ中,只有沿直线AC运动的粒子才能进入区域Ⅱ.若区域Ⅰ中电场强度大小为E、磁感应强度大小为B1,区域Ⅱ中磁感应强度大小为B2,则粒子从CF的中点射出,它们在区域Ⅱ中运动的时间为t0.若改变电场或磁场强弱,能进入区域Ⅱ中的粒子在区域Ⅱ中运动的时间为t,不计粒子的重力及粒子之间的相互作用,下列说法正确的是()A.若仅将区域Ⅰ中磁感应强度大小变为2B1,则t>t0B.若仅将区域Ⅰ中电场强度大小变为2E,则t>t0C .若仅将区域Ⅱ中磁感应强度大小变为34 B 2,则t =t 02 D .若仅将区域Ⅱ中磁感应强度大小变为24B 2,则t = 2 t 0 答案:D 解析:由题知粒子在AC 做直线运动,则有qv 0B 1=qE区域Ⅱ中磁感应强度大小为B 2,则粒子从CF 的中点射出,则粒子转过的圆心角为90°,根据qvB =m 4π2T 2 r ,有t 0=πm 2qB 2若仅将区域Ⅰ中磁感应强度大小变为2B 1,则粒子沿AC 做直线运动的速度,有qv A ·2B 1=qE则v A =v 02再根据qvB =m v 2r,可知粒子运动半径减小,则粒子仍然从CF 边射出,粒子转过的圆心角仍为90°,则t =t 0,A 错误;若仅将区域Ⅰ中电场强度大小变为2E ,则粒子沿AC 做直线运动的速度,有qv 1=q·2E 则v 1=2v 0再根据qvB =m v 2r,可知粒子运动半径变为原来的2倍,则粒子F 点射出,粒子转过的圆心角仍为90°,则t =t 0,B 错误;若仅将区域Ⅱ中磁感应强度大小变为34B 2,则粒子沿AC 做直线运动的速度仍为v 0,再根据qvB =m v 2r ,可知粒子半径变为原来的43>2,则粒子从OF 边射出,根据几何关系可知转过的圆心角为60°,根据qvB =m 4π2T 2 r ,有t =43πm 9qB 2则t =83t 09C 错误;若仅将区域Ⅱ中磁感应强度大小变为24B 2,则粒子在AC 做直线运动的速度仍为v 0,再根据qvB =m v 2r ,可知粒子半径变为原来的42>2,则粒子从OF 边射出,根据几何关系可知转过的圆心角为45°,根据qvB=m4π2T2r,有t=2πm 2qB2则t= 2 t0 D正确.故选D.。

带电粒子在磁场中运动(解析版)—三年(2022-2024)高考物理真题分类汇编(全国通用)

带电粒子在磁场中运动(解析版)—三年(2022-2024)高考物理真题分类汇编(全国通用)

带电粒子在磁场中运动考点01 带电粒子在直线边界磁场中的运动1. (2024年高考河北卷)如图,真空区域有同心正方形ABCD和abcd,其各对应边平行,ABCD的边长一定,abcd的边长可调,两正方形之间充满恒定匀强磁场,方向垂直于正方形所在平面.A处有一个粒子源,可逐个发射速度不等、比荷相等的粒子,粒子沿AD方向进入磁场。

调整abcd的边长,可使速度大小合适的粒子经ad边穿过无磁场区后由BC边射出。

对满足前述条件的粒子,下列说法正确的是()A. 若粒子穿过ad边时速度方向与ad边夹角为45°,则粒子必垂直BC射出B. 若粒子穿过ad边时速度方向与ad边夹角为60°,则粒子必垂直BC射出C. 若粒子经cd边垂直BC射出,则粒子穿过ad边的速度方向与ad边夹角必为45°D. 若粒子经bc边垂直BC射出,则粒子穿过ad边时速度方向与ad边夹角必为60°【答案】ACD【解析】根据几何关系可知,若粒子穿过ad边时速度方向与ad边夹角为45°,则粒子必经过cd边,作出粒子运动轨迹图,如图甲所示粒子从C点垂直于BC射出,故AC正确;若粒子穿过ad边时速度方向与ad边夹角为60°时,若粒子从cd边再次进入磁场,作出粒子运动轨迹如图乙所示则粒子不可能垂直BC射出;若粒子从bc边再次进入磁场,作出粒子运动轨迹如图丙所示则粒子一定垂直BC 射出,故B 错误、D 正确。

2. (2024年高考广西卷)Oxy 坐标平面内一有界匀强磁场区域如图所示,磁感应强度大小为B ,方向垂直纸面向里。

质量为m ,电荷量为q +的粒子,以初速度v 从O 点沿x 轴正向开始运动,粒子过y 轴时速度与y 轴正向夹角为45°,交点为P 。

不计粒子重力,则P 点至O 点的距离为( )A.mv qBB.32mv qBC. (1mvqB+ D. 1mv qB æççè【答案】C 【解析】粒子运动轨迹如图所示在磁场中,根据洛伦兹力提供向心力有:2v qvB mr=可得粒子做圆周运动的半径:mv r qB=根据几何关系可得P 点至O点的距离:(1cos 45PO r mvL r qB=+=°故选C 。

(完整)高中物理磁场习题200题(带答案解析)

(完整)高中物理磁场习题200题(带答案解析)

WORD格式整理一、选择题1.如图所示,一电荷量为q的负电荷以速度v射入匀强磁场中.其中电荷不受洛仑兹力的是( )A. B. C. D.【答案】C【解析】由图可知,ABD图中带电粒子运动的方向都与粗糙度方向垂直,所以受到的洛伦兹力都等于qvB,而图C中,带电粒子运动的方向与磁场的方向平行,所以带电粒子不受洛伦兹力的作用.故C正确,ABD错误.故选C.2.如图所示为电流产生磁场的分布图,其中正确的是( )A. B. C. D.【答案】D【解析】A中电流方向向上,由右手螺旋定则可得磁场为逆时针(从上向下看),故A错误;B图电流方向向下,由右手螺旋定则可得磁场为顺时针(从上向下看),故B错误;C图中电流为环形电流,由由右手螺旋定则可知,内部磁场应向右,故C错误;D图根据图示电流方向,由右手螺旋定则可知,内部磁感线方向向右,故D正确;故选D.点睛:因磁场一般为立体分布,故在判断时要注意区分是立体图还是平面图,并且要能根据立体图画出平面图,由平面图还原到立体图.3.下列图中分别标出了一根放置在匀强磁场中的通电直导线的电流I、磁场的磁感应强度B和所受磁场力F的方向,其中图示正确的是( )A. B. C. D.【答案】C【解析】根据左手定则的内容:伸开左手,使大拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向,可得:A、电流与磁场方向平行,没有安培力,故A错误;B、安培力的方向是垂直导体棒向下的,故B错误;C、安培力的方向是垂直导体棒向上的,故C正确;D、电流方向与磁场方向在同一直线上,不受安培力作用,故D错误.故选C.点睛:根据左手定则直接判断即可,凡是判断力的方向都是用左手,要熟练掌握,是一道考查基础的好题目.4.如图所示,水平地面上固定着光滑平行导轨,导轨与电阻R连接,放在竖直向上的匀强磁场中,杆的初速度为v0,不计导轨及杆的电阻,则下列关于杆的速度与其运动位移之间的关系图像正确的是()A. B. C. D.【答案】C【解析】导体棒受重力、支持力和向后的安培力;感应电动势为:E=BLv感应电流为:I=II安培力为:I=III=I 2I2II=II=I△I△I故:I 2I2II△I=I△I求和,有:I 2I2I∑I△I=I∑△I故:I 2I2II=I(I0−I)故v与x是线性关系;故C正确,ABD错误;故选:C.5.如图所示,直角三角形ABC中存在一匀强磁场,比荷相同的两个粒子沿AB方向射入磁场,粒子仅受磁场力作用,分别从AC边上的P、Q两点射出,则( )A. 从P射出的粒子速度大B. 从Q射出的粒子速度大C. 从P射出的粒子,在磁场中运动的时间长D. 两粒子在磁场中运动的时间一样长【答案】BD【解析】试题分析:粒子在磁场中做圆周运动,根据题设条件作出粒子在磁场中运动的轨迹,根据轨迹分析粒子运动半径和周期的关系,从而分析得出结论.WORD 格式整理粒子在磁场中做匀速圆周运动,根据几何关系(图示弦切角相等),粒子在磁场中偏转的圆心角相等,根据粒子在磁场中运动的时间:I =I 2II ,又因为粒子在磁场中圆周运动的周期I =2II II ,可知粒子在磁场中运动的时间相等,故D 正确,C 错误;如图,粒子在磁场中做圆周运动,分别从P 点和Q 点射出,由图知,粒子运动的半径I I <I I ,又粒子在磁场中做圆周运动的半径I =II II知粒子运动速度I I <I I ,故A 错误B 正确;【点睛】带电粒子在匀强磁场中运动时,洛伦兹力充当向心力,从而得出半径公式I =II II ,周期公式I =2II II ,运动时间公式I =I 2I I ,知道粒子在磁场中运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题,6.在等边三角形的三个顶点a 、b 、c 处,各有一条长直导线垂直纸面放置,导线中通有大小相等的恒定电流,方向如图所示.过c 点的导线所受安培力的方向( )A. 与ab 边平行,竖直向上B. 与ab 边垂直,指向右边C. 与ab 边平行,竖直向下D. 与ab 边垂直,指向左边【答案】D【解析】试题分析:先根据右手定则判断各个导线在c 点的磁场方向,然后根据平行四边形定则,判断和磁场方向,最后根据左手定则判断安培力方向导线a 在c 处的磁场方向垂直ac 斜向下,b 在c 处的磁场方向垂直bc 斜向上,两者的和磁场方向为竖直向下,根据左手定则可得c 点所受安培力方向为与ab 边垂直,指向左边,D 正确;7.下列说法中正确的是( )A. 电场线和磁感线都是一系列闭合曲线B. 在医疗手术中,为防止麻醉剂乙醚爆炸,医生和护士要穿由导电材料制成的鞋子和外套,这样做是为了消除静电C. 奥斯特提出了分子电流假说D. 首先发现通电导线周围存在磁场的科学家是安培【答案】B【解析】电场线是从正电荷开始,终止于负电荷,不是封闭曲线,A 错误;麻醉剂为易挥发性物品,遇到火花或热源便会爆炸,良好接地,目的是为了消除静电,这些要求与消毒无关,B 正确;安培发现了分子电流假说,奥斯特发现了电流的磁效应,CD 错误;8.在如图所示的平行板电容器中,电场强度E 和磁感应强度B 相互垂直,一带正电的粒子q 以速度v 沿着图中所示的虚线穿过两板间的空间而不偏转(忽略重力影响)。

高考物理带电粒子在磁场中的运动压轴难题知识点及练习题附答案

高考物理带电粒子在磁场中的运动压轴难题知识点及练习题附答案一、带电粒子在磁场中的运动压轴题1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。

挡板PQ 垂直MN 放置,挡板的中点置于N 点。

在挡板的右侧区域存在垂直纸面向外的匀强磁场。

在左侧虚线上紧靠M 的上方取点A ,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。

已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。

(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。

若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。

【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知2r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1992——2000年高考试题——磁场部分1.两个电子以大小不同的初速度沿垂直于磁场的方向射入同一匀强磁场中。

设r1、r2为这两个电子的运动道半径,T1、T2是它们的运动周期,则( ) [1993高考](A)r1=r2,T1≠T2(B)r1≠r2,T1≠T2(C)r1=r2,T1=T2(D)r1≠r2,T1=T22.两个粒子,带电量相等,在同一匀强磁场中只受磁场力而作匀速圆周运动. [1995高考]A.若速率相等,则半径必相等;B.若质量相等,则周期必相等;C.若动量大小相等,则半径必相等;D.若动能相等,则周期必相等.3.质子和α粒子在同一匀强磁场中作半径相同的圆周运动。

由此可知质子的动能E1和α粒子的动能E2之比E1:E2等于( )。

[1994高考](A)4:1 (B)1:1 (C)1:2 (D)2:14.在图中虚线所围的区域内。

存在电场强度为E的匀强电场和磁感应强度为B的匀强磁场。

已知从左方水平射入的电子,穿过这区域时未发生偏转。

设重力可忽略不计,则在这区域中的E和B的方向可能是[1992高考](A)E和B都沿水平方向,并与电子运动的方向相同(B)E和B都沿水平方向,并与电子运动的方向相反(C)E竖直向上,B垂直纸面向外(D)E竖直向上,B垂直纸面向里5.下图所示的天平可用来测定磁感应强度。

天平的右臂下面挂有一个矩形线圈,宽为l,共N匝,线圈的下部悬在匀强磁场中,磁场方向垂直纸面。

当线圈中通有电流I(方向如图)时,在天平左、右两边加上质量各为m1、m2的砝码,天平平衡。

当电流反向(大小不变)时,右边再加上质量为m的砝码后,天平重新平衡。

由此可知( ) [1993高考](A)磁感应强度的方向垂直纸面向里,大小为(m1-m2)g/NIl(B)磁感应强度的方向垂直纸面向里,大小为mg/2NIl(C)磁感应强度的方向垂直纸面向外,大小为(m1-m2)g/NIl(D)磁感应强度的方向垂直纸面向外,大小为mg/2NIl6.如右图所示,一细导体杆弯成四个拐角均为直角的平面折线,其ab、cd段长度均为l1,bc段长度为l2。

弯杆位于竖直平面内,Oa、dO′段由轴承支撑沿水平放置。

整个弯杆置于匀强磁场中,磁场方向竖直向上,磁感应强度为B。

今在导体杆中沿abcd通以大小为I的电流,此时导体杆受到的安培力对OO′轴的力矩大小等于_ ___。

[1996高考]7.如图,在x轴的上方(y≥0)存在着垂直于纸面向外的匀强磁场,磁感应强度为B。

在原点O有一个离子源向x轴上方的各个方向发射出质量为m、电量为q的正离子,速率都为v。

对那些在xy平面内运动的离子,在磁场中可能到达的最大x=________________,最大y=________________。

[1997高考]8.(11分)如图所示,在x轴上方有垂直于xy平面向里的匀强磁场,磁感应强度为B;在x轴下方有沿y轴负方向的匀强电场,场强为E。

一质量为m,电量为-q的粒子从坐标原点O沿着y轴正方向射出。

射出之后,第三次到达x轴时,它与点O的距离为L。

求此粒子射出时的速度v和运动的总路程s(重力不计)。

[1998高考]9 .(12分)如图19-19所示,一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第一象限所示的区域。

为了使该质点能从x轴上的b点以垂直于Ox轴的速度v射出,可在适当的地方加一个垂直于xy平面、磁感应强度为B的匀强磁场。

若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径.重力忽略不计。

[1994高考]10.(12分)设在地面上方的真空室内存在匀强电场和匀强磁场。

已知电场强度和磁感应强度的方向是相同的,电场强度的大小E=4.0伏/米,磁感应强度的大小B=0.15特。

今有一个带负电的质点以v=20米/秒的速度在此区域内沿垂直场强方向做匀速直线运动,求此带电质点的电量与质量之比q/m以及磁场的所有可能方向(角度可用反三角函数表示)。

[1996高考]11.(15分)图中虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感强度为B的匀强磁场,方向垂直纸面向外P是MN上的一点,从O 点可以向磁场区域发射电量为+q、质量为m 、速率为v的粒子,粒子射入磁场时的速度可在纸面内各个方向,已知先后射人的两个粒子恰好在磁场中给定的P点相遇,P到0的距离为L不计重力及粒子间的相互作用[1999高考](1)求所考察的粒子在磁场中的轨道径(2)求这两个粒子从O点射人磁场的时间间隔12.(13分)如图,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r0,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B。

在两极间加上电压,使两圆筒之间的区域内有沿向外的电场。

一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。

如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)[2000高考]1992——2000年高考试题——磁场部分答案1.D2.BC3.B4.ABC5.B6.BIL1L27. 2mv/Bq ,2mv/Bq8.粒子运动路线如图示有L=4R ①粒子初速度为v,则有qvB=mv2/R ②由①、②式可算得v=qBL/4m ③设粒子进入电场作减速运动的最大路程为l,加速度为a,v2=2al ④qE=ma ⑤粒子运动的总路程 s=2πR+2l ⑥由①、②、④、⑤、⑥式,得s=πL/2+qB2L2/(16mE) ⑦9.质点在磁场中作半径为R的圆周运动,qvB=(Mv2)/R,得R=(MV)/(qB)根据题意,质点在磁场区域中的轨道是半径等于R的圆上的1/4圆周,这段圆弧应与入射方向的速度、出射方向的速度相切。

过a点作平行于x轴的直线,过b点作平行于y轴的直线,则与这两直线均相距R的O′点就是圆周的圆心。

质点在磁场区域中的轨道就是以O′为圆心、R为半径的圆(图中虚线圆)上的圆弧MN,M点和N点应在所求圆形磁场区域的边界上。

在通过M、N两点的不同的圆周中,最小的一个是以MN连线为直径的圆周。

所以本题所求的圆形磁场区域的最小半径为:所求磁场区域如图中实线圆所示。

10.根据带电质点做匀速直线运动的条件,得知此带电质点所受的重力、电场力和洛仑兹力的合力必定为零。

由此推知此三个力在同一竖直平面内,如右图所示,质点的速度垂直纸面向外。

解法一:由合力为零的条件,可得①求得带电质点的电量与质量之比②代入数据得。

③因质点带负电,电场方向与电场力方向相反,因而磁场方向也与电场力方向相反。

设磁场方向与重力方向之间夹角为θ,则有qEsinθ=qvBcosθ,解得tgθ=vB/E=20×0.15/4.0,θ=arctg0.75。

④即磁场是沿着与重力方向夹角θ=arctg0.75,且斜向下方的一切方向。

解法二:因质点带负电,电场方向与电场力方向相反,因而磁砀方向也与电场力方向相反。

设磁场方向与重力方向间夹角为θ,由合力为零的条件,可得qEsinθ=qvBcosθ,①qEcosθ+qvBsinθ=mg,②解得,③代入数据得q/m=1.96库/千克。

④tgθ=vB/E=20×0.15/4.0,θ=arctg0.75。

⑤即磁场是沿着与重力方向成夹角θ=arctg0.75,且斜向下方的一切方向。

11.(1)设粒子在磁场中作圆周运动的轨道半径为R,由牛顿第二定律,有qvB=mv2/R得R=mv/qB ①(2)如图所示,以OP为弦可画两个半径相同的圆,分别表示在P点相遇的两个粒子的轨道。

圆心和直径分别为 O1、O2和OO1Q1,OO2Q2,在0处两个圆的切线分别表示两个粒子的射入方向,用θ表示它们之间的夹角。

由几何关系可知∠PO1Q1=∠PO2Q2θ ②从0点射入到相遇,粒子1的路程为半个圆周加弧长Q1PQ1P=Rθ③粒子2的路程为半个圆周减弧长PQ2=2PQ2=Rθ ④粒子1运动的时间t1=(1/2T)+(Rθ/v) ⑤其中T为圆周运动的周期。

粒子2运动的时间为t2=(1/2T)-(Rθ/v) ⑥两粒子射入的时间问隔△t=t1-t2=2Rθ/V ①因 Rcos(θ/2) =1/2L得θ =2arccos (L/2R) ③由①、①、③三式得△t=4marccos(lqB/2mv)/qB评分标准:本题15分。

第(1)问3分,第(2)问12分。

⑤、③式各4分,③、③式各2分12.带电粒子从S出发,在两筒之间的电场力作用下加速,沿径向穿出a而进入磁场区,在洛化兹力作用下做匀速圆周运动。

粒子再回到S点的条件是能沿径向穿过狭缝b。

只要穿过了b,粒子就会在电场力作用下先减速,再反向加速,经b 重新进入磁场区。

然后,粒子将以同样方式经过c、d,再经过a回到S点。

设粒子射入磁场区的速度为v,根据能量守恒,有①设粒子在洛仑兹力作用下做匀速圆周运动的半径为R,由洛仑兹力公式和牛顿定律得②分由前面分析可知,要回到S点,粒子从a到b必经过圆周,所以半径R必定等于筒的外半径,即③由以上各式解得④评分标准:本题13分。

①式2分,②式2分,经分析得出③式6分,解得④式3分。

相关文档
最新文档