2020年上海市金山区中考数学二模试卷 (解析版)

合集下载

2020年上海16区中考数学二模分类汇编-专题06 函数应用题(逐题详解版)

2020年上海16区中考数学二模分类汇编-专题06 函数应用题(逐题详解版)

2020年上海市16区中考数学二模汇编专题06 函数应用题1.(2020闵行二模)2.(2020松江二模)3.(2020宝山二模)4.(2020奉贤二模)5.(2020金山二模)6.(2020静安二模)7.(2020嘉定二模)8.(2020长宁二模)9.(2020崇明二模) 10.(2020浦东二模) 11.(2020徐汇二模) 12.(2020青浦二模)13.(2020虹口二模) 14(2020杨浦二模) 15(2020黄浦二模) 16.(2020普陀二模)1.(2020闵行二模)上海市为了增强居民的节水意识,避免水资源的浪费,全面实施居民“阶梯水价”.当累计水量达到年度阶梯水量分档基数临界点后,即开始实施阶梯价格计价,分档水量和价格见下表.仔细阅读上述材料,请解答下面问题,并把答案写在答题纸上:(1)小静家2019年上半年共计用水量100立方米,应缴纳水费元;(2)小静家全年缴纳的水费共计1000.5元,那么2019年全年用水量为立方米;(3)如图所示是上海市“阶梯水价”y与用水量x的函数关系,那么第二阶梯(线段AB)的函数解析式为,定义域.的2.(2020松江二模)如图,在平面直角坐标系内xOy中,某一次函数的图象与反比例函数的y=的图象交于A(1,m)、B(n,﹣1)两点,与y轴交于C点.(1)求该一次函数的解析式;(2)求的值.3.(2020宝山二模)在抗击新冠状病毒战斗中,有152箱公共卫生防护用品要运到A、B两城镇,若用大小货车共15辆,则恰好能一次性运完这批防护用品,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其中用大货车运往A、B两城镇的运费分别为每辆800元和900元,用小货车运往A、B两城镇的运费分别为每辆400元和600元.(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A城镇,其余货车前往B城镇,设前往A城镇的大货车为x辆,前往A、B两城镇总费用为y元,试求出y与x的函数解析式.若运往A城镇的防护用品不能少于100箱,请你写出符合要求的最少费用.4.(2020奉贤二模)已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣2,0),与y轴的正半轴交于点B,与反比例函数y=(x>0)的图象交于点C,且AB=BC,点C的纵坐标为4.(1)求直线AB的表达式;(2)过点B作BD∥x轴,交反比例函数y=的图象于点D,求线段CD的长度.5.(2020金山二模).在平面直角坐标系xOy中(如图),已知函数y=2x的图象和反比例函数的在第一象限交于A点,其中点A的横坐标是1.(1)求反比例函数的解析式;(2)把直线y=2x平移后与y轴相交于点B,且AB=OB,求平移后直线的解析式.6.(2020静安二模)疫情期间,甲厂欲购买某种无纺布生产口罩,A、B两家无纺布公司各自给出了该种无纺布的销售方案.A公司方案:无纺布的价格y(万元)与其重量x(吨)是如图所示的函数关系;B公司方案:无纺布不超过30吨时,每吨收费2万元;超过30吨时,超过的部分每吨收费1.9万元.(1)求如图所示的y与x的函数解析式;(不要求写出定义域)(2)如果甲厂所需购买的无纺布是40吨,试通过计算说明选择哪家公司费用较少.7.(2020嘉定二模)已知汽车燃油箱中的 y(单位:升)与该汽车行驶里程数 x(单位:千米)是一次函数关系.贾老师从某汽车租赁公司租借了一款小汽车,拟去距离出发地600公里的目的地旅游(出发之前,贾老师往该汽车燃油箱内注满了油).行驶了200千米之后,汽车燃油箱中的剩余油量为40升;又行驶了100千米,汽车燃油箱中的剩余油量为30升.(1)求y关于x的函数关系式(不要求写函数的定义域);(2)当汽车燃油箱中的剩余油量为8升的时候,汽车仪表盘上的燃油指示灯就会亮起来.在燃油指示灯亮起来之前,贾老师驾驶该车可否抵达目的地?请通过计算说明.8.(2020长宁二模)如图,反映了甲、乙两名自行车爱好者同时骑车从A地到B地进行训练时行驶路程y(千米)和行驶时间x(小时)之间关系的部分图象,根据图象提供的信息,解答下列问题:(1)求乙的行驶路程y和行驶时间x(1≤x≤3)之间的函数解析式;(2)如果甲的速度一直保持不变,乙在骑行3小时之后又以第1小时的速度骑行,结果两人同时到达B地,求A、B两地之间的距离.9.(2020崇明二模)如图,是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据函数图象,蓄电池剩余电量为35千瓦时汽车已经行驶的路程为____千米.当0150x ≤≤时,消耗1千瓦时的电量,汽车能行驶的路程为_____千米.(2)当15020x ≤≤时,求y 关于x 的函数表达式,并计算当汽车已行驶160千米时,蓄电池的剩余电量.10.(2020徐汇二模)如图,已知直线22y x =+与x 轴交于点A ,与y 轴交于点C ,矩形ACBE 的顶点B 在第一象限的反比例函数m y x=图像上,过点B 作BF OC ⊥,垂足为F ,设OF =t . (1)求∠ACO 的正切值;(2)求点B 的坐标(用含t 的式子表示);(3)已知直线22y x =+与反比例函数m y x=图像都经过第一象限的点D ,联结DE ,如果DE x ⊥轴,求m 的值.11.(2020青浦二模)某湖边健身步道全长1500米,甲、乙两人同时从同一起点匀速向终点步行.甲先到达终点后立刻返回,在整个步行过程中,甲、乙两人间的距离y(米)与出发的时间x(分)之间的关系如图中OA﹣AB折线所示.(1)用文字语言描述点A的实际意义;(2)求甲、乙两人的速度及两人相遇时x的值.12.(2020虹口二模)如图,在平面直角坐标系xOy中,直线y=kx+3与x,y轴分别交于点A、B,与双曲线y=交于点C(a,6),已知△AOB的面积为3,求直线与双曲线的表达式.13. (2020黄浦二模)如图,在平面直角坐标系xOy中,已知点A坐标(2,3),过点A作AH⊥x轴,垂足为点H,AH交反比例函数在第一象限的图象于点B,且满足=2.(1)求该反比例函数的解析式;(2)点C在x正半轴上,点D在该反比例函数的图象上,且四边形ABCD是平行四边形,求点D坐标.x+n的图象都经过点A 14.(2020普陀二模)在平面直角坐标系xoy中,已知一次函数y=2x+m与y=−12(-2,0),且分别与y轴交于点B和点C(1)求B、C两点的坐标x+n上,且在y轴右侧,当△ABD的面积为15时,求点D的坐标(2)设点D在直线y=−122020年上海市16区中考数学二模汇编专题06 函数应用题2.(2020闵行二模) 2.(2020松江二模)3.(2020宝山二模)4.(2020奉贤二模)5.(2020金山二模)6.(2020静安二模)7.(2020嘉定二模)8.(2020长宁二模)9.(2020崇明二模) 10.(2020浦东二模) 11.(2020徐汇二模) 12.(2020青浦二模)13.(2020虹口二模) 14(2020杨浦二模) 15(2020黄浦二模) 16.(2020普陀二模)1.(2020闵行二模)上海市为了增强居民的节水意识,避免水资源的浪费,全面实施居民“阶梯水价”.当累计水量达到年度阶梯水量分档基数临界点后,即开始实施阶梯价格计价,分档水量和价格见下表.仔细阅读上述材料,请解答下面问题,并把答案写在答题纸上:(1)小静家2019年上半年共计用水量100立方米,应缴纳水费元;(2)小静家全年缴纳的水费共计1000.5元,那么2019年全年用水量为立方米;(3)如图所示是上海市“阶梯水价”y与用水量x的函数关系,那么第二阶梯(线段AB)的函数解析式为,定义域.的【答案】(1)345; (2)270;(3) 4.83303.6y x =-,220300x <≤.【分析】(1)用水量100立方米处于第一阶梯,直接利用应缴纳水费 = 自来水费总额 + 污水处理费总额计算即可;(2)先判断出用水量处于第几阶梯,然后设2019年全年用水量为x 立方米,列出方程求解即可; (3)先求出用水量220立方米时的水费,然后利用待定系数法求解析式即可,定义域根据图象直接可得.【详解】(1)1.92100 1.71000.9345⨯+⨯⨯=(元)∴用水量100立方米应缴纳水费345元;(2)当用水量为220立方米时,应缴水费为1.92220 1.72200.9759⨯+⨯⨯=(元)当用水量为300立方米时,应缴水费为1.92220 3.380 1.73000.91145.4⨯+⨯+⨯⨯=(元) ∴全年缴纳的水费共计1000.5元,说明用水量处于第二阶梯,设2019年全年用水量为x 立方米,根据题意得1.92220 3.3(220) 1.73000.91000.5x ⨯+-+⨯⨯=解得270x =∴2019年全年用水量为270立方米;(3)由(2)可知,当220x = 时,759y =,设线段AB 的解析式为y kx b =+将(220,759),(300,1145.4)A B 代入解析式中得2207593001145.4k b k b +=⎧⎨+=⎩ 解得 4.83303.6k b =⎧⎨=-⎩∴线段AB 的解析式为 4.83303.6y x =- ,定义域为220300x <≤ .【点睛】本题主要考查一元一次方程的应用及一次函数的应用,掌握待定系数法并能够理解题意是解题的关键.2.(2020松江二模)如图,在平面直角坐标系内xOy 中,某一次函数的图象与反比例函数的y =的图象交于A (1,m )、B (n ,﹣1)两点,与y 轴交于C 点.(1)求该一次函数的解析式;(2)求的值.【分析】(1)根据图象上点的坐标特征求得A 、B 的坐标,然后根据待定系数法即可求得一次函数的解析式;(2)过点A 、B 分别作y 轴垂线,垂足为分别D 、E ,得出AD ∥BE ,根据平行线分线段成比例定理即可求得结论.【解答】解:(1)设一次函数解析式为y =kx +b (k ≠0),又∵A (1,m )、B (n ,﹣1)在反比例函数的图象上∴,, ∴m =3,n =﹣3,∴A (1,3)、B (﹣3,﹣1),一次函数y =kx +b 的图象过A (1,3)、B (﹣3,﹣1),∴,∴,∴所求一次函数的解析式是y=x+2;(2)过点A、B分别作y轴垂线,垂足为分别D、E,则AD∥BE,∴,∴.3.(2020宝山二模)在抗击新冠状病毒战斗中,有152箱公共卫生防护用品要运到A、B两城镇,若用大小货车共15辆,则恰好能一次性运完这批防护用品,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其中用大货车运往A、B两城镇的运费分别为每辆800元和900元,用小货车运往A、B两城镇的运费分别为每辆400元和600元.(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A城镇,其余货车前往B城镇,设前往A城镇的大货车为x辆,前往A、B两城镇总费用为y元,试求出y与x的函数解析式.若运往A城镇的防护用品不能少于100箱,请你写出符合要求的最少费用.【答案】(1) 大货车用8辆,小货车用7辆;(2) y与x的函数解析式为y=100x+9400;当运往A城镇的防护用品不能少于100箱,最低费用为9900元.【分析】(1)设大货车用x辆,小货车用y辆,然后根据题意列出二元一次方程组并求解即可;(2)设前往A城镇的大货车为x辆,则前往B城镇的大货车为(8-x)辆,前往A城镇的小货车为(10-x)辆,前往B城镇的小货车为[7-(10-x)]辆,然后根据题意即可确定y与x的函数关系式;再结合已知条件确定x的取值范围,求出总费用的最小值即可.【详解】解:(1)设大货车用x辆,小货车用y辆,根据题意得:15128152x y x y +=⎧⎨+=⎩ 解得:87x y =⎧⎨=⎩ 答:大货车用8辆,小货车用7辆;(2)设前往A 城镇的大货车为x 辆,则前往B 城镇的大货车为(8-x )辆,前往A 城镇的小货车为(10-x )辆,前往B 城镇的小货车为[7-(10-x )]辆,根据题意得:y=800x+900(8-x )+400(10-x )+600[7-(10-x )]=100x+9400由运往A 城镇的防护用品不能少于100箱,则12x+ 8 (10-x)≥100,解得x≥5且x 为整数;当x=5时,费用最低,则:100×5+9400=9900元.答:y 与x 的函数解析式为y=100x+9400;当运往A 城镇的防护用品不能少于100箱,最低费用为9900元.【点睛】本题考查了二元一次方程组和一次函数的应用,弄清题意列出二元一次方程组和一次函数解析式是解答本题的关键.4.(2020奉贤二模) 已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A (﹣2,0),与y 轴的正半轴交于点B ,与反比例函数y =(x >0)的图象交于点C ,且AB =BC ,点C 的纵坐标为4.(1)求直线AB 的表达式;(2)过点B 作BD ∥x 轴,交反比例函数y =的图象于点D ,求线段CD 的长度.【分析】(1)过点C 作CH ⊥x 轴,垂足为H ,如图,利用平行线分线段成比例得到==1,则OH=OA =2,则点C 的坐标为(2,4),然后利用待定系数法求直线AB 的解析式; (2)把C 点坐标代入y =中求出m =8,再利用直线解析式确定点B 的坐标为(0,2),接着利用BD ∥x 轴得到点D 纵坐标为2,根据反比例解析式确定点D 坐标,然后根据两点间的距离公式计算CD 的长.解:(1)过点C作CH⊥x轴,垂足为H,如图,∴==1,∵A(﹣2,0),∴AO=2,∴OH=OA=2,∵点C的纵坐标为4,∴点C的坐标为(2,4),设直线AB的表达式y=kx+b(k≠0),把A(﹣2,0),C(2,4)代入得,解得,∴直线AB的表达式y=x+2;(2)∵反比例函数y=的图象过点C(2,4),∴m=2×4=8,∵直线y=x+2与y轴的正半轴交于点B,∴点B的坐标为(0,2),∵BD∥x轴,∴点D纵坐标为2,当y=2时,=2,解得x=4,∴点D坐标为(4,2),∴CD==2.5.(2020金山二模).在平面直角坐标系xOy中(如图),已知函数y=2x的图象和反比例函数的在第一象限交于A点,其中点A的横坐标是1.(1)求反比例函数的解析式;(2)把直线y=2x平移后与y轴相交于点B,且AB=OB,求平移后直线的解析式.【分析】(1)利用正比例函数解析式确定A(1,2),然后利用待定系数法求反比例函数解析式;(2)设B(0,t),利用两点间的距离公式得到t2=12+(2﹣t)2,解方程得到B(0,),再利用两直线平移的问题,设平移后的直线解析式为y=2x+b,然后把B点坐标代入求出b即可.解:(1)当x=1时,y=2x=2,则A(1,2),设反比例函数解析式为y=把A(1,2)代入得k=1×2=2,∴反比例函数解析式为y=;(2)设B(0,t),∵OB=AB,∴t2=12+(2﹣t)2,解得t=,∴B(0,),设平移后的直线解析式为y=2x+b,把B(0,)代入得b=,∴平移后的直线解析式为y=2x+.6.(2020静安二模)疫情期间,甲厂欲购买某种无纺布生产口罩,A、B两家无纺布公司各自给出了该种无纺布的销售方案.A公司方案:无纺布的价格y(万元)与其重量x(吨)是如图所示的函数关系;B公司方案:无纺布不超过30吨时,每吨收费2万元;超过30吨时,超过的部分每吨收费1.9万元.(1)求如图所示的y与x的函数解析式;(不要求写出定义域)(2)如果甲厂所需购买的无纺布是40吨,试通过计算说明选择哪家公司费用较少.【分析】(1)运用待定系数法解答即可;(2)把x=40代入(1)的结论以及公司方案,分别求出每家公司所需的费用,再进行比较即可.【解答】解:(1)设一次函数的解析式为y=kx+b(k、b为常数,k≠0),由一次函数的图象可知,其经过点(0,0.8)、(10,20.3),代入得,解得,∴这个一次函数的解析式为y=1.95x+0.8.(2)如果在A公司购买,所需的费用为:y=1.95×40+0.8=78.8万元;如果在B公司购买,所需的费用为:2×30+1.9×(40﹣30)=79万元;∵78.8<79,∴在A公司购买费用较少.7.(2020嘉定二模)已知汽车燃油箱中的 y(单位:升)与该汽车行驶里程数 x(单位:千米)是一次函数关系.贾老师从某汽车租赁公司租借了一款小汽车,拟去距离出发地600公里的目的地旅游(出发之前,贾老师往该汽车燃油箱内注满了油).行驶了200千米之后,汽车燃油箱中的剩余油量为40升;又行驶了100千米,汽车燃油箱中的剩余油量为30升.(1)求y关于x的函数关系式(不要求写函数的定义域);(2)当汽车燃油箱中的剩余油量为8升的时候,汽车仪表盘上的燃油指示灯就会亮起来.在燃油指示灯亮起来之前,贾老师驾驶该车可否抵达目的地?请通过计算说明.【分析】(1)利用待定系数法解答即可;(2)把y=8代入(1)的结论解答即可.解:(1)设y关于x的函数关系式为y=kx+b由题意,得,解得,∴y关于x的函数关系式为;(2)当y=8时,,解得x=520.∵520<600,∴在燃油指示灯亮起来之前,贾老师驾驶该车不能抵达目的地.8.(2020长宁二模)如图,反映了甲、乙两名自行车爱好者同时骑车从A地到B地进行训练时行驶路程y(千米)和行驶时间x(小时)之间关系的部分图象,根据图象提供的信息,解答下列问题:(1)求乙的行驶路程y和行驶时间x(1≤x≤3)之间的函数解析式;(2)如果甲的速度一直保持不变,乙在骑行3小时之后又以第1小时的速度骑行,结果两人同时到达B 地,求A 、B 两地之间的距离.【分析】(1)根据函数图象中的数据,可以求得乙的行驶路程y 和行驶时间x (1≤x ≤3)之间的函数解析式;(2)根据函数图象中的数据,可以分别求得甲的速度和乙开始的速度,然后设出A 、B 两地之间的距离,再根据甲的速度一直保持不变,乙在骑行3小时之后又以第1小时的速度骑行,结果两人同时到达B 地,可以列出相应的方程,从而可以得到A 、B 两地之间的距离.【解答】解:(1)设乙的行驶路程y 和行驶时间x (1≤x ≤3)之间的函数解析式为y =kx +b ,,解得,,即乙的行驶路程y 和行驶时间x (1≤x ≤3)之间的函数解析式是y =10x +20;(2)设A 、B 两地之间的距离为S 千米,甲的速度为60÷3=20(千米/时),乙开始的速度为30÷1=30(千米/时),,解得,S =80,答:A 、B 两地之间的距离是80千米.9.(2020崇明二模)如图,是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据函数图象,蓄电池剩余电量为35千瓦时汽车已经行驶的路程为____千米.当0150x ≤≤时,消耗1千瓦时的电量,汽车能行驶的路程为_____千米.(2)当15020x ≤≤时,求y 关于x 的函数表达式,并计算当汽车已行驶160千米时,蓄电池的剩余电量.【答案】(1)150,6;(2)11102yx ,30 【分析】 (1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,据此即可求出1千瓦时的电量汽车能行驶的路程;(2)运用待定系数法求出y 关于x 的函数表达式,再把x=160代入即可求出当汽车已行驶160千米时,蓄电池的剩余电量.【详解】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.1千瓦时的电量汽车能行驶的路程为:15060635=-(千米), 故答案为:150;6.(2)设当150200x ≤≤时,y 与x 之间的函数关系式为:(0)y kx b k =+≠, 由图可知,函数图象过点()()1503520010,,,, 得3503520010k b k b +=⎧⎨+=⎩, 解得 ,12110k b ⎧=-⎪⎨⎪=⎩,11102y x ∴=-+, 当160x =进,8011030y =-+=【点睛】本题考查了一次函数的应用,解题的关键:(1)熟练运用待定系数法就解析式;(2)找出剩余油量相同时行驶的距离.本题属于基础题,难度不大,解决该类问题应结合图形,理解图形中点的坐标代表的意义.10.(2020徐汇二模)如图,已知直线22y x =+与x 轴交于点A ,与y 轴交于点C ,矩形ACBE 的顶点B 在第一象限的反比例函数m y x=图像上,过点B 作BF OC ⊥,垂足为F ,设OF =t . (1)求∠ACO 的正切值; (2)求点B 的坐标(用含t 的式子表示);(3)已知直线22y x =+与反比例函数m y x=图像都经过第一象限的点D ,联结DE ,如果DE x ⊥轴,求m 的值.【答案】(1)∠ACO 的正切值为12;(2)点B 的坐标()42,t t -;(3)m 的值为4825. 【分析】(1)根据一次函数解析式算出,A C 点的坐标即可求算;(2)根据矩形的性质得出BFC COA ∆~∆,从而表示B 的坐标;(3)作EM x ⊥轴,根据矩形的性质得出BFC AME ∆≅∆,从而表示出E 的坐标,再根据条件表示D 的坐标,再根据,B D 均在反比例图象上从而算出m【详解】(1)∵直线22y x =+与x 轴交于点A ,与y 轴交于点C∴()()1,0,0,2A C - ∴1tan 2AO ACO CO ∠== (2)∵四边形AEBC 是矩形,BF ⊥OC ,OF t =∴90,90BFC COA FCB FBC FCB OCA ∠=∠=︒∠+∠=∠+∠=︒∴FBC OCA ∠=∠∴BFC COA ∆~∆即BF FC BC CO OA CA ==∴221BF t -= ∴42BF t =-∴点B 的坐标()42,t t -(3)如图;作EM x ⊥轴∵四边形AEBC 是矩形∴,90BC AE OCA CAO CAO OAE =∠+∠=∠+∠=︒∴=OCA OAE FBC ∠=∠∠∴BFC AME ∆≅∆∴42BF AM t ==-∴E 点的横坐标为32t -又∵DE x ⊥轴,D 在22y x =+上∴()32,84D t t --∵()32,84D t t --,()42,B t t -均在反比例m y x =上: ∴()()()328442t t t t --=- 解得:126,25t t == ∵四边形AEBC 是矩形∴22t =舍去 ∴86,55B ⎛⎫ ⎪⎝⎭∴4825 m【点睛】本题考查一次函数与反比例函数与四边形的综合题目,难度中等,与相似、全等综合转化相关的线段与角度是解题关键.11.(2020青浦二模)某湖边健身步道全长1500米,甲、乙两人同时从同一起点匀速向终点步行.甲先到达终点后立刻返回,在整个步行过程中,甲、乙两人间的距离y(米)与出发的时间x(分)之间的关系如图中OA﹣AB折线所示.(1)用文字语言描述点A的实际意义;(2)求甲、乙两人的速度及两人相遇时x的值.【分析】(1)根据题意结合图象解答即可;(2)根据图象分别求出两人的速度,再根据题意列方程解答即可.解:(1)点A的实际意义为:20分钟时,甲乙两人相距500米.(2)根据题意得,(米/分),(米/分),依题意,可列方程:75(x﹣20)+50(x﹣20)=500,解这个方程,得 x=24,答:甲的速度是每分钟75米,乙的速度是每分钟50米,两人相遇时x的值为24.12.(2020虹口二模)如图,在平面直角坐标系xOy中,直线y=kx+3与x,y轴分别交于点A、B,与双曲线y=交于点C(a,6),已知△AOB的面积为3,求直线与双曲线的表达式.【分析】先利用一次函数解析式确定B点坐标,再利用三角形面积公式求出OA得到A点坐标为(2,0),接着把A点坐标代入y=kx+3中求出k得到一次函数解析式为y=﹣x+3,然后利用一次函数解析式确定C点坐标,最后利用待定系数法求反比例函数解析式.解:当x=0时,y=kx+3=3,则B(0,3),∵△AOB的面积为3,∴×3×OA=3,解得OA=2,∴A点坐标为(2,0),把A(2,0)代入y=kx+3得2k+3=0,解得k=﹣,∴一次函数解析式为y=﹣x+3,把C(a,6)代入得﹣a+3=6,解得a=﹣2,∴C点坐标为(﹣2,6),把C(﹣2,6)代入y=得m=﹣2×6=﹣12,∴反比例函数解析式为y=﹣.13. (2020黄浦二模)如图,在平面直角坐标系xOy中,已知点A坐标(2,3),过点A作AH⊥x轴,垂足为点H,AH交反比例函数在第一象限的图象于点B,且满足=2.(1)求该反比例函数的解析式;(2)点C在x正半轴上,点D在该反比例函数的图象上,且四边形ABCD是平行四边形,求点D坐标.【分析】(1)先求出点B坐标,利用待定系数法可求反比例函数解析式;(2)利用平行四边形的性质可得AB∥CD,AB=CD=2,可求点D坐标.解:∵点A坐标(2,3),∴AH=3,∵=2,∴BH=1,AB=2,∴点B(2,1),设反比例函数的解析式为y=(k≠0),∵点B在反比例函数的图象上,∴k=2×1=2,∴反比例函数的解析式为y=;(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD=2,∵AB⊥x轴,∴CD⊥x轴,∴点D纵坐标2,∴点D坐标(1,2).x+n的图象都经过点A 15.(2020普陀二模)在平面直角坐标系xoy中,已知一次函数y=2x+m与y=−12(-2,0),且分别与y轴交于点B和点C(3)求B、C两点的坐标x+n上,且在y轴右侧,当△ABD的面积为15时,求点D的坐标(4)设点D在直线y=−12解析:。

上海市2020届中考数学二模试题

上海市2020届中考数学二模试题

中考数学二模试题(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计 算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.下列实数中,有理数是ABC .π;D .0.2.如果关于x 的一元二次方程220x x k -+=有两个不相等的实数根,那么k 的取值范围是A .1k <;B .10k k <≠且;C .1k >;D .10k k >≠且.3.如果将抛物线2y x =向左平移1个单位,那么所得新抛物线的表达式是A .21y x =+;B .21y x =-;C .2(1)y x =+;D .2(1)y x =-.4.如图,是某中学九(3)班学生外出方式(乘车、步行、骑车)的不完整频数(人数)分布直方图.如果乘车的频率是0.4,那么步行的频率为A .0.4;B .0.36;C .0.3;D .0.24.5.数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB (OA <OB )边OA 、OB 上分别截取OD 、OE ,使得OD=OE ;(2)分别以点D 、E 为圆心,以大于12DE 为半径作弧,两弧交于△AOB 内的一点C ;(3)作射线OC 交AB 边于点P . 那么小明所求作的线段OP 是△AOB 的第4题图AO BDEC P第5题图第6题图EA .一条中线;B .一条高;C .一条角平分线;D .不确定.6.如图,在矩形ABCD 中,点E 是CD 的中点,联结BE ,如果AB =6,BC =4,那么分别以AD 、BE 为直径的⊙M 与⊙N 的位置关系是 A .外离;B .外切;C .相交;D .内切.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置] 7.计算:26a a ÷= .8. 某病毒的直径是0.000 068毫米,这个数据用科学记数法表示为 毫米.9.不等式组1,2 4.x x ->⎧⎨<⎩的解集是 .10x =的解为 . 11.已知反比例函数3ay x-=,如果当0x >时,y 随自变量x 的增大而增大,那么a 的取值范围为 .12.请写出一个图像的对称轴为y 轴,开口向下,且经过点(1,-2)的二次函数解析式,这个二次函数的解析式可以是 .13. 掷一枚材质均匀的骰子,掷得的点数为素数的概率是 .14. 在植树节当天,某校一个班的学生分成10个小组参加植树造林活动,如果10个小组植树的株数情况见下表,那么这10个小组植树株数的平均数是 株.16.如图,在中,对角线与相交于点,如果AC a =,BD b =,那么用向量a 、b 表示向量AB 是 .17.如图,在Rt △ABC 中,∠ACB =90°,AB=10,sin A =35,CD 为AB 边上的中线,以点B 为圆心,r 为半径作⊙B .如果⊙B 与中线CD 有且只有一个公共点,那么⊙B 的半径r 的取值范围为 .①②18.如图,在△ABC 中,AB =AC ,BC=8,tan B 32=,点D 是AB 的中点,如果把△BCD 沿直 线CD 翻折,使得点B 落在同一平面内的B ′处,联结A B ′,那么A B ′的长为 .三、解答题(本大题共7题,满分78分) 19.(本题满分10分)先化简,再求值:2344(1)11a a a a a -+--÷++,其中a =20.(本题满分10分)解方程组:22444,2 6.x xy y x y ⎧-+=⎨+=⎩21.(本题满分10分)如图,在△ABC 中,4sin 5B =,点F 在BC 上,AB=AF=5,过点F 作EF ⊥CB 交AC 于点E ,且:3:5AE E C =,求BF 的长与sin C 的值.22.(本题满分10分,第(1)小题6分,第(2)小题4分)ACD第17题图B第21题图ABC第18题图D第16题图Dy (千米)第22题图EGCABDF甲、乙两车需运输一批货物到600公里外的某地,原计划甲车的速度比乙车每小时多10千米,这样甲车将比乙车早到2小时.实际甲车以原计划的速度行驶了4小时后,以较低速度继续行驶,结果甲、乙两车同时到达. (1)求甲车原计划的速度;(2)如图是甲车行驶的路程y (千米)与时间x (小时) 的不完整函数图像,那么点A 的坐标为 , 点B 的坐标为 ,4小时后的y 与x 的函数关 系式为 (不要求写定义域).23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,四边形ABCD 是矩形,E 是对角线AC 上的一点,EB =ED 且∠ABE =∠ADE . (1)求证:四边形ABCD 是正方形;(2)延长DE 交BC 于点F ,交AB 的延长线于点G ,求证:EF AG BC BE ⋅=⋅.24.(本题满分12分,第(1如图,在平面直角坐标系xOy y 轴上的B 、C (1)求抛物线的解析式以及点D (2)求tan ∠BCD ;(3)点P 在直线BC 上,若∠25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在梯形ABCD中,AD∥BC,∠C=90°,DC=5,以CD为半径的⊙C与以AB为半径的⊙B相交于点E、F,且点E在BD上,联结EF交BC于点G.(1)设BC与⊙C相交于点M,当BM=AD时,求⊙B的半径;(2)设BC= x,EF=y,求y关于x的函数关系式,并写出它的定义域;(3)当BC=10时,点P为平面内一点,若⊙P与⊙C相交于点D、E,且以A、E、P、D为顶点的四边形是梯形,请直接写出⊙P的面积.(结果保留 )初三数学评分参考建议说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半; 5.评分时,给分或扣分均以1分为基本单位.一、选择题(本大题共6题,每题4分,满分24分)1.D 2.A 3.C 4.B 5.C 6.B二、填空题本大题共12题,每题4分,满分48分) 7.4a8.56.810-⨯9.1x <- 10.1x =11.3a > 12. 21y x =-- 等(答案不唯一) 13.1214.615.2 16.1122a b - 17. 56r <≤或245r =18三、解答题(本大题共7题,满分78分)19.解:原式=22131144a a a a a --+⋅+-+ ………………………………………………………(3分) 2(2)(2)11(2)a a a a a +-+=⋅+- ………………………………………………………(3分)22a a +=-…………………………………………………………………………… (2分)当a =, 原式7=--…………………………………………… (2分) .20.解:由①得, 22x y -=或22x y -=-……………………………………………(2分)将它们与方程②分别组成方程组,得:,262;2x x y y ⎧⎨+=-=⎩ 22,2 6.y y x x ⎧⎨+=-=-⎩……………………………………………………(4分) 分别解这两个方程组,得原方程组的解为114,1;x y =⎧⎨=⎩ 222,2.x y =⎧⎨=⎩. …………………………………………(4分)(代入消元法参照给分)21.解:过点A 作AD ⊥CB ,垂足为点D∵4sin 5B =∴3cos 5B = ……………………………………………………(1分) 在Rt△ABD 中,3cos 535BD AB B =⋅=⨯= …………………………………(2分)∵AB=AF AD ⊥CB ∴BF =2BD =6 ………………………………………(1分) ∵EF ⊥CB AD ⊥CB ∴EF ∥AD ∴DF AECF EC= …………………(2分) ∵:3:5AE EC = DF=BD=3 ∴CF=5 ∴CD=8………………………(1分) 在Rt△ABD 中,4sin 545AD AB B =⋅=⨯= ……………………………………(1分) 在Rt△ACD中,AC =……………………………………(1分)∴sin AD C AC ==………………………………………………………………(1分)22.解:(1)设甲车原计划的速度为x 千米/小时由题意得600600210x x-=-…………………………………………………………(3分) 解得150x =- 260x =经检验,150x =- 260x =都是原方程的解,但150x =-不符合题意,舍去∴60x = ……………………………………………………………………………(2分) 答:甲车原计划的速度为60千米/小时.………………………………………(1分) (2)(4,240) (12,600) …………………………………………………(1分,1分)4560y x =+…………………………………………………………………………(2分)23.(1)证明:联结BD …………………………………………………………………(1分)∵EB =ED ∴∠EBD =∠EDB …………………………………………………(2分) ∵∠ABE =∠ADE ∴∠ABD =∠ADB …………………………………………(1分)∴AB=AD …………………………………………………………………………(1分) ∵四边形ABCD 是矩形 ∴四边形ABCD 是正方形………………………(1分) (2)证明:∵四边形ABCD 是矩形 ∴AD ∥BC ∴EF ECDE EA=………………………………………………(2分) 同理DC ECAG EA= ……………………………………………………………(2分) ∵DE=BE∵四边形ABCD 是正方形 ∴BC=DC …………………………………………(1分) ∴EF BCBE AG= ∴EF AG BC BE ⋅=⋅ ……………………………………………………………(1分)24.解:(1)由题意得B (6,0) C (0,3) ………………………………………(1分)把B (6,0) C (0,3)代入22y ax x c =-+得03612,3.a c c =-+⎧⎨=⎩ 解得1,43.a c ⎧=⎪⎨⎪=⎩ ∴21234y x x =-+……………………………………………………………(2分) ∴D (4,-1) ………………………………………………………………(1分)(2)可得点E (3,0) ………………………………………………………………(1分)OE=OC=3,∠OEC =45°过点B 作BF ⊥CD ,垂足为点F 在Rt △OEC中,cos OEEC CEO==∠在Rt △BEF中,sin BF BE BEF =∠=……………………………………(1分)同理,EF =CF ==1分) 在Rt △CBF 中,1tan 3BF BCD CF ∠== …………………………………………(1分) (3)设点P (m ,132m -+)∵∠PEB=∠BCD ∴tan ∠PEB= tan ∠BCD 13= ①点P 在x 轴上方∴131233m m -+=- 解得245m = ………………………………………………(1分) ∴点P 243(,)55………………………………………………………………………(1分) ②点P 在x 轴下方∴131233m m -=- 解得12m = …………………………………………………(1分) ∴点P (12,3)- ………………………………………………………………………(1分) 综上所述,点P 243(,)55或(12,3)-25.(1)联结DM在Rt △DCM中,DM ==…………………………………(2分) ∵AD ∥BC BM =AD ∴四边形ABMD 为平行四边形……………………(1分) ∴AB= DM=即⊙B的半径为1分) (2)过点C 作CH ⊥BD ,垂足为点H在Rt △BCD中,BD =∴sin DBC ∠可得∠DCH =∠DBC∴sin DCH ∠=在Rt △DCH中,sin DH DC DCH =⋅∠=1分)∵CH ⊥BD∴2DE DH ==1分)∴2BE ==………………………………………(1分)∵⊙C 与⊙B 相交于点E 、F ∴EF=2EG BC ⊥EF在Rt △EBG 中,225125sin 25x EG BE DBC x -=⋅∠=+ …………………………(1分)∴221025025x y x -=+(x >1分,1分)(3)254π或(29π-或π ………………………………………(做对一个得2分,其余1分一。

2020年上海16区中考数学二模分类汇编-专题04 统计与概率(解析版)

2020年上海16区中考数学二模分类汇编-专题04 统计与概率(解析版)

2020年上海市16区中考数学二模汇编专题04 统计与概率1. (2020闵行二模)2.(2020松江二模)3.(2020宝山二模)4.(2020奉贤二模)5.(2020金山二模)6.(2020静安二模)7.(2020嘉定二模)8.(2020长宁二模)9.(2020崇明二模) 10.(2020浦东二模) 11.(2020徐汇二模) 12.(2020青浦二模) 13.(2020虹口二模) 14(2020杨浦二模) 15(2020黄浦二模) 16.(2020普陀二模)一.选择题1.(2020闵行二模)某同学参加射击训练,共发射8发子弹,击中的环数分别为5,3,7,5,6,4,5,5,则下列说法错误的是( ) A. 其平均数为5 B. 其众数为5 C. 其方差为5 D. 其中位数为5【答案】C 【分析】直接根据平均数,方差,中位数的求法和众数的概念逐一判断即可. 【详解】A. 其平均数为5375645558+++++++=,故该选项正确;B. 5出现的次数最多,所以其众数为5,故该选项正确;C. 其方差为22222222(55)(35)(75)(55)(65)(45)(55)(55)584-+-+-+-+-+-+-+-=,故该选项错误; D. 其中位数为5552+=,故该选项正确; 【点睛】本题主要考查同类项的概念,掌握同类项的概念是解题的关键.2.(2020松江二模)某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( ) A .方差B .极差C .中位数D .平均数【分析】由于比赛取前6名参加决赛,共有13名选手参加,根据中位数的意义分析即可. 【解答】解:13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了. 故选:C .3.(2020宝山二模)为备战奥运会,甲、乙、丙、丁四位优秀短跑选手参加训练,近期的10次百米测试平均成绩都是10.3秒,但他们成绩的方差分别是0.020、0.019、0.021、0.022(单位:秒²)则这四人中发挥最稳定的是( ) A. 甲 B. 乙C. 丙D. 丁【答案】B【分析】利用方差越小,表明这组数据分布越稳定解答即可. 【详解】解:∵0.019<0.020<0.021<0.022, ∴乙的方差最小, ∴这四人中乙发挥最稳定, 故选:B .【点睛】本题考查了方差意义,掌握方差是来衡量一组数据波动大小的量,方差越小,数据越稳定. 4.(2020奉贤二模)甲、乙、丙、丁四位同学本学期5次50米短跑成绩的平均数(秒)及方差S 2(秒2)如表所示.如果从这四位同学中选出一位成绩较好且状态稳定的同学参加学校比赛,那么应该选的同学是( )甲 乙 丙丁7 77.5 7.5 S 2 2.11.921.8A .甲B .乙C .丙D .丁【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 解:∵乙的平均分最好,方差最小,最稳定, ∴应选乙. 故选:B .5.(2020金山二模)某区对创建全国文明城区的满意程度进行随机调查,结果如图所示,据此可估计全区75万居民对创建全国文明城区工作不满意的居民人数为( )的A.1.2万B.1.5万C.7.5万D.66万【分析】用总人数乘以样本中对创建全国文明城区工作不满意的居民人数所对应的百分比可得.解:估计全区75万居民对创建全国文明城区工作不满意的居民人数为75×2%=1.5(万人),故选:B.6.(2020静安二模)体育课上,甲同学练习双手头上前掷实心球,测得他5次投掷的成绩为:8,8.5,9.2,8.5,8.8(单位:米),那么这组数据的平均数、中位数分别是()A.8.5,8.6B.8.5,8.5C.8.6,9.2D.8.6,8.5【分析】直接根据平均数和中位数的概念求解可得.【解答】解:这组数据的平均数为×(8+8.5+9.2+8.5+8.8)=8.6,将数据重新排列为8、8.5、8.5、8.8、9.2,所以这组数据的中位数为8.5,故选:D.7.(2020嘉定二模)一组数据:3、4、4、5,如果再添加一个数字4,那么会发生变化的统计量是()(A)平均数;(B)中位数;(C)众数;(D)方差.【考查内容】数据的分布,统计量的概念【评析】简单【解析】添加一个数字4后,平均数,中位数及众数都还是4,方差会产生变化,所以D选项错误。

2020年上海16区中考数学二模分类汇编-专题14 几何综合(25题压轴题)(逐题详解版)

2020年上海16区中考数学二模分类汇编-专题14 几何综合(25题压轴题)(逐题详解版)

2020年上海市16区中考数学二模汇编专题14 几何综合(25题压轴题)1.(2020闵行二模)2.(2020嘉定二模)3.(2020松江二模)4.(2020宝山二模)5.(2020奉贤二模)6.(2020金山二模)7.(2020静安二模)8.(2020长宁二模)9.(2020崇明二模)10.(2020浦东二模)11.(2020徐汇二模)12.(2020青浦二模)13.(2020虹口二模)14(2020杨浦二模)15(2020黄浦二模)16.(2020普陀二模)1.(2020闵行二模)如图,已知圆O是正六边形ABCDEF外接圆,直径BE=8,点G、H分别在射线CD、EF上(点G不与点C、D重合),且∠GBH=60°,设CG=x,EH=y.(1)如图①,当直线BG经过弧CD的中点Q时,求∠CBG的度数;(2)如图②,当点G在边CD上时,试写出y关于x的函数关系式,并写出x的取值范围;(3)联结AH、EG,如果△AFH与△DEG相似,求CG的长.2.(2020嘉定二模)如图8,在△ABC 中,︒=∠90C ,AB =5cm ,54cos =B .动点D 从点A 出发沿着射线AC 的方向以每秒1cm 的速度移动,动点E 从点B 出发沿着射线BA 的方向以每秒2cm 的速度移动.已知点D 和点E 同时出发,设它们运动的时间为t 秒. 联结BD.(1)当AB AD =时,求ABD ∠tan 的值;(2)以A 为圆心,AD 为半径画⊙A ;以点B 为圆心、BE 为半径画⊙B .讨论⊙A 与⊙B 的位置关系,并写出相对应的t 的值.(3)当△BDE 为直角三角形时,直接写出CBD ∠tan 的值.B CC3.(2020松江二模)如图,已知梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD <BC ,AB =BC=1,E 是边AB 上一点,联结CE .(1)如果CE=CD ,求证:AD=AE ;(2)联结DE ,如果存在点E ,使得△ADE 、△BCE 和△CDE 两两相似,求AD 的长;(3)设点E 关于直线CD 的对称点为M ,点D 关于直线CE 的对称点为N ,如果AD =,且M 在直线AD 上时,求的值.4.(2020宝山二模)如图7,已知:在直角ABC ∆中,90ABC ∠=︒,点M 在边BC 上,且12,4,AB BM ==如果将ABM ∆沿AM 所在的直线翻折,点B 恰好落在边AC 上的点D 处,点O 为AC 边上的一个动点,联结OB ,以O 圆心,OB 为半径作⊙O ,交线段AB 于点B 和点E ,作BOF BAC ∠=∠32EMDN交⊙O于点F,OF交线段AB于点G.(1)求点D到点B和直线AB的距离(2)如果点F平分劣弧BE,求此时线段AE的长度为等腰三角形,以A为圆心的⊙A与此时的⊙O相切,求⊙A的半径.(3)如果AOE5.(2020奉贤二模)如图8,已知半圆⊙O的直径AB=10,弦CD∥AB,且CD=8,E为弧CD的中点,点P在弦CD上,联结PE,过点E作PE的垂线交弦CD于点G,交射线OB于点F.(1)当点F与点B重合时,求CP的长;(2)设CP=x,OF=y,求y与x的函数关系式及定义域;(3)如果GP=GF,求△EPF的面积.6.(2020金山二模)如图,在△ABC中,∠C=90°,AC=6,BC=8,P是线段BC上任意一点,以点P 为圆心,PB为半径的圆与线段AB相交于点Q(点Q与点A、B不重合),∠CPQ的角平分线与AC相交于点D.(1)如果DQ=PB,求证:四边形BQDP是平行四边形;(2)设PB=x,△DPQ的面积为y,求y关于x的函数关系式,并写出x的取值范围;(3)如果△ADQ是以DQ为腰的等腰三角形,求PB的长.7.(2020静安二模)在Rt △ABC 中,∠ACB=90°,AC =15,54sin =∠BAC .点D 在边AB 上(不与点A 、B 重合),以AD 为半径的⊙A 与射线AC 相交于点E ,射线DE 与射线BC 相交于点F ,射线AF 与⊙A 交于点G .(1)如图10,设AD =x ,用x 的代数式表示DE 的长;(2)如果点E 是的中点,求∠DF A 的余切值;(3)如果△AFD 为直角三角形,求DE 的长.8.(2020长宁二模) 已知AB 是⊙O 的一条弦,点C 在⊙O 上,联结CO 并延长,交弦AB 于点D ,且CB CD =,(1)如图8,如果BO 平分ABC ∠,求证:AB BC =;(2)如图9,如果OB AO ⊥,求DB AD :的值;(3)延长线段AO 交弦BC 于点E ,如果EOB ∆是等腰三角形,且⊙O 的半径长等于2,求弦BC 的长.9.(2020崇明二模)如图,已知正方形ABCD中,BC=4,AC、BD相交于点O,过点A作射线AM⊥AC,点E是射线AM上一点,联结OE交AB边于点F.以OE为一边,作正方形OEGH,且点A在正方形OEGH的内部,联结DH.(1)求证:△HDO≌△EAO;(2)设BF=x,正方形OEGH的边长为y,求y关于x的函数关系式,并写出定义域;(3)联结AG,当△AEG是等腰三角形时,求BF的长.10.(2020浦东二模)已知:如图,在菱形ABCD 中,2AC =,60B ∠=︒.点E 为边BC 上的一个动点(与点B 、C 不重合),60EAF ∠=︒,AF 与边CD 相交于点F ,联结EF 交对角线AC 于点G .设CE x =,EG y =.(1)求证:AEF 是等边三角形;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)点O 是线段AC 的中点,联结EO ,当EG EO =时,求x 的值.11.(2020徐汇二模).如图,在梯形ABCD中,AD//BC,AB=CD=AD=5,cos45B=,点O是边BC上的动点,以OB为半径的O与射线BA和边BC分别交于点E和点M,联结AM,作∠CMN=∠BAM,射线MN与边AD、射线CD分别交于点F、N.(1)当点E为边AB的中点时,求DF的长;(2)分别联结AN、MD,当AN//MD时,求MN的长;(3)将O绕着点M旋转180°得到'O,如果以点N为圆心的N与'O都内切,求O的半径长.12.(2020青浦二模)如图8,已知AB是半圆O的直径,6AB=,点C在半圆O上.过点A作AD⊥OC,垂足为点D,AD的延长线与弦BC交于点E,与半圆O交于点F(点F不与点B重合).(1)当点F为BC的中点时,求弦BC的长;(2)设OD x =,DE AEy =,求与的函数关系式;(3)当△AOD 与△CDE 相似时,求线段OD 的长.13. (2020•虹口区二模)如图1,在梯形ABCD 中,AD ∥BC ,∠ABC =90°,cos C =35,DC =5,BC =6,以点B 为圆心,BD 为半径作圆弧,分别交边CD 、BC 于点E 、F .(1)求sin ∠BDC 的值;(2)联结BE ,设点G 为射线DB 上一动点,如果△ADG 相似于△BEC ,求DG 的长;(3)如图2,点P 、Q 分别为边AD 、BC 上动点,将扇形DBF 沿着直线PQ 折叠,折叠后的弧D 'F '经过y x OA B CDE F OABCDEF点B与AB上的一点H(点D、F分别对应点D',F'),设BH=x,BQ=y,求y关于x的函数关系式(不需要写定义域).14(2020杨浦二模)如图,已知在△ABC中,∠ACB=90°,AC=4,BC=8,点P是射线AC上一点(不与点A、C重合),过P作PM AB,垂足为点M,以M为圆心,MA长为半径的⊙M与边AB相交的另一个交点为点N,点Q是边BC上一点,且CQ = 2CP,联结NQ.(1)如果⊙M与直线BC相切,求⊙M的半径长;(2)如果点P在线段AC上,设线段AP=x,线段NQ=y,求y关于x的函数解析式及定义域;(3)如果以NQ为直径的⊙O与⊙M的公共弦所在直线恰好经过点P,求线段AP的长.15(2020黄浦二模)在边长为2的菱形ABCD中,E是边AD的中点,点F、G、H分别在边AB、BC、CD上,且FG⊥EF,EH⊥EF.(1)如图1,当点F是边AB中点时,求证:四边形EFGH是矩形;(2)如图2,当=时,求值;(3)当cos∠D=,且四边形EFGH是矩形时(点F不与AB中点重合),求AF的长.16. (2020•普陀区二模)如图,已知在四边形ABCD中,AD∥BC,∠ABC=90°,以AB为直径的⊙O交边DC于E、F两点,AD=1,BC=5,设⊙O的半径长为r.(1)联结OF,当OF∥BC时,求⊙O的半径长;(2)过点O作OH⊥EF,垂足为点H,设OH=y,试用r的代数式表示y;(3)设点G为DC的中点,联结OG、OD,△ODG是否能成为等腰三角形?如果能,试求出r的值;如不能,试说明理由.2020年上海市16区中考数学二模汇编专题14 几何综合(25题压轴题)1.(2020闵行二模)2.(2020嘉定二模)3.(2020松江二模)4.(2020宝山二模)5.(2020奉贤二模)6.(2020金山二模)7.(2020静安二模)8.(2020长宁二模)9.(2020崇明二模)10.(2020浦东二模)11.(2020徐汇二模)12.(2020青浦二模)13.(2020虹口二模)14(2020杨浦二模)15(2020黄浦二模)16.(2020普陀二模)1.(2020闵行二模)如图,已知圆O是正六边形ABCDEF外接圆,直径BE=8,点G、H分别在射线CD、EF上(点G不与点C、D重合),且∠GBH=60°,设CG=x,EH=y.(1)如图①,当直线BG经过弧CD的中点Q时,求∠CBG的度数;(2)如图②,当点G在边CD上时,试写出y关于x的函数关系式,并写出x的取值范围;(3)联结AH、EG,如果△AFH与△DEG相似,求CG的长.【整体分析】(1)连接OQ,根据正六边形的特点和内角和求出∠EBC =60°,然后通过弧之间的关系得出∠BOQ=∠EOQ=90°,又因为BO=OQ,得出∠OBQ=∠BQO=45°,最后利用∠CBG=∠EBC-∠OBQ即可求出答案;(2)在BE上截取EM=HE,连接HM,首先根据正六边形的性质得出EHM是等边三角形,则有EM=HE=HM=y,∠HME=60°,从而有∠C=∠HMB=120°,然后通过等量代换得出∠GBC=∠HBE,由此可证明△BCG ∽△BMH ,则有BC CGBM MH=,即48x y y =-,则y 关于x 的函数关系式可求,因为点Q 在边CD 上,则x 的取值范围可求;(3)分两种情况:①当点G 在边CD 上时:又分当AF FH ED DG =时和当AF FHDG DE=时两种情况;②当点G 在CD 的延长线上时,同样分当AF FH ED DG =时和当AF FHDG DE=时两种情况,分别建立方程求解并检验即可得出答案. 【详解】解:(1)如图,连接OQ .∵六边形ABCDEF 是正六边形, ∴BC=DE ,∠ABC=120°. ∴BC DE =,∠EBC=12∠ABC=60°. ∵点Q 是CD 的中点, ∴CQ DQ =.∴BC CQ QD DE +=+, 即BQ EQ =. ∴∠BOQ=∠EOQ , 又∵∠BOQ+∠EOQ=180°,∴∠BOQ=∠EOQ=90°.又∵BO=OQ,∴∠OBQ=∠BQO=45°,∴∠CBG=60°-45°=15°.(2)如图,在BE上截取EM=HE,连接HM.∵六边形ABCDEF是正六边形,直径BE=8,∴BO=OE=BC=4,∠C=∠FED=120°,∴∠FEB=12∠FED=60°.∵EM=HE,∴EHM是等边三角形,∴EM=HE=HM=y,∠HME=60°,∴∠C=∠HMB=120°.∵∠EBC=∠GBH=60°,∴∠EBC-∠GBE=∠GBH-∠GBE,即∠GBC=∠HBE.∴△BCG∽△BMH,∴BC CG BM MH=.又∵CG= x ,BE=8,BC=4, ∴48xy y=-, ∴y 与x 的函数关系式为84xy x =+(04x <<). (3)如图,当点G 在边CD 上时.由于△AFH ∽△EDG ,且∠CDE=∠AFE=120°, ① 当AF FHED DG=时, ∵AF=ED , ∴FH=DG , ∴CG EH =, 即:84xx y x ==+,解分式方程得4x =. 经检验4x =是原方程的解,但不符合题意舍去. ② 当AF FHDG DE=时, 即:4444yx -=-,解分式方程得12x =. 经检验12x =是原方程的解,但不符合题意舍去. 如图,当点G 在CD 延长线上时.由于△AFH ∽△EDG ,且∠EDG=∠AFH=60°, ① 当AF FHED DG=时, ∵AF=ED , ∴FH=DG , ∴CG EH =, 即:84xx y x ==+,解分式方程得4x =. 经检验4x =是原方程的解,但不符合题意舍去. ② 当AF FHDG DE=时, 即:4444y x -=-,解分式方程得12x =. 经检验12x =是原方程的解,且符合题意.∴综上所述,如果△AFH 与△DEG 相似,那么CG 的长为12.【点睛】本题主要考查正六边形的性质,等边三角形的判定及性质,相似三角形的判定及性质,解分式方程,做出辅助线并分情况讨论是解题的关键.2.(2020嘉定二模)如图8,在△ABC 中,︒=∠90C ,AB =5cm ,54cos =B .动点D 从点A 出发沿着射线AC 的方向以每秒1cm 的速度移动,动点E 从点B 出发沿着射线BA 的方向以每秒2cm 的速度移动.已知点D 和点E 同时出发,设它们运动的时间为t 秒. 联结BD. (1)当AB AD =时,求ABD ∠tan 的值;(2)以A 为圆心,AD 为半径画⊙A ;以点B 为圆心、BE 为半径画⊙B .讨论⊙A 与⊙B 的位置关系,并写出相对应的t 的值.(3)当△BDE 为直角三角形时,直接写出CBD ∠tan 的值.【考查内容】两圆位置关系、锐角三角形比的应用、等腰三角形的性质、直角三角形存在性问题 【解析】(1)等腰三角形三线合一的性质、等积法求高、锐角三角比的意义;(2)由内切和外切分别求出对应的t 的值,再根据两圆位置关系确定t 的取值范围;(3)按照直角进行分类讨论,由一线三等角求解非常方便。

2020年上海16区中考数学二模分类汇编-专题04 统计与概率(解析版)

2020年上海16区中考数学二模分类汇编-专题04 统计与概率(解析版)

6.(2020 静安二模)体育课上,甲同学练习双手头上前掷实心球,测得他 5 次投掷的成绩为:8,8.5,9.2,
8.5,8.8(单位:米),那么这组数据的平均数、中位数分别是( )
A.8.5,8.6
B.8.5,8.5
C.8.6,9.2
D.8.6,8.5
【分析】直接根据平均数和中位数的概念求解可得.
均成绩都是 10.3 秒,但他们成绩的方差分别是 0.020、0.019、0.021、0.022(单位:秒²)则这四人中发挥最
稳定的是( )
A. 甲
B. 乙
C. 丙
D. 丁
【答案】B
【分析】利用方差越小,表明这组数据分布越稳定解答即可.
【详解】解:∵0.019<0.020<0.021<0.022,
∴乙的方差最小,
4.(2020 奉贤二模) 8.(2020 长宁二模) 12.(2020 青浦二模) 16.(2020 普陀二模)
一.选择题
1.(2020 闵行二模)某同学参加射击训练,共发射 8 发子弹,击中的环数分别为 5,3,7,5,6,4,5,5, 则下列说法错误的是( )
A. 其平均数为 5
B. 其众数为 5
(D)方差.
【考查内容】数据的分布,统计量的概念
【评析】简单
【解析】添加一个数字 4 后,平均数,中位数及众数都还是 4,方差会产生变化,所以 D 选项错误。
【答案】D
8.(2020 长宁二模)如图是关于某班同学一周体育锻炼情况的统计图,那么该班学生这一周参加体育锻炼
时间的众数、中位数分别是( )
A.8、9
()




7
7
7.5

上海市金山区2019-2020学年中考数学考前模拟卷(2)含解析

上海市金山区2019-2020学年中考数学考前模拟卷(2)含解析

上海市金山区2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,BC∥DE,若∠A=35°,∠E=60°,则∠C等于()A.60°B.35°C.25°D.20°2.下列运算正确的是()A.a3•a2=a6B.(2a)3=6a3C.(a﹣b)2=a2﹣b2D.3a2﹣a2=2a23.化简:(a+343aa--)(1﹣12a-)的结果等于()A.a﹣2 B.a+2 C.23aa--D.32aa--4.超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=905.中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离.在如图所示的测量距离AB的示意图中,记照板“内芯”的高度为EF,观测者的眼睛(图中用点C表示)与BF在同一水平线上,则下列结论中,正确的是()A.EF CFAB FB=B.EF CFAB CB=C.CE CFCA FB=D.CE CFEA CB=6.下列计算中,正确的是()A.3322a a=()B.325a a a+=C.842a a a÷=D.236a a=()7.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.91032π⎛⎫-⎪⎝⎭米2B.932π⎛⎫-⎪⎝⎭米2C.9632π⎛⎫-⎪⎝⎭米2D.()693π-米28.如图,在底边BC为23,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为( )A.2+3B.2+23C.4 D.339.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为( )A.13124π-B.9π1?24-C.1364π+D.610.如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,下列结论中不一定正确的是()A.∠ACB=90°B.OE=BE C.BD=BC D.»»AD AC=11.如图,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半径为3,那么下列说法正确的是()A .点B 、点C 都在⊙A 内B .点C 在⊙A 内,点B 在⊙A 外 C .点B 在⊙A 内,点C 在⊙A 外D .点B 、点C 都在⊙A 外12.若数a ,b 在数轴上的位置如图示,则( )A .a+b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,矩形ABCD 中,AB =2,点E 在AD 边上,以E 为圆心,EA 长为半径的⊙E 与BC 相切,交CD 于点F ,连接EF .若扇形EAF 的面积为,则BC 的长是_____.14.如图,直线(0)y kx k =>交O e 于点A ,B ,O e 与x 轴负半轴,y 轴正半轴分别交于点D ,E ,AD ,BE 的延长线相交于点C ,则:CB CD 的值是_________.15.如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限,△ABO 沿x 轴正方向作无滑动的翻滚,经第一次翻滚后得到△A 1B 1O ,则翻滚2017次后AB 中点M 经过的路径长为______.16.如果53x x y =-,那么x y=______. 17.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.18.12的相反数是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将△ABC绕点D顺时针旋转90°画出旋转后的图形△A1B1C1;在网格中将△ABC放大2倍得到△DEF,使A与D为对应点.20.(6分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.(1)请直接写出袋子中白球的个数.(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)21.(6分)某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元.今年的总收入和总支出计划各是多少万元?22.(8分)(1)计算:|﹣3|+(π﹣2 018)0﹣2sin 30°+(13)﹣1.(2)先化简,再求值:(x﹣1)÷(21x﹣1),其中x为方程x2+3x+2=0的根.23.(8分)如图,一次函数y=-x+5的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,n)和B两点.求反比例函数的解析式;在第一象限内,当一次函数y=-x+5的值大于反比例函数y=kx(k≠0)的值时,写出自变量x的取值范围.24.(10分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.25.(10分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D 作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线.(2)如果⊙O的半径为5,sin∠ADE=45,求BF的长.26.(12分)如图,在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,交BC于点F,交AB于点E.求证:FC=2BF.27.(12分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣2,3),B(﹣4,﹣1),C(2,0).点P (m,n)为△ABC内一点,平移△ABC得到△A1B1C1,使点P(m,n)移到P(m+6,n+1)处.(1)画出△A1B1C1(2)将△ABC绕坐标点C逆时针旋转90°得到△A2B2C,画出△A2B2C;(3)在(2)的条件下求BC扫过的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】先根据平行线的性质得出∠CBE=∠E=60°,再根据三角形的外角性质求出∠C的度数即可.【详解】∵BC∥DE,∴∠CBE=∠E=60°,∵∠A=35°,∠C+∠A=∠CBE,∴∠C=∠CBE﹣∠C=60°﹣35°=25°,故选C.【点睛】本题考查了平行线的性质、三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.2.D【解析】试题分析:根据同底数幂相乘,底数不变指数相加求解求解;根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘求解;根据完全平方公式求解;根据合并同类项法则求解.解:A、a3•a2=a3+2=a5,故A错误;B、(2a)3=8a3,故B错误;C、(a﹣b)2=a2﹣2ab+b2,故C错误;D、3a2﹣a2=2a2,故D正确.故选D.点评:本题考查了完全平方公式,合并同类项法则,同底数幂的乘法,积的乘方的性质,熟记性质与公式并理清指数的变化是解题的关键.3.B【解析】【分析】【详解】解:原式=(3)342132a a a aa a-+---⋅--=24332a aa a--⋅--=(2)(2)332a a aa a+--⋅--=2a+.故选B.考点:分式的混合运算.4.A【解析】试题分析:设某种书包原价每个x元,根据题意列出方程解答即可.设某种书包原价每个x元,可得:0.8x﹣10=90考点:由实际问题抽象出一元一次方程.5.B【解析】分析:由平行得出相似,由相似得出比例,即可作出判断.详解: ∵EF∥AB, ∴△CEF∽△CAB, ∴EF CF CEAB CB CA==,故选B.点睛:本题考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解答本题的关键. 6.D【解析】【分析】根据积的乘方、合并同类项、同底数幂的除法以及幂的乘方进行计算即可.【详解】A、(2a)3=8a3,故本选项错误;B、a3+a2不能合并,故本选项错误;C、a8÷a4=a4,故本选项错误;D、(a2)3=a6,故本选项正确;故选D.【点睛】本题考查了积的乘方、合并同类项、同底数幂的除法以及幂的乘方,掌握运算法则是解题的关键.7.C【解析】【详解】连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=12OA=12×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6,OC=1,∴2222CD OD OC6333=-=-=.又∵CD333sin DOCOD∠===,∴∠DOC=60°.∴2606193336336022DOCAODS S Sππ∆⋅⋅=-=-⨯⨯=-阴影扇形(米2).故选C.8.B【解析】分析:根据线段垂直平分线的性质,把三角形的周长问题转化为线段和的问题解决即可.详解:∵DE垂直平分AB,∴BE=AE,∴3,∴△ACE的周长3故选B.点睛:本题考查了等腰三角形性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.9.A【解析】【分析】根据图形可以求得BF 的长,然后根据图形即可求得S 1-S 2的值.【详解】∵在矩形ABCD 中,AB=4,BC=3,F 是AB 中点,∴BF=BG=2,∴S 1=S 矩形ABCD -S 扇形ADE -S 扇形BGF +S 2,∴S 1-S 2=4×3-22903902360360ππ⨯⨯⨯⨯-=13124π-, 故选A .【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10.B【解析】【分析】根据垂径定理及圆周角定理进行解答即可.【详解】∵AB 是⊙O 的直径,∴∠ACB=90°,故A 正确;∵点E 不一定是OB 的中点,∴OE 与BE 的关系不能确定,故B 错误;∵AB ⊥CD ,AB 是⊙O 的直径,∴»»BDBC =, ∴BD=BC ,故C 正确;∴AD AC =u u u r u u u r,故D 正确.故选B .【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键. 11.D【解析】【分析】先求出AB 的长,再求出AC 的长,由B 、C 到A 的距离及圆半径的长的关系判断B 、C 与圆的关系.【详解】由题意可求出∠A=30°,∴AB=2BC=4, 由勾股定理得AC=22AB BC -=23,Q AB=4>3, AC=23>3,∴点B 、点C 都在⊙A 外.故答案选D.【点睛】本题考查的知识点是点与圆的位置关系,解题的关键是熟练的掌握点与圆的位置关系.12.D【解析】【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案.【详解】由数轴可知:a <0<b ,a<-1,0<b<1,所以,A.a+b<0,故原选项错误;B. ab <0,故原选项错误;C.a-b<0,故原选项错误;D. 0a b -->,正确.故选D .【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】分析:设∠AEF=n°,由题意,解得n=120,推出∠AEF=120°,在Rt △EFD 中,求出DE 即可解决问题.详解:设∠AEF=n°,由题意,解得n=120,∴∠AEF=120°,∴∠FED=60°,∵四边形ABCD 是矩形,∴BC=AD ,∠D=90°,∴∠EFD=10°,∴DE=EF=1,∴BC=AD=2+1=1,故答案为1.点睛:本题考查切线的性质、矩形的性质、扇形的面积公式、直角三角形10度角性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.2【解析】【分析】连接BD ,根据90EOD ∠=︒可得90AOD BOE ∠+∠=︒,并且根据圆的半径相等可得△OAD 、△OBE 都是等腰三角形,由三角形的内角和,可得∠C=45°,则有CDB △是等腰直角三角形,可得:2CB CD =即可求求解.【详解】解:如图示,连接BD ,∵90EOD ∠=︒,∴90AOD BOE ∠+∠=︒,∵OB OE =,OA OD =,∴OAD ODA ∠=∠,OBE OEB ∠=∠,∴()1360901352OAD OBE ︒︒∠+∠=-=︒, ∴45ACB ∠=︒,∵AB 是直径,∴90ADB CDB ∠=∠=︒,∴CDB △是等腰直角三角形,∴:2CB CD =.【点睛】 本题考查圆的性质和直角三角形的性质,能够根据圆性质得出CDB △是等腰直角三角形是解题的关键. 15.(134633+896)π. 【解析】【分析】由圆弧的弧长公式及正△ABO 翻滚的周期性可得出答案.【详解】解:如图作3B E ⊥x 轴于E, 易知OE=5, 33B E =,33)B =,观察图象可知3三次一个循环,一个循环点M 的运动路径为¼¼¼MNNH HM ++'= 120?·3120?·1120?·1180180πππ++=234π+, 201736721÷=⋅⋅⋅Q∴翻滚2017次后AB 中点M 经过的路径长为2342313463672?((896)ππ++=, 故答案:13463896)π 【点睛】本题主要考查圆弧的弧长公式及三角形翻滚的周期性,熟悉并灵活运用各知识是解题的关键. 16.52; 【解析】【分析】先对等式进行转换,再求解.【详解】∵53x x y -= ∴3x =5x -5y∴2x=5y∴5.2 xy=【点睛】本题考查的是分式,熟练掌握分式是解题的关键. 17.1【解析】【分析】【详解】∵骑车的学生所占的百分比是126360×100%=35%,∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),故答案为1.18.﹣12.【解析】【分析】根据只有符号不同的两个数叫做互为相反数解答.【详解】1 2的相反数是12-.故答案为1 2 -.【点睛】本题考查的知识点是相反数,解题关键是熟记相反数的概念.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析(2)见解析【解析】【分析】(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△DEF即为所求.【点睛】本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.20.(1)袋子中白球有2个;(2).【解析】试题分析:(1)设袋子中白球有x个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.试题解析:(1)设袋子中白球有x个,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:.考点:列表法与树状图法;概率公式.21.今年的总收入为220万元,总支出为1万元.【解析】试题分析:设去年总收入为x万元,总支出为y万元,根据利润=收入-支出即可得出关于x、y的二元一次方程组,解之即可得出结论.试题解析:设去年的总收入为x万元,总支出为y万元.根据题意,得()()50110%120%100x y x y -=⎧⎨+--=⎩, 解这个方程组,得200150x y =⎧⎨=⎩, ∴(1+10%)x=220,(1-20%)y=1.答:今年的总收入为220万元,总支出为1万元.22.(1)6;(2)﹣(x+1),1.【解析】【详解】(1)原式=3+1﹣2×12+3=6(2)由题意可知:x 2+3x+2=0,解得:x=﹣1或x=﹣2原式=(x ﹣1)÷11x x -+ =﹣(x+1)当x=﹣1时,x+1=0,分式无意义,当x=﹣2时,原式=123.(1)4y x =;(2)1<x <1. 【解析】【分析】(1)将点A 的坐标(1,1)代入,即可求出反比例函数的解析式;(2)一次函数y =-x +5的值大于反比例函数y =k x ,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.【详解】解:(1)∵一次函数y=﹣x+5的图象过点A (1,n ),∴n=﹣1+5,解得:n=1,∴点A 的坐标为(1,1).∵反比例函数y=k x (k≠0)过点A (1,1), ∴k=1×1=1,∴反比例函数的解析式为y=4x.联立54yxyx=-+⎧⎪⎨=⎪⎩,解得:14xy=⎧⎨=⎩或41xy=⎧⎨=⎩,∴点B的坐标为(1,1).(2)观察函数图象,发现:当1<x<1.时,反比例函数图象在一次函数图象下方,∴当一次函数y=﹣x+5的值大于反比例函数y=kx(k≠0)的值时,x的取值范围为1<x<1.【点睛】本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.24.(1)800,240;(2)补图见解析;(3)9.6万人.【解析】试题分析:(1)由C类别人数及其百分比可得总人数,总人数乘以B类别百分比即可得;(2)根据百分比之和为1求得A类别百分比,再乘以360°和总人数可分别求得;(3)总人数乘以样本中A、B、C三类别百分比之和可得答案.试题解析:(1)本次调查的市民有200÷25%=800(人),∴B类别的人数为800×30%=240(人),故答案为800,240;(2)∵A类人数所占百分比为1﹣(30%+25%+14%+6%)=25%,∴A类对应扇形圆心角α的度数为360°×25%=90°,A类的人数为800×25%=200(人),补全条形图如下:(3)12×(25%+30%+25%)=9.6(万人),答:估计该市“绿色出行”方式的人数约为9.6万人.考点:1、条形统计图;2、用样本估计总体;3、统计表;4、扇形统计图25.(1)答案见解析;(2)907.【解析】试题分析:(1)连接OD,AB为⊙O的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;(2)由∠DAC=∠DAB,根据等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可计算出AD=8,在Rt△ADE中可计算出AE=325,然后由OD∥AE,得△FDO∽△FEA,再利用相似比可计算出BF.试题解析:(1)证明:连结OD∵OD=OB∴∠ODB=∠DBO又AB=AC∴∠DBO=∠C∴∠ODB =∠C∴OD ∥AC又DE⊥AC∴DE ⊥OD∴EF是⊙O的切线.(2)∵AB是直径∴∠ADB=90 °∴∠ADC=90 °即∠1+∠2=90 °又∠C+∠2=90 °∴∠1=∠C∴∠1 =∠3∴4sin sin35AD ADEAB ∠==∠=∴4510AD =∴AD=8在Rt△ADB中,AB=10∴BD=6在又Rt△AED中,4sin5AE ADEAD ∠==∴483255 AE⨯==设BF=x∵OD ∥AE∴△ODF∽△AEF∴OD OF AE AF=,即5532105xx+=+,解得:x=90726.见解析【解析】【分析】连接AF ,结合条件可得到∠B=∠C=30°,∠AFC=60°,再利用含30°直角三角形的性质可得到AF=BF=12CF,可证得结论.【详解】证明:连接AF,∵EF为AB的垂直平分线,∴AF=BF,又AB=AC,∠BAC=120°,∴∠B=∠C=∠BAF=30°,∴∠FAC=90°,∴AF=FC,∴FC=2BF.【点睛】本题主要考查垂直平分线的性质及等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.27.(1)见解析;(2)见解析;(3)194π.【解析】【分析】(1)根据P(m,n)移到P(m+6,n+1)可知△ABC向右平移6个单位,向上平移了一个单位,由图形平移的性质即可得出点A1,B1,C1的坐标,再顺次连接即可;(2)根据图形旋转的性质画出旋转后的图形即可;(3)先求出BC 长,再利用扇形面积公式,列式计算即可得解.【详解】解:(1)平移△ABC 得到△A 1B 1C 1,点P (m ,n )移到P (m+6,n+1)处,∴△ABC 向右平移6个单位,向上平移了一个单位,∴A 1(4,4),B 1(2,0),C 1(8,1);顺次连接A 1,B 1,C 1三点得到所求的△A 1B 1C 1(2)如图所示:△A 2B 2C 即为所求三角形.(3)BC 2222(42)(10)(6)137--+--=-+=BC 扫过的面积21137944ππ= 【点睛】 本题考查了利用旋转变换作图,利用平移变换作图,比较简单,熟练掌握网格结构,准确找出对应点的位置是解题的关键.。

2020-2021学年上海市中考二模数学试卷有答案

2020-2021学年上海市中考二模数学试卷有答案初中毕业生学业模拟考试数学试卷(满分150分,完卷时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.下列各根式中与3是同类二次根式的是……………………………………………()(A )9;(B )31;(C(D )30.2.下列运算中,正确的是…………………………………………………………………()(A )325x x x +=;(B )32x x x -=;(C )326x x x ?=;(D )32x x x ÷=.3.不等式组?≤>+103x x 的解集在数轴上表示正确的是…………………………………()4.已知一组数据123,,x x x 的平均数和方差分别为6和2,则数据1231,1,1x x x +++的平均数和方差分别是……………………………………………………………………………()(A )6和2;(B )6和3;(C )7和2;(D )7和3.5.顺次连结等腰梯形的各边中点所得到的四边形(A );(B ).(C )(D )是……………………………………()(A )平行四边形;(B )菱形;(C )矩形;(D )正方形.6.已知在△ABC 中,AB=AC=13,BC=10,如果以A 为圆心r 为半径的⊙A 和以BC为直径的⊙D相交,那么r的取值范围……………………………………………………………()(A )313r <<;(B )517r <<;(C )713r <<;(D )717r <<.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.因式分解:24a -= .81=的解为 .9.如果一元二次方程220x x a ++=有两个不相等的实数根,那么a 的取值范围是. 10.函数y =23x-中自变量x 的取值范围是_______. 11.将抛物线221y x =-向右平移2个单位,再向上平移2个单位所得抛物线的表达式是.12.如果反比例函数21k y x-=的图像在每个象限内y 随x 的增大而减小,那么k 的取值范围是.13.在等腰梯形、正五边形、平行四边形、矩形这4种图形中,任取一种图形,这个图形是中心对称图形的概率是.14.为了解某区初三学生的课余生活情况,调查小组在全区范围内随机抽取部分学生进行问卷调查. 问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图(如图所示). 如果该区有6000名初三学生,请你估计该区最喜欢体育运动的初三学生约有名.15.已知在△ABC 中,AB a AC b ==u u u r u u u r r r ,,M 是边BC 上的一点,:1:2BM CM =,用向量a ρ、b r表示AM u u u u r = .16.一公路大桥引桥长100米,已知引桥的坡度3:1=i ,那么引桥的铅直高度为米(结果保留根号).17.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt △ABC 中,∠C=90°,较短的一条直角边边长为1,如果Rt △ABC 是“有趣三角形”,那么这个三角形“有趣中线”32%其他16%音乐12%美术%体育(第14题图)CABD (第18题图)长等于 .18.如图,在Rt △ABC 中,90ACB ∠=?,AC=4,BC=3,点D 为AB 的中点,将△ACD 绕着点C 逆时针旋转,使点A 落在CB 的延长线A '处,点D 落在点D '处,则D B '长为.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)11()24-20.(本题满分10分)解方程:213221x x x x +-=+.21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,已知在△ABC 中,AB=AC ,8BC =,tan 3ABC ∠=,AD ⊥BC 于D,(第21题图)O 是AD 上一点,OD=3,以OB 为半径的⊙O 分别交AB 、AC 于E 、F .求:(1)⊙O 的半径;(2)BE 的长.22.(本题满分10分,第(1)小题4分,第(2)小题6分)某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.如图,线段OA 和OB 分别表示某日从上午8点到上午11点,每个普通售票窗口售出的车票数1w (张)和每个无人售票窗口售出的车票数2w (张)关于售票时间t (小时)的函数图象.(1)求1w (张)与t (小时)的函数解析式;(2)若当天开放无人售票窗口个数是普通售票窗口个数的2倍,从上午8点到上午11点,两种窗口共售出的车票数为2400张,求当天开放无人售票窗口的个数?23.(本题满分12分,每小题6分)如图,在正方形ABCD 中,E 是边CD 上一点,AF AE 交CB 的延长线于小时)(第22题图)(第23题图)(第24题图)点F ,联结DF ,分别交AE 、AB 于点G 、P. (1)求证:AE=AF ;(2)若∠BAF=∠BFD,求证:四边形APED 是矩形.24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)如图,在直角坐标平面内,直线5+-=x y 与x 轴和y 轴分别交于A 、B 两点,二次函数c bx x y ++=2的图象经过点A 、B (1)求这个二次函数的解析式;(2)求OCA ∠sin 的值;(3)若P 是这个二次函数图象上位于x 轴下方的一点,且?ABP 的面积为10,求点P(第25题图1)D ABFCE(第25题图2)DABFCEB(第25题备用图)25.(本题满分14分,第(1)小题3分,第(2)小题5分,第(3)小题6分)在ABC ?中,AC=25,35AB =,4tan 3A =,点D 为边AC 上一点,且AD=5,点E 、F 分别为边AB 上的动点(点F 在点E 的左边),且EDF A ∠=∠.设y AF x AE ==,.(1)如图1,当DF AB ⊥ 时,求AE 的长;(2)如图2,当点E 、F在边AB上时,求函数的定义域;的函数关系式,并写出关于x y (3)联结CE ,当相似时,和ADF DEC ??求x 的值.初中毕业生学业模拟考试答案及评分参考(满分150分,考试时间100分钟)一、选择题 (本大题共6题,每题4分,满分24分) 题号 1 2 3 45 6 答案BDACBD二、填空题 (本大题共12题,每题4分,满分48分)7、(2)(2)a a +-;8、x=1 ;9、a<1; 10、x ≠3 ; 11、22(2)1y x =-+ ;12、12k >;13、12 ;14、2400; 15、2133a b +r r;16、 17; 18 .19、解:原式=………………………………(8分)=2- …………………………………………………………(2分)20、解:设21x y x+=………………………………………(1分) 原方程化为232y y-= …………………………(1分)2230y y --=……………………………………(2分)解得123,1y y ==- ………………………………(2分)当213x x+=时解得1x = …………………………(1分)当211x x+=-时解得13x =- …………………………(1分)经检验1x =,13x =-都是原方程的根…………………………(1分)所以原方程的根为1x =,13x =-…………………………(1分) 21、解:(1)∵AB=AC, AD ⊥BC ∴BD=CD=4…………………………(2在RT BOD ?中∵OD=3∴OB=5…………………………(2分)(2)过O 点作,AB H OH AB ⊥交于又∵OH 过圆心O ∴BH=EH ……………………………………………(1分)∵在RT ABD ?中tan 3ADABD BD∠==,∴AD =12, AB=104……………………………………………(1分)(第21题图)∵OD=3 ∴AO=9∵,OAH BAD OHA ADB ∠=∠∠=∠ ∵AOH ?∽ABD ?∴AH AOAD AB=∴12AH =∴AH =2分)∴BH =……………………………………………………………………(1分)∴BE =……………………………………………………………………(1分)22、(1)设kt w =1(0≠k )………………………………………………………(1分)把240,3==w t 代入解得80=k …………………………………………………(2分)所以t w 801=…………………………………………………………………………(1分)(2)设当天开放无人售票窗口x 个,普通售票窗口x 21个………………………(1分)由题意得240018021240=+?x x ………………………………………………………(3分)解得8=x …………………………………………………………………………………(1分)答:当天开放无人售票窗口8个.………………………………………………………(1分)23、∵四边形ABCD 是正方形,∴090=∠=∠=∠DAB ABC ADE ,AB AD =,AD //BC ,AB //CD ………… (3分)∵AE AF ⊥∴090=∠EAF ∴BAE DAE ∠=∠…………………………………(1分)∴∴ABF ADE ………………………………………………………………… (1分)∴AF=AE ………………………………………………… ( 1分)2) ∵BFD BAF ∠=∠,∠DAE=∠BAF ∴∠BFP=∠EAD …(2分)∴AD //BC ∴∠ADF=∠CFD ∴∠ADF=∠DAG ∴GA=DG …………………(2分)∵∠AGP=∠DGE∴DGE AGP ………………………………………………(1分)∴DE AP =又∵AP //ED ∴四边形APED 是平行四边形………………………………(2分)∵∠ADE=900, ∴四边形APED矩形……………………………………………………………………(1分)24.解:(1)由直线5+-=x y 得点B(0,5),A(5,0),…………………………(1分)将A 、B 两点的坐标代入c bx x y ++=2,得 ?=++=05255c b c ………… (1分)解得??=-=56c b …………………………………………………………………(1分)∴抛物线的解析式为562+-=x x y ………………………………………(1分)(2)过点C 作轴x CH ⊥交x 轴于点H把562+-=x x y 配方得2(3)4y x =--∴点C(3,-4),…………………(1分)∴CH=4,AH=2,AC=52∴OC=5,…………………(1分)∵OA=5∴OA=OC ∴OCA OAC ∠=∠………………………(1分)OCA ∠sin =552524sin ===∠AC CH OAC ………………………(1分)(3)过P 点作PQ ⊥x 轴并延长交直线5+-=x y 于Q 设点P 56,(2+-m mm ),Q(m,-m+5))56(52+--+-=m m m PQ =m m 5-2+…………………(1分)∵PQA PQB ABP S S S += ∴)(2121212121h h PQ h PQ h PQ S ABP +??=??+??= …………………(1分)∴5)5(21102?+-=m m ∴4,121==m m …………………(1分)∴P(1,0)(舍去),P (4,-3)…………………(1分)25.(1)∵DF AB ⊥,∴90AFD ∠=? ,∴90A ADF ∠+∠=?∵EDF A ∠=∠,∴90EDF ADF ∠+∠=?,即90ADF ∠=?……(1分)在090,5Rt ADE ADE AD ?∠==中,,34tan =A ∴203DE = ………………………………………………………………(1分)∴253AE = ……………………………………………………………………(1分)(2)过点D 作G AB AB DG 于交,⊥ ∵ADEEDF ∠=∠,AEDDEF ∠=∠∴EDF∽EAD ?…………(1分)∴EDAEEF ED =∴EF AE ED ?=.2…………………………………………(1分)∴090,10RT AGD AGD AD ?∠==中,,34tan =A ∴86DG AG ==,∴6EG x =-∴2224x-3)DE =+(……………………(1分)∴)(3(422y x x x -?=-+)∴xy 256-=……………………………………………………………………(1分)(2535)6x ≤≤)…………………………………………………………………(1分)(3)∵A AFD EDF EDC ∠+∠=∠+∠,且EDF A ∠=∠.∴AFD EDC ∠=∠…………………………………………………………………(2分)01当时CED A ∠=∠∵EDF A ∠=∠,又∵FDE CED ∠=∠ ∴DF //CE ∴AE AF AC AD =∴x y =255∵x y 256-=∴x x=)25-65(5,2521==x x ………………………………………………………………(2分)02当时DCE A ∠=∠∵A EDF ∠=∠,∴ECD ?∽DAF ? ∴AD CE AF CD =∴520x y =∵x y 256-=∴x x=)25-65(∴6125=x ………………………………………………………………(2分)综上当相似时,和ADF DEC ??5,2521==x x 6125=x .。

2020年上海16区中考数学二模分类汇编-专题09 平行、全等与相似(解析版)

2020年上海市16区中考数学二模汇编专题09 平行、全等与相似1.(2020闵行二模)2.(2020松江二模)3.(2020宝山二模)4.(2020奉贤二模)5.(2020金山二模)6.(2020静安二模)7.(2020嘉定二模)8.(2020长宁二模)9.(2020崇明二模) 10.(2020浦东二模) 11.(2020徐汇二模) 12.(2020青浦二模)13.(2020虹口二模) 14(2020杨浦二模) 15(2020黄浦二模) 16.(2020普陀二模)一.选择题1.(2020松江二模)如图,已知△ABC中,AC=2,AB=3,BC=4,点G是△ABC的重心.将△ABC平移,使得顶点A与点G重合.那么平移后的三角形与原三角形重叠部分的周长为()A.2B.3C.4D.4.5【分析】先根据平移和平行线的性质得到∠GMN=∠B,∠GNM=∠C,则可判断△GMN∽△ABC,根据相似三角形的性质得到=,接着利用三角形重心性质得AG=2GD,然后根据三角形周长定义计算即可.【解答】解:∵将△ABC平移得到△GEF,∴GE∥AB,GF∥AC,∴∠GMN=∠B,∠GNM=∠C,∴△GMN∽△ABC,∴=,∵点G是△ABC的重心,∴AG=2GD,∴=,∴△GMN的周长=×(2+3+4)=3.故选:B.2.(2020宝山二模)如右图,矩形EFGH内接于△ABC,且边FG落在BC上,如果AD⊥BC,BC=3,AD=2,EF:EH=2:3,那么EH的长为()A. 12B.32C.1213D. 2【答案】B【分析】设EH=3x,则EF=2x,△AEH的边EH上的高为AM=AD-EF,再由三角形AEH与三角形ABC相似,利用相似三角形对应边上的高之比等于相似比求出x的值,进而求得EH的长.【详解】解:∵四边形EFGH是矩形,∴EH//BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴AM EH AD BC=设EH=3x,则有EF=2x,AM=AD-EF=2-2x,∴223 23x x -=解得:x=12,则EH=3x=32.故答案为B.【点睛】本题考查了相似三角形的判定与性质和矩形的性质,掌握相似三角形的判定与性质是解答本题的关键.3.(2020奉贤二模)如果线段AM和线段AN分别是△ABC边BC上的中线和高,那么下列判断正确的是()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN【分析】根据三角形的高的概念得到AD⊥BC,根据垂线段最短判断.解:∵线段AN是△ABC边BC上的高,∴AD⊥BC,由垂线段最短可知,AM≥AN,故选:B.4.(2020静安二模)如图,将△ABC绕点A逆时针旋转得到△ADE,其中点B、C分别与点D、E对应,如果B、D、C三点恰好在同一直线上,那么下列结论错误的是()A.∠ACB=∠AED B.∠BAD=∠CAE C.∠ADE=∠ACE D.∠DAC=∠CDE【分析】利用旋转的性质直接对A选项进行判断;利用旋转的性质得∠BAC=∠DAE,再利用三角形外角性质得∠BAD=∠CAE,则可对B选项进行判断;利用旋转的性质得∠ADE=∠B,AB=AD,AC=AE,然后根据等腰三角形顶角相等时底角相等得到∠B=∠ACE,则∠ADE=∠ACE,于是可对C选项进行判断;先判断∠EDC=∠BAD,而∠BAD不能确定等于∠DAC,则可对D选项进行判断.【解答】解:∵△ABC绕点A逆时针旋转得到△ADE,∴∠ACB=∠AED,所以A选项的结论正确;∠BAC=∠DAE,即∠BAD+∠DAC=∠DAC+∠CAE,∴∠BAD=∠CAE,所以B选项的结论正确;∵△ABC绕点A逆时针旋转得到△ADE,∴∠ADE=∠B,AB=AD,AC=AE,∵∠BAD=∠CAE,∴∠B=∠ACE,∴∠ADE=∠ACE,所以C选项的结论正确;∵∠ADC=∠B+∠BAD,而∠ADE=∠B,∴∠EDC=∠BAD,而AD不能确定平分∠BAC,∴∠BAD不能确定等于∠DAC,∴∠EDC不能确定等于∠DAC,所以D选项的结论错误.故选:D.5.(2020徐汇二模)如果从货船A测得小岛B在货船A的北偏东30°方向500米处,那么从小岛B看货船A的位置,此时货船A在小岛B的()A. 南偏西30°方向500米处B. 南偏西60°方向500米处C. 南偏西30°方向D. 南偏西60°方向【答案】A【分析】分别以货船A和小岛B建立方位角,再根据方位角得出答案.【详解】建立如图所示方位角:∵B在A的北偏东30方向∴A在B的南偏西30方向又∵B与A相距500米∴A与B相距500米故答案选:A【点睛】本题考查方位角,掌握方位角的描述是解题关键.6.(2020青浦二模)如图,点G是△ABC的重心,联结AG并延长交BC边于点D.设,,那么向量用向量、表示为()A.B.C.D.【分析】G是△ABC的重心,推出AG=2DG,推出AD=3DG,利用三角形法则求出即可解决问题.解:∵G是△ABC的重心,∴AG=2DG,∴AD=3DG,∴=3=3,∵=+=﹣+3,DB=BD,∴=2=6﹣2,故选:C.7.(2020杨浦二模)若将一个长方形纸条折成如图的形状,则图中∠1与∠2的数量关系是()A.∠1=2∠2B.∠1=3∠2C.∠1+∠2=180°D.∠1+2∠2=180°【分析】由折叠可得,∠2=∠ABC,再根据平行线的性质,即可得出∠1=∠ABD=2∠2.【解答】解:如图,由折叠可得,∠2=∠ABC,∵AB∥CD,∴∠1=∠ABD=2∠2,故选:A.8.(2020黄浦二模)在平面直角坐标系xOy中,点A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是()A.(6,0)B.(4,0)C.(4.﹣2)D.(4,﹣3)【分析】直接利用全等三角形的性质以及坐标与图形的性质得出符合题意的答案.解:如图所示:△ABC与△EFB全等,点F的坐标可以是:(4,﹣3).故选:D.二.填空题1.(2020宝山二模)如图,点D 是△ABC 的边AB 上一点,如果∠ACD=∠B ,并且:AD AC =么:AD BD =_________.【答案】1:2【分析】根据两角分别相等的两个三角形相似,可得△ACD ∽△ABC 的关系,最后根据相似三角形的性质和线段的和差即可解答.【详解】解:在△ACD 与△ABC 中,∠ACD=∠B ,∠A=∠A ,∴△ACD ∽△ABC , ∴AC AD AB AC ==∴AC∴BD=AB -AC∴:AD BD =3AC ∶3AC =1∶2 故答案为1∶2.【点睛】本题考查了相似三角形的判定与性质,其中得出△ACD ∽△ABC 是解答本题的关键.2.(2020奉贤二模) 如图,一艘轮船由西向东航行,在A 处测得灯塔P 在北偏东60°的方向,继续向东航行40海里后到B 处,测得灯塔P 在北偏东30°的方向,此时轮船与灯塔之间的距离是 海里.【分析】根据已知方向角得出∠P =∠PAB =30°,进而得出对应边关系即可得出答案.解:如图所示:由题意可得,∠PAB =30°,∠DBP =30°,故∠PBE =60°,则∠P =∠PAB =30°,可得:AB =BP =40海里.故答案为:40.3.(2020长宁二模)已知正三角形的边心距为1,那么它的边长为 .【分析】根据题意,画出图形作AD ⊥BC ,BE ⊥AC 于点D 和E ,点O 即为△ABC 的外心,根据特殊角30度即可求出BD 的值,进而可得三角形的边长.【解答】解:根据题意,画出图形,∵△ABC 是正三角形,作AD ⊥BC ,BE ⊥AC 于点D 和E ,∴点O 即为△ABC 的外心,∴OD =1,∠DBO =30°,∴BD =,∴BC =2BD =2.故答案为:2. 4.(2020崇明二模)如图,在ABC ∆中,,30AB AC A =∠=︒,直线//a b ,点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,如果1145∠=︒,那么2∠的度数是_____.【答案】40°【分析】先根据等腰三角形的性质和三角形的内角和可得∠ACB=75°,由三角形外角的性质可得∠AED 的度数,由平行线的性质可得同位角相等,可得结论.【详解】∵AB=AC ,且∠A=30°,∴∠ACB=75°,在△ADE 中,∵∠1=∠A+∠AED=145°,∴∠AED=145°-30°=115°,∵a ∥b ,∴∠AED=∠2+∠ACB ,∴∠2=115°-75°=40°.故答案:40°.【点睛】本题主要考查了等腰三角形的性质,平行线的性质,题目比较基础,熟练掌握性质是解题的关键. 5.(2020浦东二模) 如图,AB //CD ,如果50B ∠=︒,20D ∠=︒,那么E ∠=__________.【答案】30°【分析】根据平行线的性质,得出∠BCD=∠B=50°,再根据∠BCD 是△CDE 的外角,即可得出∠E .【详解】解:∵AB ∥CD ,∴∠BCD=∠B=50°,又∵∠BCD 是△CDE 的外角,∴∠E=∠BCD -∠D=50°-20°=30°.故答案为:30°.【点睛】本题主要考查了平行线性质以及三角形外角的性质,掌握基本性质是解题的关键.6.(2020浦东二模)在Rt ABC △中,90ABC ∠=︒,8AB =,6BC =,点D 、E 分别在边AB 、AC 上.如果D 为AB 中点,且AD DE AB BC=,那么AE 的长度为__________. 【答案】5或1.4【分析】 根据已知比例式先求出DE 的长,再分两种情况:①E 为BC 的中点,可直接得出AE 的长;②点E 在靠近点A 的位置,过点D 作DF ⊥AC 于点F ,证明△ADF ∽△ACB ,得出AD DF AC BC =,从而可得出DF 的长,再分别根据勾股定理得出AF ,EF 的长,从而可得出结果.【详解】解:∵在Rt ABC △中,根据勾股定理得,10=,又D 是AB 的中点,∴AD=12AB=4, ∵AD DE AB BC=, ∴126DE =,∴DE=3. 分以下两种情况: ①当点E 在如图①所示的位置时,即点E 为AC 的中点时,DE=12BC=3, 故此时AE=12AC=5;②点E 在如图②所示的位置时,DE=3,过点D 作DF ⊥AC 于点F ,的∵∠AFD=∠B=90°,∠A=∠A,∴△ADF∽△ACB,∴AD DFAC BC=,即4106DF=,∴DF=2.4.∴在Rt△ADF中, 3.2=,在Rt△DEF中, 1.8=,∴AE=AF-EF=1.4.综上所述,AE的长为5或1.4.故答案为:5或1.4.【点睛】本题考查的是相似三角形的判定与性质,中位线的性质以及勾股定理等知识,掌握基本性质并运用分类讨论思想是解题的关键.7.(2020青浦二模)如果点D、E分别是△ABC的AB、AC边的中点,那么△ADE与△ABC的周长之比是.【分析】根据中位线的定理即可求出答案.解:∵点D、E分别是△ABC的AB、AC边的中点,∴DE是△ABC的中位线,∴,∴==故答案为:1:2.8.(2020青浦二模)在△ABC中,AB=AC=3,BC=2,将△ABC绕着点B顺时针旋转,如果点A落在射线BC上的点A'处.那么AA'=.【分析】作AH⊥BC于H,如图,利用等腰三角形的性质得BH=CH=BC=1,利用勾股定理可计算出AH=2,再根据旋转的性质得BA′=BA=3,则HA′=2,然后利用勾股定理可计算出AA′的长.解:作AH⊥BC于H,如图,∵AB=AC=3,BC=2,∴BH=CH=BC=1,∴AH==2,∵△ABC绕着点B顺时针旋转,如果点A落在射线BC上的点A'处,∴BA′=BA=3,∴HA′=2,在Rt△AHA′中,AA′==2.故答案为2.9.(2020杨浦二模)如图,已知在5×5的正方形网格中,点A、B、C在小正方形的顶点上,如果小正方形的边长都为1,那么点C到线段AB所在直线的距离是.【分析】根据题意,作出合适的辅助线,然后根据每个小正方形的边长为1,利用勾股定理,可以得到AC、CD、AD的长,然后即可得到△ACD的形状,再利用等积法,即可求得CE的长.【解答】解:连接AD、AC,作CE⊥AD于点E,∵小正方形的边长都为1,∴AD==2,AC==3,CD==,∵(2)2=(3)2+()2,∴△ACD是直角三角形,∠ACD=90°,∴,即,解得,CE=,即点C到线段AB所在直线的距离是,故答案为:.10.(2020黄浦二模)已知等边△ABC的重心为G,△DEF与△ABC关于点G成中心对称,将它们重叠部分的面积记作S1,△ABC的面积记作S2,那么的值是【分析】如图,根据点G是等边△ABC的重心,得到AD垂直平分BC,AD是∠BAC的角平分线,根据中心对称的性质得到△DEF≌△ABC,AG=DG,EF∥BC,推出△AQH是等边三角形,得到AQ=HQ=AH,求得它们重叠部分为边长=QH的正六边形,设AB=3a,则QH=a,根据等边三角形的面积健康得到结论.解:如图,∵点G是等边△ABC的重心,∴AD垂直平分BC,AD是∠BAC的角平分线,∴AG=2GN,设AB=3a,则AN=×3a=a,∵△DEF与△ABC关于点G成中心对称,∴△DEF≌△ABC,AG=DG,EF∥BC,∴∠AQH=∠ABC=∠AHQ=∠ACB=60°,∴△AQH是等边三角形,∴AQ=HQ=AH=AB=a,∴AP=a,∴它们重叠部分为边长=QH的正六边形,∴S1=6×a2,S2=×(3a)2,∴==,故答案为:.。

【21套模拟试卷合集】2020届上海市金山区名校中考数学模拟试卷含解析

2020届上海市金山区名校中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )A.22B.4 C.32D.422.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A.2 B.3 C.5 D.73.菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.144.3的倒数是()A.3B.3-C.13D.13-5.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为()A.3B.23C.332D.2337.如图,平面直角坐标系xOy中,四边形OABC的边OA在x轴正半轴上,BC∥x轴,∠OAB=90°,点C(3,2),连接OC.以OC为对称轴将OA翻折到OA′,反比例函数y=kx的图象恰好经过点A′、B,则k的值是()A.9 B.133C.16915D.338.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5 {15 2x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==9.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣110.如图所示的几何体的主视图是()A.B.C.D.11.已知关于x的一元二次方程2230x kx-+=有两个相等的实根,则k的值为()A.26±B.6±C.2或3 D.2或312.下列图案是轴对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得10AD cm=,点D在量角器上的读数为60o,则该直尺的宽度为____________cm.14.已知a+b=1,那么a2-b2+2b=________.15.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD ,则∠BAE=__________度.16.使得分式值242x x -+为零的x 的值是_________; 17.把一张长方形纸条按如图所示折叠后,若∠AOB′=70°,则∠B′OG =_____.18.关于x 的一元二次方程ax 2﹣x ﹣14=0有实数根,则a 的取值范围为________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为 ;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率. 20.(6分)如图,建筑物AB 的高为6cm ,在其正东方向有个通信塔CD ,在它们之间的地面点M (B ,M ,D 三点在一条直线上)处测得建筑物顶端A 、塔项C 的仰角分别为37°和60°,在A 处测得塔顶C 的仰角为30°,则通信塔CD 的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3=1.73,精确到0.1m )21.(6分)已知关于x 的方程()22210x k x k --+=有两个实数根12,x x .求k 的取值范围;若12121x x x x +=-,求k 的值;22.(8分)下面是小星同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程:已知:如图,直线l 和直线l 外一点A求作:直线AP ,使得AP ∥l作法:如图①在直线l 上任取一点B (AB 与l 不垂直),以点A 为圆心,AB 为半径作圆,与直线l 交于点C . ②连接AC ,AB ,延长BA 到点D ;③作∠DAC 的平分线AP .所以直线AP 就是所求作的直线根据小星同学设计的尺规作图过程,使用直尺和圆规,补全图形(保留作图痕迹)完成下面的证明证明:∵AB =AC ,∴∠ABC =∠ACB (填推理的依据)∵∠DAC 是△ABC 的外角,∴∠DAC =∠ABC+∠ACB (填推理的依据)∴∠DAC =2∠ABC ∵AP 平分∠DAC ,∴∠DAC =2∠DAP∴∠DAP =∠ABC∴AP ∥l (填推理的依据)23.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m 名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:m= ;请补全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动.24.(10分)如图,在△ABC 中,AB=AC ,点D ,E 在BC 边上,AD AE =.求证:BD CE =.25.(10分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为,图①中m的值为;求本次调查获取的样本数据的众数、中位数和平均数;根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.26.(12分)在平面直角坐标系中,一次函数34y x b=-+的图象与反比例函数kyx=(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).求一次函数和反比例函数解析式.若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.根据图象,直接写出不等式34kx bx-+>的解集.27.(12分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.2.C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C.考点:众数;中位数.3.A【解析】【分析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH12=AB.【详解】∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD.∵H为AD边中点,∴OH是△ABD的中位线,∴OH12=AB12=⨯7=3.1.故选A.【点睛】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.4.C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.5.B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.6.C【解析】【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【详解】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF 中,△AOB 是边长为1的正三角形,所以正六边形ABCDEF 的面积为S 6=6×12×1×1×sin60°=332. 故选C .【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n 边形的性质解答.7.C【解析】【分析】 设B (2k ,2),由翻折知OC 垂直平分AA′,A′G =2EF ,AG =2AF ,由勾股定理得OC =13,根据相似三角形或锐角三角函数可求得A′(526,613),根据反比例函数性质k =xy 建立方程求k . 【详解】如图,过点C 作CD ⊥x 轴于D ,过点A′作A′G ⊥x 轴于G ,连接AA′交射线OC 于E ,过E 作EF ⊥x 轴于F ,设B (2k ,2), 在Rt △OCD 中,OD =3,CD =2,∠ODC =90°,∴OC由翻折得,AA′⊥OC ,A′E =AE ,∴sin ∠COD =AE CD OA OC=, ∴AE=2k CD OA OC ⨯⋅,∵∠OAE+∠AOE =90°,∠OCD+∠AOE =90°,∴∠OAE =∠OCD ,∴sin ∠OAE =EF OD AE OC==sin ∠OCD , ∴EF=313OD AE k OC ⋅==, ∵cos ∠OAE =AF CD AE OC==cos ∠OCD ,∴213CD AF AE k OC =⋅==, ∵EF ⊥x 轴,A′G ⊥x 轴,∴EF ∥A′G , ∴12EF AF AE A G AG AA ==='', ∴6213A G EF k '==,4213AG AF k ==, ∴14521326OG OA AG k k k =-=-=, ∴A′(526k ,613k ), ∴562613k k k ⋅=, ∵k≠0, ∴169=15k , 故选C .【点睛】本题是反比例函数综合题,常作为考试题中选择题压轴题,考查了反比例函数点的坐标特征、相似三角形、翻折等,解题关键是通过设点B 的坐标,表示出点A′的坐标.8.A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.9.B【解析】【详解】∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.10.A【解析】【分析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.11.A【解析】【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论.【详解】∵方程2230x kx -+=有两个相等的实根,∴△=k 2-4×2×3=k 2-24=0,解得:k=26±.故选A .【点睛】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键. 12.C【解析】解:A .此图形不是轴对称图形,不合题意;B .此图形不是轴对称图形,不合题意;C .此图形是轴对称图形,符合题意;D .此图形不是轴对称图形,不合题意.故选C .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.533 【解析】【分析】连接OC,OD,OC 与AD 交于点E ,根据圆周角定理有130,2BAD BOD ∠=∠=︒根据垂径定理有:15,2AE AD == 解直角OAE △即可. 【详解】连接OC,OD,OC 与AD 交于点E ,130,2BAD BOD ∠=∠=︒ 10 3.cos303AE OA ==︒ 5tan 303,3OE AE =⋅︒= 直尺的宽度:105533 3.333CE OC OE =-==故答案为533【点睛】考查垂径定理,熟记垂径定理是解题的关键.14.1【解析】【详解】解:∵a+b=1,∴原式=()()()2122 1.a b a b b a b b a b b a b +-+=⨯-+=-+=+=故答案为1.【点睛】本题考查的是平方差公式的灵活运用.15.22.5°【解析】【详解】Q 四边形ABCD 是矩形,∴AC=BD ,OA=OC ,OB=OD ,∴OA=OB═OC ,∴∠OAD=∠ODA ,∠OAB=∠OBA ,∴∠AOE=∠OAD+∠ODA=2∠OAD ,Q ∠EAC=2∠CAD ,∴∠EAO=∠AOE ,Q AE ⊥BD ,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA=67.5°,即∠BAE=∠OAB ﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.16.2【解析】【分析】根据分式的性质,要使分式有意义,则必须分母不能为0,要使分式为零,则只有分子为0,因此计算即可.【详解】解:要使分式有意义则20x +≠ ,即2x ≠-要使分式为零,则240x -= ,即2x =±综上可得2x =故答案为2【点睛】本题主要考查分式的性质,关键在于分式的分母不能为0.17.55°【解析】【分析】由翻折性质得,∠BOG =∠B′OG ,根据邻补角定义可得.【详解】解:由翻折性质得,∠BOG =∠B′OG ,∵∠AOB′+∠BOG+∠B′OG =180°,∴∠B′OG =12(180°﹣∠AOB′)=12(180°﹣70°)=55°. 故答案为55°.【点睛】考核知识点:补角,折叠.18.a≥﹣1且a≠1【解析】【分析】利用一元二次方程的定义和判别式的意义得到≠1且△=(﹣1)2﹣4a•(﹣14)≥1,然后求出两个不等式的公共部分即可.【详解】根据题意得a≠1且△=(﹣1)2﹣4a•(﹣14)≥1,解得:a≥﹣1且a≠1. 故答案为a≥﹣1且a≠1.【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=1(a≠1)的根与△=b 2﹣4ac 有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1);(2),见解析.【解析】【分析】(1)根据四只鞋子中右脚鞋有2只,即可得到随手拿出一只恰好是右脚鞋的概率;(2)依据树状图即可得到共有12种等可能的结果,其中两只恰好为一双的情况有4种,进而得出恰好为一双的概率.【详解】解:(1)∵四只鞋子中右脚鞋有2只,∴随手拿出一只,恰好是右脚鞋的概率为=,故答案为:;(2)画树状图如下:共有12种等可能的结果,其中两只恰好为一双的情况有4种,∴拿出两只,恰好为一双的概率为=.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.通信塔CD的高度约为15.9cm.【解析】【分析】过点A作AE⊥CD于E,设CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出关于x的方程,求出方程的解即可.【详解】过点A作AE⊥CD于E,则四边形ABDE 是矩形,设CE=xcm ,在Rt △AEC 中,∠AEC=90°,∠CAE=30°,所以AE=330CE tan =︒, 在Rt △CDM 中,CD=CE+DE=CE+AB=(x+6)cm , DM=)36603x CD tan +=︒cm , 在Rt △ABM 中,BM=63737AB tan tan =︒︒cm , ∵AE=BD , )3663373x x tan +=+︒, 解得:33, ∴33(cm ), 答:通信塔CD 的高度约为15.9cm .【点睛】本题考查了解直角三角形,能通过解直角三角形求出AE 、BM 的长度是解此题的关键.21.(1)12k ≤;(2)k =-3 【解析】【分析】(1)依题意得△≥0,即[-2(k -1)]2-4k 2≥0;(2)依题意x 1+x 2=2(k -1),x 1·x 2=k 2 以下分两种情况讨论:①当x 1+x 2≥0时,则有x 1+x 2=x 1·x 2-1,即2(k -1)=k 2-1;②当x 1+x 2<0时,则有x 1+x 2=-(x 1·x 2-1),即2(k -1)=-(k 2-1); 【详解】解:(1)依题意得△≥0,即[-2(k -1)]2-4k 2≥0解得12 k≤(2)依题意x1+x2=2(k-1),x1·x2=k2以下分两种情况讨论:①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1 解得k1=k2=1∵12 k≤∴k1=k2=1不合题意,舍去②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1) 解得k1=1,k2=-3∵12 k≤∴k=-3综合①、②可知k=-3【点睛】一元二次方程根与系数关系,根判别式.22.(1)详见解析;(2)(等边对等角),(三角形外角性质),(同位角相等,两直线平行).【解析】【分析】(1)根据角平分线的尺规作图即可得;(2)分别根据等腰三角形的性质、三角形外角的性质和平行线的判定求解可得.【详解】解:(1)如图所示,直线AP即为所求.(2)证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角),∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(三角形外角性质),∴∠DAC=2∠ABC,∵AP平分∠DAC,∴∠DAC=2∠DAP,∴∠DAP=∠ABC,∴AP∥l(同位角相等,两直线平行),故答案为(等边对等角),(三角形外角性质),(同位角相等,两直线平行).【点睛】本题主要考查作图能力,解题的关键是掌握角平分线的尺规作图、等腰三角形的性质、三角形外角的性质和平行线的判定.23.(1)150,(2)36°,(3)1.【解析】【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可.【详解】(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×15150=36°;(4)1200×20%=1人,答:估计该校约有1名学生最喜爱足球活动.故答案为150,36°,1.【点睛】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.24.见解析【解析】试题分析:证明△ABE≌△ACD 即可.试题解析:法1:∵AB=AC,∴∠B=∠C,∵AD=CE,∴∠ADE=∠AED,∴△ABE≌△ACD,∴BE=CD ,∴BD=CE,法2:如图,作AF⊥BC于F,∵AB=AC,∴BF=CF,∵AD=AE,∴DF=EF,∴BF-DF=CF-EF,即BD=CE.25.(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.【解析】【分析】(Ⅰ)利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解.【详解】解:(Ⅰ)本次接受随机抽样调查的学生人数为:48%=50(人),∵1650×100=31%,∴图①中m的值为31.故答案为50、31;(Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多,∴这组数据的众数为4;∵将这组数据从小到大排列,其中处于中间的两个数均为3,有332+=3,∴这组数据的中位数是3;由条形统计图可得142103144165650x⨯+⨯+⨯+⨯+⨯==3.1,∴这组数据的平均数是3.1.(Ⅲ)1500×18%=410(人).答:估计该校学生家庭中;拥有3台移动设备的学生人数约为410人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.(1)y=﹣34x+32,y=-6x;(2)12;(3) x<﹣2或0<x<4.【解析】【分析】(1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求△ABF的面积;(3)直接根据图象可得.【详解】(1)∵一次函数y=﹣34x+b的图象与反比例函数y=kx(k≠0)图象交于A(﹣3,2)、B两点,∴3=﹣34×(﹣2)+b,k=﹣2×3=﹣6∴b=32,k=﹣6∴一次函数解析式y=﹣3342x+,反比例函数解析式y=6x-.(2)根据题意得:33426y xyx⎧+⎪⎪⎨-⎪⎪⎩=﹣=,解得:211242,332xxy y⎧=⎧=-⎪⎪⎨⎨==-⎪⎪⎩⎩,∴S△ABF=12×4×(4+2)=12(3)由图象可得:x<﹣2或0<x<4 【点睛】本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键.27.(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥1003,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,3313≤x≤60,①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足3313≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.2020届广西钦州钦州港经济技术开发区五校联考中考数学模拟试卷一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.二次函数y =a(x ﹣m)2﹣n 的图象如图,则一次函数y =mx+n 的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限2.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米. 设A 港和B 港相距x 千米. 根据题意,可列出的方程是( ).A .32824x x =-B .32824x x=+ C .2232626x x +-=+ D .2232626x x +-=- 3.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为倒数的点是( )A .点A 与点BB .点A 与点DC .点B 与点DD .点B 与点C4.已知二次函数y =x 2﹣4x+m 的图象与x 轴交于A 、B 两点,且点A 的坐标为(1,0),则线段AB 的长为( ) A .1B .2C .3D .45.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x y x y +=⎧⎨+=⎩.类似地,图2所示的算筹图我们可以表述为( )A .2114327x y x y +=⎧⎨+=⎩B .2114322x y x y +=⎧⎨+=⎩C .3219423x y x y +=⎧⎨+=⎩D .264327x y x y +=⎧⎨+=⎩6.下列关于x 的方程中一定没有实数根的是( ) A .210x x --=B .24690x x -+=C .2x x =-D .220x mx --=7.已知圆内接正三角形的面积为3,则边心距是( )A .2B .1C .3D .328.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件才能按时交货,则x 应满足的方程为( )A .72072054848x -=+ B .72072054848x +=+ C .720720548x-= D .72072054848x-=+ 9.已知等边三角形的内切圆半径,外接圆半径和高的比是( ) A .1:2:3B .2:3:4C .1:3:2D .1:2:310.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是( ) A .2003503x x =- B .2003503x x =+ C .2003503x x=+ D .2003503x x=- 二、填空题(共7小题,每小题3分,满分21分)11.一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_______. 12.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.13.如果a 是不为1的有理数,我们把11a-称为a 的差倒数如:2的差倒数是1112=--,-1的差倒数是111(1)2=--,已知14a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2019a =___________ .14.使得分式值242x x -+为零的x 的值是_________;15.高速公路某收费站出城方向有编号为,,,,A B C D E 的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下: 收费出口编号 ,A B,B C,C D,D E,E A通过小客车数量(辆)260330300360240在,,,,A B C D E 五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________. 16.如果m ,n 互为相反数,那么|m+n ﹣2016|=___________.17.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x 厘米,则依题意列方程为_________.三、解答题(共7小题,满分69分) 18.(10分)小明遇到这样一个问题:已知:1b ca-=. 求证:240b ac -≥. 经过思考,小明的证明过程如下: ∵1b ca-=,∴b c a -=.∴0a b c -+=.接下来,小明想:若把1x =-带入一元二次方程20ax bx c ++=(a ≠0),恰好得到0a b c -+=.这说明一元二次方程20ax bx c ++=有根,且一个根是1x =-.所以,根据一元二次方程根的判别式的知识易证:240b ac -≥.根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目:已知:42a cb+=-. 求证:24b ac ≥.请你参考上面的方法,写出小明所编题目的证明过程. 19.(5分)计算:|﹣2|﹣8﹣(2﹣π)0+2cos45°. 解方程:33x x - =1﹣13x- 20.(8分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?21.(10分)请你仅用无刻度的直尺在下面的图中作出△ABC 的边 AB 上的高 CD .如图①,以等边三角形 ABC 的边 AB 为直径的圆,与另两边 BC 、AC 分别交于点 E 、F .如图②,以钝角三角形 ABC 的一短边 AB 为直径的圆,与最长的边 AC 相交于点 E .22.(10分)已知:如图,AB=AE ,∠1=∠2,∠B=∠E .求证:BC=ED .23.(12分)如图,在平行四边形ABCD 中,E 、F 分别在AD 、BC 边上,且AE =CF .求证:四边形BFDE 是平行四边形.24.(14分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求证:△ABC≌△AED;当∠B=140°时,求∠BAE的度数.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.A【解析】【分析】由抛物线的顶点坐标在第四象限可得出m>0,n>0,再利用一次函数图象与系数的关系,即可得出一次函数y=mx+n的图象经过第一、二、三象限.【详解】解:观察函数图象,可知:m>0,n>0,∴一次函数y=mx+n的图象经过第一、二、三象限.故选A.【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k>0,b>0⇔y=kx+b的图象在一、二、三象限”是解题的关键.2.A【解析】【分析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时.根据“轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时”,得出等量关系,据此列出方程即可. 【详解】解:设A 港和B 港相距x 千米,可得方程:32824x x =- 故选:A . 【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度. 3.A 【解析】 【详解】试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是: 倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数. 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 根据倒数定义可知,-2的倒数是-12,有数轴可知A 对应的数为-2,B 对应的数为-12,所以A 与B 是互为倒数. 故选A .考点:1.倒数的定义;2.数轴. 4.B 【解析】 【分析】先将点A(1,0)代入y =x 2﹣4x+m ,求出m 的值,将点A(1,0)代入y =x 2﹣4x+m ,得到x 1+x 2=4,x 1•x 2=3,即可解答 【详解】将点A(1,0)代入y =x 2﹣4x+m , 得到m =3,所以y =x 2﹣4x+3,与x 轴交于两点, 设A(x 1,y 1),b(x 2,y 2)∴x 2﹣4x+3=0有两个不等的实数根, ∴x 1+x 2=4,x 1•x 2=3,∴AB =|x 1﹣x 2| =2; 故选B .。

2020届上海市金山区中考数学二模


(第 13 题图)
14.上海市居民用户燃气收费标准如下表: 某居民用户用气量在第一档,那么该用户每年燃气费 y(元)与年用气量 x(立方米)的函数关系式是 ______________ 15.四边形 ABCD 中,对角线 AC、BD 相互垂直,AC=4,BD=6,顺次联结这个四边形中点所得的四边形的 面积等于________ 16.我们把正多边形的一个内角与外角的比值叫做正多边形的内外比,内外比为 3 的正多边形的边数为 __________ 17.如图,在坡度为 1:2.4 的斜坡上有一棵与水平面垂直的树 BC,在斜坡底部 A 处测得树顶 C 的仰角为 30°,AB 的长为 65 米,那么树高 BC 等于________米(保留根号)
步骤.
题一律无效. 明或计算的主要
一、选择题:(本大题共 6 题,每题 4 分,满分 24 分) 【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位
置上】
1.在下列各数中,无理数是( )
(A) 20 ; 7
(B) ; 3
(C) 4 ;
(D) 0.101001.
( ) 2. 计算 a3 2 的结果是( )
(A)a;
(B) a5 ;
(C) a6 ;
3.一次函数 y = 2x − 3 的图像在 y 轴的截距是( )
(A)2;
(B)-2; (C)3;
(D) a9 . (D)-3.
(第 4 题图)
4.某区对创建全国文明城区的满意程度进行随机调查,结果如图所示,据此可估计全区 75 万居民对创
1
计算:
12 +(
3
− 1)-1

1 8
3
+
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考数学二模试卷一、选择题(本题共6题)1.在下列各数中,无理数是()A.B.C.D.0.1010012.计算(a3)2的结果是()A.a B.a5C.a6D.a93.一次函数y=2x﹣3的图象在y轴的截距是()A.2B.﹣2C.3D.﹣34.某区对创建全国文明城区的满意程度进行随机调查,结果如图所示,据此可估计全区75万居民对创建全国文明城区工作不满意的居民人数为()A.1.2万B.1.5万C.7.5万D.66万5.已知在△ABC中,AD是中线,设=,=,那么向量用向量表示为()A.2﹣2B.2+2C.2﹣2D.﹣6.如图,∠MON=30°,OP是∠MON的角平分线,PQ∥ON交OM于点Q,以P为圆心半径为4的圆与ON相切,如果以Q为圆心半径为r的圆与⊙P相交,那么r的取值范围是()A.4<r<12B.2<r<12C.4<r<8D.r>4二、填空题:(本大题共12题,每题4分,满分48分)7.分解因式:a2﹣4=.8.某种冠状病毒的直径大约是0.00011毫米,数据0.00011用科学记数法表示为.9.方程的根是.10.已知关于x的方程x2﹣mx+2=0有两个相等的实数根,那么m的值是.11.函数y=的定义域是.12.从1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是.13.某学校九年级共有350名学生,在一次九年级全体学生参加的数学测试中,随机抽取50名学生的测试成绩进行抽样调查,绘制频率分布直方图如图所示,如果成绩不低于80分算优良,那么估计九年级全体学生在这次测试中成绩优良学生人数约是.14.上海市居民用户燃气收费标准如表:年用气量(立方米)每立方米价格(元)第一档0﹣﹣﹣310 3.00第二档310(含)﹣﹣﹣520(含) 3.30第三档520以上 4.20某居民用户用气量在第一档,那么该用户每年燃气费y(元)与年用气量x(立方米)的函数关系式是.15.四边形ABCD中,对角线AC、BD相互垂直,AC=4,BD=6,顺次联结这个四边形中点所得的四边形的面积等于.16.我们把正多边形的一个内角与外角的比值叫做正多边形的内外比,内外比为3的正多边形的边数为.17.如图,在坡度为1:2.4的斜坡上有一棵与水平面垂直的树BC,在斜坡底部A处测得树顶C的仰角为30°,AB的长为65米,那么树高BC等于米(保留根号).18.如图,在△ABC中,∠C=90°,AC=3,BC=4,把△ABC绕C点旋转得到△A'B'C,其中点A'在线段AB上,那么∠A'B'B的正切值等于.三、解答题:(本大题共7题,满分78分)19.计算:+(﹣1)﹣1﹣()+cos30°.20.解方程组:.21.在平面直角坐标系xOy中(如图),已知函数y=2x的图象和反比例函数的在第一象限交于A点,其中点A的横坐标是1.(1)求反比例函数的解析式;(2)把直线y=2x平移后与y轴相交于点B,且AB=OB,求平移后直线的解析式.22.如图,已知在四边形ABCD中∠A=∠ABC=90°,点E是CD的中点,△ABD与△EBD关于直线BD对称,AD=1,AB=.(1)求点A和点E之间的距离;(2)联结AC交BE于点F,求的值.23.如图,已知C是线段AB上的一点,分别以AC、BC为边在线段AB同侧作正方形ACDE 和正方形CBGF,点F在CD上,联结AF、BD,BD与FG交于点M,点N是边AC 上的一点,联结EN交AF与点H.(1)求证:AF=BD;(2)如果=,求证:AF⊥EN.24.在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(3,0)和B (0,3),其顶点为C.(1)求抛物线的解析式和顶点C的坐标;(2)我们把坐标为(n,m)的点叫做坐标为(m,n)的点的反射点,已知点M在这条抛物线上,它的反射点在抛物线的对称轴上,求点M的坐标;(3)点P是抛物线在第一象限部分上的一点,如果∠POA=∠ACB,求点P的坐标.25.如图,在△ABC中,∠C=90°,AC=6,BC=8,P是线段BC上任意一点,以点P 为圆心PB为半径的圆与线段AB相交于点Q(点Q与点A、B不重合),∠CPQ的角平分线与AC相交于点D.(1)如果DQ=PB,求证:四边形BQDP是平行四边形;(2)设PB=x,△DPQ的面积为y,求y关于x的函数关系式,并写出x的取值范围;(3)如果△ADQ是以DQ为腰的等腰三角形,求PB的长.参考答案一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.在下列各数中,无理数是()A.B.C.D.0.101001【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A.是分数,属于有理数;B.是无理数;C.,是整数,属于有理数;D.0.101001是有限小数,属于有理数.故选:B.2.计算(a3)2的结果是()A.a B.a5C.a6D.a9【分析】根据幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)计算即可.解:(a3)2=a3×2=a6.故选:C.3.一次函数y=2x﹣3的图象在y轴的截距是()A.2B.﹣2C.3D.﹣3【分析】代入x=0,求出y值,此题得解.解:当x=0时,y=2x﹣3=﹣3,∴一次函数y=2x﹣3的图象在y轴的截距是﹣3.故选:D.4.某区对创建全国文明城区的满意程度进行随机调查,结果如图所示,据此可估计全区75万居民对创建全国文明城区工作不满意的居民人数为()A.1.2万B.1.5万C.7.5万D.66万【分析】用总人数乘以样本中对创建全国文明城区工作不满意的居民人数所对应的百分比可得.解:估计全区75万居民对创建全国文明城区工作不满意的居民人数为75×2%=1.5(万人),故选:B.5.已知在△ABC中,AD是中线,设=,=,那么向量用向量表示为()A.2﹣2B.2+2C.2﹣2D.﹣【分析】根据向量运算法则即可求出答案.解:∵=+=,∴=﹣,∴=2=2﹣2,故选:C.6.如图,∠MON=30°,OP是∠MON的角平分线,PQ∥ON交OM于点Q,以P为圆心半径为4的圆与ON相切,如果以Q为圆心半径为r的圆与⊙P相交,那么r的取值范围是()A.4<r<12B.2<r<12C.4<r<8D.r>4【分析】如图,过点P作PA⊥OM于点A.根据题意首先判定OM是切线,根据切线的性质得到PA=4.由角平分线的性质和平行线的性质判定直角△APQ中含有30度角,则由“30度角所对的直角边是斜边的一半”得到PQ的长度;然后根据圆与圆的位置关系求得r的取值范围.解:如图,过点P作PA⊥OM于点A.∵圆P与ON相切,设切点为B,连接PB.∴PB⊥ON.∵OP是∠MON的角平分线,∴PA=PB.∴PA是半径,∴OM是圆P的切线.∵∠MON=30°,OP是∠MON的角平分线,∴∠1=∠2=15°.∵PQ∥ON,∴∠3=∠2=15°.∴∠4=∠1+∠3=30°.∵PA=4,∴PQ=2PA=8.∴r最小值=8﹣4=4,r最大值=8+4=12.∴r的取值范围是4<r<12.故选:A.二、填空题:(本大题共12题,每题4分,满分48分)7.分解因式:a2﹣4=(a+2)(a﹣2).【分析】有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.解:a2﹣4=(a+2)(a﹣2).8.某种冠状病毒的直径大约是0.00011毫米,数据0.00011用科学记数法表示为 1.1×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:数据0.00011用科学记数法表示为1.1×10﹣4,故答案为:1.1×10﹣4.9.方程的根是x=1.【分析】把方程两边平方去根号后即可转化成整式方程,解方程即可求得x的值,然后进行检验即可.解:两边平方得:2﹣x=x2,整理得:x2+x﹣2=0,解得:x=1或﹣2.经检验:x=1是方程的解,x=﹣2不是方程的解.故答案是:x=1.10.已知关于x的方程x2﹣mx+2=0有两个相等的实数根,那么m的值是±2.【分析】若一元二次方程有两等根,则根的判别式△=b2﹣4ac=0,建立关于m的方程,求出m的取值.解:∵关于x的方程x2﹣mx+2=0有两个相等的实数根,∴△=(﹣m)2﹣4×2=0,即m2=8,∴m=±2故本题答案为:±2.11.函数y=的定义域是x≠3.【分析】根据函数y=,可知3﹣x≠0,从而可以求得x的取值范围,本题得以解决.解:∵函数y=,∴3﹣x≠0,解得,x≠3,故答案为:x≠3.12.从1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是.【分析】从该组数据中找出3的倍数,根据概率公式解答即可.解:3的倍数有3,6,9,则十个数中随机取出一个数,取出的数是3的倍数的概率是.故答案为:.13.某学校九年级共有350名学生,在一次九年级全体学生参加的数学测试中,随机抽取50名学生的测试成绩进行抽样调查,绘制频率分布直方图如图所示,如果成绩不低于80分算优良,那么估计九年级全体学生在这次测试中成绩优良学生人数约是154.【分析】利用总人数乘以在这次测试中成绩优良学生人数所占的百分比即可.解:根据题意得:350×=154(人),答:九年级全体学生在这次测试中成绩优良学生人数约是154人;故答案为:154.14.上海市居民用户燃气收费标准如表:年用气量(立方米)每立方米价格(元)第一档0﹣﹣﹣310 3.00第二档310(含)﹣﹣﹣520(含) 3.30第三档520以上 4.20某居民用户用气量在第一档,那么该用户每年燃气费y(元)与年用气量x(立方米)的函数关系式是y=3x(0≤x<310).【分析】根据该居民用户用气量在第一档,利用“总价=单价×数量.”即可求出该用户每年燃气费y(元)与年用气量x(立方米)的函数关系式.解:根据题意得第一档燃气收费标准为3.00(元/立方米),∴该用户每年燃气费y(元)与年用气量x(立方米)的函数关系式是y=3x(0≤x<310).故答案为:y=3x(0≤x<310).15.四边形ABCD中,对角线AC、BD相互垂直,AC=4,BD=6,顺次联结这个四边形中点所得的四边形的面积等于6.【分析】由E、F、G、H分别为各边的中点,根据三角形的中位线定理可得EF∥AC,GH∥AC,EH∥BD,FG∥BD,EF=AC=2,EH=BD=3,从而可得四边形EFGH 是平行四边形,再由对角线AC、BD相互垂直,可证得四边形EMON是矩形,然后证明四边形EFGH是矩形,利用矩形的面积计算公式可得答案.解:如图,∵E、F、G、H分别为各边的中点,∴EF∥AC,GH∥AC,EH∥BD,FG∥BD,EF=AC=2,EH=BD=3,∴四边形EFGH是平行四边形,∵对角线AC、BD相互垂直,∴∠EMO=∠ENO=90°,∴四边形EMON是矩形,∴∠MEN=90°,∴四边形EFGH是矩形,∴四边形EFGH的面积为:2×3=6.故答案为:6.16.我们把正多边形的一个内角与外角的比值叫做正多边形的内外比,内外比为3的正多边形的边数为8.【分析】根据正多边形的内角和和正多边形的外角和列方程即可得到结论.解:设正多边形的边数为n,根据题意得,:=3,解得:n=8,答:内外比为3的正多边形的边数为8,故答案为:8.17.如图,在坡度为1:2.4的斜坡上有一棵与水平面垂直的树BC,在斜坡底部A处测得树顶C的仰角为30°,AB的长为65米,那么树高BC等于()米(保留根号).【分析】延长CB交水平面于点D,根据题意可得CD⊥AD,再根据坡度可得BD:AD =1:2.4,根据勾股定理可得BD=25,AD=60,最后根据锐角三角函数即可求出CB 的长.解:如图,延长CB交水平面于点D,根据题意可知:CD⊥AD,∴∠ADC=90°,在Rt△ADB中,AB=65,∵BD:AD=1:2.4,∴AD=2.4BD,根据勾股定理,得AD2+BD2=AB2,即BD2+(2.4BD)2=652,解得BD=25,∴AD=60,在Rt△ACD中,∠CAD=30°,∴tan30°=,即=,解得CB=20﹣25(米).答:树高BC等于(20﹣25)米.故答案为:(20﹣25).18.如图,在△ABC中,∠C=90°,AC=3,BC=4,把△ABC绕C点旋转得到△A'B'C,其中点A'在线段AB上,那么∠A'B'B的正切值等于.【分析】证明△CAA'∽△CBB',得出,设A'B=a,则AA'=5﹣a,BB'=,得出,解方程求出A'B,则BB'可求出,则答案可得出.解:把△ABC绕C点旋转得到△A'B'C,点A'在线段AB上,∴∠ACA'=∠BCB',CA=CA',CB=CB',∴∠A=∠CA'A,∠CBB'=∠CB'B,∴∠A=∠CBB',∴△CAA'∽△CBB',∴,∵∠C=90°,AC=3,BC=4,∴AB===5,∠A+∠CBA=90°,∴∠CBB'+∠CBA=90°,∴∠A'BB'=90°,设A'B=a,则AA'=5﹣a,BB'=,∴,解得,a=(a=5舍去),∴A'B=,∴BB'==,∴tan∠A'B'B==.故答案为:.三、解答题:(本大题共7题,满分78分)19.计算:+(﹣1)﹣1﹣()+cos30°.【分析】直接利用负整数指数幂的性质以及特殊角的三角函数值、分数指数幂的性质的性质分别化简得出答案.解:原式=2+﹣+=2+﹣+=.20.解方程组:.【分析】由①得:x=y+2,代入②并整理得:y2﹣2y﹣3=0,解这个一元二次方程并代入求值即可.解:,由①得:x=y+2…③,把③代入②并整理得:y2﹣2y﹣3=0,解这个方程得,y1=3,y2=﹣1,把y的值分别代入③,得x1=5,x2=1.∴原方程组的解为.21.在平面直角坐标系xOy中(如图),已知函数y=2x的图象和反比例函数的在第一象限交于A点,其中点A的横坐标是1.(1)求反比例函数的解析式;(2)把直线y=2x平移后与y轴相交于点B,且AB=OB,求平移后直线的解析式.【分析】(1)利用正比例函数解析式确定A(1,2),然后利用待定系数法求反比例函数解析式;(2)设B(0,t),利用两点间的距离公式得到t2=12+(2﹣t)2,解方程得到B(0,),再利用两直线平移的问题,设平移后的直线解析式为y=2x+b,然后把B点坐标代入求出b即可.解:(1)当x=1时,y=2x=2,则A(1,2),设反比例函数解析式为y=把A(1,2)代入得k=1×2=2,∴反比例函数解析式为y=;(2)设B(0,t),∵OB=AB,∴t2=12+(2﹣t)2,解得t=,∴B(0,),设平移后的直线解析式为y=2x+b,把B(0,)代入得b=,∴平移后的直线解析式为y=2x+.22.如图,已知在四边形ABCD中∠A=∠ABC=90°,点E是CD的中点,△ABD与△EBD关于直线BD对称,AD=1,AB=.(1)求点A和点E之间的距离;(2)联结AC交BE于点F,求的值.【分析】(1)连接AE交BD于G,由轴对称的性质即可得到BD垂直平分AE,再根据面积法即可得到AG的长,进而得出AE的长;(2)连接AC交BE于点F,延长BE交AD的延长线于H,由BE垂直平分CD,可得BC=BD=2,再根据△DEH≌△CEB(ASA),即可得出DH=BC=2,依据△AFH∽△CFB,即可得到的值.解:(1)如图,连接AE交BD于G,∵△ABD与△EBD关于直线BD对称,∴BD垂直平分AE,∵∠BAD=90°,AD=1,AB=,∴BD=2,∵AB×AD=BD×AG,∴AG===,∴点A和点E之间的距离=AE=2AG=;(2)如图,连接AC交BE于点F,延长BE交AD的延长线于H,∵△ABD与△EBD关于直线BD对称,∴∠BED=∠BAD=90°,∵点E是CD的中点,∴BE垂直平分CD,∴BC=BD=2,∵∠BAD=∠ABC=90°,∴AH∥BC,∴∠H=∠CBE,又∵∠DEH=∠CEB,DE=CE,∴△DEH≌△CEB(ASA),∴DH=BC=2,∴AH=1+2=3,∵AH∥BC,∴△AFH∽△CFB,∴==,∴.23.如图,已知C是线段AB上的一点,分别以AC、BC为边在线段AB同侧作正方形ACDE 和正方形CBGF,点F在CD上,联结AF、BD,BD与FG交于点M,点N是边AC 上的一点,联结EN交AF与点H.(1)求证:AF=BD;(2)如果=,求证:AF⊥EN.【分析】(1)依题意易证△AFC≌△DBC,从而求出AF=BD;(2)由△AFC≌△DBC可得∠CAF=∠CDB,从而证得△BGM∽△ACF,根据相似三角形的性质和已知=,求得AN=CF,即可证得△AEN≌△CAF,得到∠ENA=∠AFC,从而证得∠FAC+∠ENA=90°,即∠AHN=90°,即可证得结论.解:(1)∵四边形ACDE和四边形BCFG都为正方形,∴AC=DC,∠ACD=∠BCD=90°,BC=CF,在△AFC和△DBC中,,∴△AFC≌△DBC(SAS).∴AF=BD.(2)∵△AFC≌△DBC,∴∠CAF=∠CDB,∵CD∥BG,∴∠CDB=∠MBG,∴∠CAF=∠MBG,∵∠ACF=∠BGM=90°,∴△BGM∽△ACF,∴,∵BG=GF=FC,∴=,∵=,∴AN=FC,在△AEN和△CAF中,∴△AEN≌△CAF(SAS),∴∠ENA=∠AFC,∵∠FAC+∠AFC=90°,∴∠FAC+∠ENA=90°,∴∠AHN=90°,∴AF⊥EN.24.在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(3,0)和B (0,3),其顶点为C.(1)求抛物线的解析式和顶点C的坐标;(2)我们把坐标为(n,m)的点叫做坐标为(m,n)的点的反射点,已知点M在这条抛物线上,它的反射点在抛物线的对称轴上,求点M的坐标;(3)点P是抛物线在第一象限部分上的一点,如果∠POA=∠ACB,求点P的坐标.【分析】(1)把A,B两点坐标代入抛物线的解析式,构建方程组解决问题即可.(2)设M(m,﹣m2+2m+3),则M的反射点为(﹣m2+2m+3,m),根据M点的反射点在抛物线的对称轴上,构建方程求出m即可.(3)如图,设P(a,﹣a2+2a+3).利用勾股定理的逆定理证明∠ABC=90°,推出tan ∠POA=tan∠ACB=3,由此构建方程即可解决问题.解:(1)∵抛物线y=﹣x2+bx+c经过点A(3,0)和B(0,3),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3,∴顶点C(1,4).(2)设M(m,﹣m2+2m+3),∴M的反射点为(﹣m2+2m+3,m),∵M点的反射点在抛物线的对称轴上,∴﹣m2+2m+3=1,∴m2﹣2m﹣2=0,解得m=1±,∴M(1+,1)或(1﹣,1).(3)如图,设P(a,﹣a2+2a+3).∵A(3,0),B(0,3),C(1,4),∴BC=,AB=3,AC=2,∴AB2+BC2=AC2,∴∠ABC=90°,∴tan∠ACB===3,∵∠POA=∠ACB,∴tan∠POA=3,∴=3,整理得:a2+a﹣3=0解得a=或(舍弃),∴P(,).25.如图,在△ABC中,∠C=90°,AC=6,BC=8,P是线段BC上任意一点,以点P 为圆心PB为半径的圆与线段AB相交于点Q(点Q与点A、B不重合),∠CPQ的角平分线与AC相交于点D.(1)如果DQ=PB,求证:四边形BQDP是平行四边形;(2)设PB=x,△DPQ的面积为y,求y关于x的函数关系式,并写出x的取值范围;(3)如果△ADQ是以DQ为腰的等腰三角形,求PB的长.【分析】(1)由等腰三角形的性质和角平分线的性质可得∠CPD=∠PBQ=∠DPQ=∠PQB,由“AAS”可证△DPQ≌△BQP,可得DP=BQ,可得结论;(2)由“SAS”可证△DPE≌△DPQ,可得S△DPE=S△DPQ=y,通过证明△DCP∽△ACB,可求CD=(8﹣x),即可求解;(3)分两种情况讨论,由等腰三角形的性质和勾股定理可求解.【解答】证明:(1)∵BP=PQ,∴∠PBQ=∠PQB,∵DP平分∠CPQ,∴∠CPD=∠QPD,∵∠CPQ=∠PBQ+∠PQB=2∠PBQ,∴∠CPD=∠PBQ=∠DPQ=∠PQB,∴DP∥BQ,∵DQ=PB,PQ=PB,∴DQ=QP,∴∠QDP=∠QPD=∠PQB=∠PBQ,又∵PB=DQ,∴△DPQ≌△BQP(AAS)∴DP=BQ,∴四边形BPDQ是平行四边形;(2)如图,设BC与⊙P的交点为E,连接DE,∵EP=PQ,∠DPE=∠DPQ,DP=DP,∴△DPE≌△DPQ(SAS),∴S△DPE=S△DPQ=y,DQ=DE,∵BP=x,∴PC=8﹣x,∵DP∥AB,∴△DCP∽△ACB,∴,∴,∴CD=(8﹣x),∴S△DPQ=y=×EP×CD=×x×(8﹣x)=﹣x2+3x;(3)当DQ=AD时,∵AD=AC﹣CD,∴AD=6﹣(8﹣x)=x,∴DQ=DE=AD=x,∵DE2=DC2+CE2,∴(x)2=(6﹣x)2+(8﹣2x)2,∴x1=4,x2=(不合题意舍去),当AQ=DQ时,过点P作PF⊥AB于F,∵∠C=90°,AC=6,BC=8,∴AB===10,∵cos∠B==,∴,∴BF=x,∵PB=PQ,PF⊥AB,∴BQ=2BF=x,∴AQ=10﹣x,∴AQ=DQ=DE=10﹣x,∵DE2=DC2+CE2,∴(10﹣x)2=(6﹣x)2+(8﹣2x)2,∴x3=0(不合题意舍去),x4=,综上所述:BP的长为4和.。

相关文档
最新文档