2017-2018学年高中数学人教A版必修3:课时跟踪检测(十四) 随机事件的概率 概率的意义 Word版含解析
【小初高学习]2017-2018版高中数学 第三章 概率章末综合学案 新人教A版必修3
![【小初高学习]2017-2018版高中数学 第三章 概率章末综合学案 新人教A版必修3](https://img.taocdn.com/s3/m/22fa532a5f0e7cd18525362d.png)
第三章 概率[自我校对]①P (A )+P (B ) ②P (A )+P (B )=1 ③A 包含的基本事件的个数基本事件的总数1.(1)必然事件:在条件S 下,一定会发生的事件,叫做相对于条件S 的必然事件,简称必然事件.(2)不可能事件:在条件S 下,一定不会发生的事件,叫做相对于条件S 的不可能事件,简称不可能事件.(3)确定事件:必然事件与不可能事件统称为相对于条件S的确定事件,简称确定事件.(4)随机事件:在条件S下可能发生也可能不发生的事件,叫做相对于条件S的随机事件,简称随机事件.(5)事件的表示方法:确定事件和随机事件一般用大写字母A,B,C,…表示.2.对于概率的定义应注意以下几点(1)求一个事件的概率的基本方法是通过大量的重复试验.(2)只有当频率在某个常数附近摆动时,这个常数才叫做事件A的概率.(3)概率是频率的稳定值,而频率是概率的近似值.(4)概率反映了随机事件发生的可能性的大小.(5)必然事件的概率为1,不可能事件的概率为0,故0≤P(A)≤1.对一批U盘进行抽检,结果如下表:(2)从这批U盘中任抽一个是次品的概率约是多少?(3)为保证买到次品的顾客能够及时更换,要销售2 000个U盘,至少需进货多少个U 盘?【精彩点拨】结合频率的定义进行计算填表,并用频率估计概率.【规范解答】(1)表中次品频率从左到右依次为0.06,0.04,0.025,0.017, 0.02,0.018.(2)当抽取件数a越来越大时,出现次品的频率在0.02附近摆动,所以从这批U盘中任抽一个是次品的概率约是0.02.(3)设需要进货x个U盘,为保证其中有2 000个正品U盘,则x(1-0.02)≥2 000,因为x是正整数,所以x≥2 041,即至少需进货2 041个U盘.[再练一题]1.某射击运动员为备战奥运会,在相同条件下进行射击训练,结果如下:(2)假设该射击运动员射击了300次,则击中靶心的次数大约是多少?(3)假如该射击运动员射击了300次,前270次都击中靶心,那么后30次一定都击不中靶心吗?(4)假如该射击运动员射击了10次,前9次中有8次击中靶心,那么第10次一定击中靶心吗?【解】(1)由题意,击中靶心的频率分别为0.8,0.95,0.88,0.92,0.89,0.91,当射击次数越来越大时,击中靶心的频率在0.9附近摆动,故概率约为0.9.(2)击中靶心的次数大约为300×0.9=270(次).(3)由概率的意义,可知概率是个常数,不因试验次数的变化而变化.后30次中,每次击中靶心的概率仍是0.9,所以不一定击中靶心.(4)不一定.1.(1)互斥事件是不可能同时发生的两个事件;对立事件除要求这两个事件不同时发生外,还要求二者必须有一个发生.因此对立事件一定是互斥事件,但互斥事件不一定是对立事件,对立事件是互斥事件的特殊情况.(2)利用集合的观点来看,如果事件A∩B=∅,则两事件是互斥的,此时A∪B的概率就可用加法公式来求,即为P(A∪B)=P(A)+P(B);如果事件A∩B≠∅,则可考虑利用古典概型的定义来解决,不能直接利用概率加法公式.(3)利用集合的观点来看,如果事件A∩B=∅,A∪B=U,则两事件是对立的,此时A∪B 就是必然事件,可由P(A∪B)=P(A)+P(B)=1来求解P(A)或P(B).2.互斥事件概率的求法(1)若A1,A2,…,A n互斥,则P(A1∪A2∪…∪A n)=P(A1)+P(A2)+…+P(A n).(2)利用这一公式求概率的步骤:①要确定这些事件彼此互斥;②这些事件中有一个发生;③先求出这些事件分别发生的概率,再求和.值得注意的是:①、②两点是公式的使用条件,不符合这两点,是不能运用互斥事件的概率加法公式的.3.对立事件概率的求法P(Ω)=P(A∪A)=P(A)+P(A)=1,由公式可得P(A)=1-P(A)(这里A是A的对立事件,Ω为必然事件).4.互斥事件的概率加法公式是解决概率问题的重要公式,它能把复杂的概率问题转化为较为简单的概率或转化为其对立事件的概率求解.甲、乙两人参加普法知识竞赛,共有5个不同的题目.其中,选择题3个,判断题2个,甲、乙两人各抽一题.(1)甲、乙两人中有一个抽到选择题,另一个抽到判断题的概率是多少?(2)甲、乙两人中至少有一人抽到选择题的概率是多少?【精彩点拨】 用列举法把所有可能的情况列举出来,或考虑互斥及对立事件的概率公式.【规范解答】 把3个选择题记为x 1,x 2,x 3,2个判断题记为p 1,p 2. 总的事件数为20.“甲抽到选择题,乙抽到判断题”的情况有:(x 1,p 1),(x 1,p 2),(x 2,p 1),(x 2,p 2),(x 3,p 1),(x 3,p 2),共6种;“甲抽到判断题,乙抽到选择题”的情况有:(p 1,x 1),(p 1,x 2),(p 1,x 3),(p 2,x 1),(p 2,x 2),(p 2,x 3),共6种;“甲、乙都抽到选择题”的情况有:(x 1,x 2),(x 1,x 3),(x 2,x 1),(x 2,x 3),(x 3,x 1),(x 3,x 2),共6种;“甲、乙都抽到判断题”的情况有:(p 1,p 2),(p 2,p 1),共2种. (1)“甲抽到选择题,乙抽到判断题”的概率为620=310,“甲抽到判断题,乙抽到选择题”的概率为620=310,故“甲、乙两人中有一个抽到选择题,另一个抽到判断题”的概率为310+310=35.(2)“甲、乙两人都抽到判断题”的概率为220=110,故“甲、乙两人至少有一人抽到选择题”的概率为1-110=910.[再练一题]2.某服务电话,打进的电话响第1声时被接的概率是0.1;响第2声时被接的概率是0.2;响第3声时被接的概率是0.3;响第4声时被接的概率是0.35.(1)打进的电话在响5声之前被接的概率是多少? (2)打进的电话响4声而不被接的概率是多少?【解】 (1)设事件“电话响第k 声时被接”为Ak (k ∈N ),那么事件A k 彼此互斥,设“打进的电话在响5声之前被接”为事件A ,根据互斥事件概率加法公式,得P (A )=P (A 1∪A 2∪A 3∪A 4)=P (A 1)+P (A 2)+P (A 3)+P (A 4)=0.1+0.2+0.3+0.35=0.95.(2)事件“打进的电话响4声而不被接”是事件A “打进的电话在响5声之前被接”的对立事件,记为A -.根据对立事件的概率公式,得P (A -)=1-P (A )=1-0.95=0.05.经常出现此种概率模型的题目.解题时要紧紧抓住古典概型的两个基本特征,即有限性和等可能性.在应用公式P (A )=mn时,关键是正确理解基本事件与事件A 的关系,求出n ,m .但列举时必须按某一顺序做到不重复、不遗漏.几何概型同古典概型一样,是概率中最具有代表性的试验概型之一,在高考命题中占有非常重要的位置.我们要理解并掌握几何概型试验的两个基本特征,即:每次试验中基本事件的无限性和每个事件发生的等可能性,由于其结果的无限性,概率就不能应用P (A )=m n求解,而需转化为几何度量(如长度、面积、体积等)的比值求解,体现了数形结合的数学思想.甲、乙两艘货轮都要在某个泊位停靠6小时,假定它们在一昼夜的时间段中随机到达,试求两船中有一艘在停泊位时,另一艘船必须等待的概率.【精彩点拨】 甲、乙两艘货轮停靠泊位的时间是6小时,当两船到达泊位的时间差不超过6小时时,两船中一艘停靠,另一艘必须等待.【规范解答】 设甲、乙两船到达泊位的时刻分别为x 、y . 则⎩⎪⎨⎪⎧0≤x ≤24,0≤y ≤24,|x -y |≤6.作出如图所示的区域.本题中,区域D 的面积S 1=242,区域d 的面积S 2=242-182.∴P =d 的面积D 的面积=242-182242=716. 即两船中有一艘在停泊位时另一船必须等待的概率为716. [再练一题]3.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( )A.45 B.35 C.25D.15【解析】 ∵当b =1时,没有满足条件的a 值; 当b =2时,a =1;当b =3时,a 可以是1,可以是2,∴共3种情况.而从{1,2,3,4,5}中随机取一个数a,再从{1,2,3}中随机取一个数b,共有3×5=15种不同取法,∴概率为315=1 5.【答案】 D与概率的相关知识,并且在实际生活中应用也十分广泛,能很好地考查学生的综合解题能力,在解决综合问题时,要求同学们对图表进行观察、分析、提炼,挖掘出图表所给予的有用信息,排除有关数据的干扰,进而抓住问题的实质,达到求解的目的.随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图31所示.图31(1)直接根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高为176 cm 的同学被抽中的概率.【精彩点拨】(1)根据“叶”上的数据的集中情况作出判断;(2)代入方差的计算公式求解;(3)列出基本事件和所求事件,用古典概型概率公式求解.【规范解答】(1)由茎叶图可知:甲班身高集中于160 cm~179 cm之间,而乙班身高集中于170 cm~179 cm之间.因此乙班平均身高高于甲班;(2)x=158+162+163+168+168+170+171+179+179+18210=170(cm).甲班的样本方差s2=110[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.2(cm 2).(3)设“身高为176 cm 的同学被抽中”为事件A ,从乙班10名同学中抽取两名身高不低于173 cm 的同学有:(181,173),(181,176),(181,178),(181,179),(179,173),(179,176),(179,178),(178,173),(178,176),(176,173)共10个基本事件,而事件A 含有4个基本事件:(181,176),(179,176),(178,176),(176,173),∴P (A )=410=25.[再练一题]4.某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n 人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数的频率分布直方图:图32(1)补全频率分布直方图并求n ,a ,p 的值;(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.【解】 (1)第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以高为0.35=0.06.频率分布直方图如下:第一组的人数为1200.6=200,频率为0.04×5=0.2,所以n =2000.2=1 000.由题可知,第二组的频率为0.3,所以第二组的人数为1 000×0.3=300,所以p =195300=0.65.第四组的频率为0.03×5=0.15,所以第四组的人数为 1 000×0.15=150,所以a =150×0.4=60.(2)因为[40,45)岁年龄段的“低碳族”与[45,50)岁年龄段的“低碳族”的比值为60∶30=2∶1,所以采用分层抽样法抽取6人,[40,45)岁中有4人,[45,50)岁中有2人.设[40,45)岁中的4人为a ,b ,c ,d ,[45,50)岁中的2人为m ,n ,则选取2人作为领队的选法有(a ,b ),(a ,c ),(a ,d ),(a ,m ),(a ,n ),(b ,c ),(b ,d ),(b ,m ),(b ,n ),(c ,d ),(c ,m ),(c ,n ),(d ,m ),(d ,n ),(m ,n ),共15种;其中恰有1人年龄在[40,45)岁的有(a ,m ),(a ,n ),(b ,m ),(b ,n ),(c ,m ),(c ,n ),(d ,m ),(d ,n ),共8种.所以选取的2名领队中恰有1人年龄在[40,45)岁的概率为815.在古典概型中,基本事件的个数较多且不易列举时,借助于图形会比较直观计数.在几何概型中,把基本事件转化到与长度、面积、体积有关的图形中,结合图形求长度、面积、体积的比.设点(p ,q )在|p |≤3,|q |≤3中按均匀分布出现,试求方程x 2+2px -q 2+1=0的两根都是实数的概率.【精彩点拨】 试验的全部结果构成的区域为正方形的面积,方程有两个实根构成的区域为圆的外部.【规范解答】 基本事件总体的区域D 的度量为正方形面积, 即D 的度量为S 正方形=62=36,由方程x 2+2px -q 2+1=0的两根都是实数, 得Δ=(2p )2-4(-q 2+1)≥0, ∴p 2+q 2≥1.∴当点(p ,q )落在如图所示的阴影部分时,方程的两根均为实数,由图可知,构成的区域d 的度量为S 正方形-S 圆=36-π,∴原方程的两根都是实数的概率为P =36-π36.[再练一题]5.三个人玩传球游戏,每个人都等可能地传给另两人(不自传),若从A 发球算起,经4次传球又回到A 手中的概率是多少?【解】 记三人为A 、B 、C ,则4次传球的所有可能可用树状图方式列出,如下图: 每一个分支为一种传球方案,则基本事件的总数为16,而又回到A 手中的事件个数为6个,根据古典概型概率公式得P =616=38.1.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815 B.18 C.115D.130【解析】 ∵Ω={(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5)},∴事件总数有15种.∵正确的开机密码只有1种,∴P =115.【答案】 C2.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.710B.58C.38D.310【解析】 如图,若该行人在时间段AB 的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯.AB 长度为40-15=25,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.【答案】 B3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13 B.12 C.23D.56【解析】 从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P =46=23,故选C.【答案】 C4.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34【解析】 如图,7:50至8:30之间的时间长度为40分钟,而小明等车时间不超过教育精品学习资源教育精品学习资源 10分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20分钟,由几何概型概率公式知所求概率为P =2040=12.故选B. 【答案】 B5.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120【解析】 从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110.故选C. 【答案】 C。
高中数学第三章概率单元综合检测课时跟踪训练(含解析)新人教A版必修3

单元综合检测(三)时间:120分钟满分:150分一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列事件是随机事件的是()①同种电荷,互相排斥;②明天是晴天;③自由下落的物体作匀速直线运动;④函数y=a x(a>0且a≠1)在定义域上是增函数.A.①③B.①④C.②④D.③④解析:②④是随机事件;①是必然事件;③是不可能事件.答案:C2.先后抛掷两颗骰子,设出现的点数之和是12,11,10的概率依次是P1、P2、P3,则()A.P1=P2<P3B.P1<P2<P3C.P1<P2=P3D.P3=P2<P1解析:先后抛掷两颗骰子的点数共有36个基本事件:(1,1),(1,2),(1,3),…,(6,6),并且每个基本事件都是等可能发生的.而点数之和为12的只有1个:(6,6);点数之和为11的有2个:(5,6),(6,5);点数之和为10的有3个:(4,6),(5,5),(6,4),故P1<P2<P3.答案:B3.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品至少有一件是次品”.则下列结论正确的是() A.A与C互斥B.任何两个均互斥C.B与C互斥D.任何两个均不互斥解析:三件产品至少有一件次品包含三件产品全是次品,所以B、C不互斥,而A与C对立且互斥.答案:A4.下列说法正确的是()A .由生物学知道生男生女的概率均约为12,一对夫妇生两个孩子,则一定为一男一女B .一次摸奖活动中,中奖概率为15,则摸5张票,一定有一张中奖C .10张票中有1张奖票,10人去摸,谁先摸则谁摸到的可能性大D .10张票中有1张有奖,10人去摸,无论谁先摸,摸到有奖票的概率都是110答案:D5.从一批羽毛球中任取一个,如果其质量小于4.8 g 的概率是0.3,质量不小于4.85 g 的概率是0.32,那么质量在[4.8,4.85)范围内的概率是 ( )解析:记“取到质量小于4.8 g ”为事件A ,“取到质量不小于4.85 g ”为事件B ,“取到质量在[4.8,4.85)范围内”为事件C .易知事件A ,B ,C 互斥,且A ∪B ∪C 为必然事件.所以P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.3+0.32+P (C )=1,即P (C )=1-0.3-0.32=0.38. 答案:B6.从含有3个元素的集合的子集中任取一个,所取的子集是含有2个元素的集合的概率为( ) A.310 B.112 C.4564D.38解析:设3个元素分别为a 、b 、c .所有子集共8个,含有两个元素的子集共3个. 答案:D7.在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝⎛⎭⎫x +12≤1”发生的概率为 ( ) A.34 B.23 C.13D.14解析:不等式-1≤log 12⎝⎛⎭⎫x +12≤1可化为log 122≤log 12⎝⎛⎭⎫x +12≤log 1212,即12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34.答案:A8.一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出一球,则取出的两个球同色的概率为 ( ) A.12 B.13 C.14D.25解析:记2个红球分别为a 1,a 2,2个白球分别为b 1,b 2,则基本事件空间为{(a 1,a 1),(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 2,a 1),(a 2,a 2),(a 2,b 1),(a 2,b 2),(b 1,a 1),(b 1,a 2),(b 1,b 1),(b 1,b 2),(b 2,a 1),(b 2,a 2),(b 2,b 1),(b 2,b 2)},共16个基本事件.记事件A =“取出的两个球同色”={(a 1,a 1),(a 1,a 2),(a 2,a 1),(a 2,a 2),(b 1,b 1),(b 1,b 2),(b 2,b 1),(b 2,b 2)}共8个基本事件.所以P (A )=816=12.答案:A9.如图的矩形长为5、宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为( )A.235B.2350C .10D .不能估计解析:利用几何概型的概率计算公式,得阴影部分的面积约为138300×(5×2)=235.答案:A10.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以710为概率的是( )A .都不是一等品B .恰有一件一等品C .至少有一件一等品D .至多有一件一等品解析:从5件产品中任取2件,共有10种可能结果,2件都是二等品的可能结果只有1种,2件都是一等品的可能结果有3种,一件一等品、一件二等品的可能结果有6种. 答案:D11.在区间(0,1)内任取一个数a ,能使方程x 2+2ax +12=0有两个相异实根的概率为( ) A.12 B.14 C.22D.2-22解析:方程有两个相异实根的条件是Δ=(2a )2-4×1×12=4a 2-2>0,解得|a |>22,又a ∈(0,1),所以22<a <1,区间⎝⎛⎭⎫22,1的长度为1-22,而区间(0,1)的长度为1,所以方程有两个相异实根的概率为1-221=2-22.答案:D12.小莉与小明一起用A ,B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)玩游戏,以小莉掷的A 立方体朝上的数字为x ,小明掷的B 立方体朝上的数字为y 来确定点P (x ,y ),那么他们各掷一次所确定的点P (x ,y )落在已知抛物线y =-x 2+4x 上的概率为 ( ) A.16 B.19 C.112D.118解析:根据题意,两人各掷骰子一次,每人都有六种可能性,则(x ,y )的情况有6×6=36(种),即P 点有36种可能,而y =-x 2+4x =-(x -2)2+4,即(x -2)2+y =4,易得在抛物线上的点有(2,4),(1,3),(3,3)共3个,因此满足条件的概率为336=112.答案:C二、填空题:(本题共4小题,每小题5分,共20分.)13.乘客在某电车站等待26路或16路电车,该站停靠16,22,26或31四路电车,假定各路电车停靠的概率一样,则乘客期待26路或16路电车首先停靠的概率等于__________. 解析:由互斥、对立事件的概率公式可计算. 答案:14.向边长为a 的正三角形内投一点,点落在三角形内切圆内的概率是__________.解析:点落在三角形内的每一处是一个基本事件,即基本事件总区域的面积为M Ω=34a 2.设“点落在三角形的内切圆内”为事件A ,则P (A )=M a M Ω=39π.答案:39π 15.在区间(0,1)中随机地取出两个数,则两数之和小于65的概率是__________.解析:设两数为x 、y ,则有序实数对(x ,y )满足⎩⎪⎨⎪⎧0<x <1,0<y <1,0<x +y <65,如下图所示的阴影部分.由图知,点A ⎝⎛⎭⎫15,1,B ⎝⎛⎭⎫1,15,AC =BC =45, ∴S 阴=1-12×45×45=1725.∴P =S 阴S 正=1725,故填1725.答案:172516.有以下说法:①一年按365天计算,两人生日相同的概率是1365;②买彩票中奖的概率为0.001,那么买1 000张彩票就一定能中奖;③乒乓球赛前,决定谁先发球,抽签方法是从1~10共10个数字中各抽取1个,再比较大小,这种抽签方法是公平的;④昨天没有下雨,则说明“昨天气象局的天气预报降水概率是90%”是错误的.根据我们所学的概率知识,其中说法正确的序号是__________. 解析:根据“概率的意义”求解. 答案:①③三、解答题:(共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(10分)随机地排列数字1,5,6,得到一个三位数,计算下列事件的概率.(1)所得的三位数大于400;(2)所得的三位数是偶数.解析:使用1,5,6三个数字可以排成156,165,516,561,615,651,共6个不同的三位数.(1)大于400的三位数的个数为4,所以P =46=23;(2)三位数为偶数的有156,516,共2个,所以相应的概率为P =26=13.18.(12分)爸爸和亮亮用4张扑克牌(方块2,黑桃4,黑桃5,梅花5)玩游戏,他俩将扑克牌洗匀后,背面朝上放置在桌面上,爸爸先抽,亮亮后抽,抽出的牌不放回. (1)若爸爸恰好抽到了黑桃4.①请把下面这种情况的树状图绘制完整;②求亮亮抽出的牌的牌面数字比4大的概率.(2)爸爸、亮亮约定,若爸爸抽出的牌的牌面数字比亮亮的大,则爸爸胜;反之,则亮亮胜.你认为这个游戏是否公平?如果公平,请说明理由;如果不公平,更换一张扑克牌使游戏公平.解析:(1)①树状图:②由①可知亮亮抽出的牌的牌面数字比4大的概率是23.(2)不公平,理由如下:爸爸抽出的牌的牌面数字比亮亮的大有5种情况,其余均为小于等于亮亮的牌面数字,所以爸爸胜的概率只有512,显然对爸爸来说是不公平的.只需把黑桃5改成黑桃6即可使这个游戏公平(答案不唯一).19.(12分)在圆O:x2+y2=1的某一直径上随机地取一点Q.试求过点Q且与该直径垂直的弦的长度不超过1的概率.解析:如图所示:记事件过点Q且与该直径垂直的弦的长度超过1为A.设EF=1则在Rt△OQE中,OE2=OQ2+QE2,1=OQ2+14,∴OQ=32.由几何概型的概率公式得P(A)=32×22=32.而过点Q且与该直径垂直的弦的长度不超过1的概率为1-3 2.20.(12分)有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次.根据年龄将大众评委分为五组,各组的人数如下:组别 A B C D E人数5010015015050(1)为了调查评委对其中从B组抽取了6人,请将其余各组抽取的人数填入下表.组别 A B C D E人数5010015015050抽取人数 6(2)在(1)中,若A委中分别任选1人,求这2人都支持1号歌手的概率.解析:(1)由题设知,分层抽样的抽取比例为6%,所以各组抽取的人数如下表:组别 A B C D E人数 50 100 150 150 50 抽取人数36993(2)记从A 组抽到的3位评委分别为a 1,a 2,a 3,其中a 1,a 2支持1号歌手;从B 组抽到的6位评委分别为b 1,b 2,b 3,b 4,b 5,b 6,其中b 1,b 2支持1号歌手,从{a 1,a 2,a 3}和{b 1,b 2,b 3,b 4,b 5,b 6}中各抽取1人的所有结果如图:由树状图知所有结果共18种,其中2人都支持1号歌手的有a 1b 1,a 1b 2,a 2b 1,a 2b 2共4种,故所求概率P =418=29.21.(12分)(1)在半径为1的圆的一条直径上任取一点,过该点作垂直于直径的弦,其长度超过该圆内接正三角形的边长3的概率是多少?(2)在半径为1的圆内任取一点,以该点为中点作弦,问其长超过该圆内接正三角形的边长3的概率是多少?(3)在半径为1的圆周上任取两点,连成一条弦,其长超过该圆内接正三角形 边长3的概率是多少?解析:(1)设事件A =“弦长超过3”,弦长只与它跟圆心的距离有关,∵弦垂直于直径,∴当且仅当它与圆心的距离小于12时才能满足条件,由几何概率公式知P (A )=12.(2)设事件B =“弦长超过3”,弦被其中点惟一确定,当且仅当其中点在半径为12的同心圆内时,才能满足条件,由几何概率公式知P (B )=14.(3)设事件C =“弦长超过3”,固定一点A 于圆周上,以此点为顶点作内接正三角形ABC ,显然只有当弦的另一端点D 落在BC ︵上时,才有|AD |>|AB |=3,由几何概率公式知P (C )=13.22.(12分)先后2次抛掷一枚骰子,将得到的点数分别记为a ,b .(1)求直线ax +by +5=0与圆x 2+y 2=1相切的概率;(2)将a ,b ,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率. 解析:先后2次抛掷一枚骰子,将得到的点数分别记为a ,b 包含的基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),…,(6,5),(6,6),共36个. (1)∵直线ax +by +5=0与圆x 2+y 2=1相切, ∴5a 2+b 2=1,整理得:a 2+b 2=25.由于a ,b ∈{1,2,3,4,5,6},∴满足条件的情况只有a =3,b =4,或a =4,b =3两种情况.∴直线ax +by +5=0与圆x 2+y 2=1相切的概率是236=118.(2)∵三角形的一边长为5,三条线段围成等腰三角形, ∴当a =1时,b =5,共1个基本事件; 当a =2时,b =5,共1个基本事件; 当a =3时,b =3,5,共2个基本事件; 当a =4时,b =4,5,共2个基本事件;当a =5时,b =1,2,3,4,5,6,共6个基本事件; 当a =6时,b =5,6,共2个基本事件;∴满足条件的基本事件共有1+1+2+2+6+2=14个. ∴三条线段能围成等腰三角形的概率为1436=718.。
2017-2018学年高中数学人教A版必修三练习:第3章 概率3-1-1 含解析 精品

第三章 3.1 3.1.1A 级 基础巩固一、选择题1.对下面的描述:①频率是反映事件发生的频繁程度,概率是反映事件发生的可能性的大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率就是事件A 发生的概率;③频率是一个比值,但概率不是;④频率是不能脱离具体的n 次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;⑤频率是概率的近似值,概率是频率的稳定值.其中正确的说法有导学号 93750577( C )A .①③⑤B .①③④C .①④⑤D .②④⑤[解析] 频率是一个不确定的值,随试验次数的变化而变化,但具有相对的稳定性.而概率是一个确定的值,不随试验次数的变化而变化,但当试验次数无限增大时,频率趋向于概率.因此①④⑤是正确的.2.下列说法中,不正确的是导学号 93750578( B ) A .某人射击10次,击中靶心8次,则他击中靶心的频率是0. 8 B .某人射击10次,击中靶心7次,则他击不中靶心的频率是0. 7 C .某人射击10次,击中靶心的频率是12,则他应击中靶心5次D .某人射击10次,击中靶心的频率是0. 6,则他击不中靶心的次数应为4 [解析] 某人射击10次,击中靶心7次,则他击不中靶心的频率是0. 7,故选B . 3.下列事件中,必然事件是导学号 93750579( D ) A .10人中至少有2人生日在同一个月 B .11人中至少有2人生日在同一个月 C .12人中至少有2人生日在同一个月 D .13人中至少有2人生日在同一个月[解析] 一年有12个月,因此无论10、11、12个人都有不在同一月生日的可能,只有13个人肯定至少有2人在同一月生日.本题属“三种事件”的概念理解与应用,解决这类题型要很好地吃透必然事件的概念,明确它必定要发生的特征,不可因偶尔巧合就下结论,故选D .4.从标有数字1、2、6的号签中,任意抽取两张,抽出后将上面数字相乘,在10次试验中,标有1的号签被抽中4次,那么结果“12”出现的频率为导学号 93750580( B )A .25B .35C .15D .710[解析] 标有1的号签出现4次,另外6次应抽到标有2、6的号签,所以乘积12出现6次,频率为35.二、填空题5.已知随机事件A 发生的频率是0. 02,事件A 出现了10次,那么共进行了__500__次试验. 导学号 93750581[解析] 设共进行了n 次试验, 则10n=0. 02,解得n =500. 6.某人进行打靶练习,共射击10次,其中有2次10环,3次9环,4次8环,1次脱靶,在这次练习中,这个人中靶的频率是__0. 9__,中9环的概率是__0. 3__. 导学号 93750582[解析] 打靶10次,9次中靶,故中靶的概率为910=0. 9,其中3次中9环,故中9环的频率是310=0. 3.三、解答题7.先后抛掷两枚质地均匀的硬币. 导学号 93750583 (1)一共可能出现多少种不同的结果?(2)出现“一枚正面,一枚反面”的结果有多少种?[解析] (1)一共出现“两枚正面”“一枚正面,一枚反面”“一枚反面,一枚正面”“两枚反面”4种不同的结果.(2)出现“一枚正面,一枚反面”的情况有2种,即为“一枚正面,一枚反面”“一枚反面,一枚正面”.8.2016年第31届夏季奥运会将在巴西的里约热内卢举行,为备战奥运会,某射击队统计了平日训练中两名运动员击中10环的次数,如下表:导学号 93750584(1)(2)根据(1)中的数据预测两名运动员在奥运会上击中10环的概率.[解析](1)两名运动员击中10环的频率如下表:奥运会上击中10环的概率均约为0. 9,也就是说甲、乙两人的实力相当.B级素养提升一、选择题1.已知集合A是集合B的真子集,下列关于非空集合A,B的四个命题:①若任取x∈A,则x∈B是必然事件;②若任取x∉A,则x∈B是不可能事件;③若任取x∈B,则x∈A是随机事件;④若任取x∉B,则x∉A是必然事件.其中正确的命题有导学号93750585(C)A.1个B.2个C.3个D.4个[解析]∵集合A是集合B的真子集,∴A中的任意一个元素都是B中的元素,而B中至少有一个元素不在A中,因此①正确,②错误,③正确,④正确.2.一个家庭有两个小孩儿,则可能的结果为导学号93750586(C)A.{(男,女),(男,男),(女,女)}B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}[解析]随机试验的所有结果要保证等可能性.两小孩儿有大小之分,所以(男,女)与(女,男)是不同的基本事件,故选C.二、填空题3.样本容量为200的频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在[6,10)内的频数为__64__,数据落在[6,10)内的概率约为__0. 32__. 导学号 93750587[解析] 由题图易知组距为4,故样本数据落在[6,10)内的频率为0. 08×4=0. 32,频数为0. 32×200=64,所以估计数据落在[6,10)内的概率为0. 32.4.一家保险公司想了解汽车挡风玻璃破碎的概率,公司收集了20 000部汽车,时间从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年时间里挡风玻璃破碎的概率近似为__0. 03__. 导学号 93750588[解析] 在一年里汽车的挡风玻璃破碎的频率为60020 000=0. 03,所以估计其破碎的概率约为0. 03.三、解答题5.设集合M ={1,2,3,4},a ∈M ,b ∈M ,(a ,b )是一个基本事件. 导学号 93750589 (1)“a +b =5”这一事件包含哪几个基本事件?“a <3且b >1”呢? (2)“ab =4”这一事件包含哪几个基本事件?“a =b ”呢?(3)“直线ax +by =0的斜率k >-1”这一事件包含哪几个基本事件?[解析] 这个试验的基本事件构成集合Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.(1)“a +b =5”包含以下4个基本事件:(1,4),(2,3),(3,2),(4,1).“a <3且b >1”包含以下6个基本事件:(1,2),(1,3),(1,4),(2,2),(2,3),(2,4). (2)“ab =4”这一事件包含以下3个基本事件:(1,4),(2,2),(4,1); “a =b ”这一事件包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4). (3)直线ax +by =0的斜率k =-ab>-1,∴a <b ,∴包含以下6个基本事件:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).C 级 能力拔高1.某产品的三个质量指标分别为x 、y 、z ,用综合指标S =x +y +z 评价该产品的等级.若S ≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:利用上表提供的样本数据估计该批产品的一等品率. 导学号 93750590 [解析] 计算10件产品的综合指标S ,如下表: 其中S ≤4的有A 1,A 2,A 4,A 5,A 7,A 9,共6件,故该样本的一等品率为610=0. 6,从而可估计该批产品的一等品率为0. 6.2.假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如下图所示:导学号 93750591(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率. [解析] (1)甲品牌产品寿命小于200小时的频率为5+20100=14,用频率估计概率,所以甲品牌产品寿命小于200小时的概率为14.(2)根据抽样结果,寿命大于200小时的产品共有75+70=145(个),其中甲品牌产品是75个,所以在样本中,寿命大于200小时的产品是甲品牌的频率是75145=1529,用频率估计概率,所以已使用了200小时的该产品是甲品牌的概率为1529.。
课时跟踪检测(五十八) 随机事件的概率

课时跟踪检测(五十八) 随机事件的概率[达标综合练]1.下列事件中,随机事件的个数为( ) ①物体在只受重力的作用下会自由下落; ②方程x 2+2x +8=0有两个实根;③某信息台每天的某段时间收到信息咨询的请求次数超过10次; ④下周六会下雨. A .1 B.2 C .3D .4解析:选B ①为必然事件,②为不可能事件,③④为随机事件.2.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率为1235.则从中任意取出2粒恰好是同一颜色的概率为( )A.17B.1235C.1735D .1解析:选C 设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A ∪B ,且事件A 与B 互斥.所以P (C )=P (A )+P (B )=17+1235=1735,即任意取出2粒恰好是同一颜色的概率为1735.3.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一件是正品(甲级)的概率为( )A .0.95 B.0.97 C .0.92D .0.08解析:选C 记抽检的产品是甲级品为事件A ,是乙级品为事件B ,是丙级品为事件C ,这三个事件彼此互斥,因而所求概率为P (A )=1-P (B )-P (C )=1-5%-3%=92%=0.92.4.(2020·长沙模拟)同时掷3枚硬币,至少有1枚正面向上的概率是( ) A.78 B.58 C.38D.18解析:选A 由题意知本题是一个等可能事件的概率,试验发生包含的事件是将1枚硬币连续抛掷三次,共有23=8种结果,满足条件的事件的对立事件是3枚硬币都是背面向上,有1种结果,所以至少有一枚正面向上的概率是1-18=78.故选A.5.抛掷一个质地均匀的骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中,事件A +B 发生的概率为( )A.13B.12C.23D.56解析:选C 掷一个骰子的试验有6种可能结果,依题意P (A )=26=13,P (B )=46=23,所以P (B )=1-P (B )=1-23=13,因为B 表示“出现5点或6点”的事件,所以事件A 与B 互斥,从而P (A +B )=P (A )+P (B )=13+13=23.6.抛掷一枚质地均匀的骰子(骰子的六个面上分别标有1,2,3,4,5,6个点)一次,观察掷出向上的点数,设事件A 为掷出向上为偶数点,事件B 为掷出向上为3点,则P (A ∪B )=( )A.13B.23C.12D.56解析:选B 事件A 为掷出向上为偶数点,所以P (A )=12.事件B 为掷出向上为3点,所以P (B )=16.又事件A ,B 是互斥事件, 所以P (A ∪B )=P (A )+P (B )=23.7.若A ,B 为互斥事件,P (A )=0.4,P (A ∪B )=0.7,则P (B )=________. 解析:∵A ,B 为互斥事件, ∴P (A ∪B )=P (A )+P (B ),∴P (B )=P (A ∪B )-P (A )=0.7-0.4=0.3. 答案:0.38.某人进行打靶练习,共射击10次,其中有2次中10环,有3次中9环,有4次中8环,有1次未中靶.假设此人射击1次,则其中靶的概率约为________;中10环的概率约为________.解析:中靶的频数为9,试验次数为10,所以中靶的频率为910=0.9,所以此人射击1次,中靶的概率约为0.9.同理得中10环的概率约为0.2.答案:0.90.29.已知小李每次打靶命中靶心的概率都为40%,现采用随机模拟的方法估计小李三次打靶恰有两次命中靶心的概率.先由计算器产生0到9之间取整数值的随机数,指定0,1,2,3表示命中靶心,4,5,6,7,8,9表示未命中靶心,再以每三个随机数为一组,代表三次打靶的结果,经随机模拟产生了如下20组随机数:321421191925271932800478589663531297396021546388230113507965据此估计,小李三次打靶恰有两次命中靶心的概率为________.解析:由题意知,在20组随机数中表示三次打靶恰有两次命中靶心的有421,191,271,932,800,531,共6组随机数,所以所求概率为620=0.30.答案:0.3010.(2020·湖北七市联考)某电子商务公司随机抽取1 000名网络购物者进行调查.这1 000名购物者2019年网上购物金额(单位:万元)均在区间[0.3,0.9]内,样本分组为:[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7),[0.7,0.8),[0.8,0.9],购物金额的频率分布直方图如下:电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下:购物金额分组[0.3,0.5)[0.5,0.6)[0.6,0.8)[0.8,0.9]发放金额50100150200(2)以这1 000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率.解:(1)购物者的购物金额x与获得优惠券金额y的频率分布如下表:x 0.3≤x<0.50.5≤x<0.60.6≤x<0.80.8≤x≤0.9y 50100150200频率0.40.30.280.02这1 000名购物者获得优惠券金额的平均数为 50×0.4+100×0.3+150×0.28+200×0.02=96. (2)由获得优惠券金额y 与购物金额x 的对应关系及(1)知 P (y =150)=P (0.6≤x <0.8)=0.28, P (y =200)=P (0.8≤x ≤0.9)=0.02,从而,获得优惠券金额不少于150元的概率为P (y ≥150)=P (y =150)+P (y =200)=0.28+0.02=0.3.11.某保险公司利用简单随机抽样方法对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保新司机车辆中,新司机获赔金额为4 000元的概率.解:(1)设A 表示事件“赔付金额为3 000元”,B 表示事件“赔付金额为4 000元”,以频率估计概率得P (A )=1501 000=0.15,P (B )=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔4 000元”,由已知,可得样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P (C )=0.24.[素养强化练]1.[逻辑推理、数学运算]若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值范围是( )A.⎝⎛⎭⎫54,2B.⎝⎛⎭⎫54,32 C.⎣⎡⎦⎤54,32D.⎝⎛⎦⎤54,43解析:选D由题意可得⎩⎪⎨⎪⎧0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1,即⎩⎪⎨⎪⎧0<2-a <1,0<4a -5<1,3a -3≤1,解得54<a ≤43.2.[逻辑推理]把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是( )A .对立事件B.对立但不互斥事件 C .互斥但不对立事件D .以上均不对解析:选C 事件“甲分得红牌”与“乙分得红牌”是不可能同时发生的两个事件,这两个事件可能恰有一个发生、一个不发生,可能两个都不发生,所以这两个事件互斥但不对立,应选C.3.[数学抽象、数学运算]一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红玻璃球的概率为715,取得两个绿玻璃球的概率为115,则取得两个同色玻璃球的概率为________;至少取得一个红玻璃球的概率为________.解析:由于“取得两个红玻璃球”与“取得两个绿玻璃球”是互斥事件,取得两个同色玻璃球,只需两互斥事件有一个发生即可,因而取得两个同色玻璃球的概率为P =715+115=815. 由于事件A “至少取得一个红玻璃球”与事件B “取得两个绿玻璃球”是对立事件,则至少取得一个红玻璃球的概率为P (A )=1-P (B )=1-115=1415.答案:815 14154. [数据分析]某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解:(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)如果顾客买了甲,则有:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.。
高中数学人教A版必修三教学课件+分层训练:第三章 概率(14份)3.1.1 随机事件的概率

3.1随机事件的概率3.1.1随机事件的概率一、基础达标1.下列事件中,是随机事件的有()①在一条公路上,交警记录某一小时通过的汽车超过300辆.②若a为整数,则a+1为整数.③发射一颗炮弹,命中目标.④检查流水线上一件产品是合格品还是次品.A.1个B.2个C.3个D.4个答案 C解析当a为整数时,a+1一定为整数,是必然事件,其余3个均为随机事件.2.(2013·洛阳高一检测)下列事件中,不可能事件为() A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边答案 C解析若两内角的和小于90°,则第三个内角必大于90°,故不是锐角三角形,∴C为不可能事件,而A、B、D均为必然事件.3.在25件同类产品中,有2件次品,从中任取3件产品,其中不可能事件为() A.3件都是正品B.至少有1件次品C.3件都是次品D.至少有1件正品答案 C解析25件产品中只有2件次品,所以不可能取出3件都是次品.4.“连续抛掷两枚质地均匀的骰子,记录朝上的点数”,该试验的结果共有() A.6种B.12种C.24种D.36种答案 D解析试验的全部结果为(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3)(6,4),(6,5),(6,6),共36种.5.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②作7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是nm=37;③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数是()A.0 B.1 C.2 D.3答案 A解析由频率与概率之间的联系与区别知,①②③均不正确.6.已知随机事件A发生的频率是0.02,事件A出现了10次,那么共进行了________次试验.答案500解析设进行了n次试验,则有10n=0.02,得n=500,故进行了500次试验.7.一个地区从某年起几年之内的新生婴儿数及其中的男婴数如下:(1)(2)这一地区男婴出生的频率是否稳定在一个常数上?解(1)男婴出生的频率依次是:0.520 0,0.517 3,0.517 3,0.517 3.(2)各个频率均稳定在常数0.517 3上.二、能力提升8.下列说法正确的是()A.任何事件的概率总是在(0,1)之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,频率一般会越来越接近概率D.概率是随机的,在试验前不能确定答案 C解析必然事件发生的概率为1,不可能事件发生的概率为0,所以任何事件发生的概率总在[0,1]之间,故A错,B、D混淆了频率与概率的概念,也错.9.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:答案0.35解析落在桌面的数字不小于4,即4,5的频数共13+22=35.所以频率=35100=0.35.10.一袋中装有10个红球,8个白球,7个黑球,现在把球随机地一个一个摸出来,为了保证在第k次或第k次之前能首次摸出红球,则k的最小值为________.答案16解析至少需摸完黑球和白球共15个.11.指出下列试验的结果:(1)从装有红、白、黑三种颜色的小球各1个的袋子中任取2个小球;(2)从1,3,6,10四个数中任取两个数(不重复)作差.解(1)结果:红球,白球;红球,黑球;白球,黑球.(2)结果:1-3=-2,3-1=2,1-6=-5,6-1=5,1-10=-9,10-1=9,3-6=-3,6-3=3,3-10=-7,10-3=7,6-10=-4,10-6=4.即试验的结果为:-2,2,-5,5,-9,9,-3,3,-7,7,-4,4.三、探究与创新12.(1)某厂一批产品的次品率为110,问任意抽取其中的10件产品是否一定会发现一件次品?为什么?(2)10件产品的次品率为110,问这10件中必有一件次品的说法是否正确?为什么?解(1)不一定,此处次品率指概率.从概率的统计定义看,当抽取件数相当多时,其中出现次品的件数与抽取总件数之比在110附近摆动,110是随机事件结果,而不是确定性数字结果,事实上这10件产品中有11种可能,全为正品,有1件次品,2件次品,……直至有10件次品,本题若改为“可能有一件次品”便是正确的了.(2)正确.这是确定性数学问题.13.用一台自动机床加工一批螺母,从中抽出100个逐个进行直径检验,结果如下:从这100(1)事件A(6.92<d≤6.94)的频率;(2)事件B(6.90<d≤6.96)的频率;(3)事件C(d>6.96)的频率;(4)事件D(d≤6.89)的频率.解(1)事件A的频率f(A)=17+26100=0.43.(2)事件B的频率f(B)=10+17+17+26+15+8100=0.93.(3)事件C的频率f(C)=2+2100=0.04.(4)事件D的频率f(D)=1100=0.01.。
2017-2020学年高中数学人教A版必修三课时作业:第3章 概率 3.3.2 Word版含答案

2020年精品试题
芳草香出品
3.3.2均匀随机数的产生
课时目标
1.理解均匀随机数的概念与意义,了解均匀随机数的产生过程.
2.能使用计算器或计算机模拟均匀随机数的产生来估计事件的概率.
识记强
化
1.均匀随机数
设试验结果x是区间[a,b]上的任何一个实数,并且出现任何一个实数是等可能的.
2.均匀随机数的产生
(1)计算器上产生[0,1]上的均匀随机数是等可能的.
(2)Excel软件产生[0,1]区间上均匀随机数的函数为“rand()”
3.用模拟的方法近似计算某事件概率的方法
(1)试验模拟方法:制作两个转盘模型,进行模拟试验,并统计试验结果.
(2)计算机模拟的方法:用Excel软件产生[0,1]区间上均匀随机数进行模拟.注意操作步骤.
课时作
业
一、选择题
1.下列关于用转盘进行随机模拟的说法,正确的是()
A.旋转的次数的多少不会影响估计的结果
B.旋转的次数越多,估计的结果越精确
C.旋转时可以按规律旋转
D.转盘的半径越大,估计的结果越精确
答案:B。
2017-2018学年高中数学 第三章 概率阶段质量检测A卷(含解析)新人教A版必修3
第三章 概率(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是( )A .对立事件B .互斥但不对立事件C .不可能事件D .必然事件解析:选B 根据题意,把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不会同时发生,故两者是互斥事件,但除了“甲分得红牌”与“乙分得红牌”之外,还有“丙分得红牌”,故两者不是对立事件,所以事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件.2.已知集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( )A.23 B .12 C.13 D .16解析:选C 从A ,B 中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中和为4的有(2,2),(3,1),共2种情况,所以所求概率P =26=13.3.在区间[-3,3]上任取一个实数,所得实数是不等式x 2+x -2≤0的解的概率为( ) A.16 B .13 C.12D .23解析:选C 由x 2+x -2≤0,得-2≤x ≤1, 所求概率为1--3--=12. 4.在正方体ABCD A 1B 1C 1D 1中随机取点,则点落在四棱锥O ABCD 内(O 为正方体的对角线的交点)的概率是( )A.13B .16(A 卷 学业水平达标)C.12 D .14解析:选B 设正方体的体积为V ,则四棱锥O ABCD 的体积为V6,所求概率为V6V =16.5.从{}a ,b ,c ,d ,e 的所有子集中任取一个,这个集合恰是集合{}a ,b ,c 子集的概率是( )A.35 B .25 C.14D .18解析:选C 符合要求的是∅,{}a ,{}b ,{}c ,{}a ,b ,{}a ,c ,{}b ,c ,{}a ,b ,c 共8个,而集合{}a ,b ,c ,d ,e 共有子集25=32个,∴P =14.6.(全国乙卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则 红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56解析:选C 从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P =46=23,故选C.7.连续掷两次骰子,以先后得到的点数m ,n 为点P (m ,n )的坐标,那么点P 在圆x 2+y 2=17内部的概率是( )A.19 B .29 C.13D .49解析:选B 点P (m ,n )的坐标的所有可能为6×6=36种,而点P 在圆x 2+y 2=17内部只有⎩⎪⎨⎪⎧m =1n =1,⎩⎪⎨⎪⎧m =1n =2,⎩⎪⎨⎪⎧m =1n =3,⎩⎪⎨⎪⎧m =2n =1,⎩⎪⎨⎪⎧m =2n =2,⎩⎪⎨⎪⎧m =2n =3,⎩⎪⎨⎪⎧m =3n =1,⎩⎪⎨⎪⎧m =3n =2,共8种,故概率为29.8.甲、乙、丙三人在3天节假日中值班,每人值班1天,则甲排在乙的前面值班的概率是( )A.16 B .14 C.13D .12解析:选C 甲、乙、丙三人在3天中值班的情况为甲,乙,丙;甲,丙,乙;丙,甲,乙;丙,乙,甲;乙,甲,丙;乙,丙,甲共6种,其中符合题意的有2种,故所求概率为13.9.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个卡片,从中无放回...地每次抽一张卡片,共抽2次,则取得两张卡片的编号和不小于...14的概率为( )A.128 B .156 C.356D .114解析:选D 从中无放回地取2次,所取号码共有56种,其中和不小于14的有4种,分别是(6,8),(8,6),(7,8),(8,7),故所求概率为456=114.10.小莉与小明一起用A ,B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)玩游戏,以小莉掷的A 立方体朝上的数字为x ,小明掷的B 立方体朝上的数字为y 来确定点P (x ,y ),那么他们各掷一次所确定的点P (x ,y )落在已知抛物线y =-x 2+4x 上的概率为( )A.16 B .19 C.112D .118解析:选C 根据题意,两人各掷骰子一次,每人都有六种可能性,则(x ,y )的情况有6×6=36(种),即P 点有36种可能,而y =-x 2+4x =-(x -2)2+4,即(x -2)2+y =4,易得在抛物线上的点有(2,4),(1,3),(3,3)共3个,因此满足条件的概率为336=112.二、填空题(本大题共4小题,每小题5分,共20分)11.下课以后,教室里最后还剩下2位男同学,2位女同学,如果没有2位同学一块儿走,则第2位走的是男同学的概率是________.解析:已知有2位女同学和2位男同学,所有走的可能顺序有(女,女,男,男),(女,男,女,男),(女,男,男,女),(男,男,女,女),(男,女,男,女),(男,女,女,男),所以第2位走的是男同学的概率是P =36=12.答案:1212.如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一圆弧DE ,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率是________.解析:连接AC 交弧DE 于点F ,∠BAC =30°,P =弧EF 的长弧DE 的长=13.答案:1313.点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为________.解析:如图所示,圆周上使AM 的长度等于1的点M 有两个,设为M1,M 2,则过A 的圆弧M 1AM 2长为2,点B 落在优弧M 1AM 2上就能使劣弧AB 的长度小于1,所以劣弧AB 的长度小于1的概率为23.答案:2314.同时抛掷两枚质地均匀的骰子,向上的点数分别记为b ,c ,则方程x 2+bx +c =0没有实数根的概率为________.解析:本试验的基本事件共有36个,方程x 2+bx +c =0没有实数根的充要条件是b 2<4c ,满足此条件的(b ,c )共有17种情况:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,3),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6),(4,5),(4,6),故所求事件的概率P =1736.答案:1736三、解答题(本大题共4题,共50分,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分12分)爸爸和亮亮用4张扑克牌(方块2,黑桃4,黑桃5,梅花5)玩游戏,他俩将扑克牌洗匀后,背面朝上放置在桌面上,爸爸先抽,亮亮后抽,抽出的牌不放回.(1)若爸爸恰好抽到了黑桃4.①请把下面这种情况的树状图绘制完整;②求亮亮抽出的牌的牌面数字比4大的概率.(2)爸爸、亮亮约定,若爸爸抽出的牌的牌面数字比亮亮的大,则爸爸胜;反之,则亮亮胜.你认为这个游戏是否公平?如果公平,请说明理由;如果不公平,更换一张扑克牌使游戏公平.解:(1)①树状图:②由①可知亮亮抽出的牌的牌面数字比4大的概率是23.(2)不公平,理由如下:爸爸抽出的牌的牌面数字比亮亮的大有5种情况,其余均为小于等于亮亮的牌面数字,所以爸爸胜的概率只有512,显然对爸爸来说是不公平的.只需把黑桃5改成黑桃6即可使这个游戏公平(答案不唯一).16.(本小题满分12分)已知集合A ={-9,-7,-5,-3,-1,0,2,4,6,8},在平面直角坐标系中,点(x ,y )的坐标x ∈A ,y ∈A ,且x ≠y ,计算:(1)点(x ,y )不在x 轴上的概率; (2)点(x ,y )正好在第二象限的概率.解:点(x ,y )中,x ∈A ,y ∈A ,且x ≠y ,基本事件有:(-9,-7),(-9,-5),(-9,-3),(-9,-1),(-9,0),(-9,2),(-9,4),(-9,6),(-9,8),(-7,-9),(-7,-5),(-7,-3),(-7,-1),(-7,0),(-7,2),(-7,4),(-7,6),(-7,8),…,(8,-9),(8,-7),…,(8,6)共有90个,且每一种结果出现的可能性相等.(1)设事件A 为“点(x ,y )不在x 轴上”,不符合要求的有(-9,0),(-7,0),(-5,0),(-3,0),(-1,0),(2,0),(4,0),(6,0),(8,0)共9个,所以符合要求的有90-9=81个,即事件A 包含的基本事件个数为81.因此,事件A 的概率是P (A )=8190=0.9.(2)设事件B 为“点(x ,y )正好在第二象限”,则x <0,y >0,则符合要求的基本事件为:(-9,2),(-9,4),(-9,6),(-9,8),(-7,2),(-7,4),(-7,6),(-7,8),…,(-1,2),(-1,4),(-1,6),(-1,8)共20个,即事件B 包含的基本事件个数为20.因此,事件B 的概率是P (B )=2090=29.17.(本小题满分12分)投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面的数字是0,两个面的数字是2,两个面的数字是4.将此玩具连续抛掷两次,以两次朝上一面出现的数字分别作为点P 的横坐标和纵坐标.(1)求点P 落在区域C :x 2+y 2≤10上的概率;(2)若以落在区域C 上的所有点为顶点作面积最大的多边形M ,在区域C 上随机撒一粒豆子,求豆子落在多边形M 区域内的概率.解:(1)点P 的坐标有:(0,0),(0,2),(0,4),(2,0),(2,2),(2,4),(4,0),(4,2),(4,4)共9种,其中落在区域C :x 2+y 2≤10上的点P 的坐标有(0,0),(0,2),(2,0),(2,2)共4种,故点P 落在区域C :x 2+y 2≤10上的概率为49.(2)区域M 为一边长为2的正方形,其面积为4,区域C 的面积为10π,则豆子落在区域M 上的概率为25π. 18.(本小题满分14分)已知关于x 的二次函数f (x )=ax 2-4bx +1.(1)设集合P ={-1,1,2,3,4,5}和Q ={-2,-1,1,2,3,4},分别从集合P 和Q 中随机抽取一个数作为a 和b ,求函数y =f (x )在[1,+∞)上是增函数的概率;(2)设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的随机点,求函数y =f (x )在[1,+∞)上是增函数的概率.解:(1)分别从集合P 和Q 中随机抽取一个数作a 和b .共有6×6=36(种)情形.由于函数f (x )=ax 2-4bx +1的图象的对称轴为x =2b a,要使y =f (x )在[1,+∞)上是增函数,当且仅当a >0且2ba≤1,即a >0且2b ≤a .若a =1,则b =-2,-1;若a =2,则b =-2,-1,1;若a =3,则b =-2,-1,1;若a =4,则b =-2,-1,1,2;若a =5,则b =-2,-1,1,2.故事件包含的基本事件的个数为2+3+3+4+4=16,因此所求概率为1636=49.(2)由(1)可知当a >0且2b ≤a 时,y =f (x )在[1,+∞)上是增函数.由条件可知试验的全部结果所构成的区域为⎩⎨⎧a ,b ⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a +b -8≤0a >0b >0,画出构成事件的区域为一三角形区域,其面积为12×8×8=32.又由⎩⎪⎨⎪⎧a +b -8=0,b =a2得交点坐标为⎝ ⎛⎭⎪⎫163,83,故满足要求的基本事件的区域的面积为12×8×83=323.故所求的概率为P =32332=13.。
推荐学习2018-2019学年高中数学人教A版选修2-3:课时跟踪检测(十四)离散型随机变量的均值-
课时跟踪检测(十四) 离散型随机变量的均值层级一 学业水平达标1.若X 是一个随机变量,则E (X -E (X ))的值为( ) A .无法求 B .0 C .E (X )D .2E (X )解析:选B ∵E (aX +b )=aE (X )+b ,而E (X )为常数,∴E (X -E (X ))=E (X )-E (X )=0. 2.若随机变量ξ的分布列如下表所示,则E (ξ)的值为( )A .118B .19C .209D .920 解析:选C 根据概率和为1,可得x =118,E (ξ)=0×2x +1×3x +2×7x +3×2x +4×3x +5×x =40x =209. 3.某射击运动员在比赛中每次击中10环得1分,击不中10环得0分.已知他击中10环的概率为0.8,则射击一次得分X 的期望是( )A .0.2B .0.8C .1D .0解析:选B 因为P (X =1)=0.8,P (X =0)=0.2,所以E (X )=1×0.8+0×0.2=0.8.4.某班有14的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数ξ~B ⎝⎛⎭⎫5, 14,则E (-ξ)的值为( ) A .14B .-14C .54D .-54解析:选D ∵E (ξ)=5×14=54,∴E (-ξ)=-E (ξ)=-54,故选D .5.有10件产品,其中3件是次品,从中任取2件,用X 表示取到次品的个数,则E (X )等于( ) A .35B .815C .1415D .1解析:选A X 的可能取值为0,1,2,P (X =0)=C 27C 210=715,P (X =1)=C 17C 13C 210=715,P (X =2)=C 23C 210=115.所以E (X )=1×715+2×115=35.6.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目X 的数学期望为________.解析:X 的可能取值为3,2,1,0,P (X =3)=0.6;P (X =2)=0.4×0.6=0.24; P (X =1)=0.42×0.6=0.096; P (X =0)=0.43=0.064.所以E (X )=3×0.6+2×0.24+1×0.096+0×0.064 =2.376. 答案:2.3767.设离散型随机变量X 可能的取值为1,2,3,P (X =k )=ak +b (k =1,2,3).又X 的均值E (X )=3,则a +b =________.解析:∵P (X =1)=a +b ,P (X =2)=2a +b ,P (X =3)=3a +b , ∴E (X )=1×(a +b )+2×(2a +b )+3×(3a +b )=3, ∴14a +6b =3.①又∵(a +b )+(2a +b )+(3a +b )=1, ∴6a +3b =1.②∴由①②可知a =12,b =-23,∴a +b =-16.答案:-168.某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分.小王选对每题的概率为0.8,则其第一大题得分的均值为________.解析:设小王选对的个数为X ,得分为Y =5X , 则X ~B (12,0.8),E (X )=np =12×0.8=9.6, E (Y )=E (5X )=5E (X )=5×9.6=48. 答案:489.盒中装有5节同品牌的五号电池,其中混有2节废电池,现在无放回地每次取一节电池检验,直到取到好电池为止.求:(1)抽取次数X 的分布列; (2)平均抽取多少次可取到好电池. 解:(1)由题意知,X 取值为1,2,3. P (X =1)=35;P (X =2)=25×34=310;P (X =3)=25×14=110.所以X 的分布列为(2)E (X )=1×35+2×310+3×110=1.5,即平均抽取1.5次可取到好电池.10.如图所示是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.(1)求直方图中x 的值;(2)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X 的分布列和数学期望.解:(1)依题意及频率分布直方图知,0.02+0.1+x +0.37+0.39=1,解得x =0.12. (2)由题意知,X ~B (3,0.1).因此P (X =0)=C 03×0.93=0.729; P (X =1)=C 13×0.1×0.92=0.243; P (X =2)=C 23×0.12×0.9=0.027; P (X =3)=C 33×0.13=0.001.故随机变量X 的分布列为故X 的数学期望为E (X )=3层级二 应试能力达标1.已知随机变量ξ的分布列为若η=aξ+3,E (η)=73,则a =( )A .1B .2C .3D .4解析:选B 由分布列的性质得12+13+m =1,∴m =16.∴E (ξ)=-1×12+0×13+1×16=-13.∴E (η)=E (aξ+3)=aE (ξ)+3=-13a +3=73,∴a =2.2.已知抛物线y =ax 2+bx +c (a ≠0)的对称轴在y 轴的左侧,其中a ,b ,c ∈{-3,-2,-1,0,1,2,3},在这些抛物线中,记随机变量ξ=|a -b |的取值,则ξ的数学期望E (ξ)为( )A .89B .35C .25D .13解析:选A ∵抛物线的对称轴在y 轴的左侧,∴-b 2a <0,即ba >0,∴a 与b 同号.∴ξ的分布列为∴E (ξ)=0×13+1×49+2×29=89.3.设口袋中有黑球、白球共7个,从中任取2个球,已知取到白球个数的数学期望值为67,则口袋中白球的个数为( )A .3B .4C .5D .2解析:选A 设白球x 个,则黑球7-x 个,取出的2个球中所含白球个数为ξ,则ξ取值0,1,2,P (ξ=0)=C 27-xC 27=(7-x )(6-x )42,P (ξ=1)=C 1x ·C 17-xC 27=x (7-x )21, P (ξ=2)=C 2xC 27=x (x -1)42,∴0×(7-x )(6-x )42+1×x (7-x )21+2×x (x -1)42=67,解得x =3.4.甲、乙两台自动车床生产同种标准件,ξ表示甲车床生产1 000件产品中的次品数,η表示乙车床生产1 000件产品中的次品数,经一段时间考察,ξ,η的分布列分别是:据此判定( ) A .甲比乙质量好 B .乙比甲质量好 C .甲与乙质量相同D .无法判定解析:选A E (ξ)=0×0.7+1×0.1+2×0.1+3×0.1=0.6, E (η)=0×0.5+1×0.3+2×0.2+3×0=0.7. ∵E (η)>E (ξ),故甲比乙质量好.5.设p 为非负实数,随机变量X 的概率分布为:则E (X )的最大值为________.解析:由表可得⎩⎪⎨⎪⎧0≤12-p ≤1,0≤p ≤1,从而得P ∈⎣⎡⎦⎤0,12,期望值E (X )=0×⎝⎛⎭⎫12-p +1×p +2×12=p +1,当且仅当p =12时,E (X )最大值=32.答案:326.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花需求量ξ(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则利润的均值是________元.解析:节日期间这种鲜花需求量的均值为E (ξ)=200×0.20+300×0.35+400×0.30+500×0.15=340(束). 设利润为η,则η=5ξ+1.6×(500-ξ)-500×2.5=3.4ξ-450, 所以E (η)=3.4E (ξ)-450=3.4×340-450=706(元). 答案:7067.(重庆高考)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.解:(1)令A 表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P (A )=C 12C 13C 15C 310=14.(2)X 的所有可能值为0,1,2,且P (X =0)=C 38C 310=715,P (X =1)=C 12C 28C 310=715,P (X =2)=C 22C 18C 310=115.综上知,X 的分布列为故E(X)=0×715+1×715+2×115=35(个).8.购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为1-0.999104.(1)求一投保人在一年度内出险的概率p;(2)设保险公司开办该项险种业务除赔偿金外的成本为50 000 元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).解:各投保人是否出险相互独立,且出险的概率都是p,记投保的10 000人中出险的人数为ξ,则ξ~B(104,p).(1)记A表示事件:保险公司为该险种至少支付10 000元赔偿金,则A发生当且仅当ξ=0,P(A)=1-P(A)=1-P(ξ=0)=1-(1-p)104,又P(A)=1-0.999104,故p=0.001.(2)该险种总收入为104a元,支出是赔偿金总额与成本的和.支出:104ξ+5×104,盈利:η=104a-(104ξ+5×104),由ξ~B(104,10-3)知,E(ξ)=10,E(η)=104a-104E(ξ)-5×104=104a-105-5×104.由E(η)≥0⇔104a-105-5×104≥0⇔a-10-5≥0⇔a≥15(元).故每位投保人应交纳的最低保费为15元.。
2017_2018学年高中数学课时作业16第三章概率3.1.3概率的基本性质新人教A版必修32018
课时作业16概率的基本性质|基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品有次品,但不全是次品”,则下列结论中错误的是()A.A与C互斥B.B与C互斥C.任何两个都互斥D.任何两个都不互斥解析:由题意知事件A、B、C两两不可能同时发生,因此两两互斥.答案:D2.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设事件A={两弹都击中飞机},事件B={两弹都没击中飞机},事件C={恰有一弹击中飞机),事件D={至少有一弹击中飞机},下列关系不正确的是()A.A⊆D B.B∩D=∅C.A∪C=D D.A∪B=B∪D解析:“恰有一弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,“至少有一弹击中”包含两种情况:一种是恰有一弹击中,一种是两弹都击中,∴A∪B≠B∪D.答案:D3.给出以下三个命题:(1)将一枚硬币抛掷两次,记事件A:“两次都出现正面”,事件B:“两次都出现反面”,则事件A与事件B是对立事件;(2)在命题(1)中,事件A与事件B是互斥事件;(3)在10件产品中有3件是次品,从中任取3件,记事件A:“所取3件中最多有2件是次品”,事件B:“所取3件中至少有2件是次品”,则事件A与事件B是互斥事件.其中命题正确的个数是()A.0 B.1C.2 D.3解析:命题(1)不正确,命题(2)正确,命题(3)不正确.对于(1)(2),因为抛掷两次硬币,除事件A,B外,还有“第一次出现正面,第二次出现反面”和“第一次出现反面,第二次出现正面”两种事件,所以事件A和事件B不是对立事件,但它们不会同时发生,所以是互斥事件;对于(3),若所取的3件产品中恰有2件次品,则事件A和事件B同时发生,所以事件A和事件B不是互斥事件.故选B.答案:B4.从集合{a,b,c,d,e}的所有子集中任取一个,若这个子集不是集合{a,b,c}的子3集的概率是,则该子集恰是集合{a,b,c}的子集的概率是()43 2A. B.5 51 1C. D.4 83 1解析:该子集恰是{a,b,c}的子集的概率为P=1-=.4 4答案:C5.某学校教务处决定对数学组的老师进行“评教”,根据数学成绩从某班学生中任意找出一人,如果该同学的数学成绩低于90分的概率为0.2,该同学的成绩在[90,120]之间的概率为0.5,那么该同学的数学成绩超过120分的概率为()A.0.2 B.0.3C.0.7 D.0.81解析:该同学数学成绩超过120分(事件A)与该同学数学成绩不超过120分(事件B)是对立事件,而不超过120分的事件为低于90分(事件C)和[90,120](事件D)两事件的和事件,即P(A)=1-P(B)=1-[P(C)+P(D)]=1-(0.2+0.5)=0.3.答案:B二、填空题(每小题5分,共15分)6.一箱产品有正品4件,次品3件,从中任取2件,其中事件:①“恰有1件次品”和“恰有2件次品”;②“至少有1件次品”和“都是次品”;③“至少有1件正品”和“至少有1件次品”;④“至少有1件次品”和“都是正品”.其中互斥事件有________组.解析:对于①,“恰有1件次品”就是“1件正品,1件次品”,与“恰有2件次品”显然是互斥事件;对于②,“至少有1件次品”包括“恰有1件次品”和“2件都是次品”,与“都是次品”可能同时发生,因此两事件不是互斥事件;对于③,“至少有1件正品”包括“恰有1件正品”和“2件都是正品”,与“至少有1件次品”不是互斥事件;对于④,“至少有1件次品”包括“恰有1件次品”和“2件都是次品”,与“都是正品”显然是互斥事件,故①④是互斥事件.答案:27.某产品分一、二、三级,其中一、二级是正品,若生产中出现正品的概率是0.98,出现二级品的概率是0.21,则出现一级品与三级品的概率分别是________.解析:出现一级品的概率为0.98-0.21=0.77;出现三级品的概率为1-0.98=0.02. 答案:0.77,0.028.某战士射击一次中靶的概率为0.95,中靶环数大于5的概率为0.75,则中靶环数大于0且小于6的概率为________.(只考虑整数环数)解析:因为事件A某战士射击一次“中靶的环数大于5”与事件B某战士射击一次“中靶的环数大于0且小于6”是互斥事件,P(A∪B)=0.95.所以P(A)+P(B)=0.95,所以P(B)=0.95-0.75=0.2.答案:0.2三、解答题(每小题10分,共20分)9.经统计,在某储蓄所一个营业窗口等候的人数及相应概率如下:排队人数0 1 2 3 45人及5人以上概率0.1 0.16 0.3 0.3 0.1 0.04(1)至多2人排队等候的概率是多少?(2)至少3人排队等候的概率是多少?解析:记“有i人排队等候”为事件A i(i=0,1,2,3,4),“有5人及5人以上排队等候”为事件B,则A0,A1,A2,A3,A4,及B是互斥事件且P(A0)=0.1,P(A1)=0.16,P(A2)=0.3,P(A3)=0.3,P(A4)=0.1,P(B)=0.04.(1)至多2人排队等候的概率为P=P(A0∪A1∪A2)=P(A0)+P(A1)+P(A2)=0.1+0.16+0.3=0.56(2)至少3人排队等候的概率为P=1-P(A0∪A1∪A2)=1-0.56=0.44.10.(衡水高三调研)某射手在一次射击中命中9环的概率是0.28,命中8环的概率是0.19,不够8环的概率是0.29,计算这个射手在一次射击中命中9环或10环的概率.解析:记这个射手在一次射击中命中10环或9环为事件A,命中10环、9环、8环、不够8环分别为事件A1,A2,A3,A4,由题意知,A2,A3,A4彼此互斥,所以P(A2∪A3∪A4)=P(A2)+P(A3)+P(A4)=0.28+0.19+0.29=0.76.2又因为A1与A2∪A3∪A4互为对立事件,所以P(A1)=1-P(A2∪A3∪A4)=1-0.76=0.24.因为A1与A2互斥,且A=A1∪A2,所以P(A)=P(A1∪A2)=P(A1)+P(A2)=0.24+0.28=0.52.|能力提升|(20分钟,40分)--11.如果事件A,B互斥,记A,B分别为事件A,B的对立事件,那么()A.A∪B是必然事件--B.A∪B是必然事件--C.A与B一定互斥--D.A与B一定不互斥--解析:用Venn图解决此类问题较为直观,如图所示,A∪B是必然事件,故选B.答案:B12.(太原高一检测)抛掷一枚质地均匀的骰子,向上的一面出现1点、2点、3点、4点、15点、6点的概率都是,记事件A为“出现奇数”,事件B为“向上的点数不超过3”,则P(A∪B)6=________.解析:记事件“出现1点”“出现2点”“出现3点”“出现5点”分别为A1,A2,A3,A4,由题意知这四个事件彼此互斥.则A∪B=A1∪A2∪A3∪A41 1 1 12 故P(A∪B)=P(A1∪A2∪A3∪A4)=P(A1)+P(A2)+P(A3)+P(A4)=+++=.6 6 6 6 32答案:313.某商场有奖销售中,购满100元商品得一张奖券,多购多得,每1 000张奖券为一个开奖单位.设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求(1)P(A),P(B),P(C);(2)抽取1张奖券中奖概率;(3)抽取1张奖券不中特等奖或一等奖的概率.解析:(1)因为每1 000张奖券中设特等奖1个,一等奖10个,二等奖50个,1 10 1 50 1所以P(A)=,P(B)==,P(C)==.1 000 1 000 100 1 000 20(2)设“抽取1张奖券中奖”为事件D,则1 1 1 61P(D)=P(A)+P(B)+P(C)=++=.1 000 100 20 1 0001(3)设“抽取1张奖券不中特等奖或一等奖”为事件E,则P(E)=1-P(A)-P(B)=1-1 0001 989-=.100 1 00014.某地区的年降水量在下列范围内的概率如下表所示:年降水量(0,200] (200,250] (250,300] (300,350] (350,400] (mm)3概率0.27 0.3 0.21 0.14 0.08求:(1)年降水量在(200,300](mm)范围内的概率;(2)年降水量在(250,400](mm)范围内的概率;(3)年降水量不大于350 mm的概率.解析:(1)设事件A={年降水量在(200,300](mm)范围内}.它包含事件B={年降水量在(200,250](mm)范围内}和事件C={年降水量在(250,300](mm) 范围内}两个事件.因为B,C这两个事件不能同时发生,所以它们是互斥事件,所以P(A)=P(B∪C)=P(B)+P(C),由已知得P(B)=0.3,P(C)=0.21,所以P(A)=0.3+0.21=0.51.即年降水量在(200,300](mm)范围内的概率为0.51.(2)设事件D={年降水量在(250,400](mm)范围内},它包含事件C={年降水量在(250,300](mm)范围内}、事件E={年降水量在(300,350](mm) 范围内)、事件F={年降水量在(350,400](mm)范围内}三个事件,因为C,E,F这三个事件不能同时发生,所以它们彼此是互斥事件,所以P(D)=P(C∪E∪F)=P(C)+P(E)+P(F),由已知得P(C)=0.21,P(E)=0.14,P(F)=0.08,所以P(D)=0.21+0.14+0.08=0.43. 即年降水量在(250,400](mm)范围内的概率为0.43.(3)设事件G={年降水量不大于350 mm),其对立事件是“年降水量在350 mm以上”,即事件F,所以P(G)=1-P(F)=1-0.08=0.92. 即年降水量不大于350 mm的概率为0.92.4。
2017-2018学年高中数学 课时跟踪检测(十五)概率的基本性质 新人教A版必修3
课时跟踪检测(十五)概率的基本性质[层级一学业水平达标]1.从一批产品(既有正品也有次品)中取出三件产品,设A={三件产品全不是次品},B ={三件产品全是次品},C={三件产品有次品,但不全是次品},则下列结论中错误的是( )A.A与C互斥B.B与C互斥C.任何两个都互斥D.任何两个都不互斥解析:选D 由题意知事件A、B、C两两不可能同时发生,因此两两互斥.2.抽查10件产品,记事件A为“至少有2件次品”,则A的对立事件为( )A.至多有2件次品B.至多有1件次品C.至多有2件正品D.至少有2件正品解析:选B 至少有2件次品包含2,3,4,5,6,7,8,9,10件次品,共9种结果,故它的对立事件为含有1或0件次品,即至多有1件次品.3.已知盒中有5个红球,3个白球,从盒中任取2个球,下列说法中正确的是( ) A.全是白球与全是红球是对立事件B.没有白球与至少有一个白球是对立事件C.只有一个白球与只有一个红球是互斥关系D.全是红球与有一个红球是包含关系B.1个球,摸出红球的概率________.所以摸出黑球的概率是1-0.42-0.28=0.3.应试能力达标]A,B的对立事件,那么( ) A.A∪B是必然事件 B.A∪B是必然事件C.A与B一定互斥D.A与B一定不互斥解析:选B 用Venn图解决此类问题较为直观.如图所示,A∪B是必然事件,故选B.2.根据湖北某医疗所的调查,某地区居民血型的分布为:O型52%,A型15%,AB型5%,B型28%.现有一血型为A型的病人需要输血,若在该地区任选一人,则此人能为病人输血的概率为( )A.67% B.85%C.48% D.15%解析:选A O型血与A型血的人能为A型血的人输血,故所求的概率为52%+15%=67%.故选A.3.下列各组事件中,不是互斥事件的是( )A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班的数学成绩,平均分不低于90分与平均分不高于90分C.播种100粒菜籽,发芽90粒与发芽80粒D.检验某种产品,合格率高于70%与合格率低于70%解析:选B 对于B,设事件A1为平均分不低于90分,事件A2为平均分不高于90分,则A1∩A2为平均分等于90分,A1,A2可能同时发生,故它们不是互斥事件.4.把电影院的4张电影票随机地分发给甲、乙、丙、丁4人,每人分得1张,事件“甲分得4排1号”与事件“乙分得4排1号”是( )A.对立事件B.不可能事件C.互斥但不对立事件D.以上答案都不对解析:选C “甲分得4排1号”与“乙分得4排1号”是互斥事件但不对立.5.一个口袋内有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的,摸出红球或黑球的概率为0.62,那么摸出不是红球的概率为________.},C={摸出黑球},则A,B,C两两互斥,A,P(A+C)=P(A)+P(C)=0.62,1,所以P(C)=0.42,P(B)=0.38,P(A)=0.20,所0.025,炸中第二、三军火库的概率均为0.1,只要炸中一个,另两个也会发生爆炸,军火库爆炸的概率为________.解析:设A,B,C分别表示炸弹炸中第一、第二、第三军火库这三个事件,D表示军火库爆炸,则P(A)=0.025,P(B)=0.1,P(C)=0.1,其中A,B,C互斥,故P(D)=P(A∪B ∪C)=P(A)+P(B)+P(C)=0.025+0.1+0.1=0.225.答案:0.2257.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得女子乒乓球单打冠军的概率为________. 解析:由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以由互斥事件概率的加法公式得,中国队夺得女子乒乓球单打冠军的概率为37+14=1928. 答案:19288.在大小相同的5个球中,只有红色和白色两种球,若从中任取2个,全是白球的概率为0.3,求所取出的2个球中至少有1个红球的概率.解:记事件A 表示“取出的2个球中至少有1个红球”,事件B 表示“取出的2个球全是白球”,则事件A 与事件B 互为对立事件,而事件B 发生的概率为P (B )=0.3,所以事件A 发生的概率为P (A )=1-P (B )=1-0.3=0.7.9.某商场有奖销售中,购满100元商品得一张奖券,多购多得,每1 000张奖券为一个开奖单位.设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C );(2)抽取1张奖券中奖概率;(3)抽取1张奖券不中特等奖或一等奖的概率.解:(1)∵每1 000张奖券中设特等奖1个,一等奖10个,二等奖50个,∴P (A )=11 000,P (B )=101 000=1100,P (C )=501 000=120. (2)设“抽取1张奖券中奖”为事件D ,则P (D )=P (A )+P (B )+P (C )=11 000+1100+120=611 000. (3)设“抽取1张奖券不中特等奖或一等奖”为事件E ,则P (E )=1-P (A )-P (B )=1-11 000-1100=9891 000.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(十四) 随机事件的概率 概率的意义
[层级一 学业水平达标]
1.在1,2,3,„,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”
这一事件是( )
A.必然事件 B.不可能事件
C.随机事件 D.以上选项均不正确
解析:选C 若取1,2,3,则和为6,否则和大于6,所以“这三个数字的和大于6”是
随机事件.
2.在25件同类产品中,有2件次品,从中任取3件产品,其中不可能事件为( )
A.3件都是正品 B.至少有1件次品
C.3件都是次品 D.至少有1件正品
解析:选C 25件产品中只有2件次品,所以不可能取出3件都是次品.
3.事件A发生的概率接近于0,则( )
A.事件A不可能发生 B.事件A也可能发生
C.事件A一定发生 D.事件A发生的可能性很大
解析:选B 不可能事件的概率为0,但概率接近于0的事件不一定是不可能事件.
4.高考数学试题中,有12道选择题,每道选择题有4个选项,其中只有1个选项是
正确的,则随机选择其中一个选项正确的概率是14,某家长说:“要是都不会做,每题都随
机选择其中一个选项,则一定有3道题答对.”这句话( )
A.正确 B.错误
C.不一定 D.无法解释
解析:选B 把解答一个选择题作为一次试验,答对的概率是14说明了对的可能性大小
是14.做12道选择题,即进行了12次试验,每个结果都是随机的,那么答对3道题的可能性
较大,但是并不一定答对3道题,也可能都选错,或有2,3,4,„甚至12个题都选择正确.
[层级二 应试能力达标]
1.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会
导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( )
A.① B.②
C.③ D.④
解析:选D 三角形的三条边必须满足两边之和大于第三边.
2.在掷一枚硬币的试验中,共掷了100次,“正面朝上”的频率为0.49,则“正面朝
下”的次数为( )
A.0.49 B.49
C.0.51 D.51
解析:选D 正面朝下的频率为1-0.49=0.51,次数为0.51×100=51次.
3.聊城市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通
桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而聊城市有两家出租车公
司,其中甲公司有100辆桑塔纳出租车,3 000辆帕萨特出租车;乙公司有3 000辆桑塔纳
出租车,100辆帕萨特出租车,交警部门应认定肇事车为哪个公司的车辆较合理?( )
A.甲公司 B.乙公司
C.甲、乙公司均可 D.以上都对
解析:选B 由题意得肇事车是甲公司的概率为131,是乙公司的概率为3031,由极大似
然法可知认定肇事车为乙公司的车辆较为合理.
4.抛掷一枚质地均匀的硬币,如果连续抛掷1 000次,那么第999次出现正面朝上的
概率是( )
A.1999 B.11 000
C.9991 000 D.12
解析:选D 抛掷一枚质地均匀的硬币,只考虑第999次,有两种结果:正面朝上,
反面朝上,每种结果等可能出现,故所求概率为12.
5.下列给出五个事件:
①某地2月3日下雪;
②函数y=ax(a>0,且a≠1)在定义域上是增函数;
③实数的绝对值不小于0;
④在标准大气压下,水在1 ℃结冰;
⑤a,b∈R,则ab=ba.
其中必然事件是________;不可能事件是________;随机事件是________.
解析:由必然事件、不可能事件、随机事件的定义即可得到答案.
答案:③⑤ ④ ①②
6.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关
信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破
碎,则一部汽车在一年内挡风玻璃破碎的概率近似是________.
解析:P=60020 000=0.03.
答案:0.03
7.一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本.已
知B层中每个个体被抽到的概率都为112,则总体中的个体数为________.
解析:设总体中的个体数为x,则10x=112,所以x=120.
答案:120
8.某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵能孵出8 513条鱼苗,根据概
率的统计定义解答下列问题:
(1)这种鱼卵的孵化概率(孵化率)是多少?
(2)30 000个鱼卵大约能孵化多少条鱼苗?
(3)要孵化5 000条鱼苗,大约需准备多少个鱼卵(精确到百位)?
解:(1)这种鱼卵的孵化频率为8 51310 000=0.851 3,
把它近似作为孵化的概率.
(2)设能孵化x条鱼苗,则x30 000=0.851 3.
所以x=25 539,
即30 000个鱼卵大约能孵化25 539条鱼苗.
(3)设大约需准备y个鱼卵,
则5 000y=0.851 3,
所以y≈5 900,
即大约需准备5 900个鱼卵.
9.某活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红
球接近多少个,在不将袋中球倒出来的情况下,分小组进行摸球试验,两人一组,共20组
进行摸球试验.其中一位学生摸球,另一位学生记录所摸球的颜色,并将球放回袋中摇匀,
每一组做400次试验,汇总起来后,摸到红球次数为6 000次.
(1)估计从袋中任意摸出一个球,恰好是红球的概率;
(2)请你估计袋中红球的个数.
解:(1)因为20×400=8 000,
所以摸到红球的频率为:6 0008 000=0.75,
因为试验次数很大,大量试验时,频率接近于理论概率,所以估计从袋中任意摸出一
个球,恰好是红球的概率是0.75.
(2)设袋中红球有x个,根据题意得:
x
x+5
=0.75,解得x=15,经检验x=15是原方程的解.
所以估计袋中红球接近15个.