2017-2018学年高中数学人教B版必修3:课时跟踪检测(一) 算法的概念 Word版含解析

合集下载

2017-2018学年高中数学必修3:课时跟踪检测四 循环结

2017-2018学年高中数学必修3:课时跟踪检测四 循环结

课时跟踪检测(四)循环结构[层级一学业水平达标]1.已知下列说法:①虽然算法叙述的形式有很多类型,但算法表示为流程图按其逻辑结构分类仅有三种;②循环结构中,循环体根据条件是否成立会被反复无休止的执行;③求函数f(x)=a(1+r)x(r>-1且r≠0),当x=0,1,2,3,…,100时的函数值时可用循环结构;④选择结构中根据条件是否成立有不同的流向.其中正确说法的序号为________.答案:①③④2.如图流程图中,输出的结果为________.解析:S=1+3+5+…+19=100;答案:1003.按如图所示的流程图运算,若输出k=2,则输入x的取值范围是________.解析:第一次运行x=2x+1,k=1,第二次运行x=2(2x+1)+1,k=2,此时输出x的值,则2x+1≤115且2(2x+1)+1>115,解得28<x≤57.答案:(28,57]4.某程序框图如图所示,若该程序运行后输出的值是95,则a =________.解析:由程序框图及最后输出的值为95可知,当k =1时,S =1,k >a 不成立, 故S =1+11×2=32, k =2>a 不成立,故S =32+12×3=53,k =3>a 不成立,故S =53+13×4=74,k =4>a 不成立,故S =74+14×5=95,此时k =5>a 成立, ∴a =4. 答案:45.用循环结构写出计算11×3+12×4+13×5+…+1100×102的流程图.解:如图所示:[层级二应试能力达标]1.如图所示的流程图的算法功能是__________________________.输出的结果i=________,i+2=________.答案:求积为624的相邻的两个偶数24262.执行如图所示的流程图,输入l=2,m=3,n=5,则输出的y值是________.解析:l=2,m=3,n=5,l2+m2+n2≠0,y=70×2+21×3+15×5=278>105,y=278-105=173>105,y=173-105=68,此时输出的y值为68.答案:683.如图是为求1~1 000的所有偶数的和而设计的一个流程图,则①处应填________,②处应填________.解析:因为当i≤1 000时开始执行①②两部分结合循环结构的形式可知,该程序为当型循环结构,又i=2,sum=0,且计算2+4+6+…+1 000的值,故①②两处分别填sum =sum+i,i=i+2.答案:sum←sum+i i←i+24.(浙江高考)若某流程图如图所示,则该程序运行后输出的值是________.解析:运行程序后,T =1,i =2;T =12,i =3;T =16,i =4;T =124,i =5;T =1120,i=6>5,循环结束.则输出的值为1120. 答案:11205.执行如图所示的流程图,则共经过________次判断,经过________次循环体.答案:35 346.如图所示的流程图,则该流程图表示的算法的功能是________.答案:计算连续正奇数相乘,所得积不小于10 000时的最后一个奇数7.依不同条件写出下列流程图的运行结果.(1)图(1)中箭头a指向①时,输出sum=________,指向②时,输出sum=________.(2)图(2)中箭头b指向①时,输出sum=________,指向②时,输出sum=________. 答案:(1)515(2)6208.如图所示的流程图表示的算法功能是__________.答案:计算函数f(x)=ln x,当自变量x=1,2,…,100时的函数值9.以下是某次考试中某班15名同学的数学成绩:72,91,58,63,84,88,90,55,61,73,64, 77,82,94,60.要求将80分以上的同学的平均分求出来.画出流程图.解:流程图如下所示:10.下列三图是为计算22+42+62+…+1002而绘制的算法流程图,根据流程图回答后面的问题:(1)其中正确的流程图有哪几个?错误的流程图有哪几个?错误的要指出错在哪里?(2)错误的流程图中,按该流程图所蕴含的算法,能执行到底吗?若能执行到底,最后输出的结果是什么?解:(1)正确的流程图只有图③,图①有三处错误:第一处错误,第二个图框中i←42,应该是i←4,因为本流程图中的计数变量是i,不是i2,在22,42,…,1002中,指数都是2,而底数2,4,6,8,…,100是变化的,但前后两项的底数相差2,因此计数变量是顺加2.第二处错误,第三个图框中的内容错误,累加的是i2而不是i,故应改为p←p+i2.第三处错误,第四个图框中的内容,其中的指令i←i+1,应改为i←i+2,原因是底数前后两项相差2.图②所示的流程图中有一处错误,即判断框中的内容错误,应将框内的内容“i<100”改为“i≤100”或改为“i>100”且判断框下面的流程线上标注的Y和N互换.(2)图①虽然能进行到底,但执行的结果不是所期望的结果,按照这个流程图最终输出的结果是p=22+42+(42+1)+(42+2)+…+(42+84).图②虽然能进行到底,但最终输出的结果不是预期的结果而是22+42+62+ (982)少了1002.。

2017-2018学年高中数学人教B版必修3:课时跟踪检测(九) 简单随机抽样

2017-2018学年高中数学人教B版必修3:课时跟踪检测(九) 简单随机抽样

课时跟踪检测(九) 简单随机抽样1.下列抽样方法是简单随机抽样的是( )A .从50个零件中一次性抽取5个做质量检验B .从50个零件中有放回地抽取5个做质量检验C .从实数集中随机抽取10个分析奇偶性D .运动员从8个跑道中随机选取一个跑道解析:选D A 不是,因为“一次性”抽取与“逐个”抽取含义不同;B 不是,因为是有放回抽样;C 不是,因为实数集是无限集.2.抽签法中确保样本代表性的关键是( )A .抽签B .搅拌均匀C .逐一抽取D .抽取不放回解析:选B 逐一抽取,抽取不放回是简单随机抽样的特点,但不是确保样本代表性的关键,一次抽取与有放回抽取(个体被重复取出可不算再放回)也不影响样本的代表性,抽签也一样.3.某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件检查,对100件产品采用下面的编号方法①1,2,3,…,100;②001,002,…,100;③00,01,02,…,99;④01,02,03,…,100. 其中正确的序号是( )A .②③④B .③④C .②③D .①②解析:选C 根据随机数表法的步骤可知,①④编号位数不统一,②③正确.4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性和“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,310解析:选A 简单随机抽样中每个个体被抽取的机会均等,都为110. 5.高一(1)班有60名学生,学号从01到60,数学老师在上统计课时,利用随机数表法选5名学生提问,老师首先选定从随机数表的倒数第5行(下表为随机数表的最后5行)第6列的“4”开始,向右读依次选学号提问,则被提问的5个学生的学号为________.33021 44709 79262 33116 80907 77689 69696 4842077713 32822 64679 94095 95735 84535 74703 8289025853 30963 76729 87613 65538 68978 13157 7883464145715161171658309895015971756086374596858522783226215426341128126638236261855解析:依据选号规则,选取的5名学生的学号依次为:44,33,11,09,07,48.答案:44,33,11,09,07,486.某校有50个班,每班50人,现抽查250名同学进行摸底考试,则每位同学被抽到的可能性为________.解析:根据简单随机抽样的特征,总量为50×50=2 500人.∴每位同学被抽到的可能性为2502 500=1 10.答案:1 107.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有________.①2 000名运动员是总体;②每个运动员是个体;③所抽取的20名运动员是一个样本;④样本容量为20;⑤这个抽样方法可采用随机数法抽样;⑥采用随机数法抽样时,每个运动员被抽到的机会相等.解析:①2 000名运动员不是总体,2 000名运动员的年龄才是总体;②每个运动员的年龄是个体;③20名运动员的年龄是一个样本.答案:④⑤⑥8.上海某中学从40名学生中选1人作为上海男篮拉拉队的成员,采用下面两种选法:选法一将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选;选法二将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为拉拉队成员.试问这两种选法是否都是抽签法?为什么?解:选法一满足抽签法的特征是抽签法,选法二不是抽签法,因为抽签法要求所有的号签编号互不相同,而选法二中39个白球无法相互区分.9.某合资企业有150名职工,要从中随机抽出15人去参观学习.请用抽签法和随机数表法进行抽取,并写出过程.解:(抽签法)先把150名职工编号:1,2,3,…,150,把编号分别写在相同的小纸片上,揉成小球,放入一个不透明的袋子中,充分搅拌均匀后,从中逐个不放回地抽取15个小球,这样就抽出了去参观学习的15名职工.(随机数表法)第一步,先把150名职工编号:001,002,003, (150)第二步,从随机数表中任选一个数,如第10行第4列数0.第三步,从选定的数字开始向右读,每次读3个数字,组成一个三位数,把小于或等于150的三位数依次取出(凡不在001~150的数跳过不读,前面已读过也跳过去),直到取完15个号码,与这15个号码相应的职工去参观学习.。

2017-2018学年高中数学人教A版必修3教学案:第一章 1-

2017-2018学年高中数学人教A版必修3教学案:第一章 1-

1.1.1算法的概念预习课本P2~5,思考并完成以下问题(1)利用加减消元法求解一般的二元一次方程组的步骤有哪些?(2)在数学中算法是如何定义的?(3)算法的特征是什么?(4)解决一类问题的算法是唯一的吗?是不是任何一个算法都有明确的结果?[新知初探]1.算法的概念在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.2.算法的特征(1)确定性:算法中每一步都是确定的,并且能有效地执行且得到确定的结果.(2)有限性:一个算法的步骤是有限的,不能无限地进行下去,它能在有限步的操作后解决问题.(3)有序性:算法从初始步骤开始,分为若干明确的步骤,每个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步.(4)不唯一性:解决一个问题可以有多种不同的算法.(5)普遍性:给出一个算法的程序步骤,它可以解决一类问题,并且能够多次重复使用.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)求解一类问题的算法是唯一的()(2)算法必须在有限步骤操作之后解决问题()(3)算法执行后一定产生确定的结果()解析:由算法具有有限性、确定性和不唯一性可知(1)错,(2)、(3)对.答案:(1)×(2)√(3)√2.下列叙述不能称为算法的是()A.从北京到上海先乘汽车到飞机场,再乘飞机到上海B.解方程4x+1=0的过程是先移项再把x的系数化成1C.利用公式S=πr2计算半径为2的圆的面积得π×22D.解方程x2-2x+1=0解析:选D选项A,B给出了解决问题的方法和步骤,是算法;选项C是利用公式计算,也属于算法;选项D只提出问题没有给出解决的方法,不是算法.3.下面是某人出家门先打车去火车站,再坐火车去北京的一个算法,请补充完整.第一步,出家门.第二步,________________.第三步,坐火车去北京.答案:打车去火车站算法概念的理解[典例]A.算法就是某个问题的解题过程B.算法执行后可以产生不同的结果C.解决某一个具体问题算法不同,则结果不同D.算法执行步骤的次数不可以很大,否则无法实施[解析]选项B正确,例如:判断一个整数是否为偶数,结果为“是偶数”和“不是偶数”两种;选项A,算法不能等同于解法;选项C,解决某一个具体问题算法不同,但结果应相同;选项D,算法可以为很多次,但不可以无限次.[答案] B算法实际上是解决问题的一种程序性方法,它通常解决某一个或一类问题,用算法解决问题,体现了从特殊到一般的数学思想.[活学活用]有人对哥德巴赫猜想“任何大于4的偶数都能写成两个奇质数之和”设计了如下操作步骤:第一步,检验6=3+3.第二步,检验8=3+5.第三步,检验10=5+5.……利用计算机一直进行下去!请问:利用这种步骤能够证明猜想的正确性吗?这是一个算法吗?解:利用这种步骤不能证明猜想的正确性.此步骤不满足算法的有限性,因此不是算法.算法的设计[典例]写出求1+[解]法一:第一步,计算1+2得到3.第二步,将第一步中的运算结果3与3相加得到6.第三步,将第二步中的运算结果6与4相加得到10.第四步,将第三步中的运算结果10与5相加得到15.第五步,将第四步中的运算结果15与6相加得到21.法二:第一步,将原式变形为(1+6)+(2+5)+(3+4)=3×7.第二步,计算3×7.设计具体问题的算法的一般步骤(1)分析问题,找出解决问题的一般数学方法;(2)借助有关变量或参数对算法加以表述;(3)将解决问题的过程划分为若干步骤;(4)用简练的语言将这个步骤表示出来.[活学活用]1.求1×3×5×7×9×11的值的一个算法如下,请补充完整.第一步,求1×3得结果3.第二步,将第一步所得结果3乘以5,得到结果15.第三步,_________________________________________________________________.第四步,再将第三步所得结果105乘以9,得到结果945.第五步,再将第四步所得结果945乘以11,得到结果10 395,即为最后结果.解析:依据算法功能可知,第三步应为“再将第二步所得结果15乘以7,得到结果105”.答案:再将第二步所得结果15乘以7,得到结果1052.写出解方程x2-2x-3=0的一个算法.解:法一:第一步,移项得x2-2x=3.①第二步,①式两边同时加1,并配方得(x-1)2=4.②第三步,②式两边开方,得x-1=±2.③第四步,解③式得x1=3,x2=-1.法二:第一步,计算出一元二次方程的判别式的值,并判断其符号.显然Δ=(-2)2-4×1×(-3)=16>0.第二步,将a=1,b=-2,c=-3代入求根公式x1,2=-b±b2-4ac2a,得x1=3,x2=-1.[层级一学业水平达标]1.下列关于算法的说法中正确的个数有()①求解某一类问题的算法是唯一的;②算法必须在有限步骤操作之后停止;③x2-x>2是一个算法;④算法执行后一定产生确定的结果.A.1B.2C.3 D.4解析:选B依据算法的多样性(不唯一性)知①错误;由算法的有限性,确定性知②④正确;因为x2-x>2仅仅是一个数学问题,不能表达一个算法,所以③是错误的;由于算法具有可执行性,正确的有②④.2.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:()①计算c=a2+b2;②输入直角三角形两直角边长a,b的值;③输出斜边长c的值.其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③解析:选D明确各步骤间的关系即可知D选项正确.3.下列叙述中,①植树需要运苗、挖坑、栽苗、浇水这些步骤;②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…99+1=100;③从青岛乘火车到济南,再从济南乘飞机到广州;④3x>x+1;⑤求所有能被3整除的正数,即3,6,9,12,….能称为算法的个数为( )A .2B .3C .4D .5解析:选B 根据算法的含义和特征知:①②③都是算法;④⑤不是算法.其中④,3x >x +1不是一个明确的步骤,不符合确定性;⑤的步骤是无穷的,与算法的有限性矛盾.4.下列所给问题中,不能设计一个算法求解的是( )A .用“二分法”求方程x 2-3=0的近似解(精确度0.01)B .解方程组⎩⎪⎨⎪⎧x +y +5=0,x -y +3=0 C .求半径为2的球的体积D .求S =1+2+3+…的值解析:选D 对于D ,S =1+2+3+…,不知道需要多少步完成,所以不能设计一个算法求解.[层级二 应试能力达标]1.一个厂家生产商品的数量按照每年比前一年都增加18%的比率递增,若第一年的产量为a ,“计算第n 年的产量”的算法中用到的一个函数解析式是( )A .y =an 0.18B .y =a (1+18%)nC .y =a (1+18%)n -1D .y =n (1+18%)n解析:选C 根据已知条件可以得出满足题意的函数解析式为y =a (1+18%)n -1.2.如下算法:第一步,输入x 的值.第二步,若x ≥0,则y =x .第三步,否则,y =x 2.第四步,输出y 的值.若输出的y 值为9,则x 的值是( )A .3B .-3C .3或-3D .-3或9解析:选D 根据题意可知,此为分段函数y =⎩⎪⎨⎪⎧x ,x ≥0,x 2,x <0的算法, 当x ≥0时,x =9;当x <0时,x 2=9,所以x =-3.综上所述,x 的值是-3或9.3.对于算法:第一步,输入n .第二步,判断n 是否等于2,若n =2,则n 满足条件;若n >2,则执行第三步.第三步,依次从2到(n -1)检验能不能整除n ,若不能整除n ,则执行第四步;若能整除n ,则结束算法.第四步,输出n .满足条件的n 是( )A .质数B .奇数C .偶数D .约数解析:选A 此题首先要理解质数,只能被1和自身整除的大于1的整数叫质数.2是最小的质数,这个算法通过对2到(n -1)一一验证,看是否有其他约数,来判断其是否为质数.4.早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几个过程.从下列选项中选出最好的一种算法( )A .第一步,洗脸刷牙.第二步,刷水壶.第三步,烧水.第四步,泡面.第五步,吃饭.第六步,听广播B .第一步,刷水壶.第二步,烧水同时洗脸刷牙.第三步,泡面.第四步,吃饭.第五步,听广播C .第一步,刷水壶.第二步,烧水同时洗脸刷牙.第三步,泡面.第四步,吃饭同时听广播D .第一步,吃饭同时听广播.第二步,泡面.第三步,烧水同时洗脸刷牙.第四步,刷水壶解析:选C 因为A 选项共用时间36 min ,B 选项共用时间31 min ,C 选项共用时间23 min ,D 选项的算法步骤不符合常理,故选C.5.以下是解二元一次方程组⎩⎪⎨⎪⎧2x -y +6=0,①x +y +3=0 ②的一个算法,请将该算法补充完整. 第一步,①②两式相加得3x +9=0. ③第二步,由③式可得________. ④第三步,将④式代入①式,得y =0.第四步,输出方程组的解________.解析:由3x +9=0,得x =-3,即④处应填x =-3;把x =-3代入2x -y +6=0,得y =0,即方程组的解为⎩⎪⎨⎪⎧ x =-3,y =0.答案:x =-3 ⎩⎪⎨⎪⎧x =-3,y =06.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99,求他的总分和平均成绩的一个算法为:第一步,输入A =89,B =96,C =99.第二步,__________________________.第三步,__________________________.第四步,输出计算的结果.解析:应先计算总分D =A +B +C ,然后再计算平均成绩E =D 3. 答案:计算总分D =A +B +C 计算平均成绩E =D 37.使用配方法解方程x 2-4x +3=0的算法的步骤是________(填序号).①配方得(x -2)2=1;②移项得x 2-4x =-3;③解得x =1或x =3;④开方得x -2=±1.解析:使用配方法的步骤应按移项、配方、开方、得解的顺序进行.答案:②①④③8.对任意三个整数a ,b ,c ,写出求最大数的算法.解:算法如下:第一步,令max =a .第二步,比较max 与b 的大小,若b >max ,则令max =b ;否则,执行第三步. 第三步,比较max 与c 的大小,若c >max ,则令max =c ;否则,执行第四步. 第四步,max 就是a ,b ,c 中的最大数.9.已知直线l 1:3x -y +12=0和直线l 2:3x +2y -6=0,设计一个算法,求l 1和l 2及y 轴所围成的三角形的面积.解:算法如下:第一步,解方程组⎩⎪⎨⎪⎧3x -y +12=0,3x +2y -6=0,得l 1,l 2的交点为P (-2,6). 第二步,在方程3x -y +12=0中,令x =0,得y =12,从而得到l 1与y 轴的交点为A (0,12). 第三步,在方程3x +2y -6=0中,令x =0,得y =3,从而得到l 2与y 轴的交点为B (0,3). 第四步,求出△ABP 的边长AB =12-3=9.第五步,求出△ABP 的边AB 上的高h =2.第六步,根据三角形的面积公式计算S =12·AB ·h =12×9×2=9.第七步,输出S.。

2017-2018学年高中数学人教B版必修3练习:1-1-3 第二

2017-2018学年高中数学人教B版必修3练习:1-1-3 第二

1.如图所示是一个循环结构的算法,下列说法不.正确的是()
A.①是循环变量初始化,循环就要开始
B.②为循环体
C.③是判断是否继续循环的终止条件
D.①可以省略不写
解析:①是循环变量初始化,是循环正确执行的初始条件,故不可省略不写.答案:D
2.在如图所示的程序框图中,输出S的值为()
A.11B.12
C.13 D.14
解析:根据循环结构可知,S=3+4+5=12.
答案:B
3.按如图所示的程序框图运行后,所得的值为( )
A .5
B .4
C .3
D .2
解析:i 为循环次数,循环3次.
答案:C
4.如图是求1~1000内所有偶数的和的一个程序框图,则空白①处应填__________;②处应填__________.
解析:第一个偶数就是初始值2,∴①处应填“s =s +i ”,②处应是下一个偶数,∴应该填i =i +2.
答案:s =s +i i =i +2
5.下列程序框图输出的结果是________.
解析:s =1×5×4=20.
答案:20
6.画出求1
1×2+1
2×3+1
3×4+…+1
99×100值的程序框图.
解:程序框图如下:。

2017-2018学年高中数学人教B版必修3:课时跟踪检测八

2017-2018学年高中数学人教B版必修3:课时跟踪检测八

课时跟踪检测(八) 中国古代数学中的算法案例1.用更相减损术求459与357的最大公约数,需要做减法的次数为( )A .4B .5C .6D .7解析:选B 459-357=102,357-102=255,255-102=153,153-102=51,102-51=51,所以459与357的最大公约数为51,共做减法5次.2.用秦九韶算法求多项式f (x )=0.5x 5+4x 4-3x 2+x -1, 当x =3时的值时,先算的是( )A .3×3B .0.5×35C .0.5×3+4D .(0.5×3+4)×3解析:选C 把多项式表示成如下形式:f (x )=((((0.5x +4)x +0)x -3)x +1)x -1, 按递推方法,由内往外,先算0.5x +4的值.3.4 830与3 289的最大公约数为( )A .23B .35C .11D .13 解析:选A 4 830=1×3 289+1 541; 3 289=2×1 541+207;1 541=7×207+92;207=2×92+23;92=4×23;∴23是4 830与3 289的最大公约数.4.根据递推公式⎩⎪⎨⎪⎧v 0=a n ,v k =v k -1x +a n -k ,其中k =1,2,…,n ,可得当k =2时,v 2的值为( )A .v 2=a n x +a n -1B .v 2=(a n x +a n -1)x +a n -2C .v 2=(a n x +a n -1)xD .v 2=a n x +a n -1x解析:选B 根据秦九韶算法知v 0=a n ,v 1=a n x +a n -1,v 2=v 1x +a n -2=(a n x +a n -1)x +a n -2.5.用“更相减损之术”求128与48的最大公约数,第一步应为________________. 解析:先求128-48的值,即128-48=80.答案:128-48=806.117与182的最大公约数等于________.解析:(117,182)→(117,65)→(52,65)→(52,13)→(39,13)→(26,13)→(13,13),所以其最大公约数为13.答案:137.阅读程序框图,利用秦九韶算法计算多项式f(x)=a n x n+a n-1x n-1+…+a1x+a0,当x=x0时,框图中A处应填入________.解析:f(x)=a n x n+a n-1x n-1+…+a1x+a0,先用秦九韶算法改为一次多项式,f(x)=(…((a n x+a n-1)x+a n-2)x+…+a1)x+a0.f1=a n;k=1,f2=f1x0+a n-1;k=2,f3=f2x0+a n-2;…;归纳得第k次f k+1=f k x0+a n-k.故A处应填a n-k.答案:a n-k8.用秦九韶算法计算多项式f(x)=x6-12x5+60x4-160x3+240x2-192x+64,当x=2时的值.解:将f(x)改写为f(x)=(((((x-12)x+60)x-160)x+240)x-192)x+64,v0=1,v1=1×2-12=-10,v2=-10×2+60=40,v3=40×2-160=-80,v4=-80×2+240=80,v5=80×2-192=-32,v6=-32×2+64=0.所以f(2)=0,即x=2时,原多项式的值为0.9.现有长度为2.4米和5.6米两种规格的钢筋若干,要焊接一批正方体模型,问怎样设计才能保证正方体的体积最大且不浪费材料?解:为了使所焊接正方体的体积最大,需找出两种规格的钢筋的最大公约数.使用更相减损之术:(5.6,2.4)→(3.2,2.4)→(0.8,2.4)→(0.8,1.6)→(0.8,0.8).因此将正方体的棱长设计为0.8米时,正方体的体积最大且不浪费材料.。

2017-2018学年高中数学必修三_第一章 章末复习课 含答

2017-2018学年高中数学必修三_第一章 章末复习课 含答

章末复习课[整合·网络构建][警示·易错提醒]1.理解算法的关注点.(1)算法是解决某一类问题的一种程序化方法.(2)判断一个问题是否有算法,关键看是否有解决某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步骤之内完成.2.输入语句和赋值语句二者的不同.输入语句可使初始值与程序分开,利用输入语句改变初始数据时,程序不变,而赋值语句是程序的一部分,输入语句可对多个变量赋值,赋值语句只能给一个变量赋值.3.程序设计中的注意点.程序设计中特别注意:条件语句的条件表达和循环语句的循环变量的取值范围.4.辗转相除法与更相减损术的区别.(1)都是求两个正整数最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显.(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0而得到,而更相减损术则以减数与差相等而得到.专题一 算法设计算法设计与一般意义上的解决问题不同,它是对一类问题的一般解法的抽象和概括,算法设计应注意:1.与解决问题的一般方法相联系,从中提炼出算法. 2.将解决问题的过程分为若干个可执行的步骤. 3.引入有关的参数或变量对算法步骤加以表达. 4.用最简练的语言将各个步骤表达出来.[例1] 已知平面直角坐标系中的两点A (-1,0),B (3,2),写出求线段AB 的垂直平分线方程的一个算法.解:第一步,计算x 0=-1+32=1,y 0=0+22=1,得AB 的中点N (1,1).第二步,计算k 1=2-03-(-1)=12,得AB 的斜率.第三步,计算k =-1k 1=-2,得AB 垂直平分线的斜率.第四步,得线段AB 垂直平分线的方程y -y 0=k (x -x 0),即y -1=-2(x -1).归纳升华该算法步骤的设计依据了解析几何中求线段垂直平分线的一般方法.请思考:如果把已知的两点坐标改为A (x 1,y 1),B (x 2,y 2),算法设计将会发生怎样的变化呢?[变式训练] 有一个两底面半径分别为2和4,高为4的圆台,写出求该圆台表面积的算法.解:如图所示,先给r 1,r 2,h 赋值,计算l ,再根据圆台表面积公式S 表=πr 21+πr 22+π(r 1+r 2)l 计算S 表,然后输出结果.第一步,令r 1=2,r 2=4,h =4. 第二步,计算l =(r 2-r 1)2+h 2. 第三步,计算S 表=πr 21+πr 22+π(r 1+r 2)l . 第四步,输出运算结果. 专题二 程序框图及其画法程序框图是用规定的程序框、流程线及文字说明来准确、直观形象地表示算法的图形,画程序框图前,应先对问题设计出合理的算法,然后分析算法的逻辑结构,画出相应的程序框图.在画循环结构的程序框图时应注意选择合理的循环变量及判断框内的条件.[例2] 画出一个计算1×3×5×…×2 017的程序框图.解:法一:当型循环结构程序框图如图(1)所示.法二:直到型循环结构程序框图如图(2)所示.归纳升华在循环结构中,要注意依据条件,设计合理的计数变量、累加(乘)变量等,要特别注意循环结构中条件的表述要恰当、准确,以免出现多一次循环或少一次循环的情况.[变式训练] 以下是某次考试中某班15名同学的数学成绩:72,91,58,63,84,88,90,55,61,73,64,77,82,94,60.要求将80分以上的同学的平均分求出,画出程序框图.解:用条件结构来判断成绩是否高于80分,用循环结构控制输入的次数,同时引进两个累加变量,分别计算高于80分的成绩的总和和人数.程序框图如图所示.专题三程序框图的识别与完善识别程序框图和完善程序框图是高考的重点和热点.解决这类问题:第一,要明确程序框图中的顺序结构、条件结构和循环结构;第二,要识别程序框图的运行,理解框图解决的实际问题;第三,按照题目的要求完成解答.另外框图的考查常与函数和数列等结合.[例3] (2015·课标全国Ⅱ卷)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=( )A.0 B.2 C.4 D.14解析:逐次运行程序,直至程序结束得出a值.a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a =6-4=2; 第五次循环:2≠4且2<4,b =4-2=2; 第六次循环:a =b =2,跳出循环,输出a =2. 答案:B归纳升华解决程序框图问题时,首先,要明确程序框图的结构形式;其次,要理解程序框图与哪一部分知识相结合(如函数、不等式)进行考查;最后,根据问题的实施解答并验证.[变式训练] 执行如图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A .s >12B .s >35C .s >710D .s >45解析:程序框图的执行过程如下:s =1,k =9;s =910,k =8;s =910×89=810,k =7;s =810×78=710,k =6,循环结束.故可填入的条件为s >710.答案: C专题四 分类讨论思想在解答某些数学问题时,有时会有多种情况,对各种情况加以分类,并逐类求解,然后综合得出结论,这就是分类讨论思想.分类讨论思想在算法中有着广泛的应用.例如,算法的基本逻辑结构中有一种“条件结构”,与之相应的算法语句是“条件语句”.在条件结构中就隐含着分类讨论的思想.[例4] 画出求解方程ax +b =0的程序框图(要考虑所有可能的情况).解:如图所示.归纳升华求解方程的根时,需要针对a ,b 的取值情况进行讨论,因而在程序框图中需要引入判断框,然后根据题目要求确定判断框的个数.[变式训练] 执行如图所示的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( )A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]解析:由框图知s 是关于t 的分段函数s =⎩⎪⎨⎪⎧3t ,-1≤t <1,4t -t 2,1≤t ≤3,当t ∈[-1,1)时,s ∈[-3,3); 当t ∈[1,3]时,s =4t -t 2=4-(t -2)2∈[3,4], 故s ∈[-3,4]. 答案:A。

2017_2018学年高中数学课时作业1第一章算法初步1.1.1算法的概念新人教A版必修320180

课时作业1算法的概念|基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.下列语句表达中有算法的是() ①从郑州去纽约,可以先乘火车到北京,再坐飞机抵达;3②利用公式S=a2计算边长为4的正三角形的面积;4③2x>3(x-1)+5;④求经过M(-1,3)且与直线2x+y-3=0平行的直线,可以直接设直线方程为2x+y+c =0,将M(-1,3)坐标代入方程求出c值,再写出方程.A.①②③B.①③④ C.①②④D.②③④解析:判断算法的标准是“解决问题的有效步骤或程序”,解决的问题不仅仅限于数学问题,①②④都表达了一种算法;对③只是一个纯数学问题,没有解决问题的步骤,不属于算法范畴.故选C.答案:C2.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c =a2+b2;②输入两直角边长a,b的值;③输出斜边长c的值.其中正确的顺序为()A.①②③B.②③①C.①③②D.②①③解析:按照解决这类问题的步骤,应该先输入两直角边长.再由勾股定理求出斜边长,输出斜边长.答案:D3.下列说法中,叙述不正确的是()A.算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤B.算法可以看成按要求设计好的、有限的、明确的计算序列,并且这样的步骤或序列能够解决一类问题C.算法只是在计算机产生之后才有的D.描述算法有不同的方式,可以用日常语言和数学语言等解析:计算机只是执行算法的工具之一,生活中有些问题还是非计算机能解决的.答案:C4.对于解方程x2-5x+6=0的下列步骤:①设f(x)=x2-5x+6;②计算判别式Δ=(-5)2-4×1×6=1>0;③作f(x)的图象;-b±Δ④将a=1,b=-5,c=6代入求根公式x=,得x1=2,x2=3.2a其中可作为解方程的算法的有效步骤为()A.①②B.②③C.②④D.③④解析:解一元二次方程可分为两步:确定判别式和代入求根公式,故②④是有效的,①③不起作用.故选C.答案:C5.(温州高一期中)阅读下面的算法:第一步,输入两个实数a,b.第二步:若a<b,则交换a,b的值,否则执行第三步.1第三步,输出a.这个算法输出的是()A.a,b中的较大数B.a,b中的较小数C.原来的a的值D.原来的b的值解析:第二步中,若a<b,则交换a,b的值,那么a是a,b中的较大数;否则a<b不成立,即a≥b,那么a也是a,b中的较大数.故选A.答案:A二、填空题(每小题5分,共15分)6.一个算法步骤如下:第一步,S取0,i取1.第二步,如果i≤10,则执行第三步;否则,执行第六步.第三步,计算S+i并将结果代替S. 第四步,用i+2的值代替i. 第五步,执行第二步.第六步,输出S. 运行以上步骤输出的结果为S=________.解析:由以上算法可知S=1+3+5+7+9=25.答案:257.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅、盛水2分钟;②洗菜6 分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条和菜共3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用________分钟.解析:①洗锅、盛水2分钟+④用锅把水烧开10分钟(同时②洗菜6分钟+③准备面条及佐科2分钟)+⑤煮面条和菜共3分钟=15分钟.解决一个问题的算法不是唯一的,但在设计时要综合考虑各个方面的因素,选择一种较好的算法.答案:158.求1×3×5×7×9×11的值的一个算法:第一步,求1×3得到结果3;第二步,将第一步所得结果3乘以5,得到结果15;第三步,______________________________________________;第四步,再将第三步所得结果105乘以9,得到结果945;第五步,再将第四步所得结果945乘以11,得到结果10 395,即为最后结果.解析:根据算法步骤,下一步应是将上一步的结果15乘以7,得到结果105.答案:再将第二步所得结果15乘以7,得到结果105 三、解答题(每小题10分,共20分)9.写出求过两点M(-2,-1),N(2,3)的直线与坐标轴围成的图形的面积的一个算法.解析:第一步,取x1=-2,y1=-1,x2=2,y2=3.y-y1 x-x1第二步,计算=.y2-y1 x2-x1第三步,在第二步结果中令x=0得到y的值m,得直线与y轴交点(0,m).第四步,在第二步结果中令y=0得到x的值n,得直线与x轴交点(n,0).1 第五步,计算S=|m|·|n|.2 第六步,输出运算结果.10.设计一个算法,求解方程组Error!解析:用加减消元法解方程组其算法步骤是第一步,①+②得2x-y=14④ 第二步,②-③得x-y=9⑤第三步,④-⑤得x=5 第四步,将x=5代入⑤得y=-42第五步,将x=4,y=-4代入①得,z=11第六步,得到方程组的解为Error!.|能力提升|(20分钟,40分)11.如图,汉诺塔问题是指有3根杆子A,B,C,杆上有若干碟子,把所有的碟子从B杆移到A杆上,每次只能移动一个碟子,大的碟子不能叠在小的碟子上面,把B杆上的3个碟子全部移动到A杆上,则最少需要移动的次数是()A.12 B.9C.6 D.7解析:由上至下三个碟子用a,b,c表示,移动过程如下:a→A,b→C,a→C,c→A,a→B,b→A,a→A,共移动7次.答案:D12.已知一个算法如下:第一步,令m=a. 第二步,如果b<m,则m=b.第三步,如果c<m,则m=c.第四步,输出m.如果a=3,b=6,c=2,则执行这个算法的结果是________.解析:这个算法是求三个数a,b,c中的最小值.答案:213.已知一个等边三角形的周长为a,求这个三角形的面积.设计一个算法解决这个问题.解析:算法步骤如下:第一步,输入a的值.a 第二步,计算l=的值.33 第三步,计算S=×l2的值.4 第四步,输出S的值.14.给出解方程ax2+bx+c=0(a,b,c为实数)的一个算法.解析:算法步骤如下:第一步,当a=0,b=0,c=0时,解集为全体实数;第二步,当a=0,b=0,c≠0时,原方程无实数解;c第三步,当a=0,b≠0时,原方程的解为x=-;b第四步,当a≠0且b2-4ac>0时,方程有两个不等实根-b+b2-4ac-b-b2-4acx1=,x2=;2a2ab第五步,当a≠0且b2-4ac=0时,方程有两个相等实根x1=x2=-;2a第六步,当a≠0且b2-4ac<0时,方程无实根.3。

2017-2018学年高中数学必修3:课时跟踪检测二 顺序结

课时跟踪检测(二) 顺序结构[层级一 学业水平达标]1.下列几个选项中,不是流程图的符号的是________.(填序号)答案:(2)(3)(4)2.如图表示的算法结构是________. 答案:顺序结构3.要解决下面的四个问题,只用顺序结构画不 出其流程图的是________.①当n =10时,利用公式1+2+3+…+n =n (n +1)2,计算1+2+3+…+10; ②当圆的面积已知时,求圆的半径;③给定一个数x ,求函数f (x )=⎩⎪⎨⎪⎧1,x >0,-1,x ≤0的值;④当x =5时,求函数f (x )=x 2-3x -5的函数值. 答案:③4.阅读下列流程图:若输出结果为15,则①处的执行框内应填的是________.解析:先确定①处的执行框是给x 赋值,然后倒着推,b =15时,2a -3=15,a =9,当a =9时,2x +1=9,x =3.答案:x ←35.某学生五门功课成绩为80,95,78,87,65.写出平均成绩的算法,画出流程图.解:算法如下:S1S←80;S2S←S+95;S3S←S+78;S4S←S+87;S5S←S+65;S6A←S/5;S7输出A.流程图:[层级二应试能力达标]1.如图所示的流程图解决的数学问题是________.答案:计算半径为2的圆的面积2.阅读如图所示流程图,其输出的结果是________.答案:43.下面四个流程图中不是顺序结构的是________.答案:(3)4.如图所示的流程图最终输出的结果是________.解析:由题意y=(22-1)2-1=8.答案:85.下列流程图表示的算法最后运行的结果为________.解析:无论a ,b 输入什么数值,程序执行到第二、三步重新对a ,b 进行赋值,a =4,b =2,所以T =8.答案:86.如图所示的流程图的输出结果是________.解析:执行过程为x =1,y =2,z =3, x =y =2,y =x =2,z =y =2. 答案:27.如图是解方程组⎩⎪⎨⎪⎧2x -y =1 ①4x +3y =7 ②的一个流程图,则对应的算法为:S1 _________________________________________________________; S2 _________________________________________________________; S3 _________________________________________________________. 答案:将方程②中x 的系数除以方程①中x 的系数得商数m =4÷2=2方程②减去m 乘以方程①的积消去方程②中的x 得到⎩⎪⎨⎪⎧2x -y =1,5y =5将上面的方程组自下而上回代求解得到y =1,x =18.要求底面边长为4,侧棱长为5的正四棱锥的侧面积及体积.甲、乙二同学分别设计了一个算法并画出了相应的流程图如下,其中正确的是________.9.如图所示是一个流程图,根据该图和下列各小题的条件回答问题.(1)该流程图解决的是一个什么问题?(2)若输入的a值为0和4时,输出的值相等,则当输入的a的值为3时,输出的值为多少?(3)在(2)的条件下,要想使输出的值最大,输入的a值应为多大?解:(1)该流程图解决的是求二次函数f(x)=-x2+mx的函数值的问题.(2)若输入的a值为0和4时,输出的值相等,即f(0)=f(4).∵f(0)=0,f(4)=-16+4m,∴-16+4m=0.∴m=4,∴f(x)=-x2+4x.∵f(3)=-32+4×3=3,∴当输入的a的值为3时,输出的值为3.(3)∵f (x )=-x 2+4x =-(x -2)2+4,当x =2时,f (x )max =4,∴要想使输出的值最大,输入的a 的值应为2.10.阅读下列两个求三角形面积的流程图,回答问题.(1)图①的流程图输出结果S 是多少?图②中若输入a =4,h =3,输出的结果是多少? (2)对比一下两个流程图,你有什么发现?解:(1)图①运行后,S =12×4×3=6,故图①输出结果为6.图②当a =4,h =3时输出的结果也为6.(2)通过对比,图①只能求底边长为4、高为3的三角形的面积.图②由于底边长和高要求输入,故可求任意三角形的面积.可见一个好的算法,不仅可以解决某个问题,更可以解决某一类问题,也就是说,设计算法时,我们应尽量“优化”.。

高中数学课时跟踪检测一算法的概念新人教A版必修3

高中数学课时跟踪检测一算法的概念新人教A版必修3[层级一学业水平达标]1.下列关于算法的说法中正确的个数有( )①求解某一类问题的算法是唯一的;②算法必须在有限步骤操作之后停止;③x2-x>2是一个算法;④算法执行后一定产生确定的结果.A.1 B.2C.3 D.4解析:选B 依据算法的多样性(不唯一性)知①错误;由算法的有限性,确定性知②④正确;因为x2-x>2仅仅是一个数学问题,不能表达一个算法,所以③是错误的;由于算法具有可执行性,正确的有②④. 2.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:( )①计算c=;②输入直角三角形两直角边长a,b的值;③输出斜边长c的值.其中正确的顺序是( )A.①②③B.②③①C.①③②D.②①③解析:选D 明确各步骤间的关系即可知D选项正确.3.下列叙述中,①植树需要运苗、挖坑、栽苗、浇水这些步骤;②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…99+1=100;③从青岛乘火车到济南,再从济南乘飞机到广州;④3x >x +1;⑤求所有能被3整除的正数,即3,6,9,12,….能称为算法的个数为( )A .2B .3C .4D .5解析:选B 根据算法的含义和特征知:①②③都是算法;④⑤不是算法.其中④,3x >x +1不是一个明确的步骤,不符合确定性;⑤的步骤是无穷的,与算法的有限性矛盾.4.下列所给问题中,不能设计一个算法求解的是( )A .用“二分法”求方程x2-3=0的近似解(精确度0.01)B .解方程组⎩⎪⎨⎪⎧ x +y +5=0,x -y +3=0C .求半径为2的球的体积D .求S =1+2+3+…的值解析:选D 对于D ,S =1+2+3+…,不知道需要多少步完成,所以不能设计一个算法求解.[层级二 应试能力达标]1.一个厂家生产商品的数量按照每年比前一年都增加18%的比率递增,若第一年的产量为a ,“计算第n 年的产量”的算法中用到的一个函数解析式是( )A .y =an0.18B .y =a(1+18%)nC .y =a(1+18%)n -1D .y =n(1+18%)n解析:选C 根据已知条件可以得出满足题意的函数解析式为y=a(1+18%)n -1.2.如下算法:。

2017-2018学年高中数学人教A版3教学案:第一章1.11.1.1算法的概念含解析

1.1.1算法的概念预习课本P2~5,思考并完成以下问题(1)利用加减消元法求解一般的二元一次方程组的步骤有哪些?(2)在数学中算法是如何定义的?(3)算法的特征是什么?(4)解决一类问题的算法是唯一的吗?是不是任何一个算法都有明确的结果?错误!1.算法的概念在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.2.算法的特征(1)确定性:算法中每一步都是确定的,并且能有效地执行且得到确定的结果.(2)有限性:一个算法的步骤是有限的,不能无限地进行下去,它能在有限步的操作后解决问题.(3)有序性:算法从初始步骤开始,分为若干明确的步骤,每个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步.(4)不唯一性:解决一个问题可以有多种不同的算法.(5)普遍性:给出一个算法的程序步骤,它可以解决一类问题,并且能够多次重复使用.[小试身手]1.判断下列命题是否正确.(正确的打“√",错误的打“×")(1)求解一类问题的算法是唯一的()(2)算法必须在有限步骤操作之后解决问题( )(3)算法执行后一定产生确定的结果()解析:由算法具有有限性、确定性和不唯一性可知(1)错,(2)、(3)对.答案:(1)×(2)√(3)√2.下列叙述不能称为算法的是( )A.从北京到上海先乘汽车到飞机场,再乘飞机到上海B.解方程4x+1=0的过程是先移项再把x的系数化成1C.利用公式S=πr2计算半径为2的圆的面积得π×22D.解方程x2-2x+1=0解析:选D 选项A,B给出了解决问题的方法和步骤,是算法;选项C是利用公式计算,也属于算法;选项D只提出问题没有给出解决的方法,不是算法.3.下面是某人出家门先打车去火车站,再坐火车去北京的一个算法,请补充完整.第一步,出家门.第二步,________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪检测(一) 算法的概念
1.下列对算法的理解不正确的是( )
A.算法只能用自然语言来描述
B.算法可以用图形方式来描述
C.算法一般是“机械的”,有时要进行大量重复的计算,它的优点是可以解决一类问

D.设计算法要本着简单、方便、可操作的原则
解析:选A 由算法的概念和描述方式知,A不正确.

2.对于一般的二元一次方程组 a1x+b1y=c1,a2x+b2y=c2,在写解此方程组的算法时需要我们注
意的是( )
A.a1≠0 B.a2≠0
C.a1b2-a2b1≠0 D.a1b1-a2b2≠0
解析:选C 应用高斯消去法解方程组其实质是利用加减消元法.首先要将两方程y
的系数化为相同即b1b2,此时x的系数分别为a1b2和a2b1两式相减得(a1b2-a2b1)x=c1b2-
c2b1,要得出x的值,则需注意a1b2-a2b1≠0.
3.阅读下面的算法:
S1 输入两个实数a,b.
S2 若a<b,则交换a,b的值,否则执行第三步.
S3 输出a.
这个算法输出的是( )
A.a,b中的较大数 B.a,b中的较小数
C.原来的a的值 D.原来的b的值
解析:选A 第二步中,若a<b,则交换a,b的值,那么a是a,b中的较大数;若
a<b不成立,即a≥b,那么a也是a,b中的较大数.
4.对于算法:
S1 输入n.
S2 判断n是否等于2,若n=2,则n满足条件;若n>2,则执行S3.
S3 依次从2到(n-1)检验能不能整除n,若不能整除n,则执行S4;若能整除n,则
执行S1.
S4 输出n.
满足条件的n是( )
A.质数 B.奇数
C.偶数 D.约数
解析:选A 从题目的条件可以看出,输出的n没有约数,因此是质数.
5.给出算法步骤如下:
S1 输入x的值;
S2 当x<0时,计算y=x+1,否则执行S3;
S3 计算y=-x2;
S4 输出y.
当输入x的值为-2,3时,输出y的结果分别是______.

解析:由算法步骤可知,其算法功能是已知函数y= x+1,x<0,-x2,x≥0,当输入x的值时,
求对应的y值.因为-2<0,所以对应函数解析式为y=x+1,因此y=-2+1=-1;当x
=3时,则对应函数解析式为y=-x2,因此y=-32=-9.
答案:-1,-9
6.使用配方法解方程x2-4x+3=0的算法的步骤是________(填序号).
①配方得(x-2)2=1;
②移项得x2-4x=-3;
③解得x=1或x=3;
④开方得x-2=±1.
解析:使用配方法的步骤应按移项、配方、开方、得解的顺序进行.
答案:②①④③
7.已知直角三角形两条直角边长分别为a,b(a>b),写出求两直角边所对的最大角θ
的余弦值的算法如下:
S1 输入两直角边长a,b的值;
S2 计算c=a2+b2的值;
S3 ________________________;
S4 输出cos θ.
将算法补充完整,横线处应填________________.

解析:根据题意知,直角三角形两直角边a,b(a>b)所对最大角θ的余弦值为bc,所以

应填“计算cos θ=bc的值”.
答案:计算cos θ=bc的值
8.某居民区的物业部门每月向居民收取卫生费,计费方法是:3人或3人以下的住户,
每户收取5元;超过3人的住户,每超出1人加收1.2元.设计一个算法,根据输入的人数,
计算应收取的卫生费.
解:设某户有x人,根据题意,应收取的卫生费y是x的分段函数,即y=





5, x≤3,
1.2x+1.4,x>3.

算法如下:
S1 输入人数x.
S2 如果x≤3,则y=5;如果x>3,则y=1.2x+1.4.
S3 输出应收卫生费y.

9.已知直线l1:3x-y+12=0和直线l2:3x+2y-6=0,求直线l1与l2及y轴所围成
的三角形面积,写出解决本题的一个算法.

解:S1 解方程组 3x-y+12=0,3x+2y-6=0,得直线l1,l2的交点P(-2,6).
S2 在方程3x-y+12=0中令x=0,得y=12,从而得到A(0,12).
S3 在方程3x+2y-6=0中令x=0,得y=3,得到B(0,3);
S4 求出△ABP的底边长|AB|=12-3=9;
S5 求出△ABP的底边AB上的高h=2;
S6 根据三角形的面积公式计算

S=12|AB|·h=12×9×2=9.

相关文档
最新文档