matlab 维纳滤波代码
数字图像处理及matlab实现源代码【1】

% *-*--*-*-*-*-*-*-*-*-*-*-*图像处理*-*-*-*-*-*-*-*-*-*-*-*%{% (一)图像文件的读/写A=imread('drum.jpg'); % 读入图像imshow(A); % 显示图像imwrite(A,'drum.jpg');info=imfinfo('drum.jpg') % 查询图像文件信息% 用colorbar函数将颜色条添加到坐标轴对象中RGB=imread('drum.jpg');I=rgb2gray(RGB); % 把RGB图像转换成灰度图像h=[1 2 1;0 0 0;-1 -2 -1];I2=filter2(h,I);imshow(I2,[]);colorbar('vert') % 将颜色条添加到坐标轴对象中% wrap函数将图像作为纹理进行映射A=imread('4.jpg');imshow(A);I=rgb2gray(RGB);[x,y,z]=sphere;warp(x,y,z,I); % 用warp函数将图像作为纹理进行映射%}% subimage函数实现一个图形窗口中显示多幅图像RGB=imread('drum.jpg');I=rgb2gray(RGB);subplot(1,2,1);subimage(RGB); % subimage函数实现一个图形窗口中显示多幅图像subplot(1,2,2),subimage(I);% *-*--*-*-*-*-*-*-*-*-*-*-*图像处理*-*-*-*-*-*-*-*-*-*-*-*% (二)图像处理的基本操作% ----------------图像代数运算------------------%{% imadd函数实现两幅图像的相加或给一幅图像加上一个常数% 给图像每个像素都增加亮度I=imread('4.jpg');J=imadd(I,100); % 给图像增加亮度subplot(1,2,1),imshow(I);title('原图');subplot(1,2,2),imshow(J);title('增加亮度图');%% imsubtract函数实现将一幅图像从另一个图像中减去或减去一个常数I=imread('drum.jpg');J=imsubtract(I,100); % 给图像减去亮度subplot(1,2,1),imshow(I);%% immultiply实现两幅图像的相乘或者一幅图像的亮度缩放I=imread('drum.jpg');J=immultiply(I,2); % 进行亮度缩放subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(J);%% imdivide函数实现两幅图像的除法或一幅图像的亮度缩放I=imread('4.jpg');J=imdivide(I,0.5); % 图像的亮度缩放subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(J);%}% ----------------图像的空间域操作------------------%{% imresize函数实现图像的缩放J=imread('4.jpg');subplot(1,2,1),imshow(J);title('原图');X1=imresize(J,0.2); % 对图像进行缩放subplot(1,2,2),imshow(X1);title('缩放图');%% imrotate函数实现图像的旋转I=imread('drum.jpg');J=imrotate(I,50,'bilinear'); % 对图像进行旋转subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(J);%% imcrop函数实现图像的剪切I=imread('drum.jpg');I2=imcrop(I,[1 100 130 112]); % 对图像进行剪切subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(I2);%}% ----------------特定区域处理------------------%{% roipoly函数用于选择图像中的多边形区域I=imread('4.jpg');c=[200 250 278 248 199 172];r=[21 21 75 121 121 75];BW=roipoly(I,c,r); % roipoly函数选择图像中的多边形区域subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(BW);%% roicolor函数式对RGB图像和灰度图像实现按灰度或亮度值选择区域进行处理a=imread('4.jpg');subplot(2,2,1),imshow(a);I=rgb2gray(a);BW=roicolor(I,128,225); % 按灰度值选择的区域subplot(2,2,4),imshow(BW);%% ploy2mask 函数转化指定的多边形区域为二值掩模x=[63 186 54 190 63];y=[60 60 209 204 601];bw=poly2mask(x,y,256,256); % 转化指定的多边形区域为二值掩模imshow(bw);hold onplot(x,y,'r','LineWidth',2);hold off%% roifilt2函数实现区域滤波a=imread('4.jpg');I=rgb2gray(a);c=[200 250 278 248 199 172];r=[21 21 75 121 121 75];BW=roipoly(I,c,r); % roipoly函数选择图像中的多边形区域h=fspecial('unsharp');J=roifilt2(h,I,BW); % 区域滤波subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(J);%% roifill函数实现对特定区域进行填充a=imread('4.jpg');I=rgb2gray(a);c=[200 250 278 248 199 172];r=[21 21 75 121 121 75];J=roifill(I,c,r); % 对特定区域进行填充subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(J);%}% ----------------图像变换------------------%{% fft2 和ifft2函数分别是计算二维的快速傅里叶变换和反变换f=zeros(100,100);subplot(1,2,1);imshow(f);f(20:70,40:60)=1;subplot(1,2,2);imshow(f);F=fft2(f); % 计算二维的快速傅里叶变换F2=log(abs(F));% 对幅值对对数figure;subplot(1,2,1),imshow(F),colorbar;subplot(1,2,2),imshow(F2),colorbar;%% fftsshift 函数实现了补零操作和改变图像显示象限f=zeros(100,100);subplot(2,2,1),imshow(f);title('f')f(10:70,40:60)=1;subplot(2,2,2),imshow(f);title('f取后')F=fft2(f,256,256);subplot(2,2,3),imshow(F);title('F')F2=fftshift(F); % 实现补零操作subplot(2,2,4),imshow(F2);title('F2')figure,imshow(log(abs(F2)));title('log(|F2|)')%% dct2 函数采用基于快速傅里叶变换的算法,用于实现较大输入矩阵的离散余弦变换% idct2 函数实现图像的二维逆离散余弦变换RGB=imread('drum.jpg');I=rgb2gray(RGB);J=dct2(I); % 对I进行离散余弦变换imshow(log(abs(J))),title('对原图离散后取对数'),colorbar;J(abs(J)<10)=0;K=idct2(J); % 图像的二维逆离散余弦变换figure,imshow(I),title('原灰度图')figure,imshow(K,[0,255]);title('逆离散变换');%% dctmtx 函数用于实现较小输入矩阵的离散余弦变figure;RGB=imread('4.jpg');I=rgb2gray(RGB);subplot(3,2,1),imshow(I),title('原灰度图');I=im2double(I);subplot(3,2,2),imshow(I),title('取双精度后');T=dctmtx(8); % 离散余弦变换subplot(3,2,3),imshow(I),title('离散余弦变换后');B=blkproc(I,[8,8],'P1*x*P2',T,T');subplot(3,2,4),imshow(B),title('blkproc作用I后的B');mask=[ 1 1 1 1 0 0 0 01 1 1 0 0 0 0 01 1 0 0 0 0 0 01 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0 ];B2=blkproc(B,[8,8],'P1.*x',mask);subplot(3,2,5),imshow(B2),title('blkproc作用B后的B2');I2=blkproc(B2,[8,8],'P1*x*P2',T',T);subplot(3,2,6),imshow(I2),title('blkproc作用B2后的I2');%% edge函数用于提取图像的边缘RGB=imread('4.jpg');I=rgb2gray(RGB);BW=edge(I);imshow(I);figure,imshow(BW);%% radon 函数用来计算指定方向上图像矩阵的投影RGB=imread('4.jpg');I=rgb2gray(RGB);BW=edge(I);theta=0:179;[R,XP]=radon(BW,theta); % 图像矩阵的投影figure,imagesc(theta,XP,R);colormap(hot);xlabel('\theta(degrees)');ylabel('x\prime');title('R_{\theta}(x\prime)');colorbar;%}% ----------------图像增强、分割和编码------------------%{% imhist 函数产生图像的直方图A=imread('4.jpg');B=rgb2gray(A);subplot(2,1,1),imshow(B);subplot(2,1,2),imhist(B);%% histeq 函数用于对图像的直方图均衡化A=imread('4.jpg');B=rgb2gray(A);subplot(2,1,1),imshow(B);subplot(2,1,2),imhist(B);C=histeq(B); % 对图像B进行均衡化figure;subplot(2,1,1),imshow(C);subplot(2,1,2),imhist(C);%% filter2 函数实现均值滤波a=imread('4.jpg');I=rgb2gray(a);subplot(2,2,1),imshow(I);K1=filter2(fspecial('average',3),I)/255; % 3*3的均值滤波K2=filter2(fspecial('average',5),I)/255; % 5*5的均值滤波K3=filter2(fspecial('average',7),I)/255; % 7*7的均值滤波subplot(2,2,2),imshow(K1);subplot(2,2,3),imshow(K2);subplot(2,2,4),imshow(K3);%% wiener2 函数实现Wiener(维纳)滤波a=imread('4.jpg');I=rgb2gray(a);subplot(2,2,1),imshow(I);K1=wiener2(I,[3,3]); % 3*3 wiener滤波K2=wiener2(I,[5,5]); % 5*5 wiener滤波K3=wiener2(I,[7,7]); % 7*7 wiener滤波subplot(2,2,2),imshow(K1);subplot(2,2,3),imshow(K2);subplot(2,2,4),imshow(K3);%% medfilt2 函数实现中值滤波a=imread('4.jpg');I=rgb2gray(a);subplot(2,2,1),imshow(I);K1=medfilt2(I,[3,3]); % 3*3 中值滤波K2=medfilt2(I,[5,5]); % 5*5 中值滤波K3=medfilt2(I,[7,7]); % 7*7 中值滤波subplot(2,2,2),imshow(K1);subplot(2,2,3),imshow(K2);subplot(2,2,4),imshow(K3);%}% ----------------图像模糊及复原------------------%{% deconvwnr 函数:使用维纳滤波器I=imread('qier.jpg');imshow(I);% 对图像进行模糊处理LEN=31;THETA=11;PSF1=fspecial('motion',LEN,THETA); % 运动模糊PSF2=fspecial('gaussian',10,5); % 高斯模糊Blurred1=imfilter(I,PSF1,'circular','conv'); % 得到运动模糊图像Blurred2=imfilter(I,PSF2,'conv'); % 得到高斯噪声模糊图像figure;subplot(1,2,1);imshow(Blurred1);title('Blurred1--"motion"'); subplot(1,2,2);imshow(Blurred2);title('Blurred2--"gaussian"');% 对模糊图像加噪声V=0.002;BlurredNoisy1=imnoise(Blurred1,'gaussian',0,V); % 加高斯噪声BlurredNoisy2=imnoise(Blurred2,'gaussian',0,V); % 加高斯噪声figure;subplot(1,2,1);imshow(BlurredNoisy1);title('BlurredNoisy1'); subplot(1,2,2);imshow(BlurredNoisy2);title('BlurredNoisy2');% 进行维纳滤波wnr1=deconvwnr(Blurred1,PSF1); % 维纳滤波wnr2=deconvwnr(Blurred2,PSF2); % 维纳滤波figure;subplot(1,2,1);imshow(wnr1);title('Restored1,True PSF'); subplot(1,2,2);imshow(wnr2);title('Restored2,True PSF');%% deconvreg函数:使用约束最小二乘滤波器I=imread('qier.jpg');imshow(I);% 对图像进行模糊处理LEN=31;THETA=11;PSF1=fspecial('motion',LEN,THETA); % 运动模糊PSF2=fspecial('gaussian',10,5); % 高斯模糊Blurred1=imfilter(I,PSF1,'circular','conv'); % 得到运动模糊图像Blurred2=imfilter(I,PSF2,'conv'); % 得到高斯噪声模糊图像figure;subplot(1,2,1);imshow(Blurred1);title('Blurred1--"motion"');subplot(1,2,2);imshow(Blurred2);title('Blurred2--"gaussian"');% 对模糊图像加噪声V=0.002;BlurredNoisy1=imnoise(Blurred1,'gaussian',0,V); % 加高斯噪声BlurredNoisy2=imnoise(Blurred2,'gaussian',0,V); % 加高斯噪声figure;subplot(1,2,1);imshow(BlurredNoisy1);title('BlurredNoisy1');subplot(1,2,2);imshow(BlurredNoisy2);title('BlurredNoisy2');NP=V*prod(size(I));reg1=deconvreg(BlurredNoisy1,PSF1,NP); % 约束最小二乘滤波reg2=deconvreg(BlurredNoisy2,PSF2,NP); % 约束最小二乘滤波figure;subplot(1,2,1);imshow(reg1);title('Restored1 with NP');subplot(1,2,2);imshow(reg2);title('Restored2 with NP');%% deconvlucy函数:使用Lucy-Richardson滤波器I=imread('qier.jpg');imshow(I);% 对图像进行模糊处理LEN=31;THETA=11;PSF1=fspecial('motion',LEN,THETA); % 运动模糊PSF2=fspecial('gaussian',10,5); % 高斯模糊Blurred1=imfilter(I,PSF1,'circular','conv'); % 得到运动模糊图像Blurred2=imfilter(I,PSF2,'conv'); % 得到高斯噪声模糊图像figure;subplot(1,2,1);imshow(Blurred1);title('Blurred1--"motion"');subplot(1,2,2);imshow(Blurred2);title('Blurred2--"gaussian"');% 对模糊图像加噪声V=0.002;BlurredNoisy1=imnoise(Blurred1,'gaussian',0,V); % 加高斯噪声BlurredNoisy2=imnoise(Blurred2,'gaussian',0,V); % 加高斯噪声figure;subplot(1,2,1);imshow(BlurredNoisy1);title('BlurredNoisy1');subplot(1,2,2);imshow(BlurredNoisy2);title('BlurredNoisy2');luc1=deconvlucy(BlurredNoisy1,PSF1,5); % 使用Lucy-Richardson滤波luc2=deconvlucy(BlurredNoisy1,PSF1,15); % 使用Lucy-Richardson滤波figure;subplot(1,2,1);imshow(luc1);title('Restored Image,NUMIT=5'); subplot(1,2,2);imshow(luc2);title('Restored Image,NUMIT=15');%}% deconvblind 函数:使用盲卷积算法a=imread('4.jpg');I=rgb2gray(a);figure;imshow(I);title('Original Image');PSF=fspecial('motion',13,45); % 运动模糊figure;imshow(PSF);Blurred=imfilter(I,PSF,'circ','conv'); % 得到运动模糊图像figure;imshow(Blurred);title('Blurred Image');INITPSF=ones(size(PSF));[J,P]=deconvblind(Blurred,INITPSF,30); % 使用盲卷积figure;imshow(J);figure;imshow(P,[],'notruesize');% *-*--*-*-*-*-*-*-*-*-*-*-*图像处理*-*-*-*-*-*-*-*-*-*-*-* %{% 对图像进行减采样a=imread('lena.jpg');%subplot(1,4,1);figure;imshow(a);title('原图');b=rgb2gray(a);%subplot(1,4,2);figure;imshow(b);title('原图的灰度图');[wid,hei]=size(b);%---4倍减采样----quartimg=zeros(wid/2+1,hei/2+1);i1=1;j1=1;for i=1:2:widfor j=1:2:heiquartimg(i1,j1)=b(i,j);j1=j1+1;endi1=i1+1;j1=1;end%subplot(1,4,3);figure;imshow(uint8(quartimg));title('4倍减采样')% ---16倍减采样---quanrtimg=zeros(wid/4+1,hei/4+1);i1=1;j1=1;for i=1:4:widfor j=1:4:heiquanrtimg(i1,j1)=b(i,j);j1=j1+1;endi1=i1+1;j1=1;end%subplot(1,4,4);.figure;imshow(uint8(quanrtimg));title('16倍减采样');%}% 图像类型% 将图像转换为256级灰度图像,64级灰度图像,32级灰度图像,8级灰度图像,2级灰度图像a=imread('4.jpg');%figure;subplot(2,3,1);imshow(a);title('原图');b=rgb2gray(a); % 这是256灰度级的图像%figure;subplot(2,3,2);imshow(b);title('原图的灰度图像');[wid,hei]=size(b);img64=zeros(wid,hei);img32=zeros(wid,hei);img8=zeros(wid,hei);img2=zeros(wid,hei);for i=1:widfor j=j:heiimg64(i,j)=floor(b(i,j)/4); % 转化为64灰度级endend%figure;subplot(2,3,3);imshow(uint8(img64),[0,63]);title('64级灰度图像');for i=1:widfor j=1:heiimg32(i,j)=floor(b(i,j)/8);% 转化为32灰度级endend%figure;subplot(2,3,4);imshow(uint8(img32),[0,31]);title('32级灰度图像');for i=1:widfor j=1:heiimg8(i,j)=floor(b(i,j)/32);% 转化为8灰度级endend%figure;subplot(2,3,5);imshow(uint8(img8),[0,7]);title('8级灰度图像');for i=1:widfor j=1:heiimg2(i,j)=floor(b(i,j)/128);% 转化为2灰度级endend%figure;subplot(2,3,6);imshow(uint8(img2),[0,1]);title('2级灰度图像');% *-*--*-*-*-*-*-*-*-*-*-*-*图像处理*-*-*-*-*-*-*-*-*-*-*-* %{% ------------------ 图像的点运算------------------I=imread('lena.jpg');figure;subplot(1,3,1);imshow(I);title('原图的灰度图');J=imadjust(I,[0.3;0.6],[0.1;0.9]); % 设置灰度变换的范围subplot(1,3,2);imshow(J);title('线性扩展');I1=double(I); % 将图像转换为double类型I2=I1/255; % 归一化此图像C=2; % 非线性扩展函数的参数K=C*log(1+I2); % 对图像的对数变换subplot(1,3,3);imshow(K);title('非线性扩展');M=255-I;figure;subplot(1,3,1);imshow(M);title('灰度倒置');N1=im2bw(I,0.4); % 将此图像二值化,阈值为0.4N2=im2bw(I,0.7); % 将此图像二值化,阈值为0.7 subplot(1,3,2);imshow(N1);title('二值化阈值0.4');subplot(1,3,3);imshow(N2);title('二值化阈值0.7');%}%{% ------------------ 图像的代数运算------------------% 将两幅图像进行加法运算I=imread('lena.jpg');I=rgb2gray(I);J=imread('rice.png');% 以下把两幅图转化为大小一样for i=1:size(I)for j=size(J):size(I)J(i,j)=0;endendI=im2double(I); % 将图像转化为double型J=im2double(J);% imshow(I);figure;imshow(J);K=I+0.3*J; % 将两幅图像相加subplot(1,3,1);imshow(I);title('人物图');subplot(1,3,2);imshow(J);title('背景图');subplot(1,3,3);imshow(K);title('相加后的图');imwrite(K,'i_lena1.jpg');%%% 将两幅图像做减运算,分离背景与原图A=imread('i_lena1.jpg');B=imread('rice.png');% 以下把两幅图转化为大小一样for i=1:size(A)for j=size(B):size(A)B(i,j)=0;endendC=A-0.3*B;a=imread('lena.jpg');subplot(2,2,1);imshow(a);title('原图图');subplot(2,2,2);imshow(A);title('混合图');subplot(2,2,3);imshow(B);title('背景图');subplot(2,2,4);imshow(C);title('分离后的图');%% 设置掩模,需要保留下来的区域,掩模图像的值为1,否则为0 A=imread('drum.jpg');A=rgb2gray(A);A=im2double(A);sizeA=size(A);subplot(1,2,1);imshow(A);title('原图');B=zeros(sizeA(1),sizeA(2)); % 设置模板B(100:400,100:500)=1;K=A.*B; % 两幅图像相乘subplot(1,2,2);imshow(K);title('局部图');%}%{% ------------------ 图像的缩放------------------A=imread('drum.jpg');B1=imresize(A,1.5); % 比例放大1.5杯,默认采用的是最近邻法进行线性插值B2=imresize(A,[420 384]); % 非比例放大到420:384C1=imresize(A,0.7); % 比例缩小0.7倍C2=imresize(A,[150 180]); % 非比例缩小到150:180figure;imshow(B1);title('比例放大图');figure;imshow(B2);title('非比例放大图');figure;imshow(C1);title('比例缩小图');figure;imshow(C2);title('非比例缩小图');% 检测非比例缩放得到的图片是否能还原到原图a=size(A)d=imresize(C2,[a(1),a(2)]);figure;imshow(d);%}% ------------------ 图像的旋转------------------I=imread('drum.jpg');J=imrotate(I,45); % 图像进行逆时针旋转,默认采用最近邻插值法进行插值处理K=imrotate(I,90); % 默认旋转出界的部分不被截出subplot(1,3,1);imshow(I);subplot(1,3,2);imshow(J);subplot(1,3,3);imshow(K);% 检测旋转后的图像是否失真P=imrotate(K,270);figure;imshow(P);。
matlab滤波函数详解 -回复

matlab滤波函数详解-回复Matlab滤波函数详解在信号处理领域中,滤波是一项常用技术,用于去除噪声、平滑数据、增强信号等。
Matlab作为一种功能强大的科学计算软件,提供了丰富的滤波函数来帮助用户处理信号。
本文将详细介绍Matlab中常用的滤波函数,包括低通滤波、高通滤波、带通滤波以及无限冲激响应滤波器等。
同时,将逐步回答一系列问题,以帮助读者全面理解和使用这些滤波函数。
一、低通滤波器1. 什么是低通滤波器?低通滤波器是一种能够通过允许低频信号通过,而抑制高频信号的滤波器。
通过低通滤波器可以实现信号平滑、去噪以及降低信号带宽等目标。
2. Matlab中如何使用低通滤波?在Matlab中,可以使用函数`lowpass`来实现低通滤波。
例如,若要对信号`x`进行低通滤波,可以使用以下代码:matlabfs = 1000; 采样率Hzfc = 100; 截止频率Hzorder = 4; 滤波器阶数filtered_x = lowpass(x, fc, fs, order);上述代码中,`fs`表示信号的采样率,`fc`表示低通滤波器的截止频率,`order`表示滤波器阶数。
函数`lowpass`返回滤波后的信号`filtered_x`。
二、高通滤波器1. 什么是高通滤波器?高通滤波器是一种能够通过允许高频信号通过,而抑制低频信号的滤波器。
通过高通滤波器可以实现丢弃信号中的低频成分、突出信号中的高频特征等目标。
2. Matlab中如何使用高通滤波?在Matlab中,可以使用函数`highpass`来实现高通滤波。
以下代码演示了如何对信号`x`进行高通滤波:fs = 1000; 采样率Hzfc = 100; 截止频率Hzorder = 4; 滤波器阶数filtered_x = highpass(x, fc, fs, order);上述代码中,`fs`表示信号的采样率,`fc`表示高通滤波器的截止频率,`order`表示滤波器阶数。
东北大学matlab计算机图像处理实验报告

计算机图像处理实验报告学院:信息学院班级:姓名:学号:实验内容:数字图像处理1、应用MATLAB语言编写显示一幅灰度图像、二值图像、索引图像及彩色图像的程序,并进行相互之间的转换;(1)、显示一副真彩RGB图像代码:I=imread('mikasa.jpg');>>imshow(I);效果:(2)、RGB转灰度图像代码:graycat=rgb2gray(I);>> subplot(1,2,1);>> subimage(I);>> subplot(1,2,2);>> subimage(graycat);效果:(3)、RGB转索引图像代码:[indcat,map]=rgb2ind(I,0.7);>> subplot(1,2,1);>> subimage(I);>> subplot(1,2,2);>> subimage(indcat,map);效果:(4)、索引图像转RGB代码:I1=ind2rgb(indcat,map);>>subplot(1,2,1);>>subimage(indcat,map);>>subplot(1,2,2);>>subimage(I1);效果:(5)、索引转灰度图像代码:i2gcat=ind2gray(indcat,map);>>subplot(1,2,1);>>subimage(indcat,map);>>subplot(1,2,2);>>subimage(i2gcat);效果:(6)、灰度转索引图像代码:[g2icat,map]=gray2ind(graycat,64);>>subplot(1,2,1);>>subimage(graycat);>>subimage(g2icat,map);效果:(7)、RGB转二值图像代码:r2bwcat=im2bw(I,0.5);>>subplot(1,2,1);>>subimage(I);>>subplot(1,2,2);>>subimage(r2bwcat);效果:(8)灰度转二值图像代码:g2bwcat=im2bw(graycat,0.5); subplot(1,2,1);>>subimage(graycat);>>subplot(1,2,2);>>subimage(g2bwcat);效果:(9)、索引转二值图像代码:>> i2bwcat=im2bw(indcat,map,0.7);>>subimage(indcat,map);>>subplot(1,2,2);>>subimage(i2bwcat);效果:2、应用MATLAB工具箱演示一幅图像的傅里叶变换、离散余弦变换,观察其频谱图。
matlab中的去噪函数

matlab中的去噪函数
MATLAB中有多种用于去噪的函数和工具,其中一些常用的包括:
1. `medfilt1`,这个函数用于对一维信号进行中值滤波,可以
有效地去除椒盐噪声和其他类型的噪声。
2. `medfilt2`,类似于`medfilt1`,这个函数用于对二维图像
进行中值滤波,对于去除图像中的斑点噪声和其他类型的噪声效果
很好。
3. `wiener2`,这个函数实现了维纳滤波器,可以用于图像的
去噪。
维纳滤波器是一种自适应滤波器,可以根据图像的局部特性
进行滤波,适用于各种类型的噪声。
4. `imfilter`,这个函数可以实现各种类型的滤波操作,包括
高斯滤波、均值滤波等,可以根据具体的需求选择合适的滤波器进
行去噪处理。
5. `denoiseWavelet`,MATLAB中还提供了基于小波变换的去
噪函数,可以通过小波阈值处理来去除信号中的噪声成分。
除了以上提到的函数,MATLAB还提供了一些图像处理工具箱,
其中包含了更多高级的去噪算法和工具,比如基于深度学习的去噪
方法、非局部均值去噪(NL-means denoising)等。
这些工具可以
根据具体的应用场景和需求选择合适的去噪方法进行处理。
总的来说,MATLAB提供了丰富的去噪函数和工具,可以根据具
体的信号或图像特性选择合适的方法进行去噪处理。
在实际应用中,需要根据噪声类型、信噪比以及对信号质量的要求来选择合适的去
噪方法。
维纳、卡尔曼滤波简介及MATLAB实现-推荐下载

了了了了
了了了了了了了了了了了Fra bibliotek了了了了了了了了了了 了了了了了了了了了 了了了了了了了了了了
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
基于MATLAB的维纳滤波器设计

电子通信技术涉及的两个问题就是信号处理和信号传输。 而信号处理通常要解决的一个问题就是如何从噪声中有效提 取信号,也就是有效的滤波问题。因此,在一个比较完善的 通信系统里一定都会有滤波器,使信号能正确从噪声环境中 提取出来。维纳滤波器就是我们通信系统中常用的一种线性 滤波器,当夹杂有噪声的信号输入到滤波器时,维纳滤波器 将信号尽可能精确地恢复再现,最大限度地抑制噪声,实现 信号的提取和滤波。
一、维纳滤波器的原理
维纳滤波器的滤波原理是进行一种线性滤波。 维纳(Wiener)是用来解决从噪声中提取信号的一种过 滤(或滤波)方法,是最佳的线性方法。这种线性滤波问题, 可以看作是一种估计问题或一种线性估计问题。 一个线性系统,如果它的单位样本响应为 h(n),当输入 一个随机信号 x(n),且 x(n)=s(n)+v(n),其中 x(n) 表示信号, v(n)) 表示噪声,则输出 y(n) 为:
(下转第 259 页)
收稿日期:2017-03-01 作者简介:吴丽荣(1985-),女,福建寿宁人,本科。研究方向:无线通信。
256 CHINESE & FOREIGN ENTREPRENEURS
3. 需要具有深厚的阅读积累 优秀的公文写作需要以深厚的阅读积累为基础。任何形 式的阅读内容都是人们对社会发展过程中的总结,是人们生 产生活中非常重要的精神食粮。日常知识的不断累计是提升 办公室秘书公文写作能力非常重要的方式和手段。随着社会 发展的不断加快,越来越多的新生事物不断涌现,知识变更 的速度也在不断加快,需要办公室秘书快速适应社会的发展, 通过阅读不断接受新生事务,否则就无法跟上时代发展的步 伐,无法有效提升自身的公文写作能力。 办公室秘书除了要具有比较丰富的知识内涵,更需要重 视和自身工作相关内容的阅读,了解与秘书工作相关的内容。 通过日常的阅读积累以及对知识的融合来提升自己的公文写 作水平,在写作内容中通过运用文字来体现自身的功底。 4. 形成良好的日常写作习惯 要想真正提升自己的写作能力,日常写作的积累必不可 少。所以,办公室秘书要养成良好的随时记录、随时写作的 习惯。写作能力和相应知识可以通过不同的方式进行学习和 积累,并无严格的标准规定,所以可以形成相对完善的知识 检查系统,以便于在今后的使用过程中可以对相应的文字写 作起到参考作用。 5. 公文写作过程中要保证政治方向的正确性 办公室秘书在公文写作过程中一定要确保自身的政治 立场是正确的,写作过程中要遵循国家有关政策方针,要至
matlab小波滤波器代码 -回复

matlab小波滤波器代码-回复在MATLAB中实现小波滤波器的代码,可以通过以下步骤来完成:第一步:导入信号数据在MATLAB中,首先需要导入待处理的信号数据。
可以使用`wavread`函数读取声音文件,或者使用`load`函数导入其他格式的数据。
matlab[data, fs] = wavread('sound.wav');这里`data`是读取到的信号数据,`fs`是采样率。
第二步:选择小波基函数小波滤波器通过对信号进行小波变换来实现滤波效果。
在MATLAB 中,可以选择不同的小波基函数进行变换。
常用的小波基函数包括`haar`、`dbN`(N是小波基的阶数)、`coifN`、`symN`等。
这里以`haar`小波基为例。
matlabwaveletName = 'haar';第三步:进行小波变换使用`wavedec`函数进行小波变换,将信号分解为多个尺度的小波系数。
matlab[level1, level2, level3, level4] = wavedec(data, 4, waveletName);这里将信号分解为4个尺度的小波系数,分别存储在`level1`、`level2`、`level3`和`level4`变量中。
第四步:滤波在小波变换后,可以对小波系数进行滤波操作。
可以通过设定一个阈值,将小波系数中小于该阈值的部分设为0,从而达到去噪的效果。
matlabthreshold = 0.5;level1(filteredLevel1 < threshold) = 0;level2(filteredLevel2 < threshold) = 0;level3(filteredLevel3 < threshold) = 0;level4(filteredLevel4 < threshold) = 0;这里使用了一个阈值为0.5的例子,小于该阈值的小波系数将被设为0。
matlab频率滤波代码

matlab频率滤波代码以下是一个简单的MATLAB频率滤波代码示例: matlab.% 读取图像。
img = imread('example.jpg');% 将图像转换为灰度图像。
gray_img = rgb2gray(img);% 计算图像的傅里叶变换。
fft_img = fft2(double(gray_img));% 将零频率分量移到频谱的中心。
fft_img_shifted = fftshift(fft_img);% 设定滤波器。
[M, N] = size(fft_img);R = 10; % 设定滤波器半径。
X = 0:N-1;Y = 0:M-1;[X, Y] = meshgrid(X, Y);Cx = 0.5 N;Cy = 0.5 M;low_pass_filter = double((X-Cx).^2 + (Y-Cy).^2 < R^2); % 应用滤波器。
fft_img_filtered = fft_img_shifted . low_pass_filter;% 将频谱移回原来的位置。
fft_img_filtered_shifted = ifftshift(fft_img_filtered); % 计算逆傅里叶变换。
filtered_img = ifft2(fft_img_filtered_shifted);% 显示原始图像和滤波后的图像。
subplot(1,2,1), imshow(gray_img, []);title('原始图像');subplot(1,2,2), imshow(abs(filtered_img), []);title('滤波后的图像');这段代码首先读取一张图像,然后将其转换为灰度图像。
接着计算图像的傅里叶变换,并将零频率分量移到频谱的中心。
然后设定一个低通滤波器,将其应用于图像的傅里叶变换。
最后计算出滤波后的图像并显示原始图像和滤波后的图像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、维纳滤波简介
维纳滤波是一种经典的信号处理算法,主要用于图像去噪和恢复。
它
基于最小均方误差准则,通过滤波器对输入信号进行处理,以减少噪
声的影响并尽可能恢复原始信号的特征。
在 MATLAB 中,可以使用内置的函数或自行编写代码来实现维纳滤波。
二、维纳滤波的数学模型
1. 维纳滤波的基本原理是利用频域上的滤波器对信号进行处理,其数
学模型可以表示为:
$$
G(u,v) = H(u,v)F(u,v) + N(u,v)
$$
其中,$G(u,v)$ 是观测到的带噪声的图像的频谱,$H(u,v)$ 是系统的频率响应,$F(u,v)$ 是原始图像的频谱,$N(u,v)$ 是添加到图像中的噪声的频谱。
2. 根据维纳滤波的原理,可以通过以下公式计算维纳滤波器 $W(u,v)$: $$
W(u,v) =
\frac{1}{H(u,v)}\frac{|H(u,v)|^2}{|H(u,v)|^2+\frac{S_N(u,v)}{S_F(u,v )}}
$$
其中,$S_N(u,v)$ 是噪声功率谱,$S_F(u,v)$ 是原始图像功率谱。
三、MATLAB 中的维纳滤波函数
MATLAB 提供了丰富的信号处理工具箱,其中包括了维纳滤波函数,可以方便地对图像进行去噪和恢复操作。
1. 在 MATLAB 中使用维纳滤波可以通过以下函数实现:
```matlab
J = wiener2(I,[m n],noise_var);
```
其中,I 是输入图像,[m n] 是局部窗口的大小,noise_var 是噪声的方差。
2. 除了 wiener2 函数外,MATLAB 还提供了 imnoise 函数用于向图像中添加指定类型的噪声,可以配合维纳滤波进行实验和比较。
四、自行编写维纳滤波代码
除了使用 MATLAB 提供的函数外,我们还可以根据维纳滤波的数学原理自行编写代码来实现算法。
1. 我们需要读取原始图像并将其转换为频域表示:
```matlab
I = imread('original.png');
F = fft2(double(I));
F = fftshift(F);
```
2. 计算噪声功率谱和原始图像功率谱:
```matlab
N = abs(fftshift(F_noise)).^2;
S_f = abs(F).^2;
```
3. 接下来,根据维纳滤波的公式计算滤波器:
```matlab
Wiener = (1./H).*(abs(H).^2./(abs(H).^2+(N./S_f)));
```
4. 将滤波器应用到输入图像的频谱上,并进行逆变换得到恢复图像: ```matlab
F_restored = F .* Wiener;
I_restored = ifft2(ifftshift(F_restored));
```
五、维纳滤波的应用场景
维纳滤波在数字图像处理领域有着广泛的应用,尤其适用于受到高斯噪声影响的图像去噪和恢复。
例如在医学影像处理中,CT、MRI 等图像常常受到噪声的干扰,利用维纳滤波可以有效地改善图像质量,提高诊断的准确性。
六、总结
维纳滤波是一种经典的信号处理算法,通过对信号进行频域上的滤波处理,可以有效地去除噪声并恢复原始信号的特征。
在 MATLAB 中,我们可以使用内置的函数或自行编写代码来实现维纳滤波算法,方便
地应用于图像处理等领域。
希望本文介绍的内容能够对读者加深对维纳滤波算法的理解,并在实际应用中发挥作用。