泵的分类和离心泵工作原理及操作
化工原理第二章离心泵

容积式:如往复式、回转式等
特点:机械内部的工作容积不断发生变化
一、离心泵的构造和工作原理
二.离心泵主要构件的结构及功能
三、离心泵的主要性能参数
四、离心泵的工作点与流量调节
五、离心泵的安装高度 六、离心泵的选用、安装与操作
复习:
1. 流量测量(变压头流量计;变截面流量计)。
思考:泵启动前为什么要灌满液体
气缚现象:
离心泵启动时,如果泵壳内存在空气,由于空气的密度远
小于液体的密度,叶轮旋转所产生的离心力很小,叶轮中心
处产生的低压不足以造成吸上液体所需要的真空度,这样,
离心泵就无法工作,这种现象称作“气缚”。
为了使启动前泵内充满液体,在吸入管道底部装一止
逆阀。此外,在离心泵的出口管路上也装一调节阀,用于
思考:三种叶轮中哪一种效率高?
闭式叶轮的内漏最小,故效率最高,
敞式叶轮的内漏最大。
敞式叶轮和半闭式叶轮不易发生堵 塞现象
平衡孔:在后盖板上钻有小孔,以
把后盖前后空间连通起来。
单吸式叶轮
液体只能从叶轮一侧被吸入,结
构简单。 按吸液方式
双吸式叶轮 相当于两个没有盖板的单吸式叶轮 背靠背并在了一起,可以从两侧吸 入液体,具有较大的吸液能力,而
1)离心泵基本方程式的导出
理想情况:
1)泵叶轮的叶片数目为无限多个,也就是说叶片的 厚度为无限薄,液体质点沿叶片弯曲表面流动,不发 生任何环流现象。 2)输送的是理想液体,流动中无流动阻力。
理论压头
离心泵在上述理想情况下产生的压头,就做理论压头, 用H∞表示。
离心泵的基本方程
H
给水泵分类与命名方法

给水泵分类与命名方法水泵是一种用于输送液体的机械设备,根据其结构、工作原理和应用领域的不同,可以分为多种类型。
以下是一些常见的水泵分类以及命名方法:1.按工作原理分类:•离心泵(Centrifugal Pump):利用离心力将液体从中心向外推送。
•容积泵(Positive Displacement Pump):通过容积变化将液体推送出去,包括齿轮泵、螺杆泵等。
2.按用途分类:•给水泵(Water Supply Pump):用于将水供应到建筑物、城市供水系统等。
•排水泵(Sump Pump):用于排除建筑物内的地下水或污水。
•化工泵(Chemical Pump):适用于输送化学液体,具有耐腐蚀性。
•污水泵(Sewage Pump):专门用于输送含有固体颗粒的污水。
3.按结构分类:•单级泵(Single-stage Pump):由一个旋转部件驱动的简单泵。
•多级泵(Multi-stage Pump):包含多个级别的泵,可提供更高的压力。
•潜水泵(Submersible Pump):安装在液体中,用于潜水操作。
4.按驱动方式分类:•电动泵(Electric Pump):通过电动机驱动。
•柴油泵(Diesel Pump):通过柴油发动机驱动。
•手动泵(Manual Pump):通过人力或手动操作。
5.按工作点分类:•定转速泵(Constant Speed Pump):输出流量和扬程保持恒定。
•变速泵(Variable Speed Pump):可通过调整转速来调节流量和扬程。
命名方法通常以泵的类型、用途、结构或驱动方式等为依据,以清晰地描述泵的特性。
例如,“离心给水泵”表示一种用于给水系统的离心泵。
离心泵的工作原理及分类

离心泵的工作原理及分类离心泵是一种常见的流体机械设备,广泛用于工业生产、农业灌溉、城市供水、给排水以及能源等领域。
本文将对离心泵的工作原理及分类进行详细介绍。
离心泵是利用转子叶轮的旋转力,将流体吸入并产生高速旋转,然后通过离心力将流体推到出口处。
其工作原理主要包括进口、叶轮、出口三部分。
具体如下:1.进口:流体由进口管道进入泵体,流经进口部分。
进口部分通常是一个圆锥形空间,用以缓冲流体的进入速度,降低进口处的速度梯度,减少流体的冲击和波动。
2.叶轮:进口部分后面是叶轮,叶轮通常由多个曲面的叶片组成。
当叶轮旋转时,叶片通过旋转产生的离心力将流体推到出口处。
叶轮的形状和尺寸会影响离心泵的性能,如流量、扬程等。
叶轮通常由铸铁、不锈钢、铜合金等材料制成。
3.出口:出口部分是离心泵的最后一部分,流体在叶轮的作用下被推到出口管道,通过出口管道流出。
出口部分通常有一个扩散器,用来将流体高速运动的动能转化为静压能,提高流体的扬程。
离心泵的分类:离心泵按照不同的分类标准可以分为多种类型。
下面是按照不同的特征进行分类的几种常见离心泵类型:1.单级离心泵和多级离心泵:根据叶轮数量的不同,离心泵可以分为单级离心泵和多级离心泵。
单级离心泵只有一个叶轮,适用于流量较大、扬程较小的场合;而多级离心泵有多个叶轮,适用于流量较小、扬程较大的场合。
2.低扬程泵和高扬程泵:根据工作条件的不同,离心泵可以分为低扬程泵和高扬程泵。
低扬程泵适用于扬程较小的场合,常用于市政给排水等工程;而高扬程泵适用于扬程较大的场合,常用于水利工程、能源等领域。
3.管道泵和轴流泵:根据流体运动方式的不同,离心泵可以分为管道泵和轴流泵。
管道泵是流体在泵内经过叶轮的离心作用,流体的运动方向与泵轴线垂直;而轴流泵是流体在泵内流动方向与泵轴线平行或接近平行的泵。
4.立式泵和卧式泵:根据泵的布置方式的不同,离心泵可以分为立式泵和卧式泵。
立式泵是泵的进出口在同一水平面上,泵体安装在地面之上;而卧式泵则是泵的进出口在不同的水平面上,泵体安装在地面之下。
什么是离心泵

什么是离心泵什么是离心泵?离心泵(centrifugal pump)是指靠叶轮旋转时产生的离心力来输送液体的泵。
离心泵利用高速旋转的叶轮叶片带动水转动,将水甩出,从而达到输送的目的。
水泵在启动前,必须使泵壳和吸水管内充满水,然后启动电机,使泵轴带动叶轮和水做高速旋转运动,水发生离心运动,被甩向叶轮外缘,经蜗形泵壳的流道流入水泵的压水管路。
离心泵有立式、卧式、单级、多级、单吸、双吸、自吸式等多种形式。
叶轮内的液体受到叶片的推动而与叶片共同旋转,由旋转而产生的离心力,使液体由中心向外运动,并获得动量增量。
离心泵的基本构造是由八部分组成的,分别是:叶轮,泵体,泵盖,挡水圈,泵轴,轴承,密封环,填料函,轴向力平衡装置。
叶轮是离心泵的核心部分,它转速高输出力大。
泵体也称泵壳,它是水泵的主体。
起到支撑固定作用,并与安装轴承的托架相连接。
2离心泵的起动离心泵起动及操作1.起动油离心泵,注意泵轴的转向是否正确。
2.注意转动时有无不正常的声响和振动。
3.注意压力表及真空表读数,起动后当压力表及真空表的读数经过一段时间的波动而指示稳定后,说明泵内已经上液,齿轮油泵进入正常输油作业。
4.在离心泵进入正常输油作业前即自吸(或扫舱)过程中,应特别注意泵内油温升高状况,如果这个过程过长,泵内油温过高,则停泵检查其原因。
5.如果泵内液体温度过高而引起自吸困难,那么可以暂时停机,利用吐出管路中的液体倒流回泵内或向泵体上的加储液口处直接向泵内补充液体,使泵内液体降温,然后起动即可。
6.调节出口控制阀,使压力表读数指到规定区域,避免齿轮油泵在规定区域的下限范围内工作,以防因轴功率过大而引起电动机过载,或因流量过大而使泵产生汽蚀,影响泵的正常运转,使泵激烈振动,发出噪声。
输送各种油料时的压力的使用范围。
7.离心泵在工作过程中如发生激烈振动和噪声,有可能是泵发生汽蚀所致,汽蚀产生的原因有两种:一是进口管流速过大,二是吸程过高。
流速过大时可调节出口控制阀,升高压力表读数,在进口管路有堵塞时则应及时排除;吸程太高时可适当降低泵的安装高度。
泵 的分类

泵的分类泵是利用各种机械设备实现流体输送或压缩的设备。
泵的种类繁多,按其原理分类分为多种类型。
根据驱动方式、结构形式、使用场合及流体性质等方面的不同,泵也可以分为许多不同的类别。
下面就是泵的主要分类。
一、按工作原理分类(一)容积泵容积泵也称为位移泵,是由一个或多个容积不断变化的腔室构成,通过这些容积变化,将流体从吸入端吸入,到排出端排出的一种泵。
按其容积变化的形式不同,可分为柱塞泵、液压隔膜泵、旋转齿轮泵、螺杆泵、滑片泵、推动式泵等。
(二)离心泵离心泵是利用离心力将液体送至出口的泵,其主要工作原理是通过离心叶轮的旋转,使液体沿轴线方向进入泵内,然后受到离心力的作用,从泵的中心位置向外偏移,最终流出泵口。
离心泵使用广泛,常见于水处理、石油化工、航空航天等领域。
按输送介质不同,离心泵还可分为清水泵、烟气净化泵、磁力泵、热水泵等。
二、按驱动方式分类电动泵是利用电机作为动力来源,进而实现泵的运转的一种泵。
可以通过不同的电动机选择不同的功率和性能,泵可用于不同的场合和液体运输介质。
一般情况下,电动泵速度均较为稳定,且使用很方便,是一种比较常见的泵类型。
气动泵是一种利用压缩空气或其他气体做动力源的泵。
通过调节压缩空气的出入口,气体驱动泵的活塞或隔膜前后摆动,运送液体。
气动泵具有统一性、应用范围广、比较节能、维修方便等优点。
三、按结构形式分类单级泵是一种由一个叶轮和一个泵体构成的泵类。
由于其结构简单,体积小,通常用于家庭、工业、实验室等一些微型的流体处理工作。
多级泵的结构形式是利用多个叶轮分级分步压缩泵送的介质,提高泵的扬程和流量,可用于长距离输送和高扬程的液体,比如石油、天然气等。
其结构也相对较为复杂,体积较大。
四、按用途分类潜水泵是一种利用电机驱动,能够下潜到介质中直接将介质抽到地面或者抽掉介质底层的泵。
潜水泵主要适用于清水、污水、海水、油、酸碱等各种液体的输送,常用于工矿企业、市政工程、建筑等行业。
磁力泵是一种采用永磁体和同步旋转器构成的磁阻转子,无需配合接触,从而使产品无泄漏的泵,广泛应用于化工、石油、制药和食品等行业。
离心泵的分类和工作原理

离心泵的分类和工作原理【学员问题】离心泵的分类和工作原理?【解答】离心泵有立式、卧式、单级、多级、单吸、双吸、自吸式等多种形式。
其主要的工作原理有:离心是物体惯性的表现。
比如雨伞上的水滴,当雨伞缓慢转动时,水滴会跟随雨伞转动,这是因为雨伞与水滴的摩擦力做为给水滴的向心力使然。
但是如果雨伞转动加快,这个摩擦力不足以使水滴在做圆周运动,那么水滴将脱离雨伞向外缘运动。
就象用一根绳子拉着石块做圆周运动,如果速度太快,绳子将会断开,石块将会飞出。
这个就是所谓的离心离心泵就是根据这个原理设计的。
高速旋转的叶轮叶片带动水转动,将水甩出,从而达到输送的目的。
离心其实是物体惯性的表现,比如雨伞上的水滴,当雨伞缓慢转动时,水滴会跟随雨伞转动,这是因为雨伞与水滴的摩擦力做为给水滴的向心力使然。
但是如果雨伞转动加快,这个摩擦力不足以使水滴在做圆周运动,那么水滴将脱离雨伞向外缘运动,就象用一根绳子拉着石块做圆周运动,如果速度太快,绳子将会断开,石块将会飞出。
这个就是所谓的离心。
离心泵的主要工作原理叶轮被泵轴带动旋转,对位于叶片间的流体做功,流体受离心力的作用,由叶轮中心被抛向外围。
当流体到达叶轮外周时,流速非常高。
泵壳汇集从各叶片间被抛出的液体,这些液体在壳内顺着蜗壳形通道逐渐扩大的方向流动,使流体的动能转化为静压能,减小能量损失。
所以泵壳的作用不仅在于汇集液体,它更是一个能量转换装置。
液体吸上原理:依靠叶轮高速旋转,迫使叶轮中心的液体以很高的速度被抛开,从而在叶轮中心形成低压,低位槽中的液体因此被源源不断地吸上。
汇集液体,它更是一个能量转换装置。
液体吸上原理:依靠叶轮高速旋转,迫使叶轮中心的液体以很高的速度被抛开,从而在叶轮中心形成低压,低位槽中的液体因此被源源不断地吸上。
以上内容均根据学员实际工作中遇到的问题整理而成,供参考,如有问题请及时沟通、指正。
离心泵基础

离心泵基本构造及其作用
轴承 是套在泵轴上支撑轴的部件,有滚动轴承和滑动轴承之分,滚动轴承结构简单,摩擦力较小,可以减少启动时的摩擦损失,并能保证泵轴晃动量小,因而密封的径向间隙较小,从而降低泄露损失,提高容积效率。
离心泵基本构造及其作用
滚动轴承:是在承受载荷和彼此相对运动的零件间有滚动体作滚动运动的轴承;是将运转的轴与轴座之间的滑动摩擦变为滚动摩擦,从而减少摩擦损失的一种精密的机械元件。滚动轴承一般由外圈,内圈,滚动体和保持架组成。一般见到的都是滚动轴承,应用于较小的机械,承受较低的载荷。 1.外圈——装在轴承座孔内,一般不转动 2.内圈——装在轴颈上,随轴转动 3.滚动体——滚动轴承的核心元件 4.保持架——将滚动体均匀隔开,避免摩擦
离心泵基本构造及其作用
叶轮有开式、半闭式和闭式三种,如图所示。 开式叶轮在叶片两侧无盖板,制造简单、清洗方便,适用于输送含有较大量悬浮物的物料,效率较低,输送的液体压力不高;半闭式叶轮在吸入口一侧无盖板,而在另一侧有盖板,适用于输送易沉淀或含有颗粒的物料,效率也较低;闭式叶轮在叶片两侧有前后盖板,效率高,适用于输送不含杂质的清洁液体。一般的离心泵叶轮多为此类
滑动轴承:
离心泵基本构造及其作用
轴封 由于泵轴转动而泵壳固定不动,在轴和泵壳的接触处必然有一定间隙。为避免泵内高压液体沿间隙漏出,或防止外界空气从相反方向进入泵内,必须设置轴封装置。 轴封装置主要防止泵中的液体泄漏和空气进入泵中,以达到密封和防止进气引起泵气蚀的目的。 轴封的形式有带骨架的橡胶密封、填料密封和机械密封。目前主要采用机械密封。
离心泵

2019/3/17
四、轴封装置
由于泵轴转动而泵壳固定不动,在轴和泵壳的接触 处必然有一定间隙。为避免泵内高压液体沿间隙漏出, 或防止外界空气从相反方向进入泵内,必须设置轴封装 置。离心泵的轴封装置有填料函和机械(端面)密封。 填料函是将泵轴穿过泵壳的环隙作成密封圈,于其中装 入软填料(如浸油或涂石墨的石棉绳等)。 机械密封是由一个装在转轴上的动环和另一固定在泵壳 上的静环所构成。两环的端面借弹簧力互相贴紧而作相 对转动,起到了密封的作用。机械密封适用于密封较高 的场合,如输送酸、碱、易燃、易爆及有毒的液体。
启动后,叶轮旋转,并带动液体旋转。 液体在离心力的作用下,沿叶片向边缘抛出,获得能量,液体 以较高的静压能及流速流入机壳( 沿叶片方向,u, P静 )。由于 涡流通道的截面逐渐增大, P动 P静 。液体以较高的压力排出
泵体,流到所需的场地。
由于液体被抛出,在泵的吸口处形成一定的真空度,泵外流体的
2019/3/17
二、汽蚀余量
泵在工作时液体在叶轮的进口处因一定真空压 力下会产生汽体,汽化的气泡在液体质点的撞 击运动下,对叶轮等部件表面产生剥蚀,从而 破坏叶轮等部件,此时真空压力叫汽化压力, 汽蚀余量是指在泵吸入口处单位重量液体所具 有的超过汽化压力的富余能量。单位用米标注, 用(NPSH)r。吸程即为必需汽蚀余量Δ h:即 泵允许吸液体的真空度,亦即泵允许的安装高 度,单位用米。 吸程=标准大气压(10.33米)-汽蚀余量安全量(0.5米) 标准大气压能压管路真空高度10.33米。
一、汽蚀现象
液体在一定温度下,降低压力至该温度下的汽化压力 时,液体便产生汽泡。把这种产生气泡的现象称为汽 蚀。汽蚀时产生的气泡,流动到高压处时,其体积减 小以致破灭。这种由于压力上升气泡消失在液体中的 现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶 轮叶片进口稍后的某处)因为某种原因,抽送液体的 绝对压力降低到当时温度下的液体汽化压力时,液体 便在该处开始汽化,产生大量蒸汽,形成气泡,当含 有大量气泡的液体向前经叶轮内的高压区时,气泡周 围的高压液体致使气泡急剧地缩小以至破裂。在气泡
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机泵的基本常识一、机泵的分类:(一)按泵作用于液体原理分类1、叶片式泵(动力式泵)由泵内叶片在旋转时产生的离心力作用将液体连续的吸入并压出。
叶片式泵包括离心泵、混流泵、轴流泵、部分流泵及旋涡泵。
2、容积式泵(正排量泵)包括往复式泵和容积式泵。
它们分别由泵内活塞作往复运动或转子作旋转运动而产生挤压作用将液体吸入并压出。
前者排液过程是间歇的。
常见的往复式泵有各种型式活塞泵、柱塞泵及隔膜泵等。
常见回转式泵有外啮合齿轮泵、内啮合齿轮泵、螺杆泵、回转径向柱塞泵、回转轴向柱塞泵、滑片泵罗茨泵及液环泵等。
3、其它类型泵包括利用流体静压或流体流体动能来输送液体的流体动力泵。
如喷射泵、空气升液器、水锤泵等。
另外还有利用电磁力输送液体的电磁泵。
(二)按泵的用途分类按泵的用途可分为进料泵、回流泵、塔底泵、循环泵、产品泵、注入泵、排污泵、燃料油泵、润滑油泵和封液泵等。
(三)按所适用的介质分类分为清水泵、污水泵、泥浆泵、砂泵、灰渣泵、耐酸泵、碱泵、冷油泵、热油泵、低温泵等。
二.离心泵的原理当离心泵启动后,泵轴带动叶轮一起作高速旋转运动,迫使预先充灌在叶片间的液体旋转,在惯性离心力的作用下,液体自叶轮中心向外周做径向运动。
液体在流经叶轮的运动过程中获得了能量,静压能增高,流速增大。
当液体离开叶轮进入泵壳后,由于壳内流道逐渐扩大而减速,部分动能转化为静压能,作后沿切向流入排出管路。
所以泵壳不但是汇集由叶轮流出液体的部件,而且还是一个动能装置。
当液体自叶轮中心甩向外周的同时,叶轮中心形成低压区(既形成真空)在储槽液面与叶轮中心总势能差(既压差)的作用下,使液体被吸入叶轮中心。
依靠叶轮的不断运转,液体便连续的被吸入和排出。
液体在离心泵中获得的机械能最终表现为静压能的提高。
1.什么是气缚及气缚的处理方法在离心泵启动前没向泵壳内灌满被输送的液体,由于空气密度低,叶轮旋转后产生的离心力小,叶轮中心区不足以形成吸入贮槽内液体的低压,因而虽启动离心泵也不能输送液体。
这表明离心泵无自吸能力,此现象称为气缚。
吸入管路安装单向底阀是为了防止启动前灌入泵壳内的液体从壳内流出。
空气从吸入管道进到泵壳中都会造成气缚。
所以离心泵启动前必须向壳体内灌满液体,在吸入管底部安装带滤网的底阀。
底阀为止逆阀,防止启动前灌入的液体从泵内漏失。
滤网防止固体物质进入泵内。
靠近泵出口处的压出管道上装有调节阀,供调节流量时使用。
2.汽蚀现象(1)在如图所示的管路中,在液面0—0与泵进口附近截面1—1之间无外加能量,液体靠压强差流动。
因此,提高泵的安装位置,叶轮进口处的压强可能降至被输送液体的饱和蒸汽压,引起液体部分汽化。
实际上,泵中压强最低处位于叶轮内缘叶片的背面,当泵的安装位置高至一定距离,首先在该处发生汽化并产生汽泡。
含汽泡的液体进入叶轮后,因压强升高,汽泡立即凝聚,汽泡的消失产生局部真空,周围液体以高速涌向汽泡中心,造成冲击和振动。
尤其是当汽泡的凝聚发生在叶片表面附近时,众多液体质点犹如细小的高频水锤撞击着叶片;另外汽泡中还可能带有氧气等对金属材料发生化学腐蚀作用。
泵在这种状态下长期运转,将会导致叶片的过早损坏,这种现象称为泵的汽蚀。
离心泵在产生汽蚀条件下运转,泵体振动并发出噪音,流量、扬程和效率都明显下降,严重时甚至吸不上液体。
为了避免汽蚀现象,泵的安装位置不能太高,以保证叶轮中各处的压强高于液体的饱和蒸汽压。
(2)汽蚀余量什么叫汽蚀余量?什么叫吸程?各自计量单位表示字母?答:泵在工作时液体在叶轮的进口处因一定真空压力下会产生汽体,汽化的气泡在液体质点的撞击运动下,对叶轮等金属表面产生剥蚀,从而破坏叶轮等金属,此时真空压力叫汽化压力,汽蚀余量是指在泵吸入口处单位重量液体所具有的超过汽化压力的富余能量。
单位用米标注,用(NPSH)r。
吸程即为必需汽蚀余量Δh:即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。
吸程=标准大气压(10.33米)-汽蚀余量-安全量(0.5米)标准大气压能压管路真空高度10.33米。
例如:某泵必需汽蚀余量为 4.0米,求吸程Δh?解:Δh=10.33-4.0-0.5=5.83米4.特性曲线离心泵的性能参数H、Q、η及N之间并非孤立的,而是相互联系相互制约的。
其具体定量关系由实验测定,并将测定结果用曲线形式表示,即为特性曲线。
上图即为4B20型清水泵在转速n = 2900转/分钟条件下测得的特性曲线。
关于特性曲线由此图可见:(1)离心泵的压头H随流量Q的增加而降低;(2)离心泵的轴功率N随着流量Q的增大而上升,流量为零时轴功率最小。
所以离心泵启动时,应关闭泵的出口阀门,使启动电流减小,保护电机;(3)随着流量Q的增大,泵的效率η也随之上升,并达到一最大值。
以后流量再增大,效率就下降。
这说明离心泵在一定转速下有一最高效率点,称为设计点。
与最高效率点对应的Q、H、P值称为最佳工况参数。
根据输送条件的要求,离心泵往往不可能正好在最佳工况点运转,因此一般只能规定一个工作范围,称为泵的高效率区,通常为最高效率的92%左右。
5.液体物理性质的影响(1)密度的影响由离心泵的基本方程式可知,离心泵的压头、流量均与液体的密度无关,所以效率也不随液体的密度而改变,但轴功率会随着液体密度而变化。
(2)粘度的影响所输送的液体粘度越大,泵内能量损失越多,泵的压头、流量都要减小,效率下降,而轴功率则要增大。
6.流量调节(1)改变阀门的开度(2)改变泵的转速7.并联与串联操作一、并联操作当一台泵的流量不够时,可用两台泵并联操作,以增大流量。
二、串联操作当生产上需要利用原有泵提高泵的压头时,可以考虑将泵串联使用。
串联安装时,应有相同的流量。
二.离心泵的操作1.泵开启前先要盘车,检查循环水,油封,表计,电机等有无异常现象。
2.泵的开启和关闭开启:首先打开进口阀门,让液体进入并充满泵体。
关闭泵的出口阀门,开启轴封水(有平衡管的需打开平衡管)再开启泵的电机,待出口压力达到工艺要求值后,再缓慢的打开出口阀门。
关闭:先缓慢关闭泵的出口阀门,停离心泵电机,关闭轴封水,在关闭泵的进口阀门。
为什么离心泵开启前要关闭出口阀:因离心泵启动时,泵的出口管路内还没液体,因此还不存在管路阻力和提升高度阻力,在泵启动后,泵扬程很低,流量很大,此时泵电机(轴功率)输出很大(据泵性能曲线),很容易超载,就会使泵的电机及线路损坏,因此启动时要关闭出口阀,才能使泵正常运行。
3.泵的切换:开启备用泵的进口阀门及轴封水,启动备用泵的电机,当压力达到工艺要求的正常值后缓慢开启备用泵的出口阀门,同时关闭切换泵的出口阀门,保证泵的出口压力在正常值内。
待备用泵的出口阀门全开(切换泵的出口阀门全关后)停切换泵的电机,关闭切换泵的轴封水,关闭切换泵的进口阀门。
泵运行时注意事项:(a)在开车及运行过程中、必须注意观查仪表读数、轴承温升、填料滴漏和温升以及泵的振动和杂音等是否正常,如果发现异常情况,应及时处理。
(b)轴承温度与环境温度之差不的超过40℃,轴承温升最高不大于80℃(c)填料漏水应该是少量均匀的。
(d)轴承油位应保持在正常位置上(三分之二),不能过高或过低,过低时应及时补充润滑油。
(e)如密封环与叶轮配合部位的间隙磨损过大应更换新的密封环(新泵的直径间隙在0.15~0.25mm左右)(f)应尽量使泵在铭牌规定的性能点(流量,扬程等)附近运转,这样可使泵长期在高效率区工作,以达到最大的节能效果。
常见故障及解决办法故障现象原因对策与处理不启动电动机的故障检查电动机部分不满足启动条件按条件顺序逐条检查异物进入到转动部位,滑动部位被咬住清除叶轮、壳体衬套、口环的异物达不到规定的流量吸入侧塞满异物检查过滤网、叶轮叶轮破损更换叶轮使用扬程过高再检查泵的总扬程不上量出口阀门调整不良仔细调整出口阀门转动方向相反按转向标牌箭头方向调整转向转速低查明原因,提高转速吸入空气提高槽罐液位叶轮、壳体衬套、密封环损坏修补或换件汽蚀检查吸入液位和运转点参数如远离计划运行点时进行修整进口阀门未开打开超负荷轴承烧焦更换轴承泵内部咬住异物除掉异物吸入侧出现与转动方向相同方向的旋涡设置阻旋板旋转部分已坏拆卸修理转速过高检查原动机转速上升的原因改正之填料函填料过紧松动填料轴承发热润滑油过于不足增添适当的油量润滑油已污更换润滑油油品不对选用合适的润滑油轴承有损伤更换轴承直拉偶合不良检查同心度,调整发生异常振动检查振动原因,清除异常振动和噪声安装不良,偶合不良检查水平、同心,并修正槽罐液位过低提高液位,消除旋涡汽蚀提高液位,在适当流量点运行轴承有损伤更换轴承异物堵塞、叶轮损伤、转子不平衡清除异物、修复更换叶轮、转子静平衡轴弯曲校直原动机不良修理原动机基础蒲弱增加基础刚性旋转部分已坏拆卸修理泵的固有频率与泵转带相同或接近改变泵的固有频率故障现象可能产生的原因排除方法泵的流量不足 1.进出口阀门未开,管路堵塞1.打开阀门,去除堵塞物2.吸入管漏气2.拧紧各密封处,排除空气3.泵腔内有空气3.打开排气阀,排气4.电压低,转速过慢4.稳压5.叶轮口环磨损,泄漏过大5.更换叶轮6.泵轴断或对轮脱开6.换轴或紧固对轮功率过大1.超过额定流量使用1.调节出口阀门,降低流量2.叶轮和转动部件有磨搽摩擦 2.检查排除或更换部件杂音振动1.管路支撑不稳1.稳固管架2.介质混有气体(气缚)2.提高吸口压力,排气3.产生气蚀 3.降低真空度4.转动部件磨擦4.检查调整或更换电机发热1.流量过大超载运行1.调节出口阀,减小流量2.定子和转子摩擦2.检查排除3.电压不足 3.稳压4.冷却管路堵塞或供量不足4.清除堵塞或加大流量填料压盖处漏液 1.填料磨损或安装不正确1.更换填料或正确安装出水管路的影响检查接头、阀门等,消除不良影响填料压盖处漏水和发热填料磨损,不正确安装更换填料,正确安装填料压盖过紧或偏松正确压紧填料压盖轴承损伤,轴有振摆更换轴套,消除振摆和发热2.填料压盖过紧或过松 2.正确压紧填料压盖3.轴承损伤,轴有摆动 3.更换轴套,消除震摆泵不能启动 1.电机故障 1.检查电机部分2.异物进入转动部位被卡死2.清除异物3.未通电,电压不足等不满足的启动条件3.通电,稳压按条件顺序逐条检查。