STATA常用命令总结(34个含使用示例)

合集下载

stata常用命令

stata常用命令
Stata
第一讲:
use 打开数据文件,一般加 clear 选型清空内存中现有数据。 sysuse 打开系统数据文件。 describe 描述数据 edit 利用数据编辑器进行数据编辑 list 类似于 edit,但只能显示不能修改数据。 display 显示计算结果。经常写为: di summarize 求某个变量的观察值个数、平均值、标准差、最小值和最大值。经常写 为:sum scatter 生成两个变量的散点图。 set obs 定义样本个数(使用前一定要用 drop 或者 clear 命令清空当前样本) generate 建立新变量并赋值。经常写为 gen (**********************)stata 命令格式 (**********************) [by varlist:] command [ varlist] [=exp] [if exp] [in range] [ weight] [, options] 1。Command 命令动词,经常用缩写。 2。varlist 表示一个变量或者多个变量,多个变量之间用空格隔开。如 sum price weight 3。 4。 5。 6。 by varlist 分类信息 按照某一变量的不同特性分类 =exp 赋值及运算 if exp 挑选满足条件的数据 in range 对数据进行范围筛选 给数据赋一个权重

例二: use wage2, clear reg lnwage educ tenure exper expersq 1。教育(educ)和工作时间(tenure)对工资的影响相同。 test educ=tenure (两个变量的系数是否相等) 2。工龄(exper)对工资没有影响 test exper (检验 exper 的系数是否为 0) 3。检验 educ 和 tenure 的联合显著性 或者 test e(去年王永画的范围内明确指明 FGLS 不考! ! ! ) FGLS 的步骤 (1) 对原方程用 OLS 进行估计,得到残差项的估计 ûi , (2) 计算 ln(ûi2 ) (3) 用 ln(û2 )对所有独立的解释变量进行回归,然后得到拟合值 ĝ i (4) 计算 ĥi = exp(ĝ i) (5) 用 1/ ĥi 作为权重, 做 WLS 回归。 Reg y x1 x2 x3„„ predict u,res

(完整版)Stata统计分析命令

(完整版)Stata统计分析命令

Stata统计分析常用命令汇总一、winsorize极端值处理范围:一般在1%和99%分位做极端值处理,对于小于1%的数用1%的值赋值,对于大于99%的数用99%的值赋值。

1、Stata中的单变量极端值处理:stata 11。

0,在命令窗口输入“findit winsor”后,系统弹出一个窗口,安装winsor模块安装好模块之后,就可以调用winsor命令,命令格式:winsor var1, gen(new var) p(0.01)或者在命令窗口中输入:ssc install winsor安装winsor命令。

winsor命令不能进行批量处理.2、批量进行winsorize极端值处理:打开链接:http://personal.anderson。

/judson。

caskey/data。

html,找到winsorizeJ,点击右键,另存为到stata中的ado/plus/目录下即可。

命令格式:winsorizeJ var1var2var3,suffix(w)即可,这样会生成三个新变量,var1w var2w var3w,而且默认的是上下1%winsorize.如果要修改分位点,则写成如下格式:winsorizeJ var 1 var2 var3,suffix(w) cuts(5 95).3、Excel中的极端值处理:(略)winsor2 命令使用说明简介:winsor2 winsorize or trim (if trim option is specified) the variables in varlist at particular percentiles specified by option cuts(##)。

In defult, new variables will be generated with a suffix ”_w" or "_tr", which can be changed by specifying suffix() option。

stata常用命令(DOC)

stata常用命令(DOC)

调整变量格式:format x1 %10.3f ——将x1的列宽固定为10,小数点后取三位format x1 %10.3g ——将x1的列宽固定为10,有效数字取三位format x1 %10.3e ——将x1的列宽固定为10,采用科学计数法format x1 %10.3fc ——将x1的列宽固定为10,小数点后取三位,加入千分位分隔符format x1 %10.3gc ——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符format x1 %-10.3gc ——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符,加入“-”表示左对齐合并数据:use "C:\Documents and Settings\xks\桌面\2006.dta", clearmerge using "C:\Documents and Settings\xks\桌面\1999.dta"——将1999和2006的数据按照样本(observation)排列的自然顺序合并起来use "C:\Documents and Settings\xks\桌面\2006.dta", clearmerge id using "C:\Documents and Settings\xks\桌面\1999.dta" ,unique sort——将1999和2006的数据按照唯一的(unique)变量id来合并,在合并时对id进行排序(sort)建议采用第一种方法。

对样本进行随机筛选:sample 50在观测案例中随机选取50%的样本,其余删除sample 50,count在观测案例中随机选取50个样本,其余删除查看与编辑数据:browse x1 x2 if x3>3 (按所列变量与条件打开数据查看器)edit x1 x2 if x3>3 (按所列变量与条件打开数据编辑器)数据合并(merge)与扩展(append)merge表示样本量不变,但增加了一些新变量;append表示样本总量增加了,但变量数目不变。

常用的27个Stata命令

常用的27个Stata命令

常用的27个Stata命令【1】直接导入csv格式数据insheet using name.csv, clear【2】修改变量长度format var %20.2g【3】删除重复值sort var1 var2duplicatesdrop var1 var2, force【4】数据合并use data1, clearmerge m:m var1var2 using data2drop if _merge==2drop if _merge==1drop _merge【5】生成一期滞后项tsset stkcd accpergen newvarname=L.varname【6】将文字转化为数字变量genBigN=0replaceBigN=1 if strmatch(dadtunit,'普华永道*') 【7】删除有缺失值的记录egen mis=rowmiss(_all)drop if misdrop mis【8】行业划分clonevarsic2=indorder stkcd accper sic2replace sic2=substr(sic2,1,1) if substr(sic2,1,1)!=”C”replace sic2=substr(sic2,1,2) if substr(sic2,1,1)==”C”tabulate sic2 accper【9】日期只保留年份drop if substr( reptdt ,6,2)!='12'replace reptdt=substr(reptdt,1,4)gen accper=real(reptdt)【10】数据分列split date ,parse(-) destring ignor('-')【11】求两个日期之间的间隔天数g td=date(trading_date,'YMD')g ed=date(eventdate,'YMD')form td ed %tdg d=ed-td【12】生成行业、年份哑变量tab year, gen(year)tab industry, gen(industry)【13】对数据进行Winsorize处理findit winsor2winsor2 varname, replace cut(1 99)【14】描述性统计tabstat var1var2, stat(n min mean median p25 p75 max sd), if groupvar==0 or 1logout, save(name) word replace: tabstat var, stat(n min mean p50 max sd) col(stat)f(%9.2g)【15】两变量列联表tabulate var1 var2, row chi2 taub gamma【16】两样本间的均值T检验ttest var, by(groupvar)【17】两样本中位数Z检验ranksum var, by(groupvar)【18】Pearson/Spearman系数spearmanx*n matax=st_data(.,'x*')c=correlation(x)n=rows(c)b=strofreal(lowertriangle(c)uppertriangle(st_matrix('r(Rho)')),'%9.3f')p=st_matrix('r(P)')for (i=2; i<=n; i ) {for (j=1; j<=i-1; j ) {p[i,j]=2*ttail(rows(x)-2,abs(c[i,j]/sqrt((1-c[i,j]^2)/(rows(x)-2)))) b[i,j]=b[i,j] (p[i,j]<0.01?'***':(p[i,j]<0.05?'**':(p[i,j]<0.1?'*':''))) b[j,i]=b[j,i] (p[j,i]<0.01?'***':(p[j,i]<0.05?'**':(p[j,i]<0.1?'*':''))) }}c=editvalue(b, '2.000', '1')cend直接导出结果logout, save(pw) word replace:pwcorr_avars, star1(0.01) star5(0.05) star10(0.1)【19】按年度按中位数分组方法一bysort year: egen g=xtile(var), n(2)方法二bys accper: cumul icindex, g(g) eqlevelsof accper, local(id)display '`r(levels)''local cut1 = 1/2foreach x of local id {recode g (min/`cut1'=0)(`cut1'/max=1) if accper==`x'}分三组bys accper:cumul icindex, g(g) eqlevelsof accper, local(id)display '`r(levels)''local cut1 = 1/3local cut2 = 2/3foreach x of local id {recode g (min/`cut1'=1)(`cut1'/`cut2'=2)(`cut2'/max=3)if accper==`x'}【20】输出回归结果安装ssc install estout, replace单个回归regesttab using name.rtf, compress nogap r2 ar2 star(* 0.1 ** 0.05 *** 0.01)多个回归一起regest store m1regest store m2esttab m1 m2 using name.rtf, compress nogap r2 ar2 star(* 0.1 ** 0.05 *** 0.01)连续运行tobit模型结果导出:esttab m1 m2, b(%9.4f) t scalars(N ll Fchi2 type), using name.rtf, compress nogap连续运行OLS模型结果导出:esttab m1m2, b(%9.4f) tscalars(N r2 F p), using name.rtf, compress nogap【21】异方差检验及处理检验:怀特检验ssc install whitetstregestat imtest, white处理:“OLS 稳健标准差”reg y x1 x2 x3, robust【22】DW检验(序列相关性一阶)gen id=_ntsset idestat dwatson【23】多重共线性reg y x1 x2 x3vif【24】是否遗漏高次项例如,检验y对x的线性回归有没有遗漏高次项reg y xestat ovtest或者estat ovtest, rhs【25】逐步回归stepwise, pe(0.1): reg y x【26】Maddala(1983)两阶段处理效应模型treatreg yx1-xn, tr(z=w1-wm)two【27】Justified Jones Modelstatsby _b, by(ind accper)saving(*.dta,replace):reg yx, noconstantmerge m:m indaccper using *.dtagen yhat=y-_b*x◆◆◆◆精彩回顾点击上图查看:7-8月北京&广州Stata暑假研讨班| 第十一&十二届“高级计量经济学及stata应用”研讨班重磅发布!。

stata常用命令

stata常用命令

面板数据估计首先对面板数据进行声明:前面是截面单元,后面是时间标识:tsset company yeartsset industry year产生新的变量:gen newvar=human*lnrd产生滞后变量Gen fiscal(2)=L2.fiscal产生差分变量Gen fiscal(D)=D.fiscal描述性统计:xtdes :对Panel Data截面个数、时间跨度的整体描述Xtsum:分组内、组间和样本整体计算各个变量的基本统计量xttab 采用列表的方式显示某个变量的分布Stata中用于估计面板模型的主要命令:xtregxtreg depvar [varlist] [if exp] , model_type [level(#) ]Model type 模型be Between-effects estimatorfe Fixed-effects estimatorre GLS Random-effects estimatorpa GEE population-averaged estimatormle Maximum-likelihood Random-effects estimator主要估计方法:xtreg: Fixed-, between- and random-effects, and population-averaged linear modelsxtregar:Fixed- and random-effects linear models with an AR(1) disturbance xtpcse :OLS or Prais-Winsten models with panel-corrected standard errors xtrchh :Hildreth-Houck random coefficients modelsxtivreg :Instrumental variables and two-stage least squares for panel-data modelsxtabond:Arellano-Bond linear, dynamic panel data estimatorxttobit :Random-effects tobit modelsxtlogit : Fixed-effects, random-effects, population-averaged logit modelsxtprobit :Random-effects and population-averaged probit models xtfrontier :Stochastic frontier models for panel-dataxtrc gdp invest culture edu sci health social admin,betaxtreg命令的应用:声明面板数据类型:tsset sheng t描述性统计:xtsum gdp invest sci admin1.固定效应模型估计:xtreg gdp invest culture sci health admin techno,fe固定效应模型中个体效应和随机干扰项的方差估计值(分别为sigma u 和sigma e),二者之间的相关关系(rho)最后一行给出了检验固定效应是否显著的F 统计量和相应的P 值2.随机效应模型估计:xtreg gdp invest culture sci health admin techno,re检验随机效应模型是否优于混合OLS 模型:在进行随机效应回归之后,使用xttest0检验得到的P 值为0.0000,表明随机效应模型优于混合OLS 模型3. 最大似然估计Ml:xtreg gdp invest culture sci health admin techno,mleHausman检验Hausman检验究竟选择固定效应模型还是随机效应模型:第一步:估计固定效应模型,存储结果xtreg gdp invest culture sci health admin techno,feest store fe第二步:估计随机效应模型,存储结果xtreg gdp invest culture sci health admin techno,reest store re第三步:进行hausman检验hausman feHausman检验量为:H=(b-B)´[Var(b)-Var(B)]-1(b-B)~x2(k)Hausman统计量服从自由度为k的χ2分布。

必须记住的Stata常用命令

必须记住的Stata常用命令

必须记着的时常使用下令之阳早格格创做
请记着底下那些时常使用的基原下令.记着那些下令之后,当没有知其简直用法时,不妨用help去觅供助闲.
必须记着的常有下令
需要助闲
•help 助闲
•net search 搜集助闲
•search 搜集觅供助闲
加进某路径
•cd
设定内存
•set memory 20m 树立STATA的内存空间为20m
挨启战死存数据
•clear 浑空内存数据
•use 挨启STATA方法的数据文献
•compress 将内存中的数据压缩
•save 死存内存中的数据
导进数据
•input 录进数据
•edit 编写数据
•infile 导进数据
•infix 导进数据
•insheet 导进数据
沉整数据
•append 将有相共截止的数据纵背拼交(瞅察值拼交)
•merge 将二个数据文献横背拼交
•xpose 数据转置
•reshape
•generate 死成新的数据
•egen 死成新的数据
•rename 变量沉下令
•drop 简略变量或者瞅察值
•keep 死存变量或者瞅察值
•sort 对于瞅察值按从小到大程序沉新排列
•encode 数值型数据变换为字符型数据。

stata 常用命令

stata 常用命令

stata 常用命令Stata是一个流行的统计分析软件,广泛应用于各个领域的数据分析和研究。

它提供了丰富的命令和功能,可帮助用户处理、分析和可视化数据。

在本文中,我将向您介绍一些常用的Stata命令,以及它们在数据分析中的应用。

1. 数据导入与导出在使用Stata进行数据分析之前,我们需要将数据导入软件环境中。

Stata支持多种数据格式,如Excel、CSV、SPSS等。

对于Excel数据,我们可以使用命令"import excel"将数据导入到Stata中;对于CSV数据,可以使用"import delimited"命令。

Stata还提供了"export"命令,可将分析结果导出为Excel、CSV等格式,便于与其他软件进行交互。

2. 数据清洗与处理在数据分析过程中,数据清洗是一个重要的步骤。

Stata提供了一系列命令来处理和净化数据。

"drop"命令可以删除数据集中的变量或观察值;"replace"命令用于修改变量的取值;"gen"命令可以创建新的变量等。

"merge"命令可用于合并不同数据集,"sort"命令可用于排序数据等。

3. 描述性统计分析Stata提供了简单而强大的描述性统计分析命令,帮助用户了解数据的基本特征。

"summarize"命令可用于计算变量的均值、标准差等统计量;"tabulate"命令可用于制作交叉分类表;"histogram"命令可绘制变量的直方图等。

这些命令使我们能够更好地理解数据的分布和特征。

4. 统计模型估计Stata是一个强大的统计软件,支持各种常见的统计模型估计。

"regress"命令可用于进行线性回归分析;"logit"命令可用于二元逻辑回归分析;"heckman"命令可用于处理选择模型等。

stata命令大全(全)

stata命令大全(全)

********* 面板数据计量分析与软件实现 *********说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。

本人做了一定的修改与筛选。

*----------面板数据模型* 1.静态面板模型:FE 和RE* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计) * 3.异方差、序列相关和截面相关检验* 4.动态面板模型(DID-GMM,SYS-GMM)* 5.面板随机前沿模型* 6.面板协整分析(FMOLS,DOLS)*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)*** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog生产函数,一步法与两步法的区别。

常应用于地区经济差异、FDI 溢出效应(Spillovers Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。

常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。

* ---------------------------------* --------一、常用的数据处理与作图-----------* ---------------------------------* 指定面板格式xtset id year (id为截面名称,year为时间名称)xtdes /*数据特征*/xtsum logy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h "人力资本"rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year<1992drop if id==2 /*注意用==*/*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel 格式,需要用egen命令)egen year_new=group(year)xtset id year_new**保留变量或保留观测值keep inv /*删除变量*/**或keep if year==2000**排序sort id year /*是以STATA面板数据格式出现sort year id /*是以DEA格式出现**长数据和宽数据的转换*长>>>宽数据reshape wide logy,i(id) j(year)*宽>>>长数据reshape logy,i(id) j(year)**追加数据(用于面板数据和时间序列)xtset id year*或者xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据/tsset*或者tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov**生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)**生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/gen ylag2=L2.ygen dy=D.y /*产生差分项*/*求出各省2000年以前的open inv的平均增长率collapse (mean) open inv if year<2000,by(id)变量排序,当变量太多,按规律排列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

STATA常用命令总结(34个含使用示例)
1. sum:计算变量的简要统计信息,如均值、标准差等。

示例:sum variable
2. tabulate:生成变量的频数表。

示例:tabulate variable
3. describe:显示数据集的基本信息,如变量名和数据类型。

示例:describe dataset
4. drop:删除数据集中的变量。

示例:drop variable
5. keep:保留数据集中的变量,删除其他变量。

示例:keep variable
6. rename:重命名变量。

示例:rename variable newname
7. gen:根据已有变量生成新的变量。

示例:gen newvar = expression
8. egen:根据已有变量生成新的变量,可以使用更复杂的函数和运算符。

示例:egen newvar = function(variable)
9. recode:对变量的取值进行重新编码。

示例:recode variable (oldvalues= newvalues) 10. dropif:根据条件删除观测。

示例:dropif condition
11. keepif:根据条件保留观测。

示例:keepif condition
12. sort:对数据集按指定变量进行排序。

示例:sort variable
13. merge:将两个数据集按照共享变量合并。

示例:merge 1:1 variable using dataset2
14. reshape:将数据从宽格式转换为长格式或反之。

示例:reshape long var, i(id) j(year)
15. regress:进行线性回归分析。

示例:regress dependent_var independent_vars 16. logistic:进行逻辑回归分析。

示例:logistic dependent_var independent_vars 17. probit:进行Probit回归分析。

示例:probit dependent_var independent_vars 18. anova:进行方差分析。

示例:anova dependent_var independent_var
19. ttest:进行单样本或双样本t检验。

示例:ttest varname, by(groupvar)
20. chi2:进行卡方检验。

示例:chi2 varname, by(groupvar)
21. graph:绘制数据的图形。

示例:graph twoway scatter var1 var2 22. histogram:绘制直方图。

示例:histogram varname
23. scatter:绘制散点图。

示例:scatter var1 var2
24. line:绘制折线图。

示例:line xvar yvar, by(groupvar)
25. boxplot:绘制箱线图。

示例:boxplot varname, over(groupvar) 26. tab:生成交叉表。

示例:tab var1 var2
27. correlate:计算变量之间的相关系数。

示例:correlate var1 var2
28. pwcorr:计算变量之间的偏差相关系数。

示例:pwcorr var1 var2
29. count:通过计数非缺失值来计算变量的观测数。

示例:count varname
30. sumif:根据条件计算变量的简要统计信息。

示例:summarize varname, if(condition)
31. collapse:按照指定变量将数据进行折叠或合并。

示例:collapse (mean) varname, by(groupvar)
32. coxreg:进行Cox回归分析。

示例:coxreg dependent_var independent_vars
33. factor:进行因子分析。

示例:factor varlist
34. cluster:进行聚类分析。

示例:cluster varlist
这些命令是STATA中最常用的命令之一,并提供了各种功能,从数据描述到统计分析再到数据可视化。

掌握这些命令将帮助用户更好地利用STATA进行数据分析和处理。

相关文档
最新文档