勾股定理的总统证法及其他证法
勾股定理的几种证明方法

勾股定理的几种证明方法利用相似三角形证明有许多勾股定理的证明方式,都是基于相似三角形中两边长的比例。
设ABC为一直角三角形, 直角于角C(看附图). 从点C画上三角形的高,并将此高与AB的交叉点称之为H。
此新三角形ACH和原本的三角形ABC相似,因为在两个三角形中都有一个直角(这又是由于“高”的定义),而两个三角形都有A这个共同角,由此可知第三只角都是相等的。
同样道理,三角形CBH和三角形ABC也是相似的。
这些相似关系衍生出以下的比率关系:因为BC=a,AC=b,AB=c所以a/c=HB/a and b/c=AH/b可以写成a*a=c*HB and b*b=C*AH综合这两个方程式,我们得到a*a+b*b=c*HB+C*AH=C*(HB+AH)=c*c换句话说:a*a+b*b=c*c[*]----为乘号欧几里得的证法在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。
设△ABC 为一直角三角形,其中A为直角。
从A点划一直线至对边,使其垂直于对边上的正方形。
此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。
在正式的证明中,我们需要四个辅助定理如下:如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。
(SAS 定理)三角形面积是任一同底同高之平行四边形面积的一半。
任意一个正方形的面积等于其二边长的乘积。
任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。
证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。
其证明如下:设△ABC为一直角三角形,其直角为CAB。
其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。
画出过点A之BD、CE的平行线。
此线将分别与BC和DE直角相交于K、L。
分别连接CF、AD,形成两个三角形BCF、BDA。
∠CAB和∠BAG都是直角,因此C、A 和G 都是线性对应的,同理可证B、A和H。
勾股定理的证明方法

勾股定理的证明方法勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.下面结合几种图形来进行证明。
一、传说中毕达哥拉斯的证法(图1)左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的.右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。
因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。
在西方,人们认为是毕达哥拉斯最早发现并证明这一定理的,但遗憾的是,他的证明方法已经失传,这是传说中的证明方法,这种证明方法简单、直观、易懂.二、赵爽弦图的证法(图2)第一种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的直角三角形围在外面形成的。
因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得。
第二种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的角三角形拼接形成的(虚线表示),不过中间缺出一个边长为的正方形“小洞”.因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式,化简得.这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。
三、美国第20任总统茄菲尔德的证法(图3)这个直角梯形是由2个直角边分别为、,斜边为的直角三角形和1个直角边为的等腰直角三角形拼成的。
因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得.这种证明方法由于用了梯形面积公式和三角形面积公式,从而使证明更加简洁,它在数学史上被传为佳话。
古希腊数学的伟大成就:1、使数学成为抽象性的一门科学;2、建立了演绎证明体系,希腊成为论证数学发祥地;3、创立了几何学、三角学,奠定了数论基础等;4、萌芽了一些高等数学,如数论、极限等;5、希腊人发现定理及证明,逻辑结构严密,论证认真细致,为后世树立了样板等;不足:如,重几何轻代数,认为几何方法是数学证明唯一方法,畏于无理数的存在,而不将算术应用于几何;几何作图严格限制规尺.古希腊的数学方法论泰勒斯最先提出数学方法论,数学命题要加以演绎证明,在数学中要建立一般的原理好人规则,数学命题的证明就是要借助一些公理或真实性已经确定的命题来论证某一命题真实性的思想过程.演绎证明的方法即演绎推理的方法,指从一般到特殊的推理方法,其核心是三段论法,即有两个已知判断,推出第三个判断,例如,平行四边形的对角线互相平分(第一个已知一般判断成为大前提),矩形是平行四边形(另一个已知较特殊的判断,成为小前提),则矩形的对角线互相平分(推出新判断,即结论).用演绎法证明命题使几何由实验阶段,过渡到一门抽象的理论科学,使人类对自然的认识由感性(或经验)认识上升到理性认识,因此这是一个划时代的贡献。
勾股定理的六种证明

证明一
b a c ∴ (a + b)2 = c2 + 4(½ab) a2 + 2ab + b2 = c2 + 2ab a2 + b2 = c2
证明二
c c2 = (a − b)2 + 4(½ab) = a2 − 2ab + b2 + 2ab ∴ c2 = a2 + b2
【证法2】(1876年美国总统Garfield证明) 证法2 1876年美国总统Garfield证明) 年美国总统Garfield证明 以a、b 为直角边,以c为斜边作两个全等的直角三角形,则 每个直角三角形的面积等于 1 ab 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条 直线上. . ∵ RtΔEAD ≌ RtΔCBE, ∴ ∠ADE = ∠BEC. . ∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º. . ∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形, . 1 2 它的面积等于 c
• 1881 年成为美国第 20 任总統 • 1876 年提出有关证明
证明二及证明三的比较 明二及证明三的比较
• 两个证明基本上完全 相同!
证明四
a2
b2
证明四
证明四
证明四
证明四
∴ a2 + b2 = c2 c2
青朱出入图
• 刘徽(生於公元三世紀) • 三国魏晋时代人。 • 魏景元四年(即 263 年)为 古籍《九章算术》作注释。 • 在注作中,提出以「出入相 补」的原理來证明「勾股定 理」。后人称该图为「青朱 入出图」。
勾股定理(毕达哥拉斯定理)及各种证明方法

勾股定理(毕达哥拉斯定理)勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理是余弦定理的一个特例。
勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。
“勾三股四弦五”是勾股定理最基本的公式。
勾股数组方程a ² + b ²= c ²的正整数组(a ,b ,c )。
(3,4,5)就是勾股数。
也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a ²+b ²=c ² ,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理命题1 如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么。
勾股定理的逆定理命题2 如果三角形的三边长a ,b ,c 满足,那么这个三角形是直角三角形。
【证法1】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于21ab. 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE,∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a ,∠HEF = 90º. ∴ EFGH 是一个边长为b―a 的正方形,它的面积等于.∴ ∴.【证法2】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等.即, 整理得 .【证法3】(1876年美国总统Garfield证明)以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90º, ∠EBC = 90º,∴AD∥BC.∴ABCD是一个直角梯形,它的面积等于∴ .∴.【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
勾股定理总统证法

勾股定理总统证法在数学界,勾股定理一直是最有名的定理之一。
它的证明方式也有多种,其中最为著名的就是总统证法。
总统证法又称为李氏定理,距今已有2000多年的历史。
它的原作者不可考,但它的精神活跃在我们的数学世界中,给大家带来很多视角。
勾股定理指:任意一个直角三角形,它的斜边的平方等于它的两条直边的平方和。
具体地说,即:a^2 + b^2 = c^2总统证法是古代古希腊数学家著名的定理,他们用它来证明勾股定理。
他们使用一个四边形的概念,把它划分成四个直角三角形,并令其斜边的平方等于这些三角形的两条直边的平方和。
以下是证明勾股定理的总统证法的具体步骤:(1)把四边形划分成四个直角三角形,四边形中心两边的内角均为90°,其余各内角均为45°。
(2)给四边形赋予正方形形式,此时四边形被划为四个直角三角形,即:A-B-C-DA-C-B-DA-D-C-BA-B-D-C(3)把四边形的边赋予任意数值,如a, b, c, d,则每三角形的斜边长度分别为a, b, c, d。
(4)因为(AC)+(CB)=(AD);(BC)+(AD)=(CB);(AB)+(CD)=(BD);(BD)+(CD)=(AB);所以有:(a^2+b^2) = (c^2+d^2) = (a^2+d^2) = (b^2+c^2)。
因此,证明了勾股定理:任意一个直角三角形,它的斜边的平方等于它的两条直边的平方和。
总统证法是一种非常有效的勾股定理证明方式,它也证明了数学的美妙之处,源自古希腊数学家的智慧。
总统证法的理论支持,使得勾股定理的证明更加准确,令数学变得更加完美。
它也激发了人类对数学的持续探索,使得数学日益进步。
最后,总统证法也使我们更加深刻地理解勾股定理,并知晓学习数学之美。
勾股定理是一个奥秘又伟大的定理,它丰富而深刻,只有经过不懈努力才可以得以理解。
学习这个定理,不仅可以提高我们数学的能力,还可以激发我们对数学的热爱,提高我们的求知欲望。
勾股定理16种经典证明方法

b a22+【证法1】〔课本的证明〕做8a 、b 、c 的正.2a 整以a 、b ab21.把这四个直角三角C 、G、D 三点在一条直线上.∵Rt Δ∴∠AHE = ∠BEF . ∵∠AEH + ∠AHE = 90º, ∴∠AEH + ∠BEF = 90º. ∴∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2. ∵Rt ΔGDH ≌Rt ΔHAE, ∴∠HGD = ∠EHA .∵∠HGD + ∠GHD = 90º, ∴∠EHA + ∠GHD = 90º. 又∵∠GHE = 90º,∴∠DHA = 90º+ 90º= 180º.∴ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +.∴()22214c ab b a +⨯=+. ∴222c b a =+.【证法3】〔爽证明〕以a 、b 为直角边〔b>a 〕, 以c 为斜 边作四个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这四个直角三角形拼成如下图形状.∵Rt ΔDAH ≌ Rt ΔABE, ∴∠HDA = ∠EAB .∵∠HAD + ∠HAD = 90º, ∴∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴()22214c a b ab =-+⨯.∴222c b a =+. 【证法4】〔1876年美国总统Garfield 证明〕以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这两个直角三角形拼成如下图形状,使A 、E 、B 三点在一条直线上. ∵Rt ΔEAD ≌Rt ΔCBE, ∴∠ADE = ∠BEC .∵∠AED + ∠ADE = 90º, ∴∠AED + ∠BEC = 90º. ∴∠DEC = 180º―90º= 90º. ∴ΔDEC 是一个等腰直角三角形,它的面积等于221c .又∵∠DAE = 90º, ∠EBC = 90º,∴ AD ∥BC .∴ABCD 是一个直角梯形,它的面积等于()221b a +.∴()222121221c ab b a +⨯=+. ∴222c b a =+.【证法5】〔梅文鼎证明〕 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .∵D 、E 、F 在一条直线上,且Rt ΔGEF ≌Rt ΔEBD, ∴∠EGF = ∠BED ,∵∠EGF + ∠GEF = 90°,∴∠BED + ∠GEF = 90°,∴∠BEG =180º―90º= 90º.又∵AB = BE = EG = GA = c ,∴ABEG 是一个边长为c 的正方形.∴∠ABC + ∠CBE = 90º. ∵Rt ΔABC ≌Rt ΔEBD, ∴∠ABC = ∠EBD .∴∠EBD + ∠CBE = 90º.即∠CBD= 90º.又∵∠BDE = 90º,∠BCP = 90º,BC = BD = a .∴BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则abS c 2122⨯+=,∴222c b a =+. 【证法6】〔项明达证明〕做两个全等的直角三角形,设它们的两条直角边长分别为a 、b 〔b>a 〕 ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如下图的多边形,使E 、A 、C 三点在一条直线上.过点Q 作QP ∥BC ,交AC 于点P .过点B 作BM ⊥PQ ,垂足为M ;再过点 F 作FN ⊥PQ ,垂足为N .∵∠BCA = 90º,QP ∥BC , ∴∠MPC = 90º, ∵BM ⊥PQ ,∴∠BMP = 90º,∴BCPM 是一个矩形,即∠MBC = 90º. ∵∠QBM + ∠MBA = ∠QBA = 90º, ∠ABC + ∠MBA = ∠MBC = 90º, ∴∠QBM = ∠ABC ,又∵∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴Rt ΔBMQ ≌Rt ΔBCA .同理可证Rt ΔQNF ≌Rt ΔAEF . 从而将问题转化为【证法4】〔梅文鼎证明〕. 【证法7】〔欧几里得证明〕做三个边长分别为a 、b 、c 的正方形,把它们拼成如下图形状,使H 、C 、B 三点在一条直线上,连结 BF 、CD . 过C 作CL ⊥DE , 交AB 于点M ,交DE 于点L .∵AF = AC ,AB = AD ,∠FAB = ∠GAD , ∴ΔFAB ≌ΔGAD , ∵ΔFAB 的面积等于221a,ΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =2a .同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形∴222b ac += ,即 222c b a =+. 【证法8】〔利用相似三角形性质证明〕如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中,∵∠ADC = ∠ACB = 90º, ∠CAD = ∠BAC , ∴ΔADC ∽ΔACB .AD ∶AC = AC ∶AB ,即AB AD AC •=2.同理可证,ΔCDB ∽ΔACB ,从而有AB BD BC •=2.∴()222AB AB DB AD BC AC =•+=+,即 222c b a =+.【证法9】〔作玫证明〕做两个全等的直角三角形,设它们的两条直角边长分别为a 、b 〔b>a 〕,斜边长为c . 再做一个边长为c 的正方形.把它们拼成如下图的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵∠BAD = 90º,∠PAC = 90º, ∴∠DAH = ∠BAC . 又∵∠DHA = 90º,∠BCA = 90º,AD = AB = c ,∴Rt ΔDHA ≌Rt ΔBCA . ∴DH = BC = a ,AH = AC = b . 由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a .∵Rt ΔDGT ≌Rt ΔBCA ,Rt ΔDHA ≌Rt ΔBCA .∴Rt ΔDGT ≌Rt ΔDHA .∴DH = DG = a ,∠GDT = ∠HDA . 又∵∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴DGFH 是一个边长为a 的正方形.∴GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +〔b ―a 〕. 用数字表示面积的编号〔如图〕,则以c 为边长的正方形的面积为543212S S S S S c ++++=①∵()[]()[]a b a a b b S S S -+•-+=++21438=ab b 212-, 985S S S +=,∴824321S ab b S S --=+=812SS b --.② 把②代入①,得=922S S b ++ = 22a b +. ∴222c b a =+. 【证法10】〔锐证明〕设直角三角形两直角边的长分别为a 、b 〔b>a 〕,斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如下图形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号〔如图〕.∵∠TBE = ∠ABH = 90º, ∴∠TBH = ∠ABE .又∵∠BTH = ∠BEA = 90º,BT = BE = b ,∴Rt ΔHBT ≌Rt ΔABE . ∴HT = AE = a . ∴GH = GT ―HT = b ―a .又∵∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠BHT = 90∴∠GHF = ∠DBC .∵ DB = EB ―ED = b ―a ,∠HGF = ∠BDC = 90º,∴Rt ΔHGF ≌Rt ΔBDC . 即27S S =.过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90º,可知∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌Rt ΔQAM .即58S S =.由Rt ΔABE ≌Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE .∵∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴∠FQM = ∠CAR .又∵∠QMF = ∠ARC = 90º,QM = AR = a ,∴Rt ΔQMF ≌Rt ΔARC . 即64S S =.∵543212S S S S S c ++++=,612S S a +=,8732S S S b ++=, 又∵27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++ =2c ,即 222c b a =+. 【证法11】〔利用切割线定理证明〕在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得=()()BD AB BE AB -+ =()()a c a c -+ = 22a c -, 即222a c b -=,∴222c b a =+. 【证法12】〔利用多列米定理证明〕在Rt ΔABC 中,设直角边BC = a ,AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 接于一个圆. 根据多列米定理,圆接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB •+•=•,∵ AB = DC = c ,AD = BC = a , AC = BD = b ,∴222AC BC AB +=,即 222b a c +=,∴222c b a =+.【证法13】〔作直角三角形的切圆证明〕在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边O ,切点分别为D 、E 、F 〔如图〕,设⊙O 的半径为r .∵ AE = AF ,BF = BD ,CD = CE ,∴()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即r c b a 2=-+,∴c r b a +=+2. ∴()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵abS ABC 21=∆, ∴ABC S ab ∆=42, 又∵AOC BOCAOB ABC S S S S ∆∆∆∆++= = br ar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴()ab rc r242=+,∴22222c ab ab b a +=++, ∴222c b a =+. 【证法14】〔利用反证法证明〕如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+•可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中, ∵∠A = ∠A , ∴假设 AD :AC ≠AC :AB ,则 ∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵∠B = ∠B ,∴假设BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB . 又∵∠ACB = 90º,∴∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴222c b a =+.【证法15】〔辛卜松证明〕ABCD . 把正方形ABCD 划分ABCD 划分成上方右图 ()2b a +∴2a +2c =.【证法〔b>a 〕a 、b 的正方形〔b>a 〕,把它. . D D在EH = b 上截取ED = a ,连结DA 、DC , 则 AD = c .∵EM = EH + HM = b + a , ED = a ,∴DM = EM ―ED = ()a b +―a = b .又∵∠CMD = 90º,CM = a ,∠AED = 90º, AE = b , ∴Rt ΔAED ≌Rt ΔDMC .∴∠EAD = ∠MDC ,DC = AD = c . ∵∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º,∴∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形. ∵∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ΔABF ≌ΔADE .∴∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中,∵AB = BC = c ,BF = CG = a , ∴Rt ΔABF ≌Rt ΔBCG .∵54322S S S S c +++=, 6212S S S b ++=,732S S a +=, 76451S S S S S +===,∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++ =5432S S S S +++ =2c∴222c b a =+.。
勾股定理的证明比较全的证明方法

A
B
这棵树漂亮吗?如果在树上挂上 几串彩色灯泡,再挂上些小铃铛、小 彩球、小礼盒、小的圣诞老人,是不 是更像一棵圣诞树.
也许有人会问:“它与勾股定理 有什么关系吗?”
仔细看看,你会发现,奥妙在树 干和树枝上,整棵树都是由下方的这 个基本图形组成的:一个直角三角形 以及分别以它的每边为一边向外所作 的正方形.
来进行的.
G
已知:如图,以在Rt△ABC中,
H
F
∠ACB=90°,分别以a、b、c 为边向外作正方形.
C
K
ba
c
A
B
求证:a2 3
传说中毕达哥拉斯的证法
证明:从Rt△ABC的三边向外各作一个正方形(如图),作CN⊥DE 交AB于M,那么正方形ABED被分成两个矩形.连结CD和KB.
总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好者?答案是 否定的.事情的经过是这样的:
1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步, 欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突 然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争 论,时而小声探讨.由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个 小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角 形.于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生, 如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到: “是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的 斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方 加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时 语塞,无法解释了,心理很不是滋味.
勾股定理16种证明方法

【证法1】(课本的证明)勾股定理的证明做8个全等的直角三角形,设它们的两条直角边长分别为 a 、b ,斜边长为c ,再做 三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是 a + b ,所以面积相等.即2 21 2 1a 2b 2 4 ab 二c 2 4 ab22, 整理得【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积ab等于2 .把这四个直角三角形拼成如图所示形状, 使A E 、B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C G D 三点在一条直线上.v Rt △ HAE 坐 Rt △ EBF, ••• / AHE = / BEFv / AEH + / AHE = 90o,• / AEH + / BEF = 90o.• / HEF = 180o — 90o= 90o. •四边形EFGH 是一个边长为c 的 正方形.它的面积等于c 2. v Rt △ GDH 坐 Rt △ HAE,D b G a C bF a Bv / HGD + / GHD = 98,• / EHA + / GHD = 98. 又v /GHE = 90o,• / DHA = 90o+ 90o= 180o.2• ABCD 是一个边长为a + b 的正方形,它的面积等于(a +a b 2 =4 -ab c 22【证法3】(赵爽证明)以a 、b 为直角边(b>a ), a 2 =c 2ac\ca 2b 2以c 为斜边作四个全等的直角三角形,则每个直角1ab三角形的面积等于2 .把这四个直角三角形拼成如图所示形状•v Rt △ DAH 坐 Rt △ ABE,••• / HDA = / EABv / HAD + / HAD = 90o , • / EAB + / HAD = 900,• ABCD 是一个边长为c 的正方形,它的面积等于c 2. v EF = FG =GH =HE = b — a , / HEF = 900.2• EFGH 是一个边长为b —a 的正方形,它的面积等于(b -a ).1 2 2 4 疋一ab + (b —a f = c 2• 2【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面1 c 它的面积等于2又 v / DAE = 90o, / EBC = 90o, • AD // BC• ABCD 是 一个直角梯形,它的面积等于1 1 12(a +b 32^ab *c 2• a 2 +b 2 = c 2.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为 a 、b ,斜边长为c.把它 们拼成如图那样的一个多边形,使 D E 、F 在一条直线上.过C 作AC 的延长线交DF 于 点P 八、、■・a 2b 2二 c 2积等于2ab把这两个直角三角形拼成如图所示形状,使B 三点在一条直线上v Rt △ EAD 坐 Rt △ CBE,• / ADE = / BECv / AED + / ADE = 90o,• / AED + / BEC = 90o.• / DEC = 180o — 90o= 90o. • △ DEC 是 一个等腰直角三A Ecav D、E、F在一条直线上,且Rt △ GEF幻Rt △ EBD,v / EGF + / GEF = 90°, •• / BED + / GEF = 90°, •• / BEG =18(0—90o= 90o./ AB = BE = EG = GA = c , •• ABEG 是•• / ABC + / CBE = 900.•• Rt △ ABC 刍 Rt △ EBD, •• / ABC = / EBD•• / EBD + / CBE = 900.即 / CBD= 9(0.又 v / BDE = 900,/ BCP = 900,BC = BD = a .••• BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCB 的面积为S ,则2 21a b = S 2 ab,2c 2二 S 21ab2【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a )c.再做一个边长为c 的正方形.把它们拼成如图所示的多边形,使 E 、A 、 直线上.过点Q 作QP// BC 交AC 于点P. 过点B 作BM L PQ 垂足为M ;再过点 F 作FNL PQ 垂足为Nv / BCA = 900 , QP// BC• / MPC = 900 , v BM 丄 PQ• / BMP = 900 ,• BCPM 是一个矩形,即/ MBC = 9 v / QBM + / MBA = / QBA = 900 ,/ ABC + / MBA = / MBC = 900 , • / QBM = / ABC又 v / BMP = 900 , / BCA = 900 , BQ = BA = c ,a 2b 2 =c 2G 个边长为c 的正方形. a bHa,斜边长为 C 三点在一条ccacP bba、• Rt △ BMQ坐Rt △ BCA 同理可证Rt △ QNF坐Rt △ AEF从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明)做三个边长分别为a 、b 、 在一条直线上,连结 BF CD 过 C 作 CL ± DE 交AB 于点M 交DE 于点 L.v AF = AC , AB = AD ,/FAB = / GAD••• △ FAB 坐 △ GAD1av △ FAB 的面积等于2△ GAD 勺面积等于矩形ADLM 的面积的一半,•矩形ADLM 勺面积二a同理可证,矩形MLEE 的面积v 正方形ADEB 勺面积=矩形ADLM 勺面积+矩形MLEB 勺面积 • c 2=a 2+b 2,即 a 2+b 2=c 2. 【证法8】(利用相似三角形性质证明) 如图,在Rt △ABC 中,设直角边 点C 作CDL AB 垂足是D 在△ ADC 和△ ACB 中, v / ADC = / ACB = 90o , / CAD = / BAC •△ ADC s A ACBAD : AC = AC : AB,即 AC 2 = AD • AB .同理可证,△ CDB s △ ACBAC BC 的长度分别为 a 、b ,斜边AB 的长为c ,过 从而有 BC — BD *AB2 = c 2• AC 2 BC 2 二 AD DB ・ AB 二 AB 2 ,即 a 2 b 【证法9](杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为 再做一个边长为c 的正方形.把它们拼成如图所示的多边形 于F , AF 交DT 于R.过B 作BP! AF, E , DE 交 AF 于 H v / BAD = 90o ,Z PAC = 90o ,• / DAH = / BAC又 v / DHA = 90o ,Z BCA =AD = AB = c ,a 、b (b>a ),斜边长为c. .过A 作AF 丄AC AF 交GT 垂足为P.过D 作DE 与CB 的延长线垂直,垂足为 的正方形,把它们拼成如图所示形状,使 H C B 三点 c••• Rt △ DHA 坐 Rt △ BCA ••• DH = BC = a , AH = AC = b. 由作法可知,PBCA 是一个矩形,所以 Rt △ APB 坐 Rt △ BCA 即 PB = CA = b , AP= a ,从而 PH = b — a.v Rt △ DGT 坐 Rt △ BCA ,Rt △ DHA 坐 Rt △ BCA• Rt △ DGT 坐 Rt △ DHA.• DH = DG = a ,/ GDT = / HDA. 又 v / DGT = 90o ,Z DHF = 90o ,/ GDH = / GDT + / TDH = / HDA+ / TDH = 90o , • DGFH 是一个边长为a 的正方形.• GF = FH = a . TF 丄AF, TF = GT — GF = b — a .• T FPB 是一个直角梯形,上底 TF=b-a ,下底BP= b ,高FP=a + (b — a ) 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为2CS 1S 2S 3S 4S5①把②代入①,得c 2 二 S S 2 b 2 - 3 - S8 & S 9 =b 2 +S 2 0 = b 2 +a 2【证法10】(李锐证明)设直角三角形两直角边的长分别为 a 、b (b>a ),斜边的长为c.做三个边长分别为a 、 b 、c 的正方形,把它们拼成如图所示形状,使 A 、E 、G 三点在一条直线上.用数字表示 • HT = AE = a . • GH = GT — HT = b — a. 又v / GHF + / BHT = 90o ,/ DBC + / BHT = / TBH + S 8 S 3 S 4A2 b 亠[b - aa 亠[b -a 1b 2 - 1 ab2,S 3 S 4 =b 2 —fab —S 8b 2 - S i - S ga 2b 2二 c 2面积的编号(如图).v / TBE = / ABH = =90o , • / TBH = / ABE 又v / BTH = / BEA = =90o , BT = BE =b ,• Rt △ HBT 坐 Rt △ ABE B b28 D61 3M F E45 c/ BHT = 90O ,QS 7 =S S 2 S 3 S 4 S 5 =S 2= S5S4a 2 = S 1 S 6b 2 = S 3 S 7 S 82 2a b ^S 1 S 6 S 3 S 7 S 8=S i S 4 S 3 S 2 S 52=c即 a 2 +b 2 =c 2.【证法11】(利用切割线定理证明)在Rt △ ABC 中,设直角边 BC = a ,AC = b ,斜边AB = c.如图,以B 为圆心a 为半 径作圆,交AB 及AB 的延长线分别于 D E ,贝S BD = BE = BC = a .因为/ BCA = 90o , 点C 在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总统巧证勾股定理 学过几何的人都知道勾股定理。它是几何中一个比较重要的定理,应用十分广泛。迄今为止,关于勾股定理的证明方法已有500余种。其中,美国第二十任总统伽菲尔德的证法在数学史上被传为佳话。
总统为什么会想到去证明勾股定理呢难道他是数学家或数学爱好者答案是否定的。事情的经过是这样的;
在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢”伽菲尔德答到:“是5呀。”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说道:“先生,你能说出其中的道理吗”伽菲尔德一时语塞,无法解释了,心理很不是滋味。
于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。
他是这样分析的,如图所示: 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法。1881年,伽菲尔德就任美国第二十任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统。”证法。
勾股定理的证明 罗洪信 (2002年4月25日参加桂林市创新教育课堂教学大比武用) 【证法1】(课本的证明)
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即
abcabba214214222, 整理得 222cba.
【证法2】(邹元治证明) 以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角
形的面积等于ab21. 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴ ∠AHE = ∠BEF. ∵ ∠AEH + ∠AHE = 90º,
babababacbacbacbacbacbac
ba
DGCFAHEBabca
b
ca
bca
bc∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º. ∴ 四边形EFGH是一个边长为c的 正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º, ∴ ∠DHA = 90º+ 90º= 180º.
∴ ABCD是一个边长为a + b的正方形,它的面积等于2ba.
∴ 22214cabba. ∴ 222cba. 【证法3】(赵爽证明) 以a、b 为直角边(b>a), 以c为斜 边作四个全等的直角三角形,则每个直角
三角形的面积等于ab21. 把这四个直角三 角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴ ∠HDA = ∠EAB. ∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º, ∴ ABCD是一个边长为c的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a , ∠HEF = 90º.
bac
G
D
AC
BF
EHaba
bcc
AB
CD
E
∴ EFGH是一个边长为b―a的正方形,它的面积等于2ab. ∴ 22214cabab. ∴ 222cba. 【证法4】(1876年美国总统Garfield证明) 以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三
角形的面积等于ab21. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上. ∵ RtΔEAD ≌ RtΔCBE, ∴ ∠ADE = ∠BEC. ∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º. ∴ ∠DEC = 180º―90º= 90º. ∴ ΔDEC是一个等腰直角三角形,
它的面积等于221c. 又∵ ∠DAE = 90º, ∠EBC = 90º, ∴ AD∥BC.
∴ ABCD是一个直角梯形,它的面积等于221ba. ∴ 222121221cabba. ∴ 222cba.
【证法5】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作ACPH
G
FE
DCBA
ab
ca
bc
abc
abc
ccbacbAEFP
M
的延长线交DF于点P. ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形. ∴ ∠ABC + ∠CBE = 90º. ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º. 又∵ ∠BDE = 90º,∠BCP = 90º, BC = BD = a. ∴ BDPC是一个边长为a的正方形. 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则
,21222abSba abSc2122,
∴ 222cba.
【证法6】(项明达证明) 做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点 F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90º,QP∥BC, ∴ ∠MPC = 90º, ∵ BM⊥PQ, ∴ ∠BMP = 90º, ∴ BCPM是一个矩形,即∠MBC = 90º. ∵ ∠QBM + ∠MBA = ∠QBA = 90º, ∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC, 又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF. 从而将问题转化为【证法4】(梅文鼎证明).
【证法7】(欧几里得证明)
做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结 BF、CD. 过C作CL⊥DE, 交AB于点M,交DE于点 L. ∵ AF = AC,AB = AD, ∠FAB = ∠GAD, ∴ ΔFAB ≌ ΔGAD,
∵ ΔFAB的面积等于221a, ΔGAD的面积等于矩形ADLM c
bacba
AB
C
DEFGHMLK的面积的一半, ∴ 矩形ADLM的面积 =2a. 同理可证,矩形MLEB的面积 =2b. ∵ 正方形ADEB的面积 = 矩形ADLM的面积 + 矩形MLEB的面积 ∴ 222bac ,即 222cba.
【证法8】(利用相似三角形性质证明)
如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D. 在ΔADC和ΔACB中, ∵ ∠ADC = ∠ACB = 90º, ∠CAD = ∠BAC, ∴ ΔADC ∽ ΔACB. AD∶AC = AC ∶AB, 即 ABADAC•2. 同理可证,ΔCDB ∽ ΔACB,从而有 ABBDBC•2. ∴ 222ABABDBADBCAC•,即 222cba.
【证法9】(杨作玫证明) 做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 过A作AF⊥AC,AF交GT于F,AF交DT于R. 过B作BP⊥AF,垂足为P. 过D作DE与CB的延长线垂直,垂足为E,DE交AF于H. ∵ ∠BAD = 90º,∠PAC = 90º, ∴ ∠DAH = ∠BAC. 又∵ ∠DHA = 90º,∠BCA = 90º,
ABDCacb
987654321PQRTH
G
F
EDCBA
a
bc
a
bcc
c