TL494脉宽调制控制电路(DOC)
中文资料TL494CN

TL494常应用于电源电路当中,在本站的文章中,除了本文TL494中文资料及应用电路,还有一个电路是应用了TL494资料的,具体的电路图,请参考本站文章:200W的ATX电源线路图,本文已经提供了比较丰富的TL494中文资料了TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。
TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。
其主要特性如下:TL494主要特征集成了全部的脉宽调制电路。
片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。
内置误差放大器。
内止5V参考基准电压源。
可调整死区时间。
内置功率晶体管可提供500mA的驱动能力。
推或拉两种输出方式。
TL494外形图TL494引脚图TL494工作原理简述TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。
功率输出管Q1和Q2受控于或非门。
当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。
当控制信号增大,输出脉冲的宽度将减小。
参见图2。
TL494脉冲控制波形图控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。
死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。
当把死区时间控制输入端接上固定的电压(范围在0—3.3V之间)即能在输出脉冲上产生附加的死区时间。
脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V变化到3.5时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。
TL494CN中文资料原理及应用技巧

TL494主要特征集成了全部的脉宽调制电路。
片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)内置误差放大器。
内止5V 参考基准电压源。
可调整死区时间。
内置功率晶体管可提供500mA的驱动能力。
推或拉两种输出方式。
TL494外形图TL494引脚图TL494工作原理简述TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。
功率输出管Q1和Q2受控于或非门。
当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。
当控制信号增大,输出脉冲的宽度将减小。
参见图2。
TL494脉冲控制波形图控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。
死区时间比较器具有120mV勺输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。
当把死区时间控制输入端接上固定的电压(范围在0—之间)即能在输出脉冲上产生附加的死区时间。
脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从变化到时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。
两个误差放大器具有从到()的共模输入范围,这可能从电源的输出电压和电流察觉得到。
误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相输入端进行“或”运算,正是这种电路结构,放大器只需最小的输出即可支配控制回路。
当比较器CT放电,一个正脉冲出现在死区比较器的输出端,受脉冲约束的双稳触发器进行计时,同时停止输出管Q1和Q2的工作。
若输出控制端连接到参考电压源,那么调制脉冲交替输出至两个输出晶体管,输出频率等于脉冲振荡器的一半。
如果工作于单端状态,且最大占空比小于50%时,输出驱动信号分别从晶体管Q1或Q2取得。
tl494调流原理

tl494调流原理小伙伴,今天咱们来唠唠TL494调流这个超有趣的事儿。
TL494呢,就像是一个特别聪明的小管家,在电路里管着电流的大小呢。
你想啊,电流就像一群调皮的小蚂蚁,有时候多了就会出乱子,有时候少了又不能让电器好好干活。
TL494就站出来说:“小电流们,得听我的,按规矩来。
”那它怎么做到调流的呢?这得从它的内部结构说起。
TL494里面有一些很神奇的电路部分。
它有两个误差放大器,这就好比是它的两个小耳朵,在时刻听着电流的动静。
一个误差放大器负责检测输出电压的情况,另一个呢就专门盯着电流。
当电流开始不安分,变大或者变小的时候,这个盯着电流的误差放大器就会感觉到。
比如说,要是电流突然变大了,就像一群小蚂蚁突然涌过来好多好多。
这个误差放大器就会发现,“这可不行,太多啦。
”然后它就会把这个情况告诉TL494的其他部分。
TL494还有一个很厉害的东西,就是它的脉宽调制器。
这就像是一个指挥棒。
当误差放大器发现电流不对劲的时候,就会给脉宽调制器发信号。
脉宽调制器就会改变它输出的脉冲宽度。
你可以把这个脉冲想象成一个个小盒子,电流就得按照这个小盒子的大小和频率来走。
如果电流太大了,脉宽调制器就把这个小盒子变窄一点,这样电流能通过的空间就小了,电流就不得不变小啦。
就好像把小蚂蚁们走的路变窄了,那一次能过去的小蚂蚁数量就少了。
而且哦,TL494还有一个内部的基准电压源。
这个基准电压源就像是一个标准尺子。
其他部分检测到的电流电压情况都要和这个标准尺子比一比。
要是电流对应的电压偏离了这个标准尺子的刻度,那就是有问题啦,就得调整。
比如说,如果电流大了,对应的电压就高了,和这个标准尺子一对比,就知道要让电流降下来。
在整个电路里,TL494周围还有一些其他的小零件在配合它。
像电阻和电容,它们就像是TL494的小助手。
电阻可以分担电压,电容可以储存电荷,它们一起帮助TL494更好地控制电流。
比如说,电容就像一个小水库,当电流不稳定的时候,它可以放出或者吸收一些电荷,来让电流变得平稳一些。
TL494中文资料及应用电路

的 13 脚将立即从+5V 下跳到零电平,关机时 PG 输出信号比 ATX 开关电源+5V 输出电压提前几百毫秒消失, 通知主机触发系统在电源断电前自动关闭,防止突然掉电时硬盘的磁头来不及归位而划伤硬盘。 5、主电源电路及多路直流稳压输出电路 如图 8 所示,微机受控启动后,PS 信号由主板启动控制电路的电子开关接地,允许 IC2 的⑧、11 脚输出脉 宽调制信号,去控制与推动三极管 Q3、Q4 的 c 极相连接的 T2 推动变压器次级绕组产生的激励振荡脉冲。 T2 的初级绕组由它激振荡产生的感应电动势作用于 T1 主电源开关变压器的初级绕组,从 T1 次级①②绕组 产生的感应电动势经 D20、D28 整流、L2(功率因素校正变压器,也称低电压扼流线圈。以它为主来构成功 率因素校正电路,简称 PFC 电路,起自动调节负载功率大小的作用。当负载要求功率很大时,则 PFC 电路 就经过 L2 来校正功率大小,为负载输送较大的功率;当负载处于节能状态时,要求的功率很小,PFC 电路 通过 L2 校正后为负载送出较小的功率,从而达到节能的作用。)第④绕组以及 C23 滤波后输出—12V 电压; 从 T1 次级③④⑤绕组产生的感应电动势经 D24、D27 整流、L2 第①绕组及 C24 滤波后输出—5V 电压;从 T1 次级③④⑤绕组产生的感应电动势经 D21、L2 第②③绕组以及 C25、C26、C27 滤波后输出+5V 电压;从 T1 次级③⑤绕组产生的感应电动势经 L6、L7、D23、L1 以及 C28 滤波后输出+3.3V 电压;从 T1 次级⑥⑦绕 组产生的感应电动势经 D22、L2 第⑤绕组以及 C29 滤波后输出+12V 电压。其中,每两个绕组之间的 R (5Ω/1/2W)、C(103)组成尖峰消除网络,以降低绕组之间的反峰电压,保证电路能够持续稳定地工作。 ATX 微机开关电源维修教程 3 6、自动稳压稳流控制电路 (1)+3.3V 自动稳压电路 IC5(精密稳压电路 TL431)、Q2、R25、R26、R27、R28、R18、R19、R20、D30、D31、D23(场效应管)、 R08、C28、C34 等组成+3.3V 自动稳压电路。如图 9 所示。 当输出电压(+3.3V)升高时,由 R25、R26、R27 取得升高的采样电压送到 IC5 的 G 端,使 UG 电位上升,UK 电位下降,从而使 Q2 导通,升高的+3.3V 电压通过 Q2 的 ec 极,R18、D30、D31 送至 D23 的 S 极和 G 极, 使 D23 提前导通,控制 D23 的 D 极输出电压下降,经 L1 使输出电压稳定在标准值(+3.3V)左右,反之, 稳压控制过程相反。 (2)+5V、+12V 自动稳压电路 IC2 的①、②脚电压取样比较器正、负输入端,取样电阻 R15、R16、R33、R35、R68、R69、R47、R32 构成 +5V、+12V 自动稳压电路。如图 10 所示。 当输出电压升高时(+5V 或+12V),由 R33、R35、R69 并联后的总电阻取得采样电压,送到 IC2 的①脚和② 脚,与 IC2 内部的基准电压相比较,输出误差电压与 IC2 内部锯齿波产生电路的振荡脉冲在 PWM(比较器) 中进行比较放大,使⑧、11 脚输出脉冲宽度降低,输出电压回落至标准值的范围内。 反之稳压控制过程相反,从而使开关电源输出电压保持稳定。 (3)+3.3V、+5V、+12V 自动稳压电路 IC4(精密稳压电路 TL431)、IC3、Q1、R01、R02、R03、R04、R05、R005、D7、C09、C41 等组成+3.3V、 +5V、+12V 自动稳压电路。如图 11 所示。 当输出电压升高时,T3 次级绕组产生的感应电动势经 D50、C04 整流滤波后一路经 R01 限流送至 IC3 的① 脚,另一路经 R02、R03 获得增大的取样电压送至 IC4 的 G 端,使 UG 电位上升,UK 电位下降,从而使 IC4 内发光二极管流过的电流增加,使光敏三极管导通,从而使 Q1 导通,同时经负反馈支路 R005、C41 使开关 三极管 Q03 的 e 极电位上升,使得 Q03 的 b 极分流增加,导致 Q03 的脉冲宽度变窄,导通时间缩短,最终 使输出电压下降,稳定在规定范围之内。 反之,当输出电压下降时,则稳压控制过程相反。 (4)自动稳流电路 IC2 的 15、16 脚电流取样比较器正、负输入端,取样电阻 R51、R56、R57 构成负载自动稳流电路。如图 12 所示。 负端输入端 15 脚接稳压+5V,正端输入端 16 脚, 该脚外接的 R51、R56、R57 与地之间形成回路,当负载
TL494充电器原理与维修

TL494电动车充电器原理与维修电动自行车充电器多采用开关电源,型号虽多,但电路结构大同小异,主要区别在于所选的脉宽调制(PWM)芯片不同如(UC3845、UC3842、SG3524、TL494)。
现以佳腾牌充电器为例,介绍其原理和故障检修方法。
一、电路原理根据实物测绘的佳腾牌充电器电路原理如图1所示。
整机可分为PWM产生和推动电路、功率开关变换电路、充电状态指示电路和交流输入电路四个部分。
图表11.PWM产生和推动电路PWM产生电路由IC1TL494和外围元件构成。
TL494是PWM开关电源集成电路。
引脚功能和内部框图如图2所示。
IC1的第5、6脚外接的C10、R19是定时元件,决定锯齿波振荡器的振荡频率,F=1.1/RC,按图中数值为50KHz。
第14脚是+5V基准电压输出端,除芯片内部使用外,还直接或分压后供第2、4、13脚和IC2使用。
第13脚为输出方式控制端,该脚接低电平时为单端输出方式,图中接第14脚+5V高电平,为双端输出方式。
第4脚为死区电压控制端,该脚电压决定死区时间。
电位升高,死区时间延长,输出脉宽变窄,当电压大于锯齿波电压时,输出脉宽将变得很窄,甚至停振。
凡输出端采用全桥或半桥式的开关电路,都要正确设置死区时间,以免两个开关管同时导通,发生电源短路的危险。
图中该脚电位由基准电压经R24和R20分压取得,实测电压为0.46V。
第1 、2脚和第16、15脚是IC1内部的两个电压比较器的正、反相输入端,分别用作充电电压取样和充电电流取样。
+44V 充电电压经R28、R27和R26分压反馈至第1脚。
C15是软启动电容。
第2脚电位由基准电压经R23和R3分压取得,实测为3.2V。
第1脚电压越高,输出脉宽越窄,充电电压越低;反之脉宽增宽,充电电压升高。
从而实现+44V充电电压的目的。
Ra是充电电压调试电阻,Ra和R26并联值越小,充电电压越高。
R29是脚充电电流取样电阻,由该电阻上取得的电压变化,经R13送入IC1的第15脚。
开关集成电路TL494引脚图

开关集成电路TL494引脚图TL494是美国德州仪器公司生产的一种电压驱动型脉宽调制控制集成电路,主要应用在各种开关电源中。
本文介绍它与相应的输入、输出电路等一起构成一个单回路控制器。
开关集成电路TL494内部原理图:1、TL494管脚配置及其功能TL494的内部电路由基准电压产生电路、振荡电路、间歇期调整电路、两个误差放大器、脉宽调制比较器以及输出电路等组成。
图1是它的管脚图,其中1、2脚是误差放大器I的同相和反相输入端;3脚是相位校正和增益控制;4脚为间歇期调理,其上加0~3.3V电压时可使截止时间从2%线怀变化到100%;5、6脚分别用于外接振荡电阻和振荡电容;7脚为接地端;8、9脚和11、10脚分别为TL494内部两个末级输出三极管集电极和发射极;12脚为电源供电端;13脚为输出控制端,该脚接地时为并联单端输出方式,接14脚时为推挽输出方式;14脚为5V基准电压输出端,最大输出电流10mA;15、16脚是误差放大器II的反相和同相输入端。
2、回路控制器工作原理回路控制器的方框图如图2所示。
被控制量(如压力、流量、温度等)通过传感器交换为0~5V的电信号,作为闭环回路的反馈信号,通过有源简单二阶低通滤波电路进行平滑、去除杂波干扰后送给TL494的误差放大器I的IN+同相输入端。
设定输入信号是由TL494的5V基准电压源经一精密多圈电位器分压,由电位器动端通过有源简单二阶低通滤波电路接入TL494的误差放大器I的IN-反相输入端。
反馈信号和设定信号通过TL494的误差放大器I进行比较放大,进而控制脉冲宽度,这个脉冲空度变化的输出又经过整流滤波电路及由集成运算放大器构成的隔离放大电路进行平滑和放大处理,输出一个与脉冲宽度成正比的、变化范围为0~10V的直流电压。
这个电压就是所需要的输出控制电压,用它去控制执行电路,及时调整被控制量,使被控制量始终与设定值保持一致,形成闭环单回路控制。
用TL494实现的单回路控制器的电路原理图如图3所示。
TL494 datasheet

测试条件 占空度为零 V (FEEDBACK) = 0.7 V
(1)除特殊申明,都是在25摄氏度下测量的
整个芯片
参数 待机电流
平均上电电流
测试条件 R T = Vref, 所有的输入输出端口全开
VCC = 15 V VCC = 40 V
VI (DEAD-TIME CTRL) = 2 V, See Figure 1
(1)除特殊申明,都是在25摄氏度下测量的
TL494C TL494I
单
MIN MAX
TYP(1)
位
2
mV
2150
nA
02.250
μA
-0 .3 1 Vcc - 2
70
V
95
dB
800
kHz
65
80
dB
0.3
0.7
mA
-2
mA
输出部分
参数
集电极偏置电流 发射极偏置电流
集电极-发射极电压 输出控制输入电流
M I3 3.3
UNIT A %
V
M IN MAX
0.3
TYP (1)
4 4.5
0.7
UNIT V m A
M IN MAX
TYP (1)
6 10 9 15
7. 5
单位
m A
m A
8
(1)除特殊申明,都是在25摄氏度下测量的
开关特性
温度 25 摄氏度
参数 上升沿时间 下降沿时间 上升沿时间 下降沿时间
1 1IN+
2 1IN-
3 FADEBACK 4
DIC 5
CT 6
RT 7
GND 8
C1
16 2IN+
ka7500b=tl494技术资料

KA7500B,TL494中文资料--------------------------------------------------------------------------------KA7500B,TL494中文资料注意: TL494与KA7500B可以完全替换,以下将以TL494进行讲解.TL494内部结构,引脚图及典型应用电路TL494(ka7500b)是专用双端固定频的脉冲调制器件,下图是其TL494内部结构,引脚图及典型应用电路,它结合了全部方块图所需之功能,在切换式电源供给器里可单端式或双坡道式的输出控制。
应用电路请参考下图1,线性锯齿波振荡器乃为频率调整器件(frequency programmab le),在脚5与脚6连接两个外部元件RT与CT,既可获得所需之频率其频率可由下式计算图1 TL494(ka7500b)控制器的引脚图,内部结构典型应用电路TL494主要参数:power supply voitage 电源电压line regulation输入电压调节率load regulation 负载调整率outpot ripple输出纹波电压short circuit current短路电流efficiency 效率TL494工作原理分析输出脉波宽度调变之达成可借着在电容器CT端的正锯齿波形与两个控制信号中的任一个做比较而得之。
电路中的NOR闸可用来驱动输出三极管Q1与Q2,而且仅当正反器的时钟输入信号是在低准位时,此闸才会在有效状态,此种情况的发生也是仅当锯齿波电压大于控制信号电压的期间里。
当控制信号的振幅增加时,此时也会一致引起输出脉波宽度的线性减少。
如图2所示的波形图。
图2 TL494控制器时序波形图外部输入端的控制信号可输入至脚4的截止时间控制端,与脚1、2、15、16误差放大器的输入端,其输入端点的抵补电压为120mV,其可限制输出截止时间至最小值,大约为最初锯齿波周期时间的4%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TL494脉宽调制控制电路 TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。其主要特性如下:
主要特征 集成了全部的脉宽调制电路。 片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。 内置误差放大器。 内止5V参考基准电压源。 可调整死区时间。 内置功率晶体管可提供500mA的驱动能力。 推或拉两种输出方式。
工作原理简述 TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:
输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。功率输出管Q1和Q2受控于或非门。当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。当控制信号增大,输出脉冲的宽度将减小。参见图2。
控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。当把死区时间控制输入端接上固定的电压(范围在0—3.3V之间)即能在输出脉冲上产生附加的死区时间。 脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V变化到3.5时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。两个误差放大器具有从-0.3V到(Vcc-2.0)的共模输入范围,这可能从电源的输出电压和电流察觉得到。误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相输入端进行“或”运算,正是这种电路结构,放大器只需最小的输出即可支配控制回路。
当比较器CT放电,一个正脉冲出现在死区比较器的输出端,受脉冲约束的双稳触发器进行计时,同时停止输出管Q1和Q2的工作。若输出控制端连接到参考电压源,那么调制脉冲交替输出至两个输出晶体管,输出频率等于脉冲振荡器的一半。如果工作于单端状态,且最大占空比小于50%时,输出驱动信号分别从晶体管Q1或Q2取得。输出变压器一个反馈绕组及二极管提供反馈电压。在单端工作模式下,当需要更高的驱动电流输出,亦可将Q1和Q2并联使用,这时,需将输出模式控制脚接地以关闭双稳触发器。这种状态下,输出的脉冲频率将等于振荡器的频率。
TL494内置一个5.0V的基准电压源,使用外置偏置电路时,可提供高达10mA的负载电流,在典型的0—70℃温度范围50mV温漂条件下,该基准电压源能提供±5%的精确度。
TL494的极限参数 名称 代号 极限值 单位 工作电压 Vcc 42 V 集电极输出电压 Vc1,Vc2 42 V 集电极输出电流 Ic1,Ic2 500 mA 放大器输入电压范围 VIR -0.3V—+42 V 功耗 PD 1000 mW 热阻 RθJA 80 ℃/W 工作结温 TJ 125 ℃ 工作环境温度 TL494B TL494C TL494I NCV494B TA -40—+125 0—+70 -40—+85 -40—+125 ℃
额定环境温度 TA 40 ℃ TL494 及其在半桥变换开关电源中应用情况
摘 要:介绍了电压驱动型脉宽调制器件TL494的脉宽调制特性,并对其在半桥变换开关电源中的应用情况做了分析。
关键词:电压驱动;脉宽调制;半桥变换;开关电源 TL494是美国德克萨斯州仪器公司生产的一种性能优良的电压驱动型脉宽调制器件,可作为单端式、推挽式、全桥式、半桥式开关电源控制器,被广泛应用于开关电源中,是开关电源的核心控制器件。TL494的输出三极管可接成共发射极及射极跟随2种方式,因而可以选择双端推挽输出或单端输出方式。在推挽输出方式时,他的两路驱动脉冲相差180°;而在单端方式时,其两路驱动脉冲为同步同相。TL494的3脚为脉宽调制补偿端,4脚为死区电平控制端,5脚和6脚为内部锯齿波振荡器的外界振荡电阻和振荡电容连接端。当在TL494的12脚和7脚接上直流辅助电源,并在他的6脚和5脚分别接上振荡电阻R和振荡电容C后,就可在他的5脚上得到一个振荡频率为:f=1.1/RC的锯齿波振荡电压VΔ;直流输入供电范围在7~40 V之间。 1 TL494的特点
(1)内置有5 V±5%的基准电源。 (2)末级输出级的最大电流可达250 mA。 (3)有死区时间可调控制端。 (4)可对他的锯齿波振荡器的工作状态执行外同步控制。 (5)末级输出可采用双端对称输出或单端输出的工作方式。
2 TL494的性能测试 (1)工作电压对各参数的影响,如表1所示。此时调频电容为9 nF,调频电阻为9 kΩ,调宽电压为2.5 V。
从表1可以看出,工作电压V的改变对输出脉冲的周期T及脉宽T1无影响,而脉冲的幅值F随着工作电压V的增加也逐步增大,工作电流I随电压的变化不是很大,其供电范围在7~40 V之间,而其工作频率可达300 kHz,可见TL494的可调性大。
(2)当TL494调频电容和电阻一定时,改变脉冲宽度,就会得到输出脉冲宽度不同的一系列脉冲,这样就会得到调宽电压与占空比的关系,如图1所示。从图1可以看出,当脉宽为周期的1/2时,效果最佳。 3 TL494的应用 TL494脉宽调制器件是目前微机电源中被广泛采用来构成其他激式直流开关电源的专用器件。在显示电源和其他开关电源的应用中也常被采用。在大功率直流开关电源中,为提高直流电源调整精度及易于完成各种自动保护控制功能,是直流开关电源中常用的脉宽调制器件,而且价格便宜。下面介绍一个TL494的应用电路。
该部分电路如图2所示,PWM脉宽调制电路和半桥式变换电路,输出端经全波整流输出电路合成构成开关稳压电源电路。 TL494接成双端输出形式,由TL494⑨,①0脚输出的脉冲经Q1~Q4组成的图腾柱式驱动电路进行缓冲,进一步提高驱动容性负载的能力,在由B1,B2隔离传送,形成2组驱动信号,分别驱动2个半桥变换器。调节RW 2可改变振荡频率,基准电压由RW 1调整加至TL494的①脚,这样通过调节频率和占空比可以得到不同的输出结果。如图3和图4所示,其中供电部分电压经可调变压器取为50 V。图3所示是在周期T一定而占空比可调时的结果。图4所示是占空比不变而周期T可调时的结果。
当周期一定,改变占空比时,输出电压也随着改变,基本上当占空比较大时,输出电压达到最大。而当占空比一定,周期改变时,输出电压随着周期的增大在逐渐减小,也就是在频率较大时输出电压较大。 4 结语
通过以上对电压驱动型脉宽调制器件TL494的介绍可知,该器件既可调频又可调脉宽,且其可调性强,工作区间大,可用他搭建不同的驱动电路。由他构成的半桥变换开关电源,体积小、重量轻,可应用于其他各个领域。 用TL494实现单回路控制器 [日期:2004-12-7] 来源:电子技术应用 作者:刘宝成 裴志利 [字体:大 中 小] 摘要:介绍了以电压驱动型脉宽调制控制集成电路TL494为核心元件并加上简单滤波电路及RC放电回路所构成的回路控制器。它能把脉冲宽度变化的信号转换成与脉冲宽度成正比变化的直流信号,进而实现闭环单回路控制。
关键词:脉宽调制 回路控制 低通滤波 TL494是美国德州仪器公司生产的一种电压驱动型脉宽调制控制集成电路,主要应用在各种开关电源中。本文介绍它与相应的输入、输出电路等一起构成一个单回路控制器。 1 TL494管脚配置及其功能 TL494的内部电路由基准电压产生电路、振荡电路、间歇期调整电路、两个误差放大器、脉宽调制比较器以及输出电路等组成。图1是它的管脚图,其中1、2脚是误差放大器I的同相和反相输入端;3脚是相位校正和增益控制;4脚为间歇期调理,其上加0~3.3V电压时可使截止时间从2%线怀变化到100%;5、6脚分别用于外接振荡电阻和振荡电容;7脚为接地端;8、9脚和11、10脚分别为TL494内部两个末级输出三极管集电极和发射极;12脚为电源供电端;13脚为输出控制端,该脚接地时为并联单端输出方式,接14脚时为推挽输出方式;14脚为5V基准电压输出端,最大输出电流10mA;15、16脚是误差放大器II的反相和同相输入端。 2 回路控制器工作原理 回路控制器的方框图如图2所示。被控制量(如压力、流量、温度等)通过传感器交换为0~5V的电信号,作为闭环回路的反馈信号,通过有源简单二阶低通滤波电路进行平滑、去除杂波干扰后送给TL494的误差放大器I的IN+同相输入端。设定输入信号是由TL494的5V基准电压源经一精密多圈电位器分压,由电位器动端通过有源简单二阶低通滤波电路接入TL494的误差放大器I的IN-反相输入端。反馈信号和设定信号通过TL494的误差放大器I进行比较放大,进而控制脉冲宽度,这个脉冲空度变化的输出又经过整流滤波电路及由集成运算放大器构成的隔离放大电路进行平滑和放大处理,输出一个与脉冲宽度成正比的、变化范围为0~10V的直流电压。这个电压就是所需要的输出控制电压,用它去控制执行电路,及时调整被控制量,使被控制量始终与设定值保持一致,形成闭环单回路控制。 用TL494实现的单回路控制器的电路原理图如图3所示。 2.1 输入电路 两个运算放大器IC1A、IC1B都接成有源简单二阶低通滤电路,分别作为反馈信号输入和设定信号输入的处理电路。在电路设计上,两个输入电路采取完全对称的形式。将有源简单二阶低通滤波电路的截止频率fp设计为4Hz,根据有源简单二阶低通滤波电路中fp=0.37f0(f0为该滤波器的特征频率)选取C1与C2为1μF,然后算得R1与R2为16kΩ。这样可以滤除由于传感器距离较远输入引线过长而带来的高频杂波干扰和平滑传感器信号本身的波动,使加入到TL494的管脚1即误差放大器I同相输入端IN+的信号尽可能地平滑和相对稳定。在有源简单二阶低通滤波电路与误差放大器I同相输入端IN+之间接有10kΩ的限流隔离电阻。把TL494的14脚输出的5V基准电压源,用一3.3kΩ精密多圈电位器W1分压作为设定输入信号,通过与处理传感器反馈信号相同的电路,送入TL494的管脚2,即误差放大器I的反相输入端IN-端。实验中发现,R19、R20这两个限流隔离电阻必不可少。否则,TL494误差放大器I的两个输入端的电位将相互影响。另外,实验数据还表明,TL494误差放大器的两个输入端在低电压时跟踪的线性不大好,故这里将两个输入运算放大器的放大倍数取为2,以改善反馈信号与设定信号的跟踪线性。