初二下册数学月考试卷

合集下载

初二下册月考数学试卷及答案

初二下册月考数学试卷及答案

⼀、选择题(本题有10⼩题,每⼩题3分,共计30分)1.⼆次根式中,字母的取值范围为()A. B. C. D.2.下列⽅程①;②;③中,是⼀元⼆次⽅程有()A.①② B.①③ C.②③ D.③3.下列图形中,是中⼼对称图形的是 ( )A. B. C. D.4.下列命题是假命题的是()A.四个⾓相等的四边形是矩形 B.对⾓线相等的平⾏四边形是矩形C.对⾓线垂直的四边形是菱形 D.对⾓线垂直的平⾏四边形是菱形5.⽅程x2+4x-6=0配⽅后变形为()A、(x+2)2=10B、(x-2)2=10C、(x+2)2=2D、(x-2)2=26.⽤反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设()A.a不垂直于c B.a,b都不垂直于c C.a与b相交 D.a⊥b7.如图,已知点M为矩形ABCD中边BC的中点,若要使△AMD为等腰直⾓三⾓形,则再须添加⼀条件;那么在下列给出的条件中,错误的是()A.∠AMD=90° B.AM是∠BAD的平分线C.AM:AD=1: D.AB:BC=1:8.已知关于x的⼀元⼆次⽅程,则下列判断中不正确的是()A.若⽅程有⼀根为1,则 B.若a、c异号,则⽅程必有解C.若b=0,则⽅程两根互为相反数 D.若c=0,则⽅程有⼀根为09.已知,是关于的⼀元⼆次⽅程的两个实数根,是否存在实数使成⽴?则下列结论中,正确的是结论是( )A. =0时成⽴ B. =2时成⽴ C. =0或2时成⽴ D.不存在10.如图,菱形ABCD中∠ABC=60°,△ABE是等边三⾓形,M为对⾓线BD(不含B点)上任意⼀点,将BM绕点B逆时针旋转60°得到BN,2连接EN、AM、CM,则下列五个结论中正确的是()①若菱形ABCD的边长为1,则AM+ CM的最⼩值1;②△AMB≌△ENB;③S四边形AMBE=S四边形ADCM;④连接AN,则AN⊥BE;⑤当AM+BM+CM的最⼩值为时,菱形ABCD的边长为2.A.①②③B.①②④⑤C.①②⑤D.①②③④⑤⼆、填空题(本题有6⼩题,每⼩题4分,共计24分)11.关于a的⼀元⼆次⽅程的解为.12.为了应对期末考试,⽼师布置了15道选择题作业,批阅后得到如下统计表,根据表中数据可知,由45名学⽣答对题数组成的样本的中位数是.答对题数(道) 12 13 14 15⼈数 4 18 16 713. 如图,在平⾏四边形ABCD中E、F分别是边AD、BC的中点,AC分别交BE、DF于点M、N。

外国语初二数学月考试卷

外国语初二数学月考试卷

一、选择题(每题3分,共30分)1. 下列各数中,负整数是()A. -3/4B. -2C. 0D. 1/22. 下列各数中,有理数是()A. √2B. πC. 0.1010010001…D. -33. 下列各数中,无理数是()A. -2B. 1/2C. √4D. π4. 下列各数中,正数是()A. -3/4B. 0C. -2D. 1/25. 下列各数中,偶数是()A. -3B. 2C. 1D. 36. 下列各数中,奇数是()A. 2B. -4C. 0D. 17. 下列各数中,绝对值最小的是()A. -3B. -2C. -1D. 08. 下列各数中,互为相反数的是()A. 2 和 -2B. 3 和 4C. -3 和 3D. 1 和 -19. 下列各数中,绝对值最大的是()A. -3B. -2C. -1D. 010. 下列各数中,有理数和无理数的混合数是()A. √2 + 3B. -3/4C. 0.1010010001…D. π - 2二、填空题(每题5分,共20分)11. 有理数a的相反数是______,绝对值是______。

12. 下列各数中,绝对值最小的是______。

13. 下列各数中,互为相反数的是______。

14. 下列各数中,绝对值最大的是______。

15. 下列各数中,有理数和无理数的混合数是______。

三、解答题(每题10分,共30分)16. 计算下列各式的值:(1)-3 + 4 - 2(2)5 - (-2) + 3(3)-3/4 + 2/3 - 1/217. 简化下列各式:(1)3/4 - 2/3 + 5/6(2)-3/4 + 2/3 - 1/218. 已知:a = -3,b = 2,求:(1)a + b(2)a - b(3)ab(4)a ÷ b四、应用题(共20分)19. 小明去图书馆借了5本书,每本书借阅时间为30天。

已知每本书的借阅费用为2元,小明在借阅期间将一本书借给了他的朋友,朋友借阅了10天。

北师大版八年级数学下册第一次月考试卷(含答案)

北师大版八年级数学下册第一次月考试卷(含答案)

八年级数学下册第一次月考试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第二章《一元一次不等式与一元一次不等式组》班级姓名得分一、选择题(本大题共10小题,共30.0分)1.如图,在△ABC中,AB=AC,D是BC的中点,下列结论中不正确的是()A. ∠B=∠CB. AD⊥BCC. AD平分∠BACD. AB=2BD2.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A. ∠A=40°,∠B=50°B. ∠A=40°,∠B=60°C. ∠A=40°,∠B=80°D. ∠A=20°,∠B=80°3.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A. a−c>b−cB. a+c<b+cC. ac>bcD. ab <cb4.若a>b,则()A. a−1≥bB. b+1≥aC. a+1>b−1D. a−1>b+15.不等式组{x−1<−3,2x+9≥3的解集是()A. −3≤x<3B. x>−2C. −3≤x<−2D. x≤−36.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售()A. 6折B. 7折C. 8折D. 9折7.如图,在平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A. 5B. 6C. 7D. 88.如图,AB⊥AC于点A,BD⊥CD于点D.若AC=DB,则下列结论中不正确的是()A. ∠A=∠DB. ∠ABC=∠DCBC. OB=ODD. OA=OD9.如图,点A,B,C在一条直线上,△ABD和△BCE是等边三角形,连接AE,交BD于点P,连接CD,分别交BE,AE于点Q,M,连接BM,PQ,则∠AMD的度数为()A. 45°B. 60°C. 75°D. 90°10.若3a−22和2a−3是实数m的平方根,且t=√m,则不等式2x−t3−3x−t2≥512的解集为()A. x≥910B. x≤910或x≤6.5C. x≥811D. x≤811二、填空题(本大题共5小题,共20.0分)11.如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.12.如图,BD平分∠ABC,DE⊥BC于点E,AB=7,DE=4,则△ABD的面积为.13.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗.为了避免亏本,售价至少应定为______元/千克.14.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为______.15.若关于x的不等式组{3x+5<5x+1 x>a−1 解集为x>2,则a的取值范围是______.三、解答题(本大题共10小题,共100.0分)16.(8分)解不等式组:{3(x+1)>x−1 x+92>2x17.(10分)已知,如图,△ABC中,∠C=90°,AB=10,AC=8,BD为∠ABC的角平分线交AC于D,过点D作DE垂直AB于点E,(1)求BC的长;(2)求AE的长;(3)求BD的长18.(10分)解不等式组{4(x+1)≤7x+13,①x−4<x−83,②并求它的所有整数解的和.19.(10分)某工厂计划生产甲、乙两种机器共10台,其生产成本和利润如下表所示:(1)某工厂计划投入成本26万元,这些成本刚好生产出整数台机器.问:甲、乙两种机器各应安排生间多少台?(2)若工厂计划生产甲机器的数量不少于4台,并共能获利不少于16万元,问:工厂有哪几种生产方案?并说明哪种方案获利最大?最大利润是多少?20.(10分)如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水,有两种方案备选择.方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB)(如图2);方案2:作A点关于直线CD的对称点A′,连接A′B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM(即AM+BM)(如图3).从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,若快艇Q在CD之间(即点Q在线段CD上),当DQ为多少时?△ABQ为等腰三角形,请直接写出结果.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如表:现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数表达式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(10分)如图,在四边形ABCD中,E是边BC的中点,F是边CD的中点,且AE⊥BC,AF⊥CD.(1)求证:AB=AD;(2)若∠BCD=114°,求∠BAD的度数.23.(10分)用※定义一种新运算:对于任意实数m和n,规定m※n=m2n−mn−3n,如:1※2=12×2−1×2−3×2=−6.(1)求(−2)※√3;(2)若3※m≥−6,求m的取值范围,并在所给的数轴上表示出解集.24.(12分)甲、乙两台智能机器人从同一地点出发,沿着笔直的路线行走了450cm.甲比乙先出发,并且匀速走完全程,乙出发一段时间后速度提高为原来的2倍.设甲行走的时间为x(s),甲、乙行走的路程分别为y1(cm),y2(cm),y1,y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙比甲晚出发___________s,乙提速前的速度是___________cm/s,m=___________,n=___________;(2)当x为何值时,乙追上了甲?(3)何时乙在甲的前面?25.(12分)(1)如图①,点A、点B在线段l的同侧,请你在直线l上找一点P,使得AP+BP的值最小(不需要说明理由).(2)如图②,菱形ABCD的边长为6,对角线AC=6√3,点E,F在AC上,且EF=2,求DE+BF的最小值.(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.答案1.D2.D3.B4.C5.C6.C7.A8.C9.B10.B11.4012.1413.1014.x>315.a≤316.解:{3(x+1)>x−1①x+92>2x②解不等式①得x>−2,解不等式②得x<3,∴不等式组的解集为−2<x<3.17.解:(1)∵∠C=90°,AB=10,AC=8,∴BC=√102−82=6;(2)∵BD为∠ABC的角平分线,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,{BD=BDCD=DE,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=6,∴AE=AB−BE=10−6=4;(3)设CD=DE=x,则AD=8−x,在Rt△ADE中,AE2+DE2=AD2,即42+x2=(8−x)2,解得x=3,所以,CD=DE=3,在Rt△BCD中,BD=√62+32=3√5.18.解:−3≤x<2.所有整数解的和为−5.19.解:(1)设甲、乙两种机器各应安排生间x台,(10−x)台,2x+5(10−x)=26,解得,x=8,则10−x=2,答:甲、乙两种机器各应安排生间8台、2台;(2)设生产甲种机器的数量为a台,{a+3(10−a)≥16a≥4,解得,4≤a≤7,∵a是整数,∴a=4,5,6,7,即工厂有四种进货方案,方案一:生产甲种机器4台,乙种机器6台;方案二:生产甲种机器5台,乙种机器5台;方案三:生产甲种机器6台,乙种机器4台;方案四:生产甲种机器7台,乙种机器3台;设利润为w元,w=a+3(10−a)=−2a+30,∴当a=4时,w取得最大值,此时w=22,即方案一获利最大,最大利润是22万元.20.解:(1)方案1:AC+AB=1+5=6,方案2:AM+BM=A′B=√CD2+(AC+BD)2=√41,∵6<√41,∴方案1更合适;(2)(方法不唯一)如图,①若AQ1=AB=5或AQ4=AB=5时,CQ1=CQ4=√52−12=2√6(或√24)>4∴(不合题意,舍去)②若AB=BQ2=5或AB=BQ5=5时,DQ=√52−42=3,③当AQ3=BQ3时,设DQ3=x,则有x2+42=(4−x)2+128x=1∴x=1,8;即:DQ=18故当DQ=3或1时,△ABQ为等腰三角形.821.解:(1)大货车、小货车各有12辆、8辆.(2)设到A地的大货车有x辆,则到A地的小货车有(10−x)辆,到B地的大货车有(12−x)辆,到B地的小货车有(x−2)辆,∴y=900x+500(10−x)+1000(12−x)+700(x−2)=100x+15600(2≤x≤10,且x为整数).(3)根据题意,得15x+10(10−x)≥140.解得x≥8.∴8≤x≤10.∴当x=8时,y取最小值,y最小=100×8+15600=16400.22.解:(1)连接AC,∵点E 是边BC 的中点,AE ⊥BC ,∴AB =AC(三线合一)同理AD =AC ,∴AB =AD ;(2)∵AB =AC ,AD =AC ,∴∠B =∠1,∠D =∠2,∴∠B +∠D =∠1+∠2,即∠B +∠D =∠BCD ,∵∠BAD +(∠B +∠D)+∠BCD =(4−2)⋅180°=360°,∠BCD =114°, ∴∠BAD =360°−114°−114°=132°.23.(1)3√3.(2)m ≥−2.解集在数轴上表示图略.24.解:(1)15 15 31 45(2)设y 1=k 1x.∵点A(31,310)在OA 上,∴31k 1=310.解得k 1=10.∴y 1=10x .设BC 段对应的函数关系式为y 2=k 2x +b ,∵点B(17,30),C(31,450)在BC 上,∴{17k 2+b =30,31k 2+b =450,解得{k 2=30,b =−480.∴y 2=30x −480(17≤x ≤31).当y 1=y 2时,则10x =30x −480,解得x =24.∴当x =24时,乙追上了甲.(3)由图象可知,当x >24且x ≤45时,乙在甲的前面.25.解:(1)如图①中,作点A 关于直线l 的对称点A′,连接A′B 交直线l 于P ,连接PA.则点P 即为所求的点.(2)如图②中,作DM//AC ,使得DM =EF =2,连接BM 交AC 于F ,∵DM=EF,DM//EF,∴四边形DEFM是平行四边形,∴DE=FM,∴DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=3√3,在Rt△ADO中,OD=√AD2−OA2=3,∴BD=6,∵DM//AC,∴∠MDB=∠BOC=90°,∴BM=√BD2+DM2=√62+22=2√10.∴DE+BF的最小值为2√10.(3)如图③中,连接AC、BD,在AC上取一点,使得DM=DC.∵∠DAB=60°,∠DCB=120°,∴∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,∵AD=AB,∠DAB=60°,∴△ADB是等边三角形,∴∠ABD=∠ADB=60°,∴∠ACD=∠ADB=60°∵DM=DC,∴△DMC是等边三角形,∴∠ADB=∠MDC=60°,CM=DC,∴∠ADM=∠BDC,∵AD=BD,∴△ADM≌△BDC,∴AM=BC,∴AC=AM+MC=BC+CD,∵四边形ABCD的周长=AD+AB+CD+BC=AD+AB+AC,∵AD=AB=6,∴当AC最大时,四边形ABCD的周长最大,∴当AC为△ABC的外接圆的直径时,四边形ABCD的周长最大,易知AC的最大值=4√3,∴四边形ABCD的周长最大值为12+4√3.。

八年级下册 第一次月考(1-2章)数学试卷(含答案解析) (17)

八年级下册 第一次月考(1-2章)数学试卷(含答案解析) (17)

八年级(下)第一次月考数学试卷(1-2章)一、选择题(本大题共6小题,共18分)1.若等腰三角形的顶角为70°,则它的底角度数为()A.45°B.55°C.65 D.70°2.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.a+5>b+6 D.﹣a>﹣b3.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解4.不等式ax+b>0(a<0)的解集是()A.x>﹣B.x<﹣C.x>D.x<5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm6.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3 B.x>3 C.x<﹣1 D.x>﹣1二、填空题(本大题共6小题,共18分)7.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是.8.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.9.如图所示的不等式的解集是.10.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是.11.当代数式﹣3x的值大于10时,x的取值范围是.12.如图,△ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是.三、计算题(本大题共5小题,共30分)13.解不等式15﹣9x<10﹣4x,并把解集在数轴上表示出来.14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.15.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.16.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?17.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.四、解答题(本大题共4小题,共32分)18.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?19.如图,在△ABC中∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB.若过点O作直线EF和边BC 平行,与AB交于点E,与AC交于点F,则线段EF和EB,FC之间有怎样的数量关系并证明?20.如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.21.如图,C为线段AB上的任意一点(不与点A,B重合),分别以AC,BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:△ACE≌△DCB.五、解答题(本大题共1小题,共10分)22.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.六、解答题(本大题共1小题,共12分)23.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?八年级(下)第一次月考数学试卷(1-2章)参考答案与试题解析一、选择题(本大题共6小题,共18分)1.若等腰三角形的顶角为70°,则它的底角度数为()A.45°B.55°C.65 D.70°【考点】等腰三角形的性质.【分析】由已知顶角为70°,根据等腰三角形的两底角相等的性质及三角形内角和定理,即可求出它的一个底角的值.【解答】解:∵等腰三角形的顶角为70°,∴它的一个底角为÷2=55°.故选:B.2.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.a+5>b+6 D.﹣a>﹣b【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、两边都减5,不等号的方向不变,故A符合题意;B、两边都除以5,不等号的方向不变,故B不符合题意;C、两边加不同的数,故C不符合题意;D、两边都乘以负数,不等号的方向改变,故D不符合题意;故选:A3.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解【考点】不等式的解集.【分析】正确解出不等式的解集,就可以进行判断.【解答】解:A、正确;B、不等式x>﹣5的负整数解集有﹣4,﹣3,﹣2,﹣1.C、不等式﹣2x<8的解集是x>﹣4D、不等式2x<﹣8的解集是x<﹣4包括﹣40,故正确;故选C.4.不等式ax+b>0(a<0)的解集是()A.x>﹣B.x<﹣C.x>D.x<【考点】解一元一次不等式.【分析】移项、系数化成1即可求解.【解答】解:移项,得ax>﹣b,系数化成1得x<﹣.故选B.5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm【考点】角平分线的性质.【分析】根据角平分线的性质得到ED=EC,计算即可.【解答】解:∵BE平分∠ABC,DE⊥AB,∠ACB=90°,∴ED=EC,∴AE+DE=AE+EC=AC=3cm,故选B.6.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3 B.x>3 C.x<﹣1 D.x>﹣1【考点】一次函数的性质.【分析】直接利用函数图象结合一次函数增减性得出答案.【解答】解:如图所示:当y=﹣2时,x=﹣1,则当y<﹣2时,x的取值范围是:x<﹣1.故选:C.二、填空题(本大题共6小题,共18分)7.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是等边三角形.【考点】等边三角形的判定.【分析】根据等边三角形的判定定理(有一内角为60°的等腰三角形为等边三角形)进行答题.【解答】解:∵AB=AD,∴△ABD是等腰三角形;又∵∠BAC=∠CAD=30°,∴∠BAD=60°,∴△ABD是等边三角形;故答案是:等边三角形.8.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是4:3.【考点】角平分线的性质.【分析】根据角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.9.如图所示的不等式的解集是x≤2.【考点】在数轴上表示不等式的解集.【分析】该不等式的解集是指2及其左边的数,即小于等于2的数.【解答】解:由图示可看出,从2出发向左画出的线,且2处是实心圆,表示x≤2.所以这个不等式的解集为x≤2.故答案为:x≤2.10.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是20.【考点】等腰三角形的性质.【分析】运用等腰三角形的性质,可得BD=CD,再求出△ABC的周长.【解答】解:∵在△ABC中,AB=AC,∴△ABC是等腰三角形,又∵AD⊥BC于点D∴BD=CD∵AB=6,CD=4∴△ABC的周长=6+4+4+6=20.故答案为:20.11.当代数式﹣3x的值大于10时,x的取值范围是x<﹣4.【考点】解一元一次不等式.【分析】根据题意列出不等式,再依据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:根据题意得:﹣3x>10,合并同类项,得:﹣x>10,系数化为1,得:x<﹣4,故答案为:x<﹣4.12.如图,△ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是20°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】连接AP,由MP为线段AB的垂直平分线,根据垂直平分线的性质可得AP=BP,同理可得AP=CP,等量代换可得AP=BP=CP,然后根据等边对等角可得∠ABP=∠BAP,∠PAC=∠ACP及∠PBC=∠PCB,由已知的∠BAC的度数求出∠BAP+∠CAP的度数,等量代换可得∠ABP+∠ACP的度数,同时根据三角形的内角和定理可得∠ABP+∠PBC+∠PCB+∠ACP,进而得到∠PBC+∠PCB的度数,再根据两角相等,即可求出所求角的度数.【解答】解:连接AP,如图所示:∵MP为线段AB的垂直平分线,∴AP=BP,∴∠ABP=∠BAP,又PN为线段AC的垂直平分线,∴AP=CP,∴∠PAC=∠ACP,∴BP=CP,∴∠PBC=∠PCB,又∠BAC=∠BAP+∠CAP=70°,∴∠ABP+∠ACP=70°,且∠ABP+∠PBC+∠PCB+∠ACP=110°,∴∠PBC+∠PCB=40°,则∠PBC=∠PCB=20°.故答案为:20°三、计算题(本大题共5小题,共30分)13.解不等式15﹣9x<10﹣4x,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:移项,得:﹣9x+4x<10﹣15,合并同类项,得:﹣5x<﹣5,系数化为1,得:x>1,这个不等式的解集在数轴上表示如下:.14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.【考点】全等三角形的判定与性质.【分析】先根据∠1=∠2得出BD=CD,再由SSS定理得出△ABD≌△ACD,由全等三角形的性质即可得出结论.【解答】证明:∵∠1=∠2,∴BD=CD,在△ABD与△ACD中,∵,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,即AD平分∠BAC.15.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.【考点】一元一次不等式的整数解.【分析】解不等式求得不等式的解集,然后把最小的整数代入方程,解方程即可求得.【解答】解:解不等式5﹣3x≤1,得x≥,所以不等式的最小整数解是2.把x=2代入方程(a+9)x=4(x+1)得,(a+9)×2=4×(2+1),解得a=﹣3.16.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?【考点】一次函数与一元一次不等式.【分析】先根据题意得出关于x的不等式,求出x的取值范围即可.【解答】解:y1=2x+4,y2=5x+10,当y1<y2时,2x+4<5x+10,解得x>﹣2,当x>﹣2时,y1<y2.17.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.【考点】等腰三角形的性质;三角形三边关系.【分析】如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,根据题意列方程即可得到结论.【解答】解:如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,(1)当AC+AD=15,BD+BC=12时,则+x=15,y=12,解得x=10,y=7.(2)当AC+AD=12,BC+BD=15时,则+x=12, +y=15,解得x=8,y=11,故得这个三角形的三边长分别为10,10,7或8,8,11.四、解答题(本大题共4小题,共32分)18.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?【考点】一元一次不等式的应用.【分析】设这个班要胜x场,则负(28﹣x)场,根据题意列出不等式,解不等式即可求出至少要胜几场.【解答】解:设这个班要胜x场,则负(28﹣x)场,由题意得,3x+(28﹣x)≥43,2x≥15,解得:x≥7.5,∵场次x为正整数,∴x≥8.答:这个班至少要胜8场.19.如图,在△ABC中∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB.若过点O作直线EF和边BC 平行,与AB交于点E,与AC交于点F,则线段EF和EB,FC之间有怎样的数量关系并证明?【考点】等腰三角形的判定与性质;平行线的性质.【分析】由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.【解答】解:EF=EB+FC.理由:∵BO,CO分别是∠ABC,∠ACB的平分线,∴∠EBO=∠OBC,∠FCO=∠OCB.又∵EF∥BC,∴∠OBC=∠BOE,∠OCB=∠COF,∴∠BOE=∠EBO,∠COF=∠FCO,即EB=EO,FC=FO,∴EF=EO+FO=EB+FC.20.如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.【考点】等腰三角形的性质.【分析】根据三角形的内角和得到∠A=30°.根据等腰三角形的性质得到∠ACD=∠ADC==75°.推出△BCE是等边三角形,于是得到结论.【解答】解:∵∠ACB=90°,∠B=60°,∴∠A=30°.∵AD=AC,∴∠ACD=∠ADC==75°.∵BC=BE,∠B=60°,∴△BCE是等边三角形,∴∠BCE=60°,∴∠DCE=∠ACD+∠BCE﹣∠ACB=75°+60°﹣90°=45°.21.如图,C为线段AB上的任意一点(不与点A,B重合),分别以AC,BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:△ACE≌△DCB.【考点】全等三角形的判定与性质.【分析】由已知可得∠ACE=∠DCB,然后根据SAS即可证明△ACE≌△DCB【解答】证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,又∵CA=CD,CE=CB,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS).五、解答题(本大题共1小题,共10分)22.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.【考点】线段垂直平分线的性质.【分析】连接BD,延长BF交DE于点G,根据线段的垂直平分线的性质得到AD=BD,求出∠CBD=45°,证明△ECD≌△FCB,根据全等三角形的性质解答即可.【解答】解:DE=BF,DE⊥BF.理由如下:连接BD,延长BF交DE于点G.∵点D在线段AB的垂直平分线上,∴AD=BD,∴∠ABD=∠A=22.5°.在Rt△ABC中,∵∠ACB=90°,∠A=22.5°,∴∠ABC=67.5°,∴∠CBD=∠ABC﹣∠ABD=45°,∴△BCD为等腰直角三角形,∴BC=DC.在△ECD和△FCB中,,∴Rt△ECD≌Rt△FCB(SAS),∴DE=BF,∠CED=∠CFB.∵∠CFB+∠CBF=90°,∴∠CED+∠CBF=90°,∴∠EGB=90°,即DE⊥BF.六、解答题(本大题共1小题,共12分)23.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?【考点】一次函数的应用;一元一次方程的应用.【分析】(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,根据两种节能灯的总价为46000元建立方程求出其解即可;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,商场的获利为y元,由销售问题的数量关系建立y与a的解析式就可以求出结论.【解答】解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,由题意,得25x+45=46000,解得:x=400.∴购进乙型节能灯1200﹣400=800(只).答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,商场的获利为y元,由题意,得y=(30﹣25)a+(60﹣45),y=﹣10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴﹣10a+18000≤[25a+45]×30%,∴a≥450.∵y=﹣10a+18000,∴k=﹣10<0,∴y随a的增大而减小,∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.。

沪教版八年级数学下册第一次月考试卷(带有答案)

沪教版八年级数学下册第一次月考试卷(带有答案)

沪教版八年级数学下册第一次月考试卷(带有答案)1.学校:___________班级:___________姓名:___________考号:___________2.顺次连接等腰梯形各边中点所得到的四边形是( )3.A.正方形B.菱形C.矩形D.等腰梯形4.分别顺次连接①等腰梯形;②矩形;③菱形;④对角线相等的四边形“各边中点所构成的四边形”中,为菱形的是( )5.A.①B.②C.①②③D.①②④6.如果等腰梯形底角为45∘,高等于上底,那么梯形的中位线和高的比为( )7.A.1:2B.2:1C.1:3D.2:38.若等腰梯形两底角为30∘,腰长为8厘米,高和上底相等,那么梯形中位线长为( )A.8√3厘米B.10厘米9.C.(4√3+4)厘米D.16√3厘米10.如图,梯形ABCD中,∠ABC和∠DCB的平分线相交于梯形中位线EF上的一点P,若EF=3,则梯形ABCD的周长为.11.A.9B.10.5C.12D.1512.如图,梯形ABCD的两底长为AD=6,BC=10中位线为EF,且∠B=90∘,若P为AB上的一点,且PE将梯形ABCD分成面积相同的两部分,则△EFP与梯形ABCD的面积比为( )13.A.1:6B.1:10C.1:12D.1:1614.梯形上、下两底长分别为4cm和6cm,则梯形的中位线长cm.15.若一个等腰梯形的中位线长是6,腰长是5,则这个等腰梯形的周长是.16.如果等腰直角三角形斜边上的高等于5cm,那么连接这个三角形两条直角边中点的线段长等于cm.17.等腰梯形ABCD中E,F,G,H分别是各边的中点,则四边形EFGH的形状是.18.顺次连接菱形四条边的中点,所得的四边形是.19.如果等腰梯形的一条底边长8cm,中位线长10cm,那么它的另一条底边长是cm.20.梯形上底长3cm,下底长7cm,梯形被中位线分成的两部分的面积比是.21.如果等腰梯形的一条对角线与下底的夹角为45∘,中位线长为6厘米,则这个梯形的对角线长为厘米.22.梯形的两底之比为3:4,中位线长为21cm,那么较长的一条底边长等于cm.23.若一梯形的中位线和高的长均为6cm,则该梯形的面积为cm2.24.如图,平行四边形ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD的周长为16cm,则△DOE的周长是cm.25.26.如图,将三角形纸片中位线剪开,拼成一个新的图形,这个新的图形可能是.27.28.已知:如图,AD是△ABC的高AB=AC,BE=2AE点N是CE的中点.求证:M是AD的中点.29.30.如图,已知在矩形ABCD中,对角线AC,BD交于点O,CE=AE,F是AE的中点AB=4,BC=8求线段OF的长.31.32.如图,在梯形ABCD中AD∥BC,BC=3AD,M,N为底边BC的三等分点,连接AM,DN.(1) 求证:四边形AMND是平行四边形;33.(2) 连接BD,AC,AM与对角线BD交于点G,DN与对角线AC交于点H,且AC⊥BD.试判断四边形AGHD的形状,并证明你的结论.34.如图,在△ABC中,点D是边BC的中点,点E在△ABC内,AE平分∠BAC。

华师大版八年级下册第一次月考数学试卷(含答案及解析)

华师大版八年级下册第一次月考数学试卷(含答案及解析)

八年级数学试卷一、选择题(每小题4分,共40分)1.下列各式﹣3x ,,,﹣,,,中,分式的个数为()A.4B.3C.2D.12.下列函数关系式:①y=﹣2x,②,③y=﹣2x2,④y=2,⑤y=2x﹣1.其中是一次函数的是()A.①⑤B.①④⑤C.②⑤D.②④⑤3.分式无意义,则x的值()A.1B.﹣1 C.0D.±14.分式的最简公分母是()A.24a2b2c2B.24a6b4c3C.24a3b2c3D.24a2b3c35.如果把分式的x和y都扩大k倍,那么分式的值应()A.扩大k倍B.不变C.扩大k2倍D.缩小k倍6.方程=﹣的解是()A.1B.﹣1 C.2D.无解7.若分式方程=2+有增根,则a的值为()A.4B.2C.1D.08.(2011•曲靖)点P(m﹣1,2m+1)在第二象限,则m的取值范围是()A.B.C.m<1 D.9.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.10.(2004•万州区)如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.二、填空题(每小题4分,共24分)11.(2006•永州)当x=_________时,分式的值为0.12.不改变分式的值,把分式的分子、分母的系数都化为整数的结果是_________.13.科学记数法得N=﹣3.25×10﹣5,则原数N=_________.14.若点P(2x﹣2,﹣x+4)到两坐标轴的距离相等,则点P的坐标为_________.15.若函数y﹦(m﹣1)x+m2﹣1是正比例函数,则m的值为_________.16.(2009•鸡西)若关于x的分式方程无解,则a=_________.三、解答题(17题每小题4分,18,19,每小题6分,)17.(16分)计算(1)(﹣)0﹣(﹣)2÷2﹣2﹣(﹣1)3 (2)+﹣(3)+÷(4)(2mn2)﹣2(m﹣2n﹣1)﹣3(结果化为只含有正指数幂的形式)18.先化简,再求值:(1),其中:x=﹣2.(2)先化简,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.(3)先化简,再求值:,其中a=.19.(6分)暑假期间,明明进行爬山锻炼,某时,从山脚出发,1小时后回到了山脚,他离开山脚的距离s(米)与爬山时间t(分)的关系可用下图的曲线表示,根据这个图象回答:(1)明明离开山脚多长时间爬得最高?爬了多少米?(2)爬山多长时间进行休息?休息了几分钟?(3)爬山第30分钟到第40分钟,爬了多少米?(4)下山时,平均速度是多少?(6分)直线y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简求值:四、解答题(20,21,22,每小题8分,23题10分,24题12分)20.(8分)要使关于x的方程﹣=的解是正数,求a的取值范围.21.(8分)某校组织学生到距离6km的少年科技馆参观,学生小李因有事没有赶上学校的包车,于是准备在学校门口改坐出租车去少年科技馆,出租车的收费标准如下:里程收费(元)3km以下(含3km)8.003km以上,每增加1km 1.80(1)写出坐出租车的里程数为xkm(x>3)时,所付车费的代数式.(2)小李同学身上只有14元钱,坐出租车到少年科技馆的车费够不够?请说明理由.22.(8分)已知函数y=﹣2x+3,(1)画出这个函数的图象;(2)写出函数与x轴的交点坐标,与y轴的交点坐标;(3)求此函数的图象与坐标轴围成的三角形的面积.23.(10分)甲、乙两地相距828千米,一列普通列车与一列直快列车都由甲地开往乙地,直快列车的平均速度是普通列车的平均速度的1.5倍,直快列车比普通列车晚出发2小时,比普通列车早到4小时,求两列火车的平均速度.24.(12分)(2012•岳阳二模)我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:①设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式;②如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;③若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.湘莲品种 A B C每辆汽车运载量(吨)12 10 8每吨湘莲获利(万元) 3 4 2八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.下列各式﹣3x,,,﹣,,,中,分式的个数为()A.4B.3C.2D.1考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:下列各式﹣3x,,,﹣,,,中,分式有:,,,,∴分式的个数为4个.故选A.点评:本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.下列函数关系式:①y=﹣2x,②,③y=﹣2x2,④y=2,⑤y=2x﹣1.其中是一次函数的是()A.①⑤B.①④⑤C.②⑤D.②④⑤考点:一次函数的定义.分析:根据一次函数的定义条件进行逐一分析即可.解答:解:①y=﹣2x是一次函数;②自变量次数不为1,故不是一次函数;③y=﹣2x2自变量次数不为1,故不是一次函数;④y=2是常数;⑤y=2x﹣1是一次函数.所以一次函数是①⑤.故选A.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.3.分式无意义,则x的值()A.1B.﹣1 C.0D.±1考点:分式有意义的条件.分析:分母为零,分式无意义;分母不为零,分式有意义,即|x|﹣1=0,解得x的取值.解答:解:当分母|x|﹣1=0,即x=±1时,分式无意义.故选D.点评:从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4.分式的最简公分母是()A.24a2b2c2B.24a6b4c3C.24a3b2c3D.24a2b3c3考点:最简公分母.分析:解答本题关键是要求出三个分式的分母的最小公倍数,即是分式的最简公分母.解答:解:3,2,8的最小公倍数为24,a2b,ab2,a3bc3的最小公倍数为a3b2c3,∴分式的最简公分母为24a3b2c3,故选C.点评:本题考查最简公分母的知识,比较简单,同学们要熟练掌握.5.如果把分式的x和y都扩大k倍,那么分式的值应()A.扩大k倍B.不变C.扩大k2倍D.缩小k倍考点:分式的基本性质.分析:依题意分别用kx和ky去代换原分式中的x和y,利用分式的基本性质化简即可.解答:解:分别用kx和ky去代换原分式中的x和y,得===,可见新分式是原分式的k倍.故选A.点评:解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6.方程=﹣的解是()A.1B.﹣1 C.2D.无解考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2=x+1﹣3(x﹣1),去括号得:2=x+1﹣3x+3,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.若分式方程=2+有增根,则a的值为()A.4B.2C.1D.0考点:分式方程的增根.专题:计算题.分析:已知方程两边都乘以x﹣4去分母后,求出x的值,由方程有增根,得到x=4,即可求出a的值.解答:解:已知方程去分母得:x=2(x﹣4)+a,解得:x=8﹣a,由分式方程有增根,得到x=4,即8﹣a=4,则a=4.故选A点评:此题考查了分式方程的增根,分式方程的增根即为最简公分母为0时x的值.8.(2011•曲靖)点P(m﹣1,2m+1)在第二象限,则m的取值范围是()A.B.C.m<1 D.考点:点的坐标;解一元一次不等式组.专题:证明题.分析:让点P的横坐标小于0,纵坐标大于0列不等式求值即可.解答:解:∵点P(m﹣1,2m+1)在第二象限,∴m﹣1<0,2m+1>0,解得:﹣<m<1.故选:B.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.考点:由实际问题抽象出分式方程.专题:应用题.分析:本题的等量关系为:顺流时间+逆流时间=9小时.解答:解:顺流时间为:;逆流时间为:.所列方程为:+=9.故选A.点评:未知量是速度,有速度,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.10.(2004•万州区)如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.考点:函数的图象.专题:压轴题.分析:首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.解答:解:根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢.故选C.点评:考查根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.二、填空题(每小题4分,共24分)11.(2006•永州)当x=﹣2时,分式的值为0.考点:分式的值为零的条件.专题:计算题.分析:要使分式的值为0,必须分式分子的值为0,并且分母的值不为0.解答:解:由分子x+2=0,解得x=﹣2,而x=﹣2时,分母x﹣2=﹣2﹣2=﹣4≠0.所以x=﹣2.点评:要注意分母的值一定不能为0,分母的值是0时分式没有意义.12.不改变分式的值,把分式的分子、分母的系数都化为整数的结果是.考点:分式的基本性质.分析:不改变分式的值就是依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.解答:解:分子分母上同时乘以100得到,故分式的分子、分母的系数都化为整数的结果是.点评:本题主要考查分式的基本性质的应用,是一个基础题.13.科学记数法得N=﹣3.25×10﹣5,则原数N=﹣0.0000325.考点:科学记数法—原数.分析:科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“﹣3.25×10﹣5中﹣3.25的小数点向左移动5位就可以得到.解答:解:﹣3.25×10﹣5=﹣0.0000325,故答案为:﹣0.0000325.点评:本题主要考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.14.若点P(2x﹣2,﹣x+4)到两坐标轴的距离相等,则点P的坐标为(2,2)或(﹣6,6).考点:点的坐标.分析:由点P到两坐标轴的距离相等得到(2x﹣2)=±(﹣x+4),解得x的值,从而得到点P的坐标.解答:解:∵点P到两轴的距离相等,∴2x﹣2=﹣x+4或2x﹣2=﹣(﹣x+4),即x=2或x=﹣2,代入点P坐标(2,2)或(﹣6,6).故答案为:(2,2)或(﹣6,6).点评:本题考查的是点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离.15.若函数y﹦(m﹣1)x+m2﹣1是正比例函数,则m的值为﹣1.考点:正比例函数的定义.分析:根据正比例函数的定义列式计算即可得解.解答:解:根据题意得,m2﹣1=0且m﹣1≠0,解得m=±1且m≠1,所以m=﹣1.故答案为:﹣1.点评:本题考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.16.(2009•鸡西)若关于x的分式方程无解,则a=1或﹣2.考点:分式方程的解.专题:计算题;压轴题.分析:分式方程无解,即化成整式方程时无解,或者求得的x能令最简公分母为0,据此进行解答.解答:解:方程两边都乘x(x﹣1)得,x(x﹣a)﹣3(x﹣1)=x(x﹣1),整理得,(a+2)x=3,当整式方程无解时,a+2=0即a=﹣2,当分式方程无解时:①x=0时,a无解,②x=1时,a=1,所以a=1或﹣2时,原方程无解.点评:分式方程无解分两种情况:整式方程本身无解;分式方程产生增根.三、解答题(17题每小题16分,18,19,20题每小题16分,)17.(16分)计算(1)(﹣)0﹣(﹣)2÷2﹣2﹣(﹣1)3(2)+﹣(3)+÷(4)(2mn2)﹣2(m﹣2n﹣1)﹣3(结果化为只含有正指数幂的形式)解答:解:(1)原式=1﹣÷﹣(﹣1)=1﹣1+1=1;(2)原式==﹣=﹣1;(3)原式=+•=﹣=;(4)原式=m﹣2n﹣4•m6n3=m4n﹣1=.18.(6分)先化简,再求值:,其中:x=﹣2.考点:分析:解解:,答:=,=,=x+1,当x=﹣2时,原式=﹣2+1,=﹣1.(2)先化简,然后从1、、﹣1中选取一个你认为合适的数作为a 的值代入求值.(3)先化简,再求值:,其中a=.:解答:解:=×=﹣==,由于a≠±1,所以当a=时,原式==.解答:解:原式=+•=+=,当a=1+时,原式===.19.(6分)暑假期间,明明进行爬山锻炼,某时,从山脚出发,1小时后回到了山脚,他离开山脚的距离s(米)与爬山时间t(分)的关系可用下图的曲线表示,根据这个图象回答:(1)明明离开山脚多长时间爬得最高?爬了多少米?(2)爬山多长时间进行休息?休息了几分钟?(3)爬山第30分钟到第40分钟,爬了多少米?(4)下山时,平均速度是多少?解答:解;(1)根据图象得出:明明离开山脚时间为40分钟爬得最高,爬了600米;(2)爬山8分钟和30分钟时进行休息,分别休息了(10﹣8)=2(分钟)和35﹣30=5(分钟);(3)爬山第30分钟到第40分钟,爬了600﹣400=200(米);(4)下山时,平均速度是:=30米/秒.(6分)直线y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简求值:根据图象可知直线y=(3﹣a)x+b﹣2经过第二、三、四象限,所以3﹣a<0,b﹣2<0,所以a>3,b<2,所以b﹣a<0,a﹣3>0,2﹣b>0,所以=a﹣b﹣|a﹣3|﹣(2﹣b)=a﹣b﹣a+3﹣2+b=1.四、解答题(21,22,23每小题8分,24题10分,25题12分)20.(8分)要使关于x的方程﹣=的解是正数,求a的取值范围.解答:解:去分母,得(x+1)(x﹣1)﹣x(x+2)=a,解得x=﹣因为这个解是正数,所以﹣>0,即a<﹣1.又因为分式方程的分母不能为零,即﹣≠1且﹣≠﹣2,所以a≠±3.所以a的取值范围是a<﹣1且a≠﹣3.21.(8分)某校组织学生到距离6km的少年科技馆参观,学生小李因有事没有赶上学校的包车,于是准备在学校门口改坐出租车去少年科技馆,出租车的收费标准如下:里程收费(元)3km以下(含3km)8.003km以上,每增加1km 1.80(1)写出坐出租车的里程数为xkm(x>3)时,所付车费的代数式.(2)小李同学身上只有14元钱,坐出租车到少年科技馆的车费够不够?请说明理由.解答:解:(1)根据题意得:8+1.8(x﹣3)=1.8x+2.6;(2)1.8x+2.6=14,x=6.∴坐出租车到少年科技馆距离大于6公里,车费够.22.(8分)已知函数y=﹣2x+3,(1)画出这个函数的图象;(2)写出函数与x轴的交点坐标,与y轴的交点坐标;(3)求此函数的图象与坐标轴围成的三角形的面积.考点:一次函数的图象;一次函数图象上点的坐标特征.专题:计算题.分析:(1)利用描点法画函数图象;(2)根据图象写出直线与坐标轴的交点坐标;(3)根据三角形面积根式计算.解答:解:(1)当x=0时,y=3;当y=0时,x=,描点如图:(2)函数图象与x轴的交点坐标为(,0),与y轴的交点坐标为(0,3);(3)此函数的图象与坐标轴围成的三角形的面积=×3×=.23.(10分)甲、乙两地相距828千米,一列普通列车与一列直快列车都由甲地开往乙地,直快列车的平均速度是普通列车的平均速度的1.5倍,直快列车比普通列车晚出发2小时,比普通列车早到4小时,求两列火车的平均速度.解答:解:设普通列车的平均速度为x千米∕时,则直快列车的平均速度为1.5x千米∕时,由题意得解得x=46经检验,x=46是原分式方程的解1.5x=1.5×46=69(千米∕时)答:普通列车的平均速度为46千米∕时,直快列车的平均速度为69千米∕时.24.(12分)(2012•岳阳二模)我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:①设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式;②如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;③若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.湘莲品种 A B C每辆汽车运载量(吨)12 10 8每吨湘莲获利(万元) 3 4 2解答:解:(1)设装A种为x辆,装B种为y辆,则装C种为10﹣x﹣y辆,由题意得:12x+10y+8(10﹣x﹣y)=100∴y=10﹣2x.(2)10﹣x﹣y=10﹣x﹣(10﹣2x)=x故装C种车也为x 辆.∴解得2≤x≤4.x为整数,∴x=2,3,4故车辆有3种安排方案,方案如下:方案一:装A种2辆车,装B种6辆车,装C种2辆车;方案二:装A种3辆车,装B种4辆车,装C种3辆车;方案三:装A种4辆车,装B种2辆车,装C种4辆车.(3)设销售利润为W(万元),则W=3×12x+4×10×(10﹣2x)+2×8x=﹣28x+400∴W是x的一次函数,且x增大时,W减少,∴x=2时,W max=400﹣28×2=344(万元).参与本试卷答题和审题的老师有:sks;lanchong;星期八;HJJ;zhjh;weibo;gsls;438011;Liuzhx;gbl210;lk;137-hui;孙廷茂;wdxwwzy;马兴田;733599;sd2011;lanyan;csiya;蓝月梦;nhx600;lantin(排名不分先后)菁优网2014年3月17日。

初二下册数学月考试卷

初二下册数学月考试卷一、选择题(3×10=30分)1.在下列各式中,是分式的有()A.2个B.3个C.4个D.5个2.-3x<-1的解集是()A、x<B、x<-C、x>D、x>-3.下列从左到右的变形是分解判别式的是()A、(x-4)(x+4)=x2-16B、x2-y2+2=(x+y)(x-y)+2C、2ab+2ac=2a(b+c)D、(x-1)(x-2)=(x-2) (x-1).4.能够判定四边形ABCD是平行四边形的题设是().A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=AD,CB=CD D.AB=CD,AD=BC5.分式,,的最简公分母是()A、(a²-2ab+b²)(a²-b²)(a²+2ab+b²)B、(a+b)²(a-b)²C、(a+b)²(a-b)²(a²-b²)D、6.一个多边形的五边形和为,则这个多边形的邻接矩阵为()A.11B.10C.9D.87.已知关于x的不等式组的解集为,则的值为 ( )A.-2 B. C.-4 D.8.直线:与直线:在同一平面直角坐标系中的图象如图所示,则关于的不等式的解集为()A、>-1B、<-1C、<-2D、无法确定9.下列说法正确的是()①平行四边形具有四边形一般性的绝大部分性质;②平行四边形是菱形图形;③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形。

A.①②④B.①③④C.①②③D.①②③④10.某工地调来72人参加挖土和风雨无阻,已知3人挖出的土1人恰好能全部运走。

怎样调配劳动力才能使挖出的土能及时运走且不窝工。

解决此问题,可设派x人挖土,其他人运土,列方程为①②72-x= ③x+3x=72 ④ 上述所列方程正确的有()A.1个B.2个C.3个D.4个二、填空题(3×5=15分)11.分解因式:a3b+2a2b2+ab3= 。

校2022--2023学年八年级下学期第一次月考数学试卷 (原卷版)

5.以下各组数中,能作为直角三角形的三边长的是
A.6,6,7B.6,7,8C.6,8,10D.6,8,9
6.在平面直角坐标系中,已知点P的坐标是(3பைடு நூலகம்4),则OP的长为( )
A.3B.4C.5D.
7.若 ,则()
A. B. C. D.
8.已知 是整数,则满足条件的最小正整数 的值是()
A.5B.1C.2D.3
13.命题“同位角相等,两直线平行” 逆命题是:_____.
14.已知一个直角三角形的两直角边长分别为3和4,则斜边长是___________.
15.如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是________.
16.如图,点B到数轴 距离为1, ,则数轴上点C所表示的数为________.
9.当x= 时,x2+2x的值是( )
A.1B.2C.2 -1D.2 +1
10.如图,在平面直角坐标系中,将长方形 沿直线 折叠(点E在边 上),折叠后顶点D恰好落在边 上的点F处.若点D的坐标为 .则点E的坐标为( )
A. B. C. D.
二、填空题
11.计算 ________.
12.实数范围内分解因式: _______.
2022-2023八年级下册数学第一次教学质量反馈
一、选择题
1.若 在实数范围内有意义,则 的取值范围是()
A. B. C. D.
2.下列二次根式是最简二次根式的是()
A B. C. D.
3.若| ,则 的值是( )
A. B.1C.2D.3
4.下列二次根式中,不能与 合并的是()
A. B. C. D.
17.已知a=2- ,则代数式a²-4a-2的值为________

青岛版八年级下册数学第一次月考试卷

青岛版八年级下册数学第一次月考试卷一.选择题(共12小题) 1.函数x32y 中自变量x 的取值范围是( )A .x >3B .x <3C .x ≤3D .x ≥﹣32.如图,某电信公司提供了A ,B 两种方案的移动通讯费用y (元)与通话时间x (元)之间的关系,则下列结论中正确的有( )(1)若通话时间少于120分,则A 方案比B 方案便宜20元; (2)若通话时间超过200分,则B 方案比A 方案便宜12元;(3)若通讯费用为60元,则B 方案比A 方案的通话时间多; (4)若两种方案通讯费用相差10元,则通话时间是145分或185分. A .1个 B .2个 C .3个 D .4个3.已知y=(m ﹣3)x |m|﹣2+1是一次函数,则m 的值是( ) A .﹣3 B .3C .±3D .±24.正比例函数y=2kx 的图象如图所示,则y=(k ﹣2)x+1﹣k 图象大致是( )A .B .C .D .5.在一次函数y=ax ﹣a 中,y 随x 的增大而减小,则其图象可能是( )A .B .C .D .6.在下列图象中,能作为一次函数y=﹣x+1的图象的是( )A.B.C.D.7.若不等式组无解,则m的取值范围是( )A.m>2 B.m<2 C.m≥2 D.m≤28.如果(a+1)x<a+1的解集是x>1,那么a的取值范围是( )A.a<0 B.a<﹣1 C.a>﹣1 D.a是任意有理数9.已知不等式4x﹣a≤0的正整数解是1,2,则a的取值范围是( )A.8<a<12 B.8≤a<12 C.8<a≤12 D.8≤a≤1210.对于实数x,我们规定表示不大于x的最大整数,例如=1,=3,=﹣3,若=5,则x的取值可以是( )A.36 B.40 C.45 D.4611.泰安市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x千米,出租车费为15.5元,那么x的最大值是( )A.11 B.8 C.7 D.512.某医院为了提高服务质量,进行了下面的调查:当还未开始挂号时,有N个人已经在排队挂号,开始挂号后排队的人数平均每分钟增加M人.假定挂号的速度是每窗口每分钟K个人,当开放一个窗口时,40分钟后恰好不会出现排队现象;若同时开放两个窗口时,则15分钟后恰好不会出现排队现象.根据以上信息,若要求8分钟后不出现排队现象,则需要同时开放的窗口至少应有( )A.4个B.5个C.6个D.7个二.填空题(共5小题)13.若定义:f(x)=﹣x,g(y)=y2,例如f(3)=﹣3,g(2)=4,则g[f(2)]=.14.执行图所示的程序框图,若输入x=10,则输出y的值为 .15.拖拉机工作时,油箱中的余油量Q(升)与工作时间t(时)d关系式为Q=40﹣5t.当t=4时,Q=升,从关系式可知道这台拖拉机最多可工作 小时.16.若是正整数,则最小的整数n是 .17.已知a,b,c在数轴上的位置如图,化简代数式的值为 .三.解答题(共9小题)18.已知一次函数图象如图:(1)求一次函数的解析式;(2)若点P为该一次函数图象上一点,且点A为该函数图象与x轴的交点,若S△PAO=6,求点P的坐标.19.若直线分别交x轴、y轴于A、B两点,点P是该直线上的一点,PC⊥x轴,C为垂足.(1)求△AOB的面积.(2)如果四边形PCOB的面积等△AOB的面积的一半,求出此时点P的坐标.20.计算:(1)2﹣6+3(2)(﹣)(+)+(2﹣3)2.21.解不等式:,并写出它的所有正整数解.22.解不等式组,并把它们的解集表示在数轴上.23.如图,有一张边长为6cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积;(2)长方体盒子的体积.24.哈市某花卉种植基地欲购进甲、乙两种君子兰进行培育,若购进甲种2株,乙种3株,则共需要成本1700元;若购进甲种3株,乙种1株,则共需要成本1500元.(1)求甲乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购进甲、乙两种君子兰,若购进乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?25.某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?26.如图①,正方形ABCD,EFGH的中心P,Q都在直线l上,EF⊥l,AC=EH.正方形ABCD以1cm/s的速度沿直线l向正方形EFGH移动,当点C与HG的中点I重合时停止移动.设移动时间为x s时,这两个正方形的重叠部分面积为y cm2,y与x的函数图象如图②.根据图象解答下列问题:(1)AC=cm;(2)求a的值,并说明点M所表示的实际意义;(3)当x取何值时,重叠部分的面积为1cm2?八年级数学学科能力展示参考答案一.选择题(共12小题)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B C A B B A D B B B B A二.填空题(共5小题)13.914.﹣1.2515.20;816.317.﹣a三.解答题(共9小题)18.已知一次函数图象如图: (1)求一次函数的解析式;(2)若点P 为该一次函数图象上一点,且点A 为该函数图象与x 轴的交点,若S △PAO =6,求点P 的坐标.解:(1)设一次函数解析式为y=kx+b ,根据题意得,解得,所以一次函数解析式为y=x+2; (2)把y=0代入y=21x+2得21x+2=0,解得x=﹣4,则A 点坐标为(﹣4,0), 设P 点坐标为(x ,y ),∴S △PAO =21•OA •|y|, ∵S △PAO =6,∴21•4•|y|=6,解得y=±3, 当y=3时,则y=21x+2=3,解得x=2;当y=﹣3时,则y=21x+2=﹣3,解得x=﹣10;∴P 点坐标为(2,3)或(﹣10,﹣3).19.若直线分别交x 轴、y 轴于A 、B 两点,点P 是该直线上的一点,PC ⊥x 轴,C 为垂足.(1)求△AOB 的面积.(2)如果四边形PCOB 的面积等△AOB 的面积的一半,求出此时点P 的坐标.解:(1)由y=21x+2可知A (﹣4,0),B (0,2), ∴OA=4,OB=2,∴S △AOB =21OA •OB=4; (2)设P (m ,21m+2),∵四边形PCOB 的面积等△AOB 的面积的一半,S △AOB =4, ∴四边形PCOB 的面积为2, ∴21(21m+2+2)(﹣m )=2, 解得m=2±2,∴P (2﹣2,3﹣)或(2+2,3+2).20.计算:(1)2﹣6+3(2)(﹣)(+)+(2﹣3)2.解:(1)2﹣6+3=4﹣6×+3×4=2+12=14;(2)(﹣)(+)+(2﹣3)2=6﹣5+12+18﹣12=31﹣12.21.如图,有一张边长为6cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积;(2)长方体盒子的体积.解:(1)长方体盒子的纸板的面积:(6)2﹣4×()2=64cm2;(2)长方体盒子的体积:(6﹣2)(6﹣2)×=32cm3.22.解不等式:,并写出它的所有正整数解.解:去分母,得3(x+3)﹣2(2x﹣1)>6,去括号,得3x+9﹣4x+2>6,移项,得3x﹣4x>6﹣9﹣2,合并同类项,得﹣x>﹣5,系数化成1得x<5.则正整数解是1,2,3,4.23.解不等式,并把它们的解集表示在数轴上.解:,解①得x<2,解②得x≥﹣1,所以不等式组的解集为﹣1≤x<2.用数轴表示为:.24.哈市某花卉种植基地欲购进甲、乙两种君子兰进行培育,若购进甲种2株,乙种3株,则共需要成本1700元;若购进甲种3株,乙种1株,则共需要成本1500元.(1)求甲乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购进甲、乙两种君子兰,若购进乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?解:(1)设甲种君子兰每株成本为x元,乙种君子兰每株成本为y元,依题意有,解得.故甲种君子兰每株成本为400元,乙种君子兰每株成本为300元.(2)设购进甲种君子兰a株,则购进乙种君子兰(3a+10)株,依题意有400a+300(3a+10)≤30000,解得a≤.∵a为整数,∴a最大为20.故最多购进甲种君子兰20株.25.某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?解:(1)设购进苹果x千克,则购进丑桔(140﹣x)千克,依题意得:5x+9(140﹣x)=1000,解得:x=65,则140﹣65=75(千克),答:水果店购进苹果65千克,丑桔75千克.(2)设购进苹果x千克时售完这批水果将获利y元,由题意得:140﹣x≤3x,解得:x≥35.获得利润y=(8﹣5)x+(13﹣9)(140﹣x)=﹣x+460.故当x=35时,y有最大值,最大值为425元.140﹣35=105(千克).答:购进苹果35千克,丑桔105千克时水果店在销售完这批水果时获利最多.26.如图①,正方形ABCD,EFGH的中心P,Q都在直线l上,EF⊥l,AC=EH.正方形ABCD以1cm/s的速度沿直线l向正方形EFGH移动,当点C与HG的中点I重合时停止移动.设移动时间为x s时,这两个正方形的重叠部分面积为y cm2,y与x的函数图象如图②.根据图象解答下列问题:(1)AC=4cm;(2)求a的值,并说明点M所表示的实际意义;(3)当x取何值时,重叠部分的面积为1cm2?解:(1)当这两个正方形的重叠部分面积为8时,也就是小正方形的面积为8,得出小正方形的边长为2cm,所以AC=×2=4cm.故答案为:4.(2)当x=4时,点A与点I重合,y===8,∴a的值为8.点M所表示的实际意义为:当x=4s时,重叠部分面积最大,最大面积为8cm2;(3)由题意,可知:当0≤x≤2时,y=x2,此时y的取值范围是0≤y≤4;当2≤x≤6时,y=﹣(x﹣4)2+8,此时y的取值范围是4≤y≤8;当6≤x≤8时,y=(8﹣x)2,此时y的取值范围是0≤y≤4.当y=1时,得x2=1,解得x=1(负值舍去),或(8﹣x)2=1,解得x=7或x=9(不合题意,舍去),∴当x的值为1或7时,重叠部分的面积为1.11。

2022-2023学年全国初中八年级下数学人教版月考试卷(含答案解析)022330

2022-2023学年全国初中八年级下数学人教版月考试卷考试总分:103 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 下列标志是轴对称图形的是( ) A. B. C. D.2. 下列二次根式中,是最简二次根式的是( )A.B.C.D.3. 如图,在中,点,,分别在三边上,点是的中点,,,交于一点,,,,则的面积是 4–√2x−√a 2−−√12−−√△ABC D E F E AC AD BE CF G BD =2DC =S △BG D 8=S △AG E 3△ABC ()A.B.C.D.4. 如图,是等边三角形,点,分别在边,上,,下列结论:;;;其中正确的个数为( )A.个B.个C.个D.个5. 下列函数,随的增大而减小的是( )A.B.C.D.6. 若点在第二象限,到轴的距离是,到轴的距离是,那么点的坐标是( )A.B.C.D.7. 已知直线不经过第一象限,则下列结论正确的是( )A.,25303540△ABC P Q AB AC AP =CQ (1)CP =BQ (2)∠ABQ =∠BCP (3)∠PMB =60∘0123y x y =2xy =x−1y =x+1y =−x+1P x 3y 5P (−5,−3)(−3,−5)(−3,5)(−5,3)y =kx+b k >0b <0B.,C.,D.,8. 下列实数中,有理数是( )A.B.C.D.9. 已知:如图,,,增加一个条件使得,下列条件中错误的是( )A.B.C.D.10. 将有一个锐角为的直角三角形的纸片分成两个等腰三角形的分割方法共有( )A.种B.种C.种D.种二、 填空题 (本题共计 1 小题 ,共计3分 )k <0b <0k <0b ≤0k <0b ≥012−−√13−−√14−−√15−−√∠ABC =∠EBD BC =BD △ABC ≅△EBD AC =EDBA =BE∠C =∠D∠A =∠E22.5∘123411. (3分) 分解因式:________ .三、 解答题 (本题共计 7 小题 ,每题 10 分 ,共计70分 )12. 实数 ,,在数轴上的位置如图所示,化简:.13. 在一个边长为的正方形的内部挖去一个长为,宽为的长方形,求剩余部分图形的面积.14. 已知,.求下列代数式的值:;. 15.如图,点,在上, ,与交于点.求证: ;若,求的度数. 16.如图,点,在线段上, ,,.求证: 17. 如图,已知, 直线经过点,过点作于, 于.我们把这种常见图形称为“”字图.悟空同学对图进行一番探究后,得出结论:,现请你替悟空同学完成证明过程;悟空同学进一步对类似图形进行探究,在图中,若,,则结论还成立吗?如果成立,请证明之.(−)+(a +b)=a 2b 2a bc −−|a +c|(a −b)2−−−−−−√4c2−−−√(2+3)cm 3–√5–√(2+)cm 3–√10−−√(−)cm 6–√5–√a +b =3ab =2(1)+a 2b 2(2)2−4ab +2a 2b 2E F BC BE =CF,∠A =∠D,∠B =∠C AF DE O (1)△ABF ≅△DCE (2)∠AOE =80∘∠OEF C D BF AB//DE AB =DF BC =DE ∠A =∠F.1AB =AC AB ⊥AC.m A B BD ⊥m D CE ⊥m E K (1)1DE =BD+CE(2)2AB =AC ∠BAC =∠BDA =∠AEC DE =BD+CE18. 我学校积极响应淮北市“三城同创”的号召,绿化校园,计划购进,两种树苗,共棵,已知种树苗每棵元,种树苗每棵元.设购买种树苗棵,购买两种树苗所需的费用为元.求与的函数表达式,其中;若购买种树苗的数量少于种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.A B 21A 90B 70A x y (1)y x 0≤x ≤21(2)B A参考答案与试题解析2022-2023学年全国初中八年级下数学人教版月考试卷一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】C【考点】轴对称图形【解析】根据轴对称图形的概念求解.【解答】解:由轴对称图形的概念可知选项中的图形为轴对称图形.故选.2.【答案】B【考点】最简二次根式【解析】直接利用最简二次根式的定义分析得出答案.【解答】解:.,不是最简二次根式,故本项错误;.是最简二次根式,故本项正确;.,不是最简二次根式,故本项错误;.,不是最简二次根式,故本项错误.故选.3.C C A =24–√B 2x −−√C =|a|a 2−−√D =12−−√2–√2B【答案】B【考点】三角形的面积三角形的中线【解析】根据部分三角形的高相等,由这些三角形的底边的比例关系可求三角形的面积.【解答】解:在和中,,这两个三角形在边上的高线相等,那么,所以同理,,.故选.4.【答案】D【考点】全等三角形的性质与判定等边三角形的性质三角形的外角性质【解析】首先证明,然后根据全等三角形的性质和三角形外角的性质即可解答.【解答】解:∵是等边三角形,∴,.在和中,∵∴.∴,,故①正确;ABC △BDG △GDC BD =2DC BC =2S △BDG S △G DC =4.S △G DC ==3S △G EC S △AG E =++=8+4+3=15S △BEC S △BDG S △G DC S △G EC =2=30S △ABC S △BEC B △ACP ≅△CBQ △ABC AC =CB ∠A =∠ABC =∠BCQ =60∘△ACP △CBQ AP =CQ ,∠A =∠BCQ ,AC =CB ,△ACP ≅△CBQ(SAS)CP =BQ ∠ACP =∠CBQ∴.∴,故②正确;∵是的一个外角,∴,,故③正确.综上所述,正确的结论有个.故选.5.【答案】D【考点】一次函数的性质【解析】本题考查了一次函数的增减性.【解答】解:一次函数中,当时,随的增大而增大,当时,随的增大而减小,故选.6.【答案】D【考点】象限中点的坐标【解析】已知点在第二象限,可得点的横坐标为负,纵坐标为正;再由点到轴的距离是,可得点的纵坐标为;由点到轴的距离是,可得点的横坐标为,由此即可得点的坐标为【解答】解:∵点在第二象限,∴点的横坐标为负,纵坐标为正,∵到轴的距离是,∴纵坐标为,∵到轴的距离是,∴横坐标为,∴.故选.7.∠ABC −∠CBQ =∠BCQ −∠ACP ∠ABQ =∠BCP ∠PMB △BCM ∠PMB =∠BCP +∠CBQ =∠BCP +ACP =∠BCQ =60∘3D y =kx+b k >0y x k <0y x D P P P 3P 3P y 5P −5P (−5,3)P P x 33y 5−5P (−5,3)D【考点】一次函数图象与系数的关系【解析】根据一次函数的性质即可解决问题.【解答】解:直线不经过第一象限,如图,则,.故选.8.【答案】C【考点】同类二次根式【解析】此题暂无解析【解答】解:、 是无理数,故是无理数、 是无理数,故是无理数、为有理数、是无理数,故是无理数故选.9.y =kx+b k <0b ≤0C A =∵12−−√2–√22–√12−−√B =∵13−−√3–√33–√13−−√C =14−−√12D =∴15−−√5–√55–√15−−√C【考点】全等三角形的判定【解析】根据等式的性质可得,然后再结合判定两个三角形全等的一般方法、、、、分别进行分析.【解答】解:∵,,,添加不能判定,故此选项符合题意;,添加可以利用定理判定,故此选项不符合题意;,添加可利用定理判定,故此选项不符合题意;,添加可利用定理判定,故此选项不符合题意;故选.10.【答案】B【考点】等腰三角形的判定与性质三角形内角和定理【解析】根据等腰三角形的两底角相等和三角形的内角和为即可解得.【解答】解:如图所示,共有种分割方法.∠CAB =∠DAE SSS SAS ASA AAS HL ∠ABC =∠EBD BC =BD A AC =ED △ABC ≅△EBD B BA =BE SAS △ABC ≅△EBD C ∠C =∠D ASA △ABC ≅△EBD D ∠A =∠E AAS △ABC ≅△EBD A 180∘2故选.二、 填空题 (本题共计 1 小题 ,共计3分 )11.【答案】【考点】因式分解-提公因式法因式分解-运用公式法【解析】原式利用平方差公式变形后,提取公因式即可得到结果.【解答】解:原式故答案为:.三、 解答题 (本题共计 7 小题 ,每题 10 分 ,共计70分 )12.【答案】解:∵,,,∴原式.【考点】在数轴上表示实数平方根【解析】此题暂无解析B (a +b)(a −b +1)(a +b)=(a +b)(a −b)+(a +b)=(a +b)(a −b +1)(a +b)(a −b +1)a −b >0c <0a +c <0=a −b +2c +a +c =2a −b +3c【解答】解:∵,,,∴原式.13.【答案】解:剩余部分的面积为:.答:剩余部分图形的面积为.【考点】二次根式的应用二次根式的混合运算【解析】用大正方形的面积减去长方形的面积即可求出剩余部分的面积.【解答】解:剩余部分的面积为:.答:剩余部分图形的面积为.14.【答案】解:,,,,.∵,,,.【考点】a −b >0c <0a +c <0=a −b +2c +a +c =2a −b +3c (2+3−(2+)(−)3–√5–√)23–√10−−√6–√5–√=(12+12+45)−(6−2+2−5)15−−√2–√15−−√15−−√2–√=(57+12−)(c )15−−√2–√m 2(57+12−)(c )5–√2–√m 2(2+3−(2+)(−)3–√5–√)23–√10−−√6–√5–√=(12+12+45)−(6−2+2−5)15−−√2–√15−−√15−−√2–√=(57+12−)(c )15−−√2–√m 2(57+12−)(c )5–√2–√m 2(1)=++2ab (a +b)2a 2b 2∴+=−2ab a 2b 2(a +b)2∵a +b =3ab =2∴+=−2×2=5a 2b 232(2)=++2ab (a +b)2a 2b 2=−2ab +(a −b)2a 2b 2∴=−4ab (a −b)2(a +b)2∴2−4ab +2a 2b 2=2(−2ab +)a 2b 2=2(a −b)2=2[−4ab](a +b)2=2×(−4×2)32=2列代数式求值完全平方公式【解析】无无【解答】解:,,,,.∵,,,.15.【答案】证明:,∴,即,∵,,∴.解:由知: ,.,则,即的度数为.【考点】三角形的外角性质全等三角形的判定全等三角形的性质【解析】无无(1)=++2ab (a +b)2a 2b 2∴+=−2ab a 2b 2(a +b)2∵a +b =3ab =2∴+=−2×2=5a 2b 232(2)=++2ab (a +b)2a 2b 2=−2ab +(a −b)2a 2b 2∴=−4ab (a −b)2(a +b)2∴2−4ab +2a 2b 2=2(−2ab +)a 2b 2=2(a −b)2=2[−4ab](a +b)2=2×(−4×2)32=2(1)∵BE =CF BE+EF =CF +EF BF =CE ∠A =∠D ∠B =∠C △ABF ≅△DCE(AAS)(2)(1)△ABF ≅△DCA ∴∠AFB =∠DEC ∵∠AOE =∠AFB+∠DEC ∠AFB =∠DEC =∠AOE =1240∘∠OEF 40∘证明:,∴,即,∵,,∴.解:由知: ,.,则,即的度数为.16.【答案】证明:∵,∴,在和中,∴ ,∴.【考点】全等三角形的性质与判定【解析】证明:在和中【解答】证明:∵,∴,在和中,∴ ,∴.17.(1)∵BE =CF BE+EF =CF +EF BF =CE ∠A =∠D ∠B =∠C △ABF ≅△DCE(AAS)(2)(1)△ABF ≅△DCA ∴∠AFB =∠DEC ∵∠AOE =∠AFB+∠DEC ∠AFB =∠DEC =∠AOE =1240∘∠OEF 40∘AB//DE ∠ABC =∠FDE △ABC △FDE AB =FD ,∠ABC =∠FDE ,BC =DE ,△ABC ≅△FDE(SAS)∠A =∠F ∵AB ∥DE,∴∠ABC =∠FDE△ABC △FDE AB =FD∠ABC =∠FDE BC =DE∴△ABC ≅△FDE∴∠A =∠FAB//DE ∠ABC =∠FDE △ABC △FDE AB =FD ,∠ABC =∠FDE ,BC =DE ,△ABC ≅△FDE(SAS)∠A =∠F证明:在和中,∴,∴,,∴.解:成立.理由如下:∵ ,,,∴ ,在和 中,∴ ,∴,,∴ .【考点】全等三角形的性质与判定【解析】【解答】证明:在和中,∴,∴,,∴.解:成立.理由如下:∵ ,,,∴ ,在和 中,∴ ,∴,,∴ .18.(1)△ABD △CAE ∠ABD =∠EAC ,∠BDA =∠AEC ,AB =AC ,△ABD ≅△CAE(AAS)BD =A E AD =C E DE =AE+DA =BD+CE (2)∠BAC +∠BAD+∠EAC =180∘∠ADB+∠BAD+∠ABD =180∘∠BAC =∠BDA ∠ABD =∠EAC △ABD △CAE ∠ABD =∠EAC ,∠BDA =∠AEC ,AB =AC ,△ABD ≅△CAE(AAS)BD =AE AD =CE DE =AE+DA =BD+CE (1)△ABD △CAE ∠ABD =∠EAC ,∠BDA =∠AEC ,AB =AC ,△ABD ≅△CAE(AAS)BD =A E AD =C E DE =AE+DA =BD+CE (2)∠BAC +∠BAD+∠EAC =180∘∠ADB+∠BAD+∠ABD =180∘∠BAC =∠BDA ∠ABD =∠EAC △ABD △CAE ∠ABD =∠EAC ,∠BDA =∠AEC ,AB =AC ,△ABD ≅△CAE(AAS)BD =AE AD =CE DE =AE+DA =BD+CE解:根据题意得,,所以函数解析式为,.∵购买种树苗的数量少于种树苗的数量,∴,解得:,又∵,且取整数,∴当时,有最小值,∴使费用最省的方案是购买种树苗棵,种树苗棵,所需费用为元.【考点】函数关系式一次函数的应用【解析】本题考查一元一次不等式及一次函数的应用.【解答】解:根据题意得,,所以函数解析式为,.∵购买种树苗的数量少于种树苗的数量,∴,解得:,又∵,且取整数,∴当时,有最小值,∴使费用最省的方案是购买种树苗棵,种树苗棵,所需费用为元.(1)y =90x+70(21−x)=20x+1470y =20x+1470(0≤x ≤21)(2)B A 21−x <x x >10.5y =20x+1470x x =11y =1690B 10A 111690(1)y =90x+70(21−x)=20x+1470y =20x+1470(0≤x ≤21)(2)B A 21−x <x x >10.5y =20x+1470x x =11y =1690B 10A 111690。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二下册数学月考试卷

一、选择题(3×10=30分)
1.在下列各式 中,是分式的有( )
A.2个 B.3个 C.4个 D.5个
2.-3x<-1的解集是( )
A、x< B、x<- C、x> D、x>-
3.下列从左到右的变形是分解因式的是( )
A、(x-4)(x+4)=x2-16 B、x2-y2+2=(x+y)(x-y)+2
C、2ab+2ac=2a(b+c) D、(x-1)(x-2)=(x-2) (x-1).
4.能够判定四边 形ABCD是平行四边形的题设是( ).
A.AB∥CD,AD=BC B.∠A=∠B, ∠C=∠D
C.AB=AD,CB=CD D.AB=CD,AD=BC
5.分式 , , 的最简公分母是( )
A、(a?-2ab+b?)(a?-b?)(a?+2ab+b?) B、(a+b)?
(a-b)?
C、(a+b)?(a-b)?(a?-b?) D、
6.一个多边形的内角和为 ,则这个多边形的边数为( )
A.11 B.10 C.9 D.8
7.已知关于x的不等式组 的解集为 ,则 的值为 ( )
A.-2 B. C.-4 D.
8.直线 : 与直线 : 在同一平面直角坐标系中的图象如图所示,
则关于 的不等式 的解集为( )
A、 >-1 B、 <-1 C、 <-2 D、无法确定
9.下列说法正确的是( )
①平行四边形具有四边形的所有性质;②平行四边形是中心对称
图形;③平行四边形的任一条对角线可把平行四边形分成两个全等的
三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等
的小三角形。
A.①②④ B.①③④ C.①②③ D.①②③④
10.某工地调来72人参加挖土和运土,已知3人挖出的土1人恰
好能全部运走。怎样调配劳动力才能使挖出的土能及时运走且不窝工。
解决此问题,可设派x人挖土,其他人运土,列方程为① ②72-x= ③
x+3x=72 ④ 上 述所列方程正确的有( )
A.1个 B.2个 C.3个 D.4个
二、填空题(3×5=15分)
11.分解因式:a3b+2a2b2+ab3= 。
12.当x 时,分式 有意义;
当x 时,分式 的值为零。
13.如图,在平行四边形ABCD中,∠B=120°,DE⊥AB,垂足为
E,DF⊥BC,垂足为F.则∠ADE= ,∠EDF= ,∠FDC= 。
14. 是 的BC边上的中线, , ,则中线 的取值范围是
____________。
15 .平行四边形两邻边分别是4和6,其中一边上的高是3,则平
行四边形的面积是____________.
三、计算题(5×3=15分)
(16)解不等式组,并把解集在数轴上表示出来

≥x;
(17)因式分解
(18)解分式方程
四、解答题(7×2+8×2=3 0分)
19.先化简,再求值: .其中m=5.
20.已知关于x的方程 的解为非负数,求x的取值范围。
21.当m为何值时,分式方程 无解?
22.已知 、 、 是△ABC的三边,且满足 ,试判断△ABC的形状.

24(10分).如图所示,已知E为平行四边形ABCD中DC边的延
长线上的一点,且CE=DC,连接AE,分别交BC,BD于点F,G,连接
AC交BD于点O,连接OF。求证:AB=2OF。

【初二下册数学月考试卷】

相关文档
最新文档