高考数学(理科)二轮复习:解答题专项练(6套有答案)
(江苏专)高考数学二轮复习6个解答题专项强化练(三)解析几何

6个解答题专项强化练(三) 解析几何1.已知圆M :x 2+y 2-2x +a =0.(1)若a =-8,过点P (4,5)作圆M 的切线,求该切线方程;(2)若AB 为圆M 的任意一条直径,且OA ―→·OB ―→=-6(其中O 为坐标原点),求圆M 的半径.解:(1)若a =-8,则圆M 的标准方程为(x -1)2+y 2=9,圆心M (1,0),半径为3. 若切线斜率不存在,圆心M 到直线x =4的距离为3,所以直线x =4为圆M 的一条切线; 若切线斜率存在,设切线方程为y -5=k (x -4),即kx -y -4k +5=0,则圆心到直线的距离为|k -4k +5|k 2+1=3,解得k =815,即切线方程为8x -15y +43=0.所以切线方程为x =4或8x -15y +43=0.(2)圆M 的方程可化为(x -1)2+y 2=1-a ,圆心M (1,0),则OM =1,半径r =1-a (a <1). 因为AB 为圆M 的任意一条直径,所以MA ―→=-MB ―→,且|MA ―→|=|MB ―→|=r ,则OA ―→·OB ―→=(OM ―→+MA ―→)·(OM ―→+MB ―→)=(OM ―→-MB ―→)·(OM ―→+MB ―→)=OM ―→2-MB ―→2=1-r 2,又因为OA ―→·OB ―→=-6,解得r =7,所以圆M 的半径为7.2.如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-1,0),且经过点⎝ ⎛⎭⎪⎫1,32. (1)求椭圆的标准方程;(2)已知椭圆的弦AB 过点F ,且与x 轴不垂直.若D 为x 轴上的一点,DA =DB ,求AB DF的值.解:(1)法一:由题意,得⎩⎪⎨⎪⎧c =1,1a 2+94b 2=1,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=4,b 2=3.所以椭圆的标准方程为x 24+y 23=1.法二:由题意,知2a =1+12+⎝ ⎛⎭⎪⎫322+1-12+⎝ ⎛⎭⎪⎫322=4,所以a =2. 又c =1,a 2=b 2+c 2,所以b =3,所以椭圆的标准方程为x 24+y 23=1.(2)法一:设直线AB 的方程为y =k (x +1). ①当k =0时,AB =2a =4,FD =FO =1,所以AB DF=4;②当k ≠0时,设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0),把直线AB 的方程代入椭圆方程,整理得(3+4k 2)x 2+8k 2x +4k 2-12=0,所以x 1+x 2=-8k 23+4k 2,x 1·x 2=4k 2-123+4k 2,所以x 0=-4k23+4k 2,所以y 0=k (x 0+1)=3k3+4k2, 所以AB 的垂直平分线方程为y -3k 3+4k 2=-1k ⎝ ⎛⎭⎪⎫x +4k 23+4k 2. 因为DA =DB ,所以点D 为AB 的垂直平分线与x 轴的交点,所以D ⎝ ⎛⎭⎪⎫-k 23+4k 2,0,所以DF =-k 23+4k 2+1=3+3k23+4k 2.又因为AB =1+k 2|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2=12+12k23+4k2,所以AB DF=4.综上,得AB DF的值为4.法二:①若直线AB 与x 轴重合,则AB DF=4; ②若直线AB 不与x 轴重合,设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0),由⎩⎪⎨⎪⎧x 214+y 213=1,x 224+y 223=1,两式相减得x 21-x 224+y 21-y 223=0,所以x 1-x 2·x 04+y 1-y 2·y 03=0,所以直线AB 的斜率为y 1-y 2x 1-x 2=-3x 04y 0,所以直线AB 的垂直平分线方程为y -y 0=4y 03x 0(x -x 0).因为DA =DB ,所以点D 为AB 的垂直平分线与x 轴的交点,所以D ⎝ ⎛⎭⎪⎫x 04,0,所以DF =x 04+1.因为椭圆的左准线的方程为x =-4,离心率为12,由AFx 1+4=12,得AF =12(x 1+4), 同理BF =12(x 2+4).所以AB =AF +BF =12(x 1+x 2)+4=x 0+4,所以AB DF=4. 综上,得AB DF的值为4.3.如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点和上顶点分别为A ,B ,M 为线段AB 的中点,且OM ―→·AB ―→=-32b 2.(1)求椭圆的离心率;(2)若a =2,四边形ABCD 内接于椭圆,AB ∥DC .记直线AD ,BC 的斜率分别为k 1,k 2,求证:k 1k 2为定值.解:(1)由题意,A (a,0),B (0,b ),由M 为线段AB 的中点得M ⎝ ⎛⎭⎪⎫a 2,b2. 所以OM ―→=⎝ ⎛⎭⎪⎫a 2,b 2,AB ―→=(-a ,b ).因为OM ―→·AB ―→=-32b 2,所以⎝ ⎛⎭⎪⎫a 2,b 2·(-a ,b )=-a 22+b 22=-32b 2, 整理得a 2=4b 2,即a =2b .因为a 2=b 2+c 2,所以3a 2=4c 2,即3a =2c . 所以椭圆的离心率e =c a =32. (2)证明:法一:由a =2得b =1,故椭圆方程为x 24+y 2=1.从而A (2,0),B (0,1),直线AB 的斜率为-12.因为AB ∥DC ,故可设DC 的方程为y =-12x +m ,D (x 1,y 1),C (x 2,y 2).联立方程⎩⎪⎨⎪⎧y =-12x +m ,x24+y 2=1,消去y ,得x 2-2mx +2m 2-2=0,所以x 1+x 2=2m ,从而x 1=2m -x 2. 直线AD 的斜率k 1=y 1x 1-2=-12x 1+m x 1-2,直线BC 的斜率k 2=y 2-1x 2=-12x 2+m -1x 2,所以k 1k 2=-12x 1+m x 1-2·-12x 2+m -1x 2=14x 1x 2-12m -1x 1-12mx 2+m m -1x 1-2x 2=14x 1x 2-12m x 1+x 2+12x 1+m m -1x 1x 2-2x 2=14x 1x 2-12m ·2m +122m -x 2+m m -1x 1x 2-2x 2=14x 1x 2-12x 2x 1x 2-2x 2=14, 即k 1k 2为定值14.法二:由a =2得b =1,故椭圆方程为x 24+y 2=1.从而A (2,0),B (0,1),直线AB 的斜率为-12.设C (x 0,y 0),则x 204+y 20=1.因为AB ∥CD ,故CD 的方程为y =-12(x -x 0)+y 0.联立方程⎩⎪⎨⎪⎧y =-12x -x 0+y 0,x24+y 2=1,消去y ,得x 2-(x 0+2y 0)x +2x 0y 0=0,解得x =x 0或x =2y 0. 所以点D 的坐标为⎝ ⎛⎭⎪⎫2y 0,12x 0.所以k 1k 2=12x 02y 0-2·y 0-1x 0=14,即k 1k 2为定值14.4.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-1,0),左准线方程为x =-2.(1)求椭圆C 的标准方程;(2)已知直线l 交椭圆C 于A ,B 两点.①若直线l 经过椭圆C 的左焦点F ,交y 轴于点P ,且满足PA ―→=λAF ―→,PB ―→=μBF ―→.求证:λ+μ为定值;②若A ,B 两点满足OA ⊥OB (O 为坐标原点),求△AOB 面积的取值范围.解:(1)由题设知c =1,-a 2c=-2,解得a 2=2,b 2=1,∴椭圆C 的标准方程为x 22+y 2=1.(2)①证明:由题设知直线l 的斜率存在,设直线l 的方程为y =k (x +1),则P (0,k ). 设A (x 1,y 1),B (x 2,y 2),把直线l 的方程代入椭圆的方程得x 2+2k 2(x +1)2=2, 整理得(1+2k 2)x 2+4k 2x +2k 2-2=0, ∴x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k2.由PA ―→=λAF ―→,PB ―→=μBF ―→知,λ=-x 11+x 1,μ=-x 21+x 2,∴λ+μ=-x 1+x 2+2x 1x 21+x 1+x 2+x 1x 2=--4k 21+2k 2+4k 2-41+2k 21+-4k 21+2k 2+2k 2-21+2k 2=--4-1=-4(定值).②当直线OA ,OB 分别与坐标轴重合时,易知△AOB 的面积S =22, 当直线OA ,OB 的斜率均存在且不为零时,设OA :y =kx ,OB :y =-1kx ,A (x 1,y 1),B (x 2,y 2),将y =kx 代入椭圆C 得到x 2+2k 2x 2=2,∴x 21=22k 2+1,y 21=2k 22k 2+1,同理x 22=2k 22+k 2,y 22=22+k2,故△AOB 的面积S =OA ·OB2=k 2+122k 2+1k 2+2.令t =k 2+1∈(1,+∞), 故S =t 22t -1t +1=12+1t -1t2. 再令u =1t∈(0,1),则S =1-u 2+u +2=1-⎝ ⎛⎭⎪⎫u -122+94∈⎣⎢⎡⎭⎪⎫23,22.综上所述,S ∈⎣⎢⎡⎦⎥⎤23,22.5.如图,在平面直角坐标系xOy 中,已知椭圆C :x 24+y 23=1的左、右顶点分别为A ,B ,过右焦点F 的直线l 与椭圆C 交于P ,Q 两点(点P 在x 轴上方).(1)若QF =2FP ,求直线l 的方程;(2)设直线AP ,BQ 的斜率分别为k 1,k 2.是否存在常数λ,使得k 1=λk 2?若存在,求出λ的值;若不存在,请说明理由.解:(1)因为a 2=4,b 2=3,所以c =a 2-b 2=1,所以F 的坐标为(1,0),设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为x =my +1, 代入椭圆方程,消去x ,得(4+3m 2)y 2+6my -9=0, 则y 1=-3m +61+m 24+3m 2,y 2=-3m -61+m 24+3m 2. 若QF =2FP ,则-y 2=2y 1,即y 2+2y 1=0, 所以-3m -61+m 24+3m 2+2×-3m +61+m24+3m 2=0, 解得m =255,故直线l 的方程为5x -2y -5=0.(2)由(1)知,y 1+y 2=-6m 4+3m 2,y 1y 2=-94+3m 2,所以my 1y 2=-9m 4+3m 2=32(y 1+y 2),所以k 1k 2=y 1x 1+2·x 2-2y 2=y 1my 2-1y 2my 1+3=32y 1+y 2-y 132y 1+y 2+3y 2=13, 故存在常数λ=13,使得k 1=13k 2.6.如图,已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,其离心率e =12,左准线方程为x =-8.(1)求椭圆的方程;(2)过F 1的直线交椭圆于A ,B 两点,I 1,I 2分别为△F 1AF 2,△F 1BF 2的内心. ①求四边形F 1I 1F 2I 2与△AF 2B 的面积比;②是否存在定点C ,使CA ―→·CB ―→为常数?若存在,求出点C 的坐标;若不存在,说明理由.解:(1)由题意⎩⎪⎨⎪⎧c a =12,a2c =8,解得a =4,c =2,故b =23,所以椭圆的方程为x 216+y 212=1.(2)①设△F 1AF 2的内切圆半径为r ,则S △F 1I 1F 2=12·F 1F 2·r =12·2c ·r =2r ,S △F 1AF 2=12·(AF 1+AF 2+F 1F 2)·r =12·(2a +2c )·r =6r ,∴S △F 1I 1F 2∶S △F 1AF 2=1∶3, 同理S △F 1I 2F 2∶S △F 1BF 2=1∶3, ∴S 四边形F 1I 1F 2I 2∶S △AF 2B =1∶3.②假设存在定点C (s ,t ),使得CA ―→·CB ―→为常数.若直线AB 存在斜率,设AB 的方程为y =k (x +2),A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧y =k x +2,x 216+y 212=1,消去y ,得(3+4k 2)x 2+16k 2x +16k 2-48=0,由此得x 1+x 2=-16k 23+4k 2,x 1x 2=16k 2-483+4k 2,∴CA ―→·CB ―→=(x 1-s ,y 1-t )·(x 2-s ,y 2-t ) =(x 1-s )(x 2-s )+(y 1-t )(y 2-t )=(x 1-s )(x 2-s )+[k (x 1+2)-t ][k (x 2+2)-t ] =(1+k 2)x 1x 2+(2k 2-tk -s )(x 1+x 2)+s 2+t 2+4k 2-4tk =1+k216k 2-483+4k 2+2k 2-tk -s -16k23+4k2+s 2+t 2+4k 2-4tk =-12tk -12s -333+4k2+s 2+t 2+4s -5. ∵与k 无关,∴⎩⎪⎨⎪⎧-12t =0,-12s -33=0,即⎩⎪⎨⎪⎧s =-114,t =0,此时CA ―→·CB ―→=-13516;若直线AB 不存在斜率,则A 与B 的坐标为(-2,±3),CA ―→·CB ―→=(s +2,t -3)·(s +2,t +3)=(s +2)2+t 2-9,将⎩⎪⎨⎪⎧s =-114,t =0代入,此时CA ―→·CB ―→=-13516也成立.综上所述,存在定点C ⎝ ⎛⎭⎪⎫-114,0,使得CA ―→·CB ―→为常数.。
高考数学第二轮复习 解析几何解答题专项训练(理科)

1.已知椭圆 :
x2 a2
y2 b2
1(a
b
0 )的焦距为 4 ,且椭圆 过点
A(2
,
2) .
(1)求椭圆 的方程;
(2)设 P 、 Q 为椭圆 上关于 y 轴对称的两个不同的动点,求 AP AQ 的取值范围.
2(. 本题满分 13 分)已知直线 l 与抛物线 x2 4 y 相交于 A ,B 两点,且与圆 ( y 1)2 x2 1
并且 F1P F1Q ,证明:当 a 变化时,点 p 在某定直线上。
8.(本小题满分 13 分)
x2 已知椭圆 C 的方程为 a2
y2 b2
1(a
b
0)
离心率
e=
1 2
,设
A(0, b),
B(a,
0),
F1,
F2
分
别是椭圆的左、右焦点且 SF2AB
3. 2
(I)求椭圆 C 的方程;
(Ⅱ)过 F1 线与以 F2 焦点,顶点在坐标原点的抛物线交于 P、Q 两点,设 F1P F1Q ,
(ⅱ)求线段 MN 的长度的最AO
B
x
N
2
7.(本小题满分 12 分)
设椭圆
E
:
x2 a2
y2 1 a2
1的焦点在 x 轴上
(Ⅰ)若椭圆 E 的焦距为 1,求椭圆 E 的方程;
(Ⅱ)设 F1, F2 分别是椭圆的左、右焦点, P 为椭圆 E 上的第一象限内的点,直线 F2P 交 y 轴与点 Q ,
2
2
PA、PB 的斜率分别为 kPA、kPB ,求 kPA kPB 的数值;
(3)试问:是否存在一个定圆 N ,与以动点 M 为圆心,以 MD 为半径的圆相内切?若存在,
2022版优化方案高考数学(山东专用·理科)二轮复习解答题专题练(三) Word版含答案

解答题专题练(三) 立体几何(建议用时:60分钟) 1. (2021·德州第一次质量猜测)如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,PD ⊥底面ABCD ,∠ADC =90°,BC =12AD =1,PD =CD =2,Q 为AD 的中点,M 为棱PC 上一点.(1)试确定点M 的位置,使得P A ∥平面BMQ ,并证明你的结论; (2)若PM =2MC ,求二面角P -BQ -M 的余弦值.2. 如图,四棱锥P -ABCD 中,底面ABCD 为梯形,PD ⊥底面ABCD ,AB ∥CD ,AD ⊥CD ,AD =AB =1,BC = 2.(1)求证:平面PBD ⊥平面PBC ;(2)设H 为CD 上一点,满足CH →=2HD →,若直线PC 与平面PBD 所成的角的正切值为63,求二面角H -PB -C的余弦值.3. 如图,AC 是圆O 的直径,B 、D 是圆O 上两点,AC =2BC =2CD =2,P A ⊥圆O 所在的平面,BM →=13BP →.(1)求证:CM ∥平面P AD ;(2)当CM 与平面P AC 所成角的正弦值为55时,求AP 的值.4. (2021·日照诊断考试)如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,AB ∥CD ,AB =2,BC =CD =1,顶点D 1在底面ABCD 内的射影恰为点C .(1)求证:AD 1⊥BC ;(2)若直线DD 1与直线AB 所成的角为π3,求平面ABC 1D 1与平面ABCD 所成角(锐角)的余弦值.5. (2021·泰安模拟)如图所示,在四棱锥P -ABCD 中,底面ABCD 为菱形,∠BAD =60°,Q 为AD 的中点.(1)若P A =PD ,求证:平面PQB ⊥平面P AD ; (2)点M 在线段PC 上,二面角M -BQ -C 为60°,若平面P AD ⊥平面ABCD ,且P A =PD =AD =2,求三棱锥M BCQ 的体积.6.如图①,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图②.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.解答题专题练(三) 立体几何1.解:(1)当M 为PC 的中点时,P A ∥平面BMQ . 证明如下:连接AC 交BQ 于N ,连接MN ,由于AD ∥BC ,BC =12AD ,Q 为AD 的中点,所以BC =QD 且BC ∥QD ,所以四边形BCDQ 为平行四边形,所以DC ∥BQ ,即QN ∥DC ,所以N 为AC 的中点.当M 为PC 的中点,即PM =MC 时,MN 为△P AC 的中位线, 故MN ∥P A ,又MN ⊂平面BMQ ,P A ⊄平面BMQ , 所以P A ∥平面BMQ .(2)由题意,以点D 为原点,DA ,DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系, 则P (0,0,2),Q (1,0,0),B (1,2,0),C (0,2,0),由PM =2MC 可得点M ⎝⎛⎭⎫0,43,23, 所以PQ →=(1,0,-2),QB →=(0,2,0),QM →=⎝⎛⎭⎫-1,43,23, 设平面PQB 的法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧PQ →·n 1=x -2z =0,QB →·n 1=2y =0,故⎩⎪⎨⎪⎧x =2z ,y =0,令z =1,得n 1=(2,0,1), 同理平面MBQ 的一个法向量为n 2=⎝⎛⎭⎫23,0,1,设所求二面角大小为θ,结合图形知cos θ=n 1·n 2|n 1||n 2|=76565.2.解:(1)证明:由AD ⊥CD ,AB ∥CD ,AD =AB =1,可得BD = 2. 又BC =2,所以CD =2, 所以BC ⊥BD .由于PD ⊥底面ABCD ,所以PD ⊥BC ,又PD ∩BD =D , 所以BC ⊥平面PBD , 所以平面PBD ⊥平面PBC .(2)由(1)可知∠BPC 为PC 与平面PBD 所成的角,所以tan ∠BPC =63,所以PB =3,PD =1. 由CH →=2HD →及CD =2,可得CH =43,DH =23.以点D 为坐标原点,DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.则B (1,1,0),P (0,0,1),C (0,2,0),H ⎝⎛⎭⎫0,23,0. 设平面HPB 的法向量为n =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧HP →·n =0,HB →·n =0,即⎩⎨⎧-23y 1+z 1=0,x 1+13y 1=0,取y 1=-3,则n =(1,-3,-2).设平面PBC 的法向量为m =(x 2,y 2,z 2),则⎩⎪⎨⎪⎧PB →·m =0,BC →·m =0,即⎩⎪⎨⎪⎧x 2+y 2-z 2=0,-x 2+y 2=0, 取x 2=1,则m =(1,1,2).又cos 〈m ,n 〉=m ·n |m ||n |=-217,结合图形知,二面角H -PB -C 的余弦值为217.3.解:(1)证明:作ME ⊥AB 于E ,连接CE ,则ME ∥AP .①由于AC 是圆O 的直径,AC =2BC =2CD =2, 所以AD ⊥DC ,AB ⊥BC , ∠BAC =∠CAD =30°, ∠BCA =∠DCA =60°,AB =AD = 3.又BM →=13BP →,所以BE =13BA =33,tan ∠BCE =BE BC =33,所以∠BCE =∠ECA =30°=∠CAD ,所以EC ∥AD ,②由①②,且ME ∩CE =E ,P A ∩AD =A , 得平面MEC ∥平面P AD ,又CM ⊂平面MEC ,CM ⊄平面P AD , 所以CM ∥平面P AD .(2)依题意,如图,以A 为原点,直线AB ,AP 分别为x ,z 轴建立空间直角坐标系,设AP =a ,则A (0,0,0),B (3,0,0),C (3,1,0),P (0,0,a ),D ⎝⎛⎭⎫32,32,0.设平面P AC 的法向量为n =(x ,y ,z ),CM 与平面P AC 所成的角为θ,则⎩⎪⎨⎪⎧n ·AP →=az =0,n ·AC →=3x +y =0,设x =3,则n =(3,-3,0), 又CM →=CB →+BM →=CB →+13BP →,所以CM →=⎝⎛⎭⎫-33,-1,a 3,所以sin θ=|cos 〈CM →,n 〉|=|CM →·n ||CM →||n |=212×3+9+a 29=312+a 2=55,所以a =3,即AP 的值为 3.4.解:(1)证明:连接D 1C ,则D 1C ⊥平面ABCD , 所以D 1C ⊥BC .在等腰梯形ABCD 中,连接AC ,由于AB =2,BC =CD =1,AB ∥CD , 所以BC ⊥AC ,所以BC ⊥平面AD 1C , 所以AD 1⊥BC . (2)法一:由于AB ∥CD ,所以∠D 1DC =π3,由于CD =1,所以D 1C = 3.在底面ABCD 中作CM ⊥AB ,连接D 1M , 则D 1M ⊥AB ,所以∠D 1MC 为平面ABC 1D 1与平面ABCD 所成角的一个平面角.在Rt △D 1CM 中,CM =32,D 1C =3,所以D 1M =CM 2+D 1C 2=152,所以cos ∠D 1MC =55,即平面ABC 1D 1与平面ABCD 所成角(锐角)的余弦值为55. 法二:由(1)知AC 、BC 、D 1C 两两垂直,由于AB ∥CD ,所以∠D 1DC =π3,由于CD =1,所以D 1C = 3. 在等腰梯形ABCD 中,由于AB =2,BC =CD =1, AB ∥CD ,所以AC =3,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,0,0),B (0,1,0),D 1(0,0,3), 设平面ABC 1D 1的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·AB →=0,n ·AD 1→=0得⎩⎨⎧y -3x =0,z -x =0,可得平面ABC 1D 1的一个法向量n =(1,3,1). 又CD 1→=(0,0,3)为平面ABCD 的一个法向量,因此cos 〈CD 1→,n 〉=CD 1→·n |CD 1→||n |=55,所以平面ABC 1D 1与平面ABCD 所成角(锐角)的余弦值为55.5.解:(1)证明:由条件知,PQ ⊥AD ,BQ ⊥AD ,PQ ∩BQ =Q , 所以AD ⊥平面PQB , 由于AD ⊂平面P AD , 所以平面PQB ⊥平面P AD .(2)由于P A =PD ,Q 为AD 的中点,所以PQ ⊥AD . 由于平面P AD ⊥平面ABCD , 平面P AD ∩平面ABCD =AD , 所以PQ ⊥平面ABCD .如图所示,以Q 为坐标原点,分别以QA ,QB ,QP 所在直线为x ,y ,z 轴建立空间直角坐标系,则Q (0,0,0),A (1,0,0),P (0,0,3),B (0,3,0),C (-2,3,0),QB →=(0,3,0). 设PM →=λPC →(0≤λ≤1),QM →=QP →+PM →=QP →+λPC →=(-2λ,3λ,3(1-λ)), 设n =(x ,y ,z )是平面MBQ 的法向量,则⎩⎪⎨⎪⎧QM →·n =0,QB →·n =0,即⎩⎪⎨⎪⎧x =3(1-λ)·z 2λ,y =0,令z =1,得n =⎝ ⎛⎭⎪⎫3(1-λ)2λ,0,1,又m =(0,0,1)是平面BQC 的一个法向量,所以cos 〈m ,n 〉=m·n|m|·|n|=11+3(1-λ)24λ2=12,由于0≤λ≤1,所以λ=13,所以PM →=13PC →.由于PQ =3,所以M 到平面ABCD 的距离为233,又S △BQC =12×2×3=3,所以V M BCQ =13×3×233=23.6.解:(1)证明:在题图①中,由于AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图②中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC . 又CD ∥BE ,所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1BE C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,建立空间直角坐标系, 由于A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝⎛⎭⎫22,0,0,E ⎝⎛⎭⎫-22,0,0,A 1⎝⎛⎭⎫0,0,22,C ⎝⎛⎭⎫0,22,0,得BC →=⎝⎛⎭⎫-22,22,0,A 1C →=⎝⎛⎭⎫0,22,-22,CD →=BE →=(-2,0,0).设平面A 1BC 的法向量n 1=(x 1,y 1,z 1),平面A 1CD 的法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎪⎨⎪⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。
高考数学二轮复习常考题型大通关(全国卷理数)解答题:数列

高考数学二轮复习常考题型大通关(全国卷理数)解答题:数列1.等比数列{}n a 中,已知142,16a a ==(1)求数列{}n a 的通项公式;(2)若35,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n b 的通项公式及前n 项和n S 。
2.已知等差数列{}n a 的前n 项和为n S ,且满足:3576,24a a a =+=.(1)求等差数列{}n a 的通项公式;(2)求数列1{}nS 的前n 项和n T .3.已知数列{}n a 和{}n b 满足112,1a b ==,()12N n n a a n *+=∈,()12311111N 23n n b b b b b n n *+++++=-∈ .(1)求n a 与n b ;(2)记数列{}n n a b 的前n 项和为n T ,求n T .4.已知等差数列{}n a 满足36a =,前7项和为749S =.(1)求{}n a 的通项公式;(2)设数列{}n b 满足()33n n n b a =-⋅,求{}n b 的前n 项和n T .5.已知{}n a 是递增的等比数列,11a =,且22a 、332a 、4a 成等差数列.(1)求数列{}n a 的通项公式;(2)设21231log log n n n b a a ++=⋅,n *∈N ,求数列{}n b 的前n 项和n S .6.已知公差不为0的等差数列{}n a 的前3项和39S =,且125,,a a a 成等比数列.(1)求数列{}n a 的通项公式.(2)设n T 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求证12n T <.7.已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T .若113a b ==,42a b =,4212S T -=.(1)求数列{}n a 与{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和.8.设数列{}n a 的前n 项和为n S ,()112,2*n n a a S n N +==+∈.(1)求数列{}n a 的通项公式;(2)令112(1)(1)n n n n b a a -+=--,求数列{}n b 的前n 项和n T ,求证:12n T <.答案以及解析1.答案:(1)设{}n a 的公比为q ,由已知得3162q =,解得2q =,∴112.n n n a a q -==(2)由(1)得358,32a a ==,则358,32b b ==,设{}n b 的公差为d ,则有1128432b d b d +=⎧⎨+=⎩解得11612b d =-⎧⎨=⎩∴1612112)2(8n b n n =+--=-,∴数列{}n b 的前n 项和2(161228)6222n n n S n n -+-==-.2.答案:(1设等差数列{}n a 的首项为1a 、公差为d ,3576,24a a a =+= ,()()111264624a d a d a d +=⎧∴⎨+++=⎩,解得:122d a =⎧⎨=⎩,(2122)n a n n ∴=+-⨯=;(2由(1)得:()1(22)(1)22n n n a a n n S n n ++===+,所以1211111111 11223(1)(1)n n n T S S S S n n n n =++++=++++-⨯⨯-+ 11111111112233411n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1111n n n =-=++.3.答案:(1)由112,2n n a a a +==,知0n a ≠,故12n n a a +=,即{}n a 是以2为首项,2为公比的等比数列,得()2N n n a n *=∈.由题意知,当1n =时,121b b =-,故22b =.当2n ≥时,11n n n b b b n +=-,整理得11n n b b n n +=+,所以n b n ⎧⎫⎨⎬⎩⎭是以1为首项,1为公比的等比数列,即1n b n =,所以()N n b n n *=∈.(2)由(1)知2n n n a b n =⋅.因此231222322n n T n =⋅+⋅+⋅+⋅⋅⋅+⋅,①23412222322n n T n +=+⋅+⋅+⋅⋅⋅+⋅,②①-②得23122222n n n T n +-=+++⋅⋅⋅+-⋅.故()()1122N n n T n n +*=-+∈.4.答案:(1)由()177477492a a S a ⨯+===,得47a =,因为36a =,所以11.4d a ==,故3n a n =+.(2)()333n n n n b a n =-⋅=⋅,所以1231323333n n T n =⨯+⨯+⨯+⋯+⨯①23131323(1)33n n n T n n +=⨯+⨯+⋯+-⨯+⨯②由①-②得1231133233333313n n n n n T n n +++--=++++-⨯=-⨯- ,所以1(21)334n n n T +-⨯+=.5.答案:(1)设数列{}n a 的公比为q ,由题意及11a =,知1q >.22a 、332a 、4a 成等差数列成等差数列,34232a a a ∴=+,2332q q q ∴=+,即2320q q -+=,解得2q =或1q =(舍去),2q ∴=.∴数列{}n a 的通项公式为1112n n n a a q --==;(2)()212311111log log 222n n n b a a n n n n ++⎛⎫===- ⎪⋅++⎝⎭ ,11111111111232435112n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.()()13113232212431114122221n n n n n n n ⎛⎫=-+ ⎪++⎝⎭+⎛⎫=--=- ⎪++++⎝⎭.6.答案:(1)由3S 9=得13a d +=①;125,,,a a a 成等比数列得:()()21114a a d a d +=+②;联立①②得11,2a d ==;故21n a n =-.(2)111111(21)(21)22121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭ 11111111111233521212212n T n n n ⎛⎫⎛⎫∴=-+-+⋯+-=-< ⎪ ⎪-++⎝⎭⎝⎭.7.答案:(1)由1142,a b a b ==,则()()421234122312S T a a a a b b a a -=+++-+=+=,设等差数列{}n a 的公差为d ,则231236312a a a d d +=+=+=,所以2d =.所以32(1)21n a n n =+-=+.设等比数列{}n b 的公比为q ,由题249b a ==,即2139b b q q ===,所以3q =.所以3n n b =;(2)(21)3n n n a b n +=++,所以{}n n a b +的前n 项和为()()1212n n a a a b b b +++++++ ()2(3521)333n n =++++++++ ()()313331(321)(2)2132n n n n n n --++=+=++-8.答案:(1)()12,*n n a S n N +=+∈,①当1n =时,212a S =+,即24a =,当2n ≥时,12n n a S -=+,②由①-②可得11n n n n a a S S +--=-,即12n n a a +=,∴2222,2n n n a a n -=⨯=≥当1n =时,1122a ==,满足上式,∴()2n n a n N *=∈(2)由(1)得1112111()(21)(21)22121n n n n n n b -++==-----∴1111111111(1)(1)23372121221n n n n T ++=-+-++-=---- ∴12n T <。
2025年高考数学二轮复习-3.1-等差数列、等比数列-专项训练【含答案】

2025年高考数学二轮复习-3.1-等差数列、等比数列-专项训练一、基本技能练1.已知等比数列{a n}满足a1=2,a3a5=4a26,则a3的值为()A.1B.2C.1或-1D.122.设数列{a n}是等差数列,S n是数列{a n}的前n项和,a3+a5=10,S5=15,则S6=()A.18B.24C.30D.363.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块.向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块4.若等差数列{a n}的前n项和为S n,则“S2022>0,S2023<0”是“a1011a1012<0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(多选)已知等比数列{a n}的公比为q,且a5=1,则下列选项正确的是()A.a3+a7≥2B.a4+a6≥2C.a7-2a6+1≥0D.a3-2a4-1≥06.(多选)已知数列{a n}的前n项和为S n,下列说法正确的是()A.若S n=n2+1,则{a n}是等差数列B.若S n=3n-1,则{a n}是等比数列C.若{a n}是等差数列,则S9=9a5D.若{a n}是等比数列,且a1>0,q>0,则S1·S3>S227.写出一个公差为2,且前3项和小于第3项的等差数列a n=________.8.已知数列{a n}的前n项和是S n,且S n=2a n-1,若a n∈(0,2022),则称项a n为“和谐项”,则数列{a n}的所有“和谐项”的和为________.9.已知数列{a n}满足a1=1,(a n+a n+1-1)2=4a n a n-1,且a n+1>a n(n∈N*),则数列{a n}的通项公式a n=________.10.已知数列{a n}是各项均为正数的等比数列,S n为数列{a n}的前n项和,若S2+a2=S3-3,则a4+3a2的最小值为________.11.设等比数列{a n}满足a1+a2=4,a3-a1=8.(1)求{a n}的通项公式;(2)记S n为数列{log3a n}的前n项和.若S m+S m+1=S m+3(m∈N*),求m.12.已知{a n}是等差数列,{b n}是公比为2的等比数列,且a2-b2=a3-b3=b4-a4.(1)证明:a1=b1;(2)求集合{k|b k=a m+a1,1≤m≤500}中元素的个数.二、创新拓展练13.(多选)在等比数列{a n}中,公比为q,其前n项积为T n,并且满足a1>1,a99·a100-1>0,a99-1a100-1<0,下列结论中正确的是()A.0<q<1B.a99·a101-1<0C.T100的值是T n中最大的D.使T n>1成立的最大自然数n值等于19814.(多选)已知数列{a n}满足a1=10,a5=2,且a n+2-2a n+1+a n=0(n∈N*),则下列结论正确的是()A.a n=12-2nB.|a1|+|a2|+|a3|+…+|a n|,n≤5,2+5,n>5C.|a n|的最小值为0D.当且仅当n=5时,a1+a2+a3+…+a n取得最大值3015.(多选)已知S n是数列{a n}的前n项和,且a1=a2=1,a n=a n-1+2a n-2(n≥3),则下列结论正确的是()A.数列{a n+1+a n}为等比数列B.数列{a n+1-2a n}为等比数列C.a n=2n+1+(-1)n3(410-1)D.S20=2316.已知数列{a n}的前n项和为S n,a1=1·(2-S n)=1.2,S n+1(1)(2)2023的数.参考答案与解析一、基本技能练1.答案A解析由题意得a3a5=a24=4a26,又在等比数列中偶数项同号,∴a4=2a6,∴q2=12,∴a3=a1q2=1,故选A.2.答案B解析由等差数列的性质知a4=a3+a52=5,而S5=a1+a52×5=5a3=15,则a3=3,等差数列{a n}的公差d=a4-a3=2,所以a1=a3-2d=-1,则S6=6a1+6×(6-1)2·d=-6+30=24.3.答案C解析设每一层有n环,由题意可知,从内到外每环之间构成公差为d=9,首项为a1=9的等差数列.由等差数列的性质知S n,S2n-S n,S3n-S2n成等差数列,且(S3n-S2n)-(S2n-S n)=n2d,则9n2=729,解得n=9,则三层共有扇面形石板S3n=S27=27×9+27×262×9=3402(块).4.答案B解析因为S2022>0,S2023<0,所以(a1+a2022)×20222>0,(a1+a2023)×20232<0,即a1+a2022=a1011+a1012>0,a1+a2023=2a1012<0,所以a 1011>0,a 1012<0,且a 1011>|a 1012|,所以a 1011a 1012<0,充分性成立;而当a 1011a 1012<0时,a 1011>0,a 1012<0或a 1011<0,a 1012>0,则S 2022>0,S 2023<0不一定成立.故“S 2022>0,S 2023<0”可以推出“a 1011a 1012<0”,但“a 1011a 1012<0”不能推出“S 2022>0,S 2023<0”,所以“S 2022>0,S 2023<0”是“a 1011a 1012<0”的充分不必要条件.故选B.5.答案AC解析因为等比数列{a n }的公比为q ,且a 5=1,所以a 3=1q 2,a 4=1q ,a 6=q ,a 7=q 2,因为a 3+a 7=1q2+q 2≥2,当且仅当q 2=1时等号成立,故A 正确;因为a 4+a 6=1q+q ,当q <0时式子为负数,故B 错误;因为a 7-2a 6+1=q 2-2q +1=(q -1)2≥0,故C 正确;因为a 3-2a 4-1=1q 2-2q-1-2,则a 3-2a 4-1≥0不成立,故D 错误.6.答案BC解析若S n =n 2+1,当n ≥2时,a n =2n -1,a 1=2不满足a n =2n -1,故A 错误;若S n =3n -1,当n ≥2时,a n =S n -S n -1=2·3n -1,由于a 1=S 1=31-1=2,满足a n =2·3n -1,所以{a n }是等比数列,故B 正确;若{a n }是等差数列,则S 9=9(a 1+a 9)2=9a 5,故C 正确;当q =1时,S 1·S 3-S 22=a 21(1+q +q 2)-a 21(1+q )2=-a 21q <0,故D 错误,综上,选BC.7.答案2n-4(n∈N*)(答案不唯一)解析1+a2+a3<a3,=2,解得a1<-1,不妨令a1=-2,∴a n=2n-4.8.答案2047解析当n≥2时,a n=S n-S n-1=2a n-1-(2a n-1-1)=2a n-2a n-1,∴a n=2a n-1,又由a1=S1=2a1-1,得a1=1,∴{a n}是公比为2,首项为1的等比数列,∴a n=2n-1,由a n=2n-1<2022,得n-1≤10,即n≤11,∴所求和为S11=1-2111-2=2047.9.答案n2解析因为a1=1,a n+1>a n≥a1>0,所以a n+1>a n.由(a n+a n+1-1)2=4a n a n+1得a n+1+a n-1=2a n a n+1,所以(a n+1-a n)2=1,所以a n+1-a n=1,所以数列{a n}是首项为1,公差为1的等差数列,所以a n=n,即a n=n2.10.答案18解析由S2+a2=S3-3得a2=S3-S2-3=a3-3,所以a1q=a1q2-3⇒a1=3q2-q>0⇒q>1,所以a4+3a2=a1q3+3a1q=3(q3+3q)q2-q=3(q2+3)q-1=3×(q-1)2+2(q-1)+4q-1=3(q-1)+4q-1+6≥3×2(q-1)·4q-1+6=18,当且仅当q-1=4q-1,即q=3时等号成立,故a4+3a2的最小值为18.11.解(1)设{a n}的公比为q,则a n=a1q n-1.1+a1q=4,1q2-a1=8,1=1,=3.所以{a n}的通项公式为a n=3n-1(n∈N*).(2)由(1)知log3a n=n-1,故S n=n(n-1)2(n∈N*).由S m+S m+1=S m+3,得m(m-1)+(m+1)m=(m+3)(m+2),即m2-5m-6=0.解得m=-1(舍去)或m=6.12.(1)证明设等差数列{a n}的公差为d,由a2-b2=a3-b3得a1+d-2b1=a1+2d-4b1,即d=2b1,由a2-b2=b4-a4得a1+d-2b1=8b1-(a1+3d),即a1=5b1-2d,将d=2b1代入,得a1=5b1-2×2b1=b1,即a1=b1.(2)解由(1)知a n=a1+(n-1)d=a1+(n-1)×2b1=(2n-1)a1,b n=b1·2n-1,由b k=a m+a1,得b1·2k-1=(2m-1)a1+a1,由a1=b1≠0得2k-1=2m,由题知1≤m≤500,所以2≤2m≤1000,所以k=2,3,4,…,10,共9个数,即集合{k|b k=a m+a1,1≤m≤500}={2,3,4,…,10}中元素的个数为9.二、创新拓展练13.答案ABD解析对于A,∵a99·a100-1>0,∴a21·q197>1,∴(a1·q98)2·q>1.∵a1>1,∴q>0.又∵a99-1a100-1<0,∴a99>1,且a100<1,∴0<q<1,故A正确;对于B,∵a2100=a99·a101,a100<1,∴0<a99·a101<1,即a99·a101-1<0,故B正确;对于C,由于T100=T99·a100,而0<a100<1,故有T100<T99,故C错误;对于D,T198=a1·a2·…·a198=(a1·a198)(a2·a197)·…·(a99·a100)=(a99·a100)99>1,T199=a1·a2·…·a199=(a1·a199)·(a2·a198)…(a99·a101)·a100=(a100)100<1,故D正确.故选ABD.14.答案AC解析由a n+2-2a n+1+a n=0,可得a n+2-a n+1=a n+1-a n,所以数列{a n}是等差数列,设公差为d,因为a1=10,a5=2,所以d=a5-a15-1=-2,所以a n=10-2(n-1)=12-2n,故A正确;当n=6时,a n=0,所以当n≤5时,a n>0,当n>5时,a n≤0,所以当n≤5时,|a1|+|a2|+|a3|+…+|a n|=a1+a2+a3+…+a n=n(10+12-2n)2=11n-n2.当n>5时,|a1|+|a2|+|a3|+…+|a n|=a1+a2+…+a5-a6-…-a n=-(a1+a2+a3+…+a n)+2(a1+a2+…+a5)=-S n+2S5=-(11n-n2)+60=n2-11n+60,所以|a1|+|a2|+|a3|+…+|a n|n-n2,n≤5,2-11n+60,n>5,故B错误;|a n|=|12-2n|,当n=6时,|a n|取得最小值为0,故C正确;当n=5或n=6时,a1+a2+a3+…+a n取最大值30,故D错误.15.答案ABD解析因为a n=a n-1+2a n-2(n≥3),所以a n+a n-1=2a n-1+2a n-2=2(a n-1+a n-2),又a1+a2=2≠0,所以{a n+a n+1}是等比数列,A正确;同理a n-2a n-1=a n-1+2a n-2-2a n-1=-a n-1+2a n-2=-(a n-1-2a n-2),而a2-2a1=-1,所以{a n+1-2a n}是等比数列,B正确;若a n=2n+1+(-1)n3,则a2=23+(-1)23=3,但a2=1≠3,C错误;由A知{a n+a n+1}是等比数列,且公比为2,因此数列a1+a2,a3+a4,a5+a6,…仍然是等比数列,公比为4,其前10项和为T10,则S20=T10=2(1-410)1-4=23(410-1),故D正确.16.(1)证明1S 1-1=1a 1-1=-2.由S n +1·(2-S n )=1,得S n +1=12-S n.因为1S n +1-1-1S n -1=112-S n -1-1S n-1=2-S n S n -1-1S n -1=-1,2为首项,-1为公差的等差数列.(2)解由(1)得1S n -1=-2+(n -1)×(-1)=-(n +1),即S n =n n +1,则a n =S n -S n -1=n n +1-n -1n =1n (n +1)(n ≥2),当n =1时,a 1=12满足上式,所以a n =1n (n +1)(n ∈N *),则1a n =n (n +1).由f (x )=x (x +1)-14在(0,+∞)上单调递增,当n =44时,1a 44=44×45=1980;当n =45时,1a 45=45×46=2070.2023的数是1980.。
江苏专版高考数学二轮复习6个解答题专项强化练四数列

6个解答题专项强化练(四) 数 列1.已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2. 所以b n =2n.由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16.②由①②,解得a 1=1,d =3,由此可得a n =3n -2.所以数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n. (2)设数列{a 2n b 2n -1}的前n 项和为T n , 由a 2n =6n -2,b 2n -1=2×4n -1,得a 2n b 2n -1=(3n -1)×4n,故T n =2×4+5×42+8×43+…+(3n -1)×4n,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n-(3n -1)×4n +1=12×1-4n1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.故T n =3n -23×4n +1+83.所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.2.已知数列{a n }满足:a 1=12,a n +1-a n =p ·3n -1-nq ,n ∈N *,p ,q ∈R.(1)若q =0,且数列{a n }为等比数列,求p 的值;(2)若p =1,且a 4为数列{a n }的最小项,求q 的取值范围. 解:(1)∵q =0,a n +1-a n =p ·3n -1,∴a 2=a 1+p =12+p ,a 3=a 2+3p =12+4p ,由数列{a n }为等比数列,得⎝ ⎛⎭⎪⎫12+p 2=12⎝ ⎛⎭⎪⎫12+4p ,解得p =0或p =1. 当p =0时,a n +1=a n ,∴a n =12,符合题意;当p =1时,a n +1-a n =3n -1,∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=12+(1+3+…+3n -2)=12+1-3n -11-3=12·3n -1, ∴a n +1a n=3.符合题意. ∴p 的值为0或1.(2)法一:若p =1,则a n +1-a n =3n -1-nq ,∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=12+(1+3+…+3n -2)-[1+2+…+(n-1)]q =12[3n -1-n (n -1)q ].∵数列{a n }的最小项为a 4,∴对任意的n ∈N *,有12[3n -1-n (n -1)q ]≥a 4=12(27-12q )恒成立,即3n -1-27≥(n 2-n -12)q 对任意的n ∈N *恒成立.当n =1时,有-26≥-12q ,∴q ≥136;当n =2时,有-24≥-10q ,∴q ≥125;当n =3时,有-18≥-6q ,∴q ≥3; 当n =4时,有0≥0,∴q ∈R ;当n ≥5时,n 2-n -12>0,所以有q ≤3n -1-27n 2-n -12恒成立,令c n =3n -1-27n 2-n -12(n ≥5,n ∈N *),则c n +1-c n =2n 2-2n -123n -1+54nn 2-16n 2-9>0,即数列{c n }为递增数列,∴q ≤c 5=274.综上所述,q 的取值范围为⎣⎢⎡⎦⎥⎤3,274.法二:∵p =1,∴a n +1-a n =3n -1-nq ,又a 4为数列{a n }的最小项,∴⎩⎪⎨⎪⎧a 4-a 3≤0,a 5-a 4≥0,即⎩⎪⎨⎪⎧9-3q ≤0,27-4q ≥0,∴3≤q ≤274.此时a 2-a 1=1-q <0,a 3-a 2=3-2q <0, ∴a 1>a 2>a 3≥a 4.当n ≥4时,令b n =a n +1-a n ,b n +1-b n =2·3n -1-q ≥2·34-1-274>0, ∴b n +1>b n ,∴0≤b 4<b 5<b 6<…, 即a 4≤a 5<a 6<a 7<….综上所述,当3≤q ≤274时,a 4为数列{a n }的最小项,即q 的取值范围为⎣⎢⎡⎦⎥⎤3,274.3.数列{a n }的前n 项和为S n ,a 1=2,S n =a n ⎝ ⎛⎭⎪⎫n3+r (r ∈R ,n ∈N *).(1)求r 的值及数列{a n }的通项公式; (2)设b n =n a n(n ∈N *),记{b n }的前n 项和为T n .①当n ∈N *时,λ<T 2n -T n 恒成立,求实数λ的取值范围;②求证:存在关于n 的整式g (n ),使得∑i =1n -1(T n +1)=T n ·g (n )-1对一切n ≥2,n ∈N*都成立.解:(1)当n =1时,S 1=a 1⎝ ⎛⎭⎪⎫13+r ,∴r =23, ∴S n =a n ⎝ ⎛⎭⎪⎫n 3+23.当n ≥2时,S n -1=a n -1⎝ ⎛⎭⎪⎫n 3+13. 两式相减,得a n =n +23a n -n +13a n -1,∴a n a n -1=n +1n -1(n ≥2). ∴a 2a 1·a 3a 2·…·a n a n -1=31×42×53×…×n n -2×n +1n -1,即a n a 1=n n +12.∴a n =n (n +1)(n ≥2), 又a 1=2适合上式. ∴a n =n (n +1). (2)①∵a n =n (n +1), ∴b n =1n +1,T n =12+13+…+1n +1. ∴T 2n =12+13+…+12n +1,∴T 2n -T n =1n +2+1n +3+…+12n +1. 令B n =T 2n -T n =1n +2+1n +3+…+12n +1. 则B n +1=1n +3+1n +4+…+12n +3. ∴B n +1-B n =12n +2+12n +3-1n +2=3n +42n +22n +3n +2>0.∴B n +1>B n ,∴B n 单调递增, 故(B n )min =B 1=13,∴λ<13.∴实数λ的取值范围为⎝ ⎛⎭⎪⎫-∞,13.②证明:∵T n =12+13+…+1n +1,∴当n ≥2时,T n -1=12+13+…+1n ,∴T n -T n -1=1n +1, 即(n +1)T n -nT n -1=T n -1+1.∴当n ≥2时,∑i =1n -1(T n +1)=(3T 2-2T 1)+(4T 3-3T 2)+(5T 4-4T 3)+…+[(n +1)T n -nT n-1]=(n +1)T n -2T 1=(n +1)T n -1.∴存在关于n 的整式g (n )=n +1,使得∑i =1n -1(T n +1)=T n ·g (n )-1对一切n ≥2,n ∈N*都成立.4.已知数列{a n }满足a 1=12,对任意的正整数m ,p ,都有a m +p =a m ·a p .(1)证明:数列{a n }是等比数列;(2)若数列{b n }满足a n =b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n +1b n2n+1,求数列{b n }的通项公式;(3)在(2)的条件下,设c n =2n+λb n ,则是否存在实数λ,使得数列{c n }是单调递增数列?若存在,求出实数λ的取值范围;若不存在,请说明理由.解:(1)证明:∵对任意的正整数m ,p ,都有a m +p =a m ·a p ,∴令m =n ,p =1,得a n +1=a 1·a n ,从而a n +1a n =a 1=12, ∴数列{a n }是首项和公比都为12的等比数列.(2)由(1)可知,a n =12n .由a n =b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n +1b n2n+1得, a n -1=b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n·b n -12n -1+1(n ≥2), 故a n -a n -1=(-1)n +1b n2n+1(n ≥2),故b n =(-1)n ⎝ ⎛⎭⎪⎫12n +1(n ≥2).当n =1时,a 1=b 12+1,解得b 1=32,不符合上式.∴b n=⎩⎪⎨⎪⎧32,n =1,-1n⎝ ⎛⎭⎪⎫12n+1,n ≥2,n ∈N *.(3)∵c n =2n+λb n ,∴当n ≥2时,c n =2n +(-1)n ⎝ ⎛⎭⎪⎫12n +1λ,当n ≥3时,c n -1=2n -1+(-1)n -1⎝ ⎛⎭⎪⎫12n -1+1λ,根据题意,当n ≥3时,c n -c n -1=2n -1+(-1)nλ·⎝ ⎛⎭⎪⎫2+32n >0,即(-1)nλ>-2n -132n +2. ①当n 为大于等于4的偶数时,有λ>-2n -132n +2恒成立,又2n -132n +2随着n 的增大而增大,此时⎝ ⎛⎭⎪⎪⎫2n -132n +2min =12835,即λ>-12835, 故λ的取值范围为⎝ ⎛⎭⎪⎫-12835,+∞. ②当n 为大于等于3的奇数时,有λ<2n -132n +2恒成立,此时⎝ ⎛⎭⎪⎪⎫2n -132n +2min =3219,即λ<3219. 故λ的取值范围为⎝⎛⎭⎪⎫-∞,3219;③当n =2时,由c 2-c 1=⎝ ⎛⎭⎪⎫22+54λ-⎝ ⎛⎭⎪⎫2+32λ>0,得λ<8.综上可得,实数λ的取值范围为⎝ ⎛⎭⎪⎫-12835,3219. 5.已知各项不为零的数列{a n }的前n 项和为S n ,且a 1=1,S n =pa n a n +1(n ∈N *),p ∈R. (1)若a 1,a 2,a 3成等比数列,求实数p 的值; (2)若a 1,a 2,a 3成等差数列, ①求数列{a n }的通项公式;②在a n 与a n +1间插入n 个正数,共同组成公比为q n 的等比数列,若不等式(q n )(n +1)(n +a )≤e(e 为自然对数的底数)对任意的n ∈N *恒成立,求实数a 的最大值. 解:(1)当n =1时,a 1=pa 1a 2,a 2=1p;当n =2时,a 1+a 2=pa 2a 3,a 3=a 1+a 2pa 2=1+1p. 由a 22=a 1a 3,得1p 2=1+1p,即p 2+p -1=0,解得p =-1±52.(2)①因为a 1,a 2,a 3成等差数列,所以2a 2=a 1+a 3,得p =12,故a 2=2,a 3=3,所以S n =12a n a n +1.当n ≥2时,a n =S n -S n -1=12a n a n +1-12a n -1a n ,因为a n ≠0,所以a n +1-a n -1=2.故数列{a n }的所有奇数项组成以1为首项,2为公差的等差数列, 其通项公式a n =1+⎝⎛⎭⎪⎫n +12-1×2=n , 同理,数列{a n }的所有偶数项组成以2为首项,2为公差的等差数列,其通项公式是a n =2+⎝ ⎛⎭⎪⎫n2-1×2=n , 所以数列{a n }的通项公式是a n =n .②由①知,a n =n ,在n 与n +1间插入n 个正数,组成公比为q n 的等比数列,故有n +1=nq n +1n ,即q n =⎝⎛⎭⎪⎫n +1n 1n +1,所以(q n )(n +1)(n +a )≤e,即⎝⎛⎭⎪⎫n +1n n +a ≤e ,两边取对数得(n +a )ln ⎝ ⎛⎭⎪⎫n +1n ≤1,分离参数得a ≤1ln ⎝ ⎛⎭⎪⎫n +1n -n 恒成立 . 令n +1n =x ,x ∈(1,2],则a ≤1ln x -1x -1,x ∈(1,2], 令f (x )=1ln x -1x -1,x ∈(1,2],则f ′(x )=ln x 2-x -12xln x 2x -12,下证ln x ≤x -1x,x ∈(1,2], 令g (x )=x -1x -2ln x ,x ∈[1,+∞), 则g ′(x )=x -12x2>0,所以g (x )>g (1)=0,即2ln x <x -1x,用x 替代x 可得ln x <x -1x,x ∈(1,2],所以f ′(x )=ln x 2-x -12xln x 2x -12<0,所以f (x )在(1,2]上递减,所以a ≤f (2)=1ln 2-1. 所以实数a 的最大值为1ln 2-1.6.设三个各项均为正整数的无穷数列{a n },{b n },{c n }.记数列{b n },{c n }的前n 项和分别为S n ,T n ,若对任意的n ∈N *,都有a n =b n +c n ,且S n >T n ,则称数列{a n }为可拆分数列.(1)若a n =4n,且数列{b n },{c n }均是公比不为1的等比数列,求证:数列{a n }为可拆分数列;(2)若a n =5n ,且数列{b n },{c n }均是公差不为0的等差数列,求所有满足条件的数列{b n },{c n }的通项公式;(3)若数列{a n },{b n },{c n }均是公比不为1的等比数列,且a 1≥3,求证:数列{a n }为可拆分数列.解:(1)证明:由a n =4n=4·4n -1=3·4n -1+4n -1,令b n =3·4n -1,c n =4n -1.则{b n }是以3为首项,4为公比的等比数列,{c n }是以1为首项,4为公比的等比数列, 故S n =4n-1,T n =4n-13.所以对任意的n ∈N *,都有a n =b n +c n ,且S n >T n . 所以数列{a n }为可拆分数列.(2)设数列{b n },{c n }的公差分别为d 1,d 2. 由a n =5n ,得b 1+(n -1)d 1+c 1+(n -1)d 2=(d 1+d 2)n +b 1+c 1-d 1-d 2=5n 对任意的n ∈N *都成立.所以⎩⎪⎨⎪⎧d 1+d 2=5,b 1+c 1-d 1-d 2=0,即⎩⎪⎨⎪⎧d 1+d 2=5,b 1+c 1=5,①由S n >T n ,得nb 1+n n -12d 1>nc 1+n n -12d 2,则⎝ ⎛⎭⎪⎫d 12-d 22n 2+⎝⎛⎭⎪⎫b 1-c 1-d 12+d 22n >0.由n ≥1,得⎝ ⎛⎭⎪⎫d 12-d 22n +⎝⎛⎭⎪⎫b 1-c 1-d 12+d 22>0对任意的n ∈N *成立.则d 12-d 22≥0且⎝ ⎛⎭⎪⎫d 12-d 22+⎝ ⎛⎭⎪⎫b 1-c 1-d 12+d 22>0即d 1≥d 2且b 1>c 1. ② 由数列{b n },{c n }各项均为正整数,则b 1,c 1,d 1,d 2均为正整数,当d 1=d 2时,由d 1+d 2=5,得d 1=d 2=52∉N *,不符合题意,所以d 1>d 2. ③联立①②③,可得⎩⎪⎨⎪⎧d 1=4,d 2=1,b 1=4,c 1=1或⎩⎪⎨⎪⎧d 1=4,d 2=1,b 1=3,c 1=2或⎩⎪⎨⎪⎧d 1=3,d 2=2,b 1=4,c 1=1或⎩⎪⎨⎪⎧d 1=3,d 2=2,b 1=3,c 1=2.所以⎩⎪⎨⎪⎧ b n =4n ,c n =n 或⎩⎪⎨⎪⎧b n =4n -1,c n =n +1或⎩⎪⎨⎪⎧b n =3n +1,c n =2n -1或⎩⎪⎨⎪⎧b n =3n ,c n =2n .(3)证明:设a n =a 1qn -1,a 1∈N *,q >0,q ≠1,则q ≥2.当q 为无理数时,a 2=a 1q 为无理数,与a n ∈N *矛盾. 故q 为有理数,设q =ba(a ,b 为正整数,且a ,b 互质).此时a n =a 1·b n -1an -1.则对任意的n ∈N *,an -1均为a 1的约数,则an -1=1,即a =1,故q =b a=b ∈N *,所以q ∈N *,q ≥2. 所以a n =a 1qn -1=(a 1-1)qn -1+qn -1,令b n =(a 1-1)·q n -1,c n =qn -1.则{b n },{c n }各项均为正整数.因为a 1≥3, 所以a 1-1≥2>1,则S n >T n , 所以数列{a n }为可拆分数列.。
2022版优化方案高考数学(山东专用·理科)二轮复习解答题专题练(二) Word版含答案
解答题专题练(二) 数 列(建议用时:60分钟) 1.(2021·临沂诊断考试)在等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的前n 项和S n .2.等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{a n }的通项公式;(2)设b n =2a n -2+n ,求b 1+b 2+b 3+…+b 10的值.3.已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式;(2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .4.(2021·枣庄第一次模拟)设数列{a n }的前n 项和为S n ,a 1=1,a n +1=λS n +1(n ∈N *,λ≠-1),且a 1,2a 2,a 3+3为等差数列{b n }的前三项.(1)求数列{a n },{b n }的通项公式; (2)求数列{a n b n }的前n 项和.5.(2021·威海模拟)设数列{a n }的前n 项和为S n ,满足a n +S n =An 2+Bn +1(A ≠0).(1)若a 1=32,a 2=94,求证数列{a n -n }是等比数列,并求数列{a n }的通项公式;(2)已知数列{a n }是等差数列,求B -1A的值.6.已知数列{a n }满足a 1=12且a n +1=a n -a 2n (n ∈N *). (1)证明:1<a na n +1≤2(n ∈N *);(2)设数列{a 2n }的前n 项和为S n ,证明:12(n +2)<S n n ≤12(n +1)(n ∈N *).解答题专题练(二) 数 列1.解:(1)设数列{a n }的公比为q ,由于{a n }为等比数列,所以a 4a 1=q 3=8,所以q =2,所以a n =2×2n -1=2n .(2)设数列{b n }的公差为d ,由于b 3=a 3=23=8,b 5=a 5=25=32,且{b n }为等差数列, 所以b 5-b 3=24=2d , 所以d =12,所以b 1=b 3-2d =-16,所以S n =-16n +n (n -1)2×12=6n 2-22n .2.解:(1)设等差数列{a n }的公差为d .由已知得⎩⎪⎨⎪⎧a 1+d =4,(a 1+3d )+(a 1+6d )=15,解得⎩⎪⎨⎪⎧a 1=3,d =1.所以a n =a 1+(n -1)d =n +2. (2)由(1)可得b n =2n +n , 所以b 1+b 2+b 3+…+b 10=(2+1)+(22+2)+(23+3)+…+(210+10) =(2+22+23+…+210)+(1+2+3+…+10) =2(1-210)1-2+(1+10)×102=(211-2)+55 =211+53=2 101.3.解:(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,可解得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1(舍去).由a 4=a 1q 3得公比q =2,故a n =a 1q n -1=2n -1.(2)S n =a 1(1-q n )1-q=2n-1.又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,所以T n =b 1+b 2+…+b n =⎝⎛⎭⎫1S 1-1S 2+⎝⎛⎭⎫1S 2-1S 3+…+⎝⎛⎭⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1. 4.解:(1)法一:由于a n +1=λS n +1(n ∈N *), 所以a n =λS n -1+1(n ≥2), 所以a n +1-a n =λa n ,即a n +1=(λ+1)a n (n ≥2),λ+1≠0, 又a 1=1,a 2=λS 1+1=λ+1,所以数列{a n }是以1为首项,公比为λ+1的等比数列, 所以a 3=(λ+1)2,4(λ+1)=1+(λ+1)2+3,整理得λ2-2λ+1=0,解得λ=1,所以a n =2n -1,b n =1+3(n -1)=3n -2.法二:由于a 1=1,a n +1=λS n +1(n ∈N *),所以a 2=λS 1+1=λ+1,a 3=λS 2+1=λ(1+λ+1)+1=λ2+2λ+1, 所以4(λ+1)=1+λ2+2λ+1+3,整理得λ2-2λ+1=0, 解得λ=1,所以a n +1=S n +1(n ∈N *), 所以a n =S n -1+1(n ≥2),所以a n +1-a n =a n (n ≥2),即a n +1=2a n (n ≥2), 又a 1=1,a 2=2,所以数列{a n }是以1为首项,公比为2的等比数列,所以a n =2n -1,b n =1+3(n -1)=3n -2.(2)由(1)知,a n b n =(3n -2)×2n -1, 设T n 为数列{a n b n }的前n 项和,所以T n =1×1+4×21+7×22+…+(3n -2)×2n -1,①所以2T n =1×21+4×22+7×23+…+(3n -5)×2n -1+(3n -2)×2n .②①-②得,-T n =1×1+3×21+3×22+…+3×2n -1-(3n -2)×2n=1+3×2×(1-2n -1)1-2-(3n -2)×2n ,整理得:T n =(3n -5)×2n +5.5.解:(1)分别令n =1,2,代入条件得⎩⎪⎨⎪⎧2a 1=A +B +1,2a 2+a 1=4A +2B +1.又a 1=32,a 2=94,解得⎩⎨⎧A =12,B =32.由于a n +S n =12n 2+32n +1,①所以a n +1+S n +1=12(n +1)2+32(n +1)+1.②②-①得2a n +1-a n =n +2.则a n +1-(n +1)=12(a n -n ).由于a 1-1=12≠0,所以数列{a n -n }是首项为12,公比为12的等比数列.所以a n -n =12n ,则a n =n +12n .(2)由于数列{a n }是等差数列, 所以设a n =dn +c ,则S n =n (d +c +dn +c )2=d 2n 2+⎝⎛⎭⎫c +d 2n .所以a n +S n =d2n 2+⎝⎛⎭⎫c +3d 2n +c . 所以A =d 2,B =c +3d2,c =1.所以B -1A=3.6.证明:(1)由题意得a n +1-a n =-a 2n ≤0,即a n +1≤a n ,故a n ≤12.由a n =(1-a n -1)a n -1得a n =(1-a n -1)(1-a n -2)…(1-a 1)a 1>0.由0<a n ≤12得a n a n +1=a n a n -a 2n =11-a n ∈(1,2],即1<a na n +1≤2(n ∈N *).(2)由题意得a 2n =a n -a n +1,所以S n =a 1-a n +1.①由1a n +1-1a n =a n a n +1和1<a n a n +1≤2得1<1a n +1-1a n≤2, 所以n <1a n +1-1a 1≤2n ,因此12(n +1)≤a n +1<1n +2(n ∈N *).②由①②得12(n +2)<S n n ≤12(n +1)(n ∈N *).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.立体几何 1.(2018·江苏省金陵中学月考)如图,在四棱锥P-ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,AP=AD,点M在棱PD上,AM⊥PD,点N是棱PC的中点,求证:
(1) MN∥平面PAB; (2) AM⊥平面PCD. 证明 (1)因为在△PAD中,AP=AD,AM⊥PD, 所以点M是棱PD的中点. 又点N是棱PC的中点, 所以MN是△PDC的中位线, 所以MN∥DC. 因为底面ABCD是矩形, 所以AB∥DC, 所以MN∥AB. 又AB⊂平面PAB, MN⊄平面PAB, 所以MN∥平面PAB. (2)因为平面PAD⊥平面ABCD, CD⊂平面ABCD, 平面PAD∩平面ABCD=AD,CD⊥AD, 所以CD⊥平面PAD. 又AM⊂平面PAD,所以CD⊥AM. 因为PD⊥AM,CD⊥AM, CD∩PD=D,CD⊂平面PCD,PD⊂平面PCD, 所以AM⊥平面PCD. 2.已知在四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=60°,DC=1,AD=3,PB=PC,且M,N分别为BC,PA的中点.
(1)求证:DN∥平面PBC; (2)求证:MN⊥BC. 证明 (1)取PB的中点E,连结NE,CE,AC, 因为ABCD是直角梯形,AB∥DC, ∠ABC=60°,DC=1,AD=3, 易得AC=CB=AB=2. 又N为PA的中点, 所以NE∥CD且NE=CD, 所以四边形CDNE是平行四边形, 所以DN∥CE. 又CE⊂平面PBC,DN⊄平面PBC, 所以DN∥平面PBC. (2)连结AM,PM. 因为PB=PC, 所以PM⊥BC, 因为AC=AB, 所以AM⊥BC, 又AM∩PM=M,AM,PM⊂平面PAM, 所以BC⊥平面PAM. 因为MN⊂平面APM, 所以MN⊥BC. 3.(2018·扬州市邗江区模拟)如图,在多面体ABCDEF中,四边形ABCD是正方形,EF∥AB,EF⊥FB,AB=2EF,∠BFC=90°,BF=FC,H为BC的中点.
(1)求证:FH∥平面EDB; (2)求证:AC⊥平面EDB. 证明 (1)设AC与BD的交点为G,连结GE,GH,
如图,以H为坐标原点,分别以HB→,GH→,HF→的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,
令BH=1,则A(1,-2,0),B(1,0,0),C(-1,0,0), D(-1,-2,0),E(0,-1,1),F(0,0,1),G(0,-1,0), ∴GE→=(0,0,1), 又∵HF→=(0,0,1),∴GE→∥HF→, GE⊂平面EDB,HF⊄平面EDB,
∴FH∥平面EDB.
(2)∵AC→=(-2,2,0),GE→=(0,0,1), ∴AC→·GE→=0, ∴AC⊥GE. 又AC⊥BD,且GE⊂平面EDB,BD⊂平面EDB,GE∩BD=G,∴AC⊥平面EDB. 4.如图,在三棱柱ABC-A1B1C1中,M,N分别为棱A1C1和AB的中点. (1)求证:MN∥平面BCC1B1; (2)若平面ACC1A1⊥平面A1B1C1,且A1B1=B1C1,求证:平面B1MN⊥平面ACC1A1.
证明 (1)方法一 如图,设BC的中点为H,连结NH,HC1. 在△ABC中,因为N为AB的中点,所以NH∥AC,且NH=12AC, 在三棱柱ABC-A1B1C1中,因为AC∥A1C1,且AC=A1C1,M为A1C1的中点, 所以MC1∥AC,且MC1=12AC, 所以NH∥MC1,且NH=MC1, 所以四边形MC1HN为平行四边形,所以MN∥C1H, 又MN⊄平面BCC1B1,C1H⊂平面BCC1B1, 所以MN∥平面BCC1B1.
方法二 如图2,在侧面ACC1A1中,连结AM并延长交直线CC1于点Q,连结BQ.在三棱柱ABC-A1B1C1中,AA1∥CC1,所以AMMQ=A1MMC1,因为M为A1C1的中点,所以M为AQ的中点.又因为N为AB中点,所以MN∥BQ,又MN⊄平面BCC1B1,BQ⊂平面BCC1B1,所以MN∥平面BCC1B1. 方法三 如图3,取A1B1的中点O,连结OM,ON. 在△A1B1C1中,因为O,M分别为A1B1,A1C1的中点,所以OM∥B1C1. 因为OM⊄平面BCC1B1,B1C1⊂平面BCC1B1,所以OM∥平面BCC1B1.在三棱柱ABC-A1B1C1中,A1B1∥AB且A1B1=AB,又因为O,N分别为A1B1,AB的中点,所以OB1∥NB,OB1=NB,所以四边形OB1BN为平行四边形,所以ON∥B1B,又ON⊄平面BCC1B1,B1B⊂平面BCC1B1,所以ON∥平面BCC1B1. 因为OM∥平面BCC1B1,ON∥平面BCC1B1,OM∩ON=O,OM⊂平面OMN,ON⊂平面OMN,所以平面OMN∥平面BCC1B1,又MN⊂平面OMN,所以MN∥平面BCC1B1.
(2)因为A1B1=B1C1, M为A1C1的中点,所以B1M⊥A1C1,因为平面ACC1A1⊥平面A1B1C1,平面ACC1A1∩平面A1B1C1
=A1C1,B1M⊂平面A1B1C1,所以B1M⊥平面ACC1A1,又B1M⊂平面B1MN,所以平面B1MN⊥平面ACC1A1.
5.如图,O是圆锥底面圆的圆心,圆锥的轴截面PAB为等腰直角三角形,C为底面圆周上一点.
(1)若弧BC的中点为D,求证:AC∥平面POD; (2)如果△PAB的面积是9,求此圆锥的表面积. (1)证明 方法一 设BC∩OD=E, ∵D是弧BC的中点, ∴E是BC的中点. 又∵O是AB的中点, ∴AC∥OE. 又∵AC⊄平面POD,OE⊂平面POD, ∴AC∥平面POD. 方法二 ∵AB是底面圆的直径, ∴AC⊥BC. ∵弧BC的中点为D, ∴OD⊥BC. 又AC,OD共面, ∴AC∥OD. 又AC⊄平面POD,OD⊂平面POD, ∴AC∥平面POD. (2)解 设圆锥底面半径为r,高为h,母线长为l, ∵圆锥的轴截面PAB为等腰直角三角形, ∴h=r,l=2r.
由S△PAB=12×2r×h=r2=9,得r=3, ∴S表=πrl+πr2=πr×2r+πr2=9(1+2)π. 6.已知四棱锥S-ABCD的底面ABCD为正方形,顶点S在底面ABCD上的射影为其中心O,高为3,设E,F分别为AB,SC的中点,且SE=2,M为CD边上的点.
(1)求证:EF∥平面SAD; (2)试确定点M的位置,使得平面EFM⊥底面ABCD. (1)证明 取SB的中点P,连结PF,PE.
∵F为SC的中点, ∴PF∥BC,又底面ABCD为正方形, ∴BC∥AD,即PF∥AD, 又PE∥SA,PE∩PF=P,SA∩AD=A, ∴平面PFE∥平面SAD. ∵EF⊂平面PFE, ∴EF∥平面SAD. (2)解 连结AC,AC的中点即为点O,连结SO, 由题意知SO⊥平面ABCD, 取OC的中点H,连结FH,则FH∥SO, ∴FH⊥平面ABCD,
∴平面EFH⊥平面ABCD,连结EH并延长, 则EH与DC的交点即为M点. 连结OE, 由题意知SO=3,SE=2. ∴OE=1,AB=2,AE=1,
∴MCAE=HCHA=13,
∴MC=13AE=16CD, 即点M在CD边上靠近C点距离为16的位置.
2.三角函数与解三角形 1.已知α为锐角,cosα+π4=55. (1)求tanα+π4的值; (2)求sin2α+π3的值. 解 (1)因为α∈0,π2,所以α+π4∈π4,3π4, 所以sinα+π4=1-cos2α+π4=255,
所以tanα+π4=sinα+π4cosα+π4=2. (2)因为sin2α+π2 =sin 2α+π4=2sinα+π4cosα+π4=45, cos2α+π2=cos 2α+π4=2cos2α+π4-1=-35, 所以sin2α+π3=sin2α+π2-π6 =sin2α+π2cos π6-cos2α+π2sin π6=43+310. 2.已知△ABC中,AC=2,A=2π3,3cosC=3sin B. (1)求AB; (2)若D为BC边上一点,且△ACD的面积为334,求∠ADC的正弦值. 解 (1)因为A=2π3,所以B=π3-C, 由3cosC=3sin B得,cosC=3sinπ3-C, 所以cosC=332cos C-12sin C=32cosC-32sin C, 所以12cosC=32sin C,即tan C=33. 又因为C∈0,π3, 所以C=π6,从而得B=π3-C=π6,所以AB=AC=2. (2)由已知得12·AC·CDsin π6=334,所以CD=332, 在△ACD中,由余弦定理得,AD2=AC2+CD2-2AC·