初二数学巩固讲义第5讲 实数
第5讲 指数运算与对数运算

第五讲 指数运算与对数运算【学习目标】掌握指数与对数的基本运算法则,会运用指数与对数法则进行一些简单的运算。
【基础知识回顾】:1 指数的运算法则:设R y x b a ∈>>、,0,0,则 ①=⋅y x a a ②=÷yxaa③()=yx a ④()=yab2、指数和对数的转化:当1,0≠>a a 时,⇔=N a b注:①0和负数没有对数, ②=N 10log ③=N log e3 对数的运算公式及法则:设,0,0,0,1,0>>>≠>N M b a a 则①=1log a ②=a alog ③=Naalog④=naalog⑤=+N M aa loglog⑥=-N Maa log log⑦=naMlog⑧=naNmlog⑨=N b log ⑩=∙a b b a log log【基础知识自测】1.计算122[(]-的值为 ( )A .B .C 2D .2-2.下列各个表达式中,正确的个数是 ( )①5553223=⋅- ②49)23()32(22==-③0(tan 601︒-= ④3232322n m nm +=+(A )1 (B )2 (C )3 (D )43.以下化简结果正确的是 ( )①22log8log )28(log 222=-=- ②32log8log )28(log 222==-③14log8log48log222=-= ④22log8log2log8log 2222=-=⑤4)8(log )2(log )]8)(2[(log 222-=-+-=-- A 、①④⑤B 、③④C 、③D 、全正确4、设,2133=+xx 求xx 1+=5、已知,518,9log18==ba 求45log36=【典型例题剖析】例1、(1) 213323121)()1.0()4()41(----⨯ba ab ,(2)若32121=+-xx ,求23222323-+-+--xx x x 的值。
初中数学第六章 实数(讲义及答案)及答案

8.已知|x|=2,y2=9,且xy<0,则x+y的值为( )
A.1或﹣1B.-5或5C.11或7D.-11或﹣7
9.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是 和﹣1,则点C所对应的实数是( )
A.1+ B.2+ C.2 ﹣1D.2 +1
24.定义:若两个有理数a,b满足a+b=ab,则称a,b互为特征数.
(1)3与互为特征数;
(2)正整数n(n>1)的特征数为;(用含n的式子表示)
(3)若m,n互为特征数,且m+mn=-2,n+mn=3,求m+n的值.
25.在已有运算的基础上定义一种新运算 : , 的运算级别高于加减乘除运算,即 的运算顺序要优先于 运算,试根据条件回答下列问题.
10.若a、b为实数,且满足|a-2|+ =0,则b-a的值为( )
A.2B.0C.-2D.以上都不对
二、填空题
11.[x)表示小于x的最大整数,如[2.3)=2,[ 4)= 5,则下列判断:①[ )= ;②[x) x有最大值是0;③[x) x有最小值是 1;④x [x) x,其中正确的是__________(填编号).
12.a是 的整数部分,b的立方根为-2,则a+b的值为________.
13.若 ,则mn的值为____.
14.若实数a、b满足 ,则 =_____.
15.对于有理数a,b,规定一种新运算:a※b=ab+b,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a※b=b※a,则a=b;③方程(x﹣4)※3=6的解为x=5;④(a※b)※c=a※(b※c).其中正确的是_____(把所有正确的序号都填上).
中考数学总复习第二单元方程与不等式第5讲二次根式课件

(1)如果被开方数是分数(包括小数)或分式,先利 用商的算术平方根的性质把它写成分式的形式, 然后利用分母有 Nhomakorabea化进行化简.
(2)如果被开方数是整数或整式,先将它们分解因 数或因式,然后把能开得尽方的因数或因式开出 来. 3.同类二次根式:几个二次根式化成最简二次根式 以后,如果被开方数相同,这几个二次根式叫做 同类二次根式.
考点一、二次根式的概念
1.二次根式:形如 a (a≥0)的式子叫做二次根 式,二次根式必须满足:含有二次根号“ ”; 被开方数a必须是非负数.
2.最简二次根式:若二次根式满足被开方数 的因数是整数、因式是整式,且被开方数中 不含能开得尽方的因数或因式,这样的二次 根式叫做最简二次根式.
化解二次根式为最简二次根式的方法和步骤:
2
a (4) b
a (a 0, b 0). b
(2015·广州市)下列计算正确的是( D ) A. ab ab 2ab B. (2a)3 2a3
C. 3 a a 3(a 0)
D. a b ab (a 0, b 0)
考点三、二次根式混合运算
二次根式的混合运算与实数中的运算 顺序一样,先乘方,再乘除,最后加减, 有括号的先算括号里的(或先去括号). 注意: (1)二次根式相加减,先把各根式化为最简 二次根式,再合并同类二次根式.防止:① 该化简的没化简;②不该合并的合并;③化 简不正确;④合并出错. (2)二次根式的乘除法常用乘法公式或除法 公式来简化计算,运算结果一定要写成最 简二次根式或整式.
计算:2 5 3 80 20 2 180 . 解:原式 =2 5 3 4 5 2 5 2 6 5 =0
2016 0 (-1) + 8- - 2 -( -3.14) (2016· 茂名市)计算: .
中考数学第六章 实数(讲义及答案)含答案

中考数学第六章 实数(讲义及答案)含答案一、选择题 1.如图将1、2、3、6按下列方式排列.若规定(,)m n 表示第m 排从左向右第n 个数,则(5,4)与(15,8)表示的两数之积是( ).A .1B .2C .3D .62.已知x 、y 为实数,且34x ++(y ﹣3)2=0.若axy ﹣3x =y ,则实数a 的值是( )A .14B .﹣14C .74D .﹣743.下列选项中的计算,不正确的是( )A .42=±B .382-=-C .93±=±D .164= 4.下列数中π、227,﹣3,3343,3.1416,3.2121121112…(每两个2之间多一个1),0.3中,无理数的个数是( ) A .1个B .2个C .3个D .4个 5.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±9 6.下列计算正确的是( ) A .21155⎛⎫-= ⎪⎝⎭ B .()239-= C .42=± D .()515-=- 7.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个8.如图,数轴上的点E ,F ,M ,N 表示的实数分别为﹣2,2,x ,y ,下列四个式子中结果一定为负数是( )A .x +yB .2+yC .x ﹣2D .2+x 9.在实数:3.14159364,1.010010001....,4.21••,π,227中,无理数有( )A .1个B .2个C .3个D .4个10.比较552、443、334的大小( ) A .554433234<< B .334455432<< C .553344243<<D .443355342<< 二、填空题11.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示).12.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___13.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.14.已知:103<157464<1003;43=64;53<157<63,则 315746454=,请根据上面的材料可得359319=_________.15.实a 、b 在数轴上的位置如图所示,则化简()2a b b a ++-=___________.16.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+=_____. 17.3是______的立方根;81的平方根是________32=__________.18.将2π93-272这三个数按从小到大的顺序用“<”连接________. 19.34330035.12=30.3512x =-,则x =_____________.20.如果36a =b 7的整数部分,那么ab =_______.三、解答题21.我们在学习“实数”时画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O 为圆心,正方形的对角线长为半径画弧交数轴于点A”,请根据图形回答下列问题:(1)线段OA 的长度是多少?(要求写出求解过程)(2)这个图形的目的是为了说明什么?(3)这种研究和解决问题的方式体现了 的数学思想方法.(将下列符合的选项序号填在横线上)A .数形结合B .代入C .换元D .归纳22.已知32x y --的算术平方根是3,26x y +-的立方根是2,37的整数部分是z ,求42x y z ++的平方根.23.定义:若两个有理数a ,b 满足a +b =ab ,则称a ,b 互为特征数.(1)3与 互为特征数;(2)正整数n (n >1)的特征数为 ;(用含n 的式子表示)(3)若m ,n 互为特征数,且m +mn =-2,n +mn =3,求m +n 的值.24.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).25.已知A 、B 在数轴上对应的数分别用a 、b 表示,且2110|2|02ab a ⎛⎫++-= ⎪⎝⎭,点P 是数轴上的一个动点.(1)求出A 、B 之间的距离;(2)若P 到点A 和点B 的距离相等,求出此时点P 所对应的数;(3)数轴上一点C 距A 点36c 满足||ac ac =-.当P 点满足2PB PC =时,求P 点对应的数.26.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= .(2)计算:2320191333...3+++++(3)计算:101102103200555...5++++【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先从排列图中可知:第1排有1个数,第2排有2个数,第3排有3个数,然后抽象出第5排第4个数,第15排第8个数,然后可以得到答案.【详解】解:(5,4)表示第5排从左往右第4,(15,8) 表示第15排第8个数,从上面排列图中可以看出奇数行1排在最中间,所以第15行最中间是1,且为第8个,所以1和.故本题选B .【点睛】本题是规律题的呈现,考查学生的从具体情境中抽象出一般规律,考查学生观察与归纳能力.2.A解析:A【分析】()230y -=可得:34030x y +=⎧⎨-=⎩,据此求出x 、y 的值,然后把求出的x 、y 的值代入axy-3x=y ,求出实数a 的值即可.【详解】()230y -=,∴34030xy+=⎧⎨-=⎩,解得433xy⎧=-⎪⎨⎪=⎩,∵axy-3x=y,∴a(﹣43)·3-3×(﹣43)=3,∴﹣4a+4=3,解得a=14.故选:A.【点睛】本题考查了算数平方根平方数的非负性,利用非负数性质求x、y的值是解决问题的关键.3.A解析:A【分析】根据平方根与立方根的意义判断即可.【详解】解:2=2=±错误,本选项符合题意;2=-,本选项不符合题意;C. 3=±,本选项不符合题意;D. 4=,本选项不符合题意.故选:A.【点睛】本题考查了平方根与立方根,正确理解平方根与立方根的意义是解题的关键.4.C解析:C【解析】【分析】根据无理数的概念解答即可.【详解】解:在π、2273.1416,3.2121121112…(每两个2之间多一个1),0.3中,无理数是: π3.2121121112…(每两个2之间多一个1),共3个,故选C.【点睛】本题考查了无理数的定义.注意带根号的数与无理数的区别:带根号的数不一定是无理数,带根号且开方开不尽的数一定是无理数.是有理数中的整数.5.C解析:C【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:23522x -=,∴29x =,∵2(39)±=,∴3x =±,故选:C .【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键. 6.B解析:B【分析】根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-= ⎪⎝⎭,所以,选项A 运算错误,不符合题意; B.()239-=,正确,符合题意;2=,所以,选项C 运算错误,不符合题意;D.()511-=-,所以,选项D 运算错误,不符合题意;故选:B .【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则. 7.A解析:A【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;0.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.8.C解析:C【分析】根据点E,F,M,N表示的实数的位置,计算个代数式即可得到结论.【详解】解:∵﹣2<0<x<2<y,∴x+y>0,2+y>0,x﹣2<0,2+x>0,故选:C.【点睛】本题考查了实数,以及实数与数轴,弄清题意是解本题的关键.9.B解析:B【分析】有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.【详解】解:因为3.14159,227是有限小数,4.21是无限循环小数,所以它们都是有理数;=4,4是有理数;因为1.010010001…,π=3.14159265…,所以1.010010001…,π,都是无理数.综上,可得无理数有2个:1.010010001…,π.故选:B.【点睛】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.10.C解析:C【分析】根据幂的乘方,底数不变指数相乘都转换成指数是11的幂,再根据底数的大小进行判断即可【详解】解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C .【点睛】本题考查了幂的乘方的性质,解题的关键在于都转化成以11为指数的幂的形式.二、填空题11..【解析】【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=.解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=.“ 解析:12++n n . 【解析】【详解】 根据题意按规律求解:b 1=2(1-a 1)=131221-4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =12++n n . 解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=12++n n . “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a 中n 的取值.12.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列解析:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数,÷=……,即1中第三个数∵1994493故答案为.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键.13.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.【分析】首先根据一个数的立方的个位数就是这个数的个位数的立方的个位数确定个位数,然后一次确定十位数,即可求得立方根.【详解】由103=1000,1003=1000000,就能确定是2位数.由解析:39【分析】首先根据一个数的立方的个位数就是这个数的个位数的立方的个位数确定个位数,然后一次确定十位数,即可求得立方根.【详解】由103=1000,1003=10000002位数.由59319的个位上的数是99,如果划去59319后面的三位319得到数59,而33=27、43=64339.故答案为:39【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键.15.【解析】由数轴得,a+b<0,b-a>0,|a+b|+=-a-b+b-a=-2a.故答案为-2a.点睛:根据,推广此时a可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小解析:2a-【解析】由数轴得,a+b<0,b-a>0,=-a-b+b-a=-2a.故答案为-2a.点睛:根据,0,0a aaa a≥⎧=⎨-<⎩,推广此时a可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简. 16.【分析】根据a、b互为倒数,c、d互为相反数求出ab=1,c+d=0,然后代入求值即可.【详解】∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴=﹣1+0+1=0.解析:【分析】根据a、b互为倒数,c、d互为相反数求出ab=1,c+d=0,然后代入求值即可.【详解】∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.17.±9 2-【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;解:∵ ,∴3是27的立方根;∵ ,∴81的平方根是 ;∵ ,∴;故答案为:2解析:【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;【详解】解:∵3327= ,∴3是27的立方根;∵2(9)81±= ,∴81的平方根是9± ;2< ,22=故答案为:27,9±,;【点睛】本题主要立方根、平方根的定义以及去绝对值法则,掌握一个数的平方根有两个,它们互为相反数是解题的关键.18.<<【分析】先根据数的开方法则计算出和的值,再比较各数大小即可.【详解】==,==,∵>3>2,∴<<,即<<,故答案为:<<【点睛】本题考查实数的大小比较,正确化简得出和的值是解解析:3<2π先根据数的开方法则计算出3的值,再比较各数大小即可. 【详解】33=22=32-=32, ∵π>3>2,∴22<32<2π<2π,<2π 【点睛】的值是解题关键. 19.-0.0433【分析】 三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x 的值.【详解】从35.12变为-0.3512,缩小了100倍,且添解析:-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x 的值.【详解】从35.12变为-0.3512,缩小了100倍,且添加了“-”∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-”故答案为:-0.0433【点睛】本题考查三次根式的规律,二次根式规律类似:二次根号内的式子扩大或缩小100倍,则得到的结果扩大或缩小10倍.20.12【分析】先根据算术平方根的定义求出a 的值,再根据无理数的估算得出b 的值,然后计算有理数的乘法即可.,即的整数部分是2,即则故答案为:.【点睛】本题考查了算术平方根的解析:12【分析】先根据算术平方根的定义求出a的值,再根据无理数的估算得出b的值,然后计算有理数的乘法即可.【详解】a==6<<479<<<<23∴的整数部分是2,即2b=ab=⨯=则6212故答案为:12.【点睛】本题考查了算术平方根的定义、无理数的估算,根据无理数的估算方法得出b的值是解题关键.三、解答题21.;(2)数轴上的点和实数是一一对应关系;(3)A.【分析】(1)首先根据勾股定理求出线段OB的长度,然后结合数轴的知识即可求解;(2)根据数轴上的点与实数的对应关系即可求解;(3)本题利用实数与数轴的对应关系即可解答.【详解】解:(1)OB2=12+12=2,∴OB,∴OA=(2)数轴上的点和实数是一一对应关系(3) 这种研究和解决问题的方式,体现的数学思想方法是数形结合.故选A.【点睛】本题主要考查了实数与数轴之间的关系,此题综合性较强,不仅要结合图形,还需要熟悉平方根的定义.也要求学生了解数形结合的数学思想.22.6±【分析】根据算术平方根、立方根的定义列出二元一次方程组,之后对方程组进行求解,得到x 和y 的值,再根据题意得到z 的值,即可求解本题.【详解】解:由题意可得3x 29268y x y --=⎧⎨+-=⎩, 解得54x y =⎧⎨=⎩,36<<67∴<<, 6z ∴=,424542636∴++=⨯++⨯=x y z ,故42x y z ++的平方根是6±.【点睛】本题考查了平方根、立方根、算术平方根,解决本题的关键是熟记平方根、立方根、算术平方根的定义. 23.(1)32;(2)1n n -;(3)13 【分析】(1)设3的特征数为b ,根据特征数的定义列式求解即可;(2)设n 的特征数为m ,根据特征数的定义列式求解即可;(3)根据m ,n 互为特征数得出m +n =mn ,结合已知的两个等式进行求解即可.【详解】解:(1)设3的特征数为b ,由题意知,33b b +=,解得,32b =, ∴3与32互为特征数, 故答案为:32 (2)设n 的特征数为m ,由题意知,n +m =nm ,解得,1n m n =-, ∴正整数n (n >1)的特征数为1n n -, 故答案为:1n n - (3)∵ m ,n 互为特征数,∴ m +n =mn ,又m +mn =-2 ①,n +mn =3 ②,①+②得,m +n +2mn =1,∴ m +n +2(m +n )=1,∴ m +n =13. 【点睛】本题考查了新定义的运算,正确理解特征数的定义是解题的关键.24.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP 与△ODQ 的面积相等;(3)2∠GOA+∠ACE=∠OHC ,理由见解析.【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t ,OP=8-2t ,根据△ODP 与△ODQ 的面积相等列方程求解即可;(3)由∠AOC=90°,y 轴平分∠GOD 证得OG ∥AC ,过点H 作HF ∥OG 交x 轴于F ,得到∠FHC=∠ACE ,∠FHO=∠GOD ,从而∠GOD+∠ACE=∠FHO+∠FHC ,即可证得2∠GOA+∠ACE=∠OHC.【详解】(180b -=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A (0,6),C (8,0);故答案为:(0,6),(8,0);(2)由(1)知,A (0,6),C (8,0),∴OA=6,OB=8,由运动知,OQ=t ,PC=2t ,∴OP=8-2t ,∵D (4,3), ∴114222ODQ D S OQ x t t =⨯=⨯=△, 1182312322ODP D S OP y t t =⨯=-⨯=-△(),∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x轴平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC,∴∠FHC=∠ACE.∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC,即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.25.(1)12;(2)-4;(3)226--或1466-【分析】(1)根据平方与绝对值的和为0,可得平方与绝对值同时为0,可得a、b的值,根据两点间的距离,可得答案;(2)根据A和B所对应的数,可得AB中点所表示的数,即为点P所表示的数;(3)根据题意可以得到c的值,然后利用分类讨论的方法即可求得点P对应的数.【详解】解:(1)∵2110|2|0 2ab a⎛⎫++-=⎪⎝⎭,∴11002ab +=,20a -=, 解得:a=2,b=-10, ∴A 、B 之间的距离为:2-(-10)=12;(2)∵P 到A 和B 的距离相等,∴此时点P 所对应的数为:()21042+-=-;(3)∵|ac|=-ac ,a=2>0,∴c <0,又|AC|=∴c=2-BC=12-∵2PB PC =,①P 在BC 之间时,点P 表示(2101223-+⨯-=--②P 在C 点右边时,点P 表示(1021214-+⨯-=-∴点P 表示的数为:2--或14-【点睛】本题主要考查数轴上的点与绝对值的关系和平方与绝对值的非负性,另外此题有一个易错点,第(3)题中,要注意距离与数轴上的点的区别.26.(1)202021-;(2)2020312-;(3)201101554-. 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=-得:2320191222...2+++++=202021-(2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -= 即:2020232019311333 (32)-+++++= (3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-, ∴201514S -=即:20123200511555 (5)4-+++++= 同理可求⸫10123100511555 (5)4-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++( 201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.。
七年级(下)数学 同步讲义 实数的概念及数的开方 (解析版)

知识点1:实数的概念1、无限不循环的小数叫做无理数.注意:1)整数和分数统称为有理数; 2)圆周率π是一个无理数. 2、无理数也有正、负之分.如2、π、0.101001000100001等这样的数叫做正无理数;2-、π-、0.101001000100001-这样的数叫做负无理数;只有符号不同的两个无理数,如2与2-,π与π-,称它们互为相反数.实数、数的开方知识结构模块一 实数的概念和分类知识精讲3、有理数和无理数统称为实数. (1)按定义分类⎧⎫⎧⎪⎪⎨⎬⎨⎪⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数(2)按性质符号分类0⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数【例1】 写出下列各数中的无理数:3.1415926,2π,16,.0.5,0,23-,0.1313313331…(两个1之间依次多一个3),0.2121121112.【答案】2π、0.1313313331….【解析】无限不循环小数都是无理数. 【总结】考查无理数的概念.【例2】 判断正误,在后面的括号里对的用“√”,错的记“×”表示.(1)无限小数都是无理数. ( ) (2)无理数都是无限小数.( ) (3)带根号的数都是无理数.( ) (4)不带根号的数一定不是无理数.()【答案】(1)×; (2)√; (3)×; (4)×.【解析】(1)无限不循环小数才是无理数;(2)无理数是无限不循环小数当然是无限小数; (3)开方开不尽的数是无理数;(4)π没带根号但是无理数. 【总结】考查无理数的概念及无理数与小数的关系.【例3】 a 是正无理数与a 是非负无理数这两种说法是否一样?为什么. 【答案】一样.例题解析【解析】a 是非负无理数实质上就是说a 是正无理数,因为0不是无理数. 【总结】考查无理数的分类及无理数的概念.【例4】 若a +bx =c +dx (其中a 、b 、c 、d 为有理数,x 为无理数),则a =c ,b =d ,反之, 亦成立,这种说法正确吗?说明你的理由. 【答案】略.【解析】移项得:()()a c d b x -=-, 因为非零有理数乘以无理数的结果还是无理数,而a c -是有理数(两个有理数的差仍是有理数),忧伤0d b -=,从而0a c -=, 于是有:a c b d ==,,当a c b d ==,时,等式a bx c dx +=+成立. 【总结】考查有理数、无理数的运算性质.【例5】 3为什么是无理数?请说明理由.【解析】假设3是有理数,则3能写成两个整数之比的形式:3p q=, 又因为p 、q 没有公因数可以约去,所以pq是最简分数. 把3p q=两边平方,得223p q =,即223q p =.由于23q 是3的倍数,则p 必定是3的倍数.设3p m =, 则2239q m =, 同理q 必然也是3的倍数,设3q n =,既然p 、q 都是3的倍数,它们必定有公因数3,与前面假设pq是最简分数矛盾, 故3是无理数.【总结】考查对无理数的理解及证明.模块二:数的开方知识精讲一、开平方:1、定义:求一个数a的平方根的运算叫做开平方.2、如果一个数的平方等于a,那么这个数叫做a的平方根.这个数a叫做被开方数.x=±,1的平方根是1±.如21x=,1说明:1)只有非负数才有平方根,负数没有平方根;2)平方和开平方互为逆运算.3、算术平方根:正数a的两个平方根可以用“a的正平方根(又叫算术平方根),读作“根号a”;a的负平方根,读作“负根号a”.★注意:1)一个正数有两个平方根,这两个平方根互为相反数;零的平方根是0;2=2是被开方数的根指数,平方根的根指数为2,书写上一般平方根的根指数2略写;3)一个数的平方根是它本身,则这个数是0.二、开立方:1、定义:求一个数a的立方根的运算叫做开立方.2、如果一个数的立方等于a,那么这个数叫做a的立方根号a a叫做被开方数,“3”叫做根指数.★注意:1)任意一个实数都有立方根,而且只有一个立方根;负数有立方根;2)零的立方根是0;3)一个数的立方根是它本身,则这个数是0,1和-1.三、开n次方:1、求一个数a的n次方根的运算叫做开n次方.a叫做被开方数,n叫做根指数.2、如果一个数的n次方(n是大于1的整数)等于a,那么这个数叫做a的n次方根.3、当n为奇数时,这个数为a的奇次方根;当n为偶数时,这个数为a的偶次方根.★注意:1)实数a a是任意一个数,根指数n是大于1的奇数;2)正数a”表示,负n次方根用“0n=时,在中省略n);a>,根指数n是正偶数(当23)负数的偶次方根不存在;4)零的n 次方根等于零,表示为00n =.【例6】 写出下列各数的平方根:(1)9121; (2)2(9)-.【答案】(1)311±; (2)3±. 【解析】注意要先把题中给的算式化简,再求它的平方根. 【总结】考查平方根的概念,注意平方根有两个.【例7】 写出下列各数的正平方根: (1)225;(2)9.【答案】(1)15;(2)3.【解析】(1)15; (2)93=,3的正平方根是3. 【总结】考查平方根的概念,注意对正平方根的准确理解.【例8】 下列各式是否正确,若不正确,请说明理由.(1)1的平方根是1;(2)9是2(9)-的算术平方根; (3)π-是2π-的平方根;(4)81的平方根是9±.【答案】(1)×; (2)√; (3)×; (4)×.【解析】(1)错误:1的平方根是1±;(2)正确;(3)错误:2π-是负数,没有平方根; (4)2π-错:819=,9的平方根是3±.例题解析【总结】考查平方根的基本概念,注意一定要先化简,再求平方根.【例9】写出下列各数的立方根:(1)216;(2)0;(3)1-;(4)3438-;(5)27.【解析】(1)6;(2)0;(3)1-;(4)72-;(5)3.【总结】本题主要考查立方根的概念.【例10】判断下列说法是否正确;若不正确,请说明理由:(1)一个数的偶次方根总有两个;()(2)1的奇次方根是1±;()(3)7=±;()(4)2±是16的四次方根;()(5)a的n次方根的个数只与a的正负有关.()【答案】(1)×;(2)×;(3)×;(4)√;(5)×.【解析】(1)错误:负数没有偶次方根;(2)错误:奇次方根只有一个,所以1的奇次方根是1;(37=;(4)正确;(5)错误:还与n的奇偶性有关.【总结】考查数的开方的基本概念,注意奇次方根与偶次方根的区别.【例11】写出下列各数的整数部分和小数部分:(1(2(3)9【解析】(1)因为89=,8,8;(2)因为78==77;(3)因为34=,所以596<<,所以95,小数部分为4-【总结】考查利用估算法求出无理数的整数部分和小数部分.【例12】 求值:(1 (2);(3)2; (4)2(.【解析】(1)12; (2)0.1- ; (3)4; (4)11. 【总结】考查对平方根的理解及运用.【例13】 求值:(1 (2 (3; (4【解析】(1)4; (2)35-; (3)原式54=-; (4)原式2-. 【总结】考查实数的立方根的运用.【例14】 求值:(1 (2 (3; (4【解析】(1)6 ; (2)3 ; (3)3- ; (4)2. 【总结】考查实数的奇次方根与偶次方根的计算.【例15】 求值:(1(2)(3.【解析】(1)0.5 ; (2)原式=95; (3)原式60=. 【总结】考查实数的立方根运算.【例16】 小明的房间面积为17.62m ,房间的地面恰好由110块大小相同的正方形地砖铺成,问:每块地砖的边长是多少? 【答案】0.4m .【解析】设每块地砖的边长是x 米,则有:211017.6x =,化简得20.16x =,解得:0.4x = 即每块地砖的边长是0.4m .【总结】考查实数的运算在实际问题中的运用.【例17】 已知2a -1的平方根是3±,3a +b -1的算术平方根是4 【答案】3.【解析】由题意知:219a -=,3116a b +-=,即210a =,173b a =-解得:5a =,2b =,所以2549a b +=+=3=. 【总结】本题主要考查实数的平方根与算术平方根的区别,以及代数式的值.【例18】 若a 的平方根恰好是方程3x +2y =2的一组解,求x y a a +的值.【答案】125716()1616或.【解析】由题意,因为a 的两个平方根是相反数,那么y x =-,则有:32322x y x x +=-=,即2x =,2y =-.那么由题意可得:4a =,所以22125744161616x y a a -+=+=+=. 【总结】本题主要考查实数的平方根与求代数式的值.【例19】 3,3(43)8x y +=-,求2()n x y +的值. 【答案】1.【解析】由题意可得:49432x y x y -=⎧⎨+=-⎩, 解得:12x y =⎧⎨=-⎩,所以222()(12)(1)1n n n x y +=-=-=.【总结】本题考查实数的开方以及二元一次方程组的解法,学生忘记解方程组的情况下,老师可以略微拓展复习一下二元一次方程组的解法哦.【例20】用“>”把下列各式连接起来:=,-12-23【总结】本题考查实数的大小比较,注意先化简,再比较大小.【例21】 1.732 5.477≈,利用以上结果,求下列各式的近似值.(1≈_______;(2____________;(3≈_________;(4≈______________;(5___________;(6≈_____________.【答案】略.【解析】(1 1.7321017.32⨯=;(2 5.4771054.77≈⨯=;(3 1.732100173.2⨯=;(4 5.4770.10.5477≈⨯=;(5 1.7320.10.1732⨯=;(6 5.4770.010.05477≈⨯=.【总结】本题考查实数的运算,注意每题之间的联系,类比推理.【例22】填写下表,并回答问题:a…0.000001 0.001 1 1000 1000000 …….3a……(1)数a与它的立方根3a的小数点的移动有何规律?(2)根据这个规律,若已知33,,求a的值.==a0.005250.1738 1.738【解析】(1)由题可知,被开方数a的小数点每向右或向左移动三位,立方根3a的小数点相应地向右或向左移动一位;(2)由(1)总结的规律可知: 5.25a=.【总结】本题考查实数的开方与被开方数之间的关系,注意引导学生仔细分析表格.【例23】阅读下面材料并完成填空:你能比较两个数20162017和20172016的大小吗?为了解决这个问题先把问题一般化,要比较n n+1和(n+1)n的大小(的整数),先从分析n=1,=2,=3,……这些简单的情况入手,从中发现规律,经过归纳,猜想出结论.(1)通过计算,比较下列①—⑦各组中两个数的大小(在横线上填“>、=、<”号①12______21;②23______32;③34______43;④45______54;⑤56______65;⑥67______76;⑦78______87.(2)对第(1)小题的结果进行归纳,猜想出n n+1和(n+1)n的大小关系: ______(3)根据上面的归纳结果猜想得到的一般结论是:20162017_____20172016.【答案】(1)①<;②<;③>;④>;⑤>;⑥>;⑦>:(2)当n =1或2时,n n+1<(n+1)n;当n>2的整数时,n n+1>(n+1)n;(3)>.【解析】(1)①12 <21;②23<32;③34>43;④45>54;⑤56>65;⑥67>76;⑦78>87;(2)当n=1或2时,n n+1<(n+1)n;当n>2的整数时,n n+1>(n+1)n;(3)根据第(2)小题的结论可知,20162017>20172016.【总结】本题考查实数的运算规律,注意观察计算后的结果,总结出规律。
2014中考复习备战策略_数学PPT_第5讲_二次根式

【点拨】原式= 2 2+ 3- 2 2= 3.故选 B. 【答案】 B 方法总结 二次根式加减运算的实质是去括号, 合并被开方数 相同的二次根式;二次根式的乘除运算中,要注意乘法 运算律仍然适用 .
考点知识梳理
中考典例精析
基础巩固训练
考点训练
考点四
二次根式的混合运算
例 4 (2013· 宿迁)计算 2( 2- 3)+ 6的值是__. 【点拨】原式= 2× 2- 2× 3+ 6=2- 6 + 6=2. 【答案】 2
考点训练
5.(2013· 泰州)下列计算正确的是( C A.4 3-3 3=1 C.2 1 = 2 2 B.
)
2+ 3= 5
D.3+2 2=5 2
考点知识梳理
中考典例精析
基础巩固训练
考点训练
2x+ 1 6. (2013· 娄底)使式子 有意义的 x 的取值范 x-1 围是( A ) B. x≠1 1 D. x>- 且 x≠1 2 1 A. x≥- 且 x≠ 1 2 1 C. x≥- 2
考点知识梳理
中考典例精析
基础巩固训练
考点训练
方法总结 二次根式的混合运算要注意运算的顺序, 可应用整 式的运算律改变运算的顺序,从而使运算简便.
考点知识梳理
中考典例精析
基础巩固训练
考点训练
考点知识梳理
中考典例精析
基础巩固训练
考点训练
1. 要使二次根式 2x-4有意义, 那么 x 的取值范 围是( C ) B.x<2 D.x≤2
考点知识梳理
中考典例精析
基础巩固训练
考点训练
考点五
二次根式的运算
1.二次根式的加减法 先将各二次根式化为最简二次根式 ,然后再合并 同类二次根式.
第一讲 实数辅导讲义
重点考点例析考点一:无理数的识别。
例1 (2012•六盘水)实数312,,,8,cos 45,0.323o &&中是无理数的个数有( )个.A . 1B . 2C . 3D . 4 点评:此题考查了无理数的定义,属于基础题,关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数。
对应训练1.(2012•盐城)下面四个实数中,是无理数的为( )A .0B .3C .﹣2D .27考点二、实数的有关概念。
例2 (2012•乐山)如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作( )A .﹣500元B . ﹣237元C . 237元D . 500元点评: 此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.例3 (2012•遵义)﹣(﹣2)的值是( )A .﹣2B . 2C . ±2D . 4点评: 本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.例4 (2012•扬州)﹣3的绝对值是( )A .3B . ﹣3C . ﹣3D .点评: 此题主要考查了绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.例5 (2012•黄石)13-的倒数是( ) A .13 B . 3 C . ﹣3 D .13- 点评: 此题考查倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.例6 (2012•怀化)64的立方根是( )A .4B . ±4C . 8D . ±8点评: 此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.例7 (2012•荆门)若29x y -+与|3|x y --互为相反数,则x+y 的值为( )A .3B . 9C . 12D . 27点评: 本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.对应训练2.(2012•丽水)如果零上2℃记作+2℃,那么零下3℃记作( )A .﹣3℃B . ﹣2℃C . +3℃D . +2℃3.(2012•张家界)﹣2012的相反数是( )A .﹣2012B . 2012C .12012-D .120124.(2012•铜仁地区)|﹣2012|= .5.(2012•常德)若a 与5互为倒数,则a=( )A .15 B . 5 C . ﹣5 D .156.(2011•株洲)8的立方根是( )A .2B . ﹣2C . 3D . 4 7.(2012•广东)若x ,y 为实数,且满足|x ﹣3|+=0,则()2012的值是 .考点三、实数与数轴。
数学第六章 实数(讲义及答案)及答案
数学第六章 实数(讲义及答案)及答案一、选择题1.在有理数中,一个数的立方等于这个数本身,这种数的个数为( )A .1B .2C .3D .42.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,(3)(3)(3)(3)-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”,把(3)(3)(3)(3)-÷-÷-÷-记作(3)-④,读作“3-的圈4次方”,一般地,把(0)a a a a a a ÷÷÷÷÷≠记作a ⓒ,读作“a 的圈c 次方”,关于除方,下列说法错误的是( ) A .任何非零数的圈2次方都等于1B .对于任何正整数a ,21()a a =④C .3=4④④D .负数的圈奇次方结果是负数,负数的圈偶次方结果是正数.3.定义(),2f a b ab =,()22(1)g m m m =-+,例如:()1,22124f =⨯⨯=,()()2112111g -=---+=,则()1,2g f ⎡⎤-⎣⎦的值是( ) A .-4 B .14 C .-14 D .14.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上 C .在线段OC 上D .在线段OB 上5.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( )A .﹣40B .﹣32C .18D .106.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )A .7个B .6个C .5个D .4个7.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;3a -=﹣3a ;④0.01的立方根是0.00001,其中正确的个数是( )A .1个B .2个C .3个D .4个8.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)2的立方根为32;(4)7是7的平方根. A .1 B .2 C .3 D .49.若一个数的平方根与它的立方根完全相同.则这个数是() A .1 B .1-C .0D .10±, 10.比较552、443、334的大小( ) A .554433234<< B .334455432<< C .553344243<<D .443355342<< 二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.a 是10的整数部分,b 的立方根为-2,则a+b 的值为________.13.数轴上表示1、2的点分别为A 、B ,点A 是BC 的中点,则点C 所表示的数是____.14.观察下列算式:①246816⨯⨯⨯+=2(28)⨯+16=16+4=20;②4681016⨯⨯⨯+=2(410)⨯+16=40+4=44;…根据以上规律计算:3032343616⨯⨯⨯+=__________15.a※b 是新规定的这样一种运算法则:a※b=a+2b,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x,则x 的值是_____.16.49的平方根是________,算术平方根是______,-8的立方根是_____.17.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.18.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: 10]33]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________.19.如图,数轴上的点A 能与实数15,3,,22---对应的是_____________20.已知正实数x 的平方根是m 和m b +.(1)当8b =时,m 的值为_________;(2)若22()4m x m b x ++=,则x 的值为___________ 三、解答题 21.先阅读内容,然后解答问题:因为:111111111111,,12223233434910910=-=-=-=-⨯⨯⨯⨯ 所以:1111122334910+++⋯+⨯⨯⨯⨯=1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭… =1﹣111111122334910+-+-+- =1﹣191010= 问题:(1)请你猜想(化为两个数的差):120152016⨯= ;120142016⨯= ;(2)若a 、b 为有理数,且|a ﹣1|+(ab ﹣2)2=0,求111(1)(1)(2)(2)ab a b a b +++++++…+1(2018)(2018)a b ++的值. 22.你能找出规律吗?(149= ,49⨯= ;1625= ,1625⨯= .4949⨯1625 1625⨯“<”).(2)请按找到的规律计算: 520; 231935(3)已知:a 2,b 1040= (可以用含a ,b 的式子表示).23.已知32x y --的算术平方根是3,26x y +-的立方根是37的整数部分是z ,求42x y z ++的平方根.24.已知:b 是立方根等于本身的负整数,且a 、b 满足(a+2b)2+|c+12|=0,请回答下列问题:(1)请直接写出a 、b 、c 的值:a=_______,b=_______,c=_______.(2)a 、b 、c 在数轴上所对应的点分别为A 、B 、C ,点D 是B 、C 之间的一个动点(不包括B 、C 两点),其对应的数为m ,则化简|m+12|=________. (3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 、点C 都以每秒1个单位的速度向左运动,同时点A 以每秒2个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点C 之间的距离表示为AC ,点A 与点B 之间的距离表示为AB ,请问:AB−AC 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求出AB−AC 的值.25.已知2+a b(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=.26.定义:若两个有理数a ,b 满足a +b =ab ,则称a ,b 互为特征数.(1)3与 互为特征数;(2)正整数n (n >1)的特征数为 ;(用含n 的式子表示)(3)若m ,n 互为特征数,且m +mn =-2,n +mn =3,求m +n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设这个数为x, 根据题意列出关于x 的方程,求出方程的解即可.【详解】解:设这个数为x ,根据题意得:3x x =,解得:x=0或-1或1,共3个;故选:C .【点睛】此题考查了有理数的立方,熟练掌握运算法则是解本题的关键.2.C解析:C【分析】根据定义依次计算判定即可.【详解】解:A 、任何非零数的圈2次方就是两个相同数相除,所以都等于1; 所以选项A 正确; B 、a ④=21111()a a a a a a a a a ÷÷÷=⨯⨯⨯=; 所以选项B 正确; C 、3④=3÷3÷3÷3=19,4④=4÷4÷4÷4=116,,则 3④≠4④; 所以选项C 错误; D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确;故选:C .【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时对新定义,其实就是多个数的除法运算,要注意运算顺序.3.C解析:C【分析】根据(),2f a b ab =,()22(1)g m m m =-+,代入求解即可. 【详解】解(),2f a b ab =,()22(1)g m m m =-+∴()1,2g f ⎡⎤-⎣⎦=()()244241-14g -=---+=故选C.【点睛】本题考查了新定义的有理数运算,利用(),2f a b ab =,()22(1)g m m m =-+,代入求值是解答本题的关键.4.D解析:D【分析】根据A 、C 、O 、B 四点在数轴上的位置以及绝对值的定义即可得出答案.【详解】∵|m-5|表示点M 与5表示的点B 之间的距离,|m−c|表示点M 与数c 表示的点C 之间的距离,|m-5|=|m −c|,∴MB =MC .∴点M 在线段OB 上.故选:D .本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应的关系是解答此题的关键.5.D解析:D【分析】直接利用题中的新定义给出的运算公式计算得出答案.【详解】解:(-5)※4=(﹣5)2﹣42+1=10.故选:D .【点睛】本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键.6.B解析:B【分析】根据有理数的分类依此作出判断,即可得出答案.【详解】解:①没有最小的整数,所以原说法错误;②有理数包括正数、0和负数,所以原说法错误; ③﹣2是无理数,所以原说法错误; ④237是无限循环小数,是分数,所以是有理数,所以原说法错误; ⑤无限小数不都是有理数,所以原说法正确;⑥正数中没有最小的数,负数中没有最大的数,所以原说法正确;⑦非负数就是正数和0,所以原说法错误; ⑧正整数、负整数、正分数、负分数和0统称为有理数,所以原说法错误;故其中错误的说法的个数为6个.故选:B .【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数.7.A解析:A【分析】利用平方根和立方根的定义解答即可.【详解】①﹣0.064的立方根是﹣0.4,故原说法错误;②﹣9没有平方根,故原说法错误;④0.000001的立方根是0.01,故原说法错误,其中正确的个数是1个,故选:A.【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.8.C解析:C【解析】=-,故(1)对;4根据算术平方根的性质,可知49的算术平方根是7,故(2)错;根据立方根的意义,可知23)对;是7的平方根.故(4)对;故选C.9.C解析:C【详解】任何实数的立方根都只有一个,而正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根,所以这个数是0,故选C.10.C解析:C【分析】根据幂的乘方,底数不变指数相乘都转换成指数是11的幂,再根据底数的大小进行判断即可【详解】解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C.【点睛】本题考查了幂的乘方的性质,解题的关键在于都转化成以11为指数的幂的形式.二、填空题11.-4【解析】解:该圆的周长为2π×2=4π,所以A′与A的距离为4π,由于圆形是逆时针滚动,所以A′在A的左侧,所以A′表示的数为-4π,故答案为-4π.解析:-4π【解析】解:该圆的周长为2π×2=4π,所以A′与A的距离为4π,由于圆形是逆时针滚动,所以A′在A的左侧,所以A′表示的数为-4π,故答案为-4π.12.-5【解析】∵32<10<42,∴的整数部分a=3,∵b的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.解析:-5【解析】∵32<10<42,a=3,∵b的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.13.【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【详解】解:设点C表示的数是x,∵数轴上1、的点分别表示A、B,且点A是BC的中点,根据中点坐标公式可得:,解得:,故答案解析:2-【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【详解】解:设点C表示的数是x,∵数轴上1的点分别表示A、B,且点A是BC的中点,,解得:,根据中点坐标公式可得:=12故答案为:【点睛】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键.14.【分析】根据题目数据,计算结果等于首尾两个偶数的乘积的平方的算术平方根再加上16的算术平方根,依此进行计算即可.【详解】解:==1080+4=1084.故答案为:1084.【点睛】解析:【分析】根据题目数据,计算结果等于首尾两个偶数的乘积的平方的算术平方根再加上16的算术平方根,依此进行计算即可.【详解】==1080+4=1084.故答案为:1084.【点睛】本题考查了算术平方根,读懂题目信息,观察出计算结果等于首尾两个偶数的乘积加上4是解题的关键.15.4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.16.±7 7 -2【解析】试题解析:∵(±7)2=49, ∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.解析:±7 7 -2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.17.【分析】设,代入原式化简即可得出结果.【详解】原式故答案为:.【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键. 解析:12020【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】 原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020.【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 18.255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:∴对255只需要进行3次操作后变成1,∴对256需要进行4次操作解析:255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:25515,3,1,⎡⎤===⎣⎦ ∴对255只需要进行3次操作后变成1,25616,4,2,1,⎡⎤====⎣⎦ ∴对256需要进行4次操作后变成1,∴只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是255; 故答案为:255.【点睛】本题考查了估算无理数的大小应用,主要考查学生的阅读能力和猜想能力,同时也要考了一个数的平方数的计算能力.19.【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A 点位置附近的点和实数,即可得到答案.【详解】解:∵数轴的正方向向右,A 点在原点的左边,∴A 为负数,从数轴可以看出,A 点在和之间,解析:【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A 点位置附近的点和实数12-. 【详解】解:∵数轴的正方向向右,A 点在原点的左边,∴A 为负数,从数轴可以看出,A 点在2-和1-之间,2<=-,故不是答案;刚好在2-和1-之间,故是答案;112->-,故不是答案;是正数,故不是答案;故答案为.【点睛】本题主要考查了数轴的基本概念、实数的比较大小,要掌握能从数轴上已标出的点得到有用的信息,学会实数的比较大小是解题的关键.20.-4【分析】(1)根据正实数平方根互为相反数即可求出m 的值;(2)根据题意可知,再代入求解即可.【详解】解:(1)∵正实数的平方根是和,∴,∵,∴,∴;(2)∵正解析:【分析】(1)根据正实数平方根互为相反数即可求出m 的值;(2)根据题意可知22,()m x m b x +==,再代入求解即可.【详解】解:(1)∵正实数x 的平方根是m 和m b +,∴0m b m ++=,∵8b =,∴28m =-,∴4m =-;(2)∵正实数x 的平方根是m 和m b +,∴22,()m x m b x +==,∴224x x +=,∴22x =,∵x 是正实数,∴x .故答案为:-4.【点睛】本题考查的知识点是平方根,掌握正实数平方根的性质是解此题的关键.三、解答题21.(1)1120152016-,1140284032-;(2)20192020. 【分析】(1)根据题目中式子的特点可以写出猜想;(2)根据|a-1|+(ab-2)2=0,可以取得a 、b 的值,代入然后由规律对数进行拆分,从而可以求得所求式子的值.【详解】解:(1)1112015201620152016=-⨯, 111111()2014201622014201640284032=⨯-=-⨯, 故答案为:1120152016-,1140284032-; (2)∵|a ﹣1|+(ab ﹣2)2=0,∴a ﹣1=0,ab ﹣2=0,解得,a =1,b =2, ∴1111+(1)(1)(2)(2)(2018)(2018)ab a b a b a b +++++++++…… =111112233420192020+++⋯+⨯⨯⨯⨯ =1﹣1111111+2233420192020+-+-+- (1)12020 =20192020. 【点睛】本题考查数字的变化类、非负数的性质、有理数的混合运算,解答本题的关键是明确题意,求出所求式子的值.22.(1)6,6,20,20,=,=;(2)①10,②4;(3)2a b【分析】(1)0,0a b =≥≥,据此判断即可.(2=10===,4===,据此解答即可.(3)根据a =b =2a b ==,据此解答即可.【详解】解:(1236=⨯=6==;4520=⨯=20==.==故答案为:6,6,20,20,=,=;(210===;4===;(3)∵a =b =2a b ==, 故答案为:2a b .【点睛】 本题考查算数平方根,掌握求一个数算术平方根的方法为解题关键.23.6±【分析】根据算术平方根、立方根的定义列出二元一次方程组,之后对方程组进行求解,得到x 和y 的值,再根据题意得到z 的值,即可求解本题.【详解】解:由题意可得3x 29268y x y --=⎧⎨+-=⎩, 解得54x y =⎧⎨=⎩,36<<67∴<<, 6z ∴=,424542636∴++=⨯++⨯=x y z ,故42x y z ++的平方根是6±.【点睛】本题考查了平方根、立方根、算术平方根,解决本题的关键是熟记平方根、立方根、算术平方根的定义.24.(1)2;-1;12-;(2)-m-12;(3)AB−AC 的值不会随着时间t 的变化而改变,AB -AC=12【分析】 (1)根据立方根的性质即可求出b 的值,然后根据平方和绝对值的非负性即可求出a 和c 的值;(2)根据题意,先求出m 的取值范围,即可求出m+12<0,然后根据绝对值的性质去绝对值即可;(3)先分别求出运动前AB 和AC ,然后结合题意即可求出运动后AB 和AC 的长,求出AB−AC 即可得出结论.【详解】解:(1)∵b 是立方根等于本身的负整数,∴b=-1∵(a+2b)2+|c+12|=0,(a+2b)2≥0,|c+12|≥0 ∴a+2b=0,c+12=0 解得:a=2,c=12- 故答案为:2;-1;12-; (2)∵b=-1,c=12-,b 、c 在数轴上所对应的点分别为B 、C ,点D 是B 、C 之间的一个动点(不包括B 、C 两点),其对应的数为m ,∴-1<m <12- ∴m+12<0 ∴|m+12|= -m-12故答案为:-m-12;(3)运动前AB=2-(-1)=3,AC=2-(12-)=52由题意可知:运动后AB=3+2t +t=3+3t ,AC=52+2t +t=52+3t ∴AB -AC=(3+3t )-(52+3t )=12∴AB−AC 的值不会随着时间t 的变化而改变,AB -AC=12. 【点睛】此题考查的是立方根的性质、非负性的应用、利用数轴比较大小和数轴上的动点问题,掌握立方根的性质、平方、绝对值的非负性、利用数轴比较大小和行程问题公式是解决此题的关键.25.(1)23a b -的平方根为4±;(2)3x =±.【分析】(1)先由相反数的定义列出等式,再根据绝对值的非负性、算术平方根的非负性求出a 、b 的值,然后代入,根据平方根的定义求解即可;(2)先将a 、b 的值代入,再利用平方根的性质求解即可.【详解】(1)由相反数的定义得:20a b ++=由绝对值的非负性、算术平方根的非负性得:203120a b b +=⎧⎨+=⎩解得24a b =⎧⎨=-⎩则23223(4)41216a b -=⨯-⨯-=+=故23a b -的平方根为4±;(2)方程2420ax b +-=可化为224(4)20x +⨯--=整理得22180x -=29x =解得3x =±.【点睛】本题考查了相反数的定义、绝对值的非负性、算术平方根的非负性、平方根的定义等知识点,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.26.(1)32;(2)1n n -;(3)13 【分析】(1)设3的特征数为b ,根据特征数的定义列式求解即可;(2)设n 的特征数为m ,根据特征数的定义列式求解即可;(3)根据m ,n 互为特征数得出m +n =mn ,结合已知的两个等式进行求解即可.【详解】解:(1)设3的特征数为b , 由题意知,33b b +=, 解得,32b =, ∴3与32互为特征数, 故答案为:32 (2)设n 的特征数为m , 由题意知,n +m =nm , 解得,1n m n =-, ∴正整数n (n >1)的特征数为1n n -, 故答案为:1n n - (3)∵ m ,n 互为特征数, ∴ m +n =mn ,又m +mn =-2 ①,n +mn =3 ②, ①+②得,m +n +2mn =1, ∴ m +n +2(m +n )=1, ∴ m +n =13. 【点睛】本题考查了新定义的运算,正确理解特征数的定义是解题的关键.。
2022年初升高数学衔接课程 第5讲 充分条件与必要条件(教师版含解析)
第5讲 充分条件与必要条件一、命题1. 命题的概念:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2. 命题的形式:数学中命题常写成“若p ,则q ”或者“如果p ,那么q ”,通常我们把命题中的p 叫做命题的条件,q 叫做命题的结论.3. 四种命题:(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫作互逆命题,其中一个命题叫作原命题,另一个命题叫作原命题的逆命题. 原命题为“若p ,则q ”,则逆命题为“若q ,则p ”.*(2)一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫作互否命题,如果把其中一个命题叫作原命题,那么另一个命题叫作原命题的否命题. 原命题为“若p ,则q ”,则否命题为“若p ⌝,则q ⌝”.(3)一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫作互为逆否命题,如果把其中一个命题叫作原命题,那么另一个命题叫作原命题的逆否命题. 若原命题为“若p ,则q ”,则逆否命题为“若q ⌝,则p ⌝”.二、充分条件和必要条件1. 定义:一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .这时我们就说,由p 可以推出q ,记作p q ⇒.并且说,p 是q 的充分条件,q 是p 的必要条件.相反,“若p ,则q ”为假命题,那么由条件p 不能推出结论q ,记作p q ⇒/.此时,我们就说p 不是q 的充分条件,q 不是p 的必要条件.2. 充要条件:如果“若p ,则q ”和它的逆命题“若q ,则p ”均是真命题,即既有p q ⇒,又有q p ⇒,就记作p q ⇔.此时,p 既是q 的充分条件,也是q 的必要条件,我们说p 是q 的充分必要条件,简称充要条件.重点剖析:1.对充分条件的理解(1) 设集合{}A x x p =满足条件,{}B x x q =满足条件.若A B ⊆,则p 是q 的充分条件;若A B ⊆/,则p 不是q 的充分条件.(2) 我们说p 是q 的充分条件,是指由条件p 可以推出结论q ,但并不意味着只能由这个条件p 才能推出结论q ,一般来说,对给定的结论q ,使得q 成立的条件p 是不唯一的.例如:2636x x =⇒=.但是,当6x ≠时,236x =也可以成立,故“6x ≠”是“236x =”的充分条件.2.对必要条件的理解(1)设集合{}A x x p =满足条件,{}B x x q =满足条件.若A B ⊇,则p 是q 的必要条件;若A B ⊇/,则p 不是q 的必要条件.(2)我们说q 是p 的必要条件,是指以p 为条件可以推出结论q ,但并不意味着由条件p 只能推出结论q .一般来说,对给定的条件p ,由p 可以推出的结论q 是不唯一的.例如:若四边形是平行四边形,则这个四边形的两组对边分别相等.另外,若四边形是平行四边形,则这个四边形的一组对边平行且相等.显然这两个命题都是正确的.3.证明命题充要性时,既要证明原命题成立(充分性),又要证明它的逆命题成立(必要性). 例1. 判断下列说法是否是命题.如果是命题,判断其真假.(1)6x >;(2)垂直于同一条直线的两条直线平行么?(3)247+=;(4)武汉市坐落于湖北省;(5)若两个三角形的周长相等,则这两个三角形全等.【答案】(1)不是;(2)不是;(3)假命题;(4)真命题;(5)假命题.例2. 把下列命题写成“若p ,则q ”的形式,并判断其真假.(1) 实数的平方是非负数;(2) 底边相等且高相等的两个三角形是全等三角形;(3) 能被6整除的数既能被3整除也能被2整除;(4) 弦的垂直平分线经过圆心,并平分弦所对的弧.【答案】(1)若一个数是实数,则这个数的平方是非负数,是真命题;(2)若两个三角形底边相等且高相等,则这两个三角形全等,是假命题;(3)若一个数能被6整除,则它既能被3整除,也能被2整除,是真命题;(4)若一条直线是弦的垂直平分线,则这条直线经过圆心且平分弦所对的弧,是真命题.例3. 下列“若p ,则q ”形式的命题中,哪些命题中的p 是q 的充分条件?(1)若四边形的两组对角分别相等,则这个四边形是平行四边形;(2)若两个三角形的三边成比例,则这两个三角形相似;(3)若四边形为菱形,则这个四边形的对角线互相垂直;(4)若21x =,则1x =;(5)若a b =,则ac bc =;(6)若,x y 为无理数,则xy 为无理数.【答案】(1)(2)(3)(5)中p 是q 的充分条件,(4)(6)中不是.例4. 下列“若p ,则q ”形式的命题中,哪些命题中的q 是p 的必要条件?(1)若四边形为平行四边形,则这个四边形的两组对角分别相等;(2)若两个三角形相似,则两个三角形的三边成比例;(3)若四边形的对角线互相垂直,则这个四边形为菱形;(4)若1x =,则21x =;(5)若ac bc =,则a b =;(6)若xy 为无理数,则,x y 为无理数.【答案】(1)(2)(4)中q 是p 的必要条件,(3)(5)(6)中不是.例5. 下列各题中,哪些p 是q 的充要条件?(1):p 四边形是正方形,:q 四边形的对角线互相垂直且平分;(2):p 两个三角形相似,:q 两个三角形三边成比例;(3):p 0xy >:,:q 0,0x y >>;(4):p 1x =是一元二次方程20ax bx c ++=的一个根,:q ()00a b c a ++=≠.【答案】(2)(4)例6. 设:431p x -≤,()22:210q x a x a a -+++≤.若p 是q 的充分不必要条件,求实数a 的取值范围. 【答案】102a a ⎧⎫≤≤⎨⎬⎩⎭ 【解析】由431x -≤得1431x -≤-≤,解得112x ≤≤,即1:12p x ≤≤, 由()22210x a x a a -+++≤得()()10x a x a --+≤⎡⎤⎣⎦,解得1a x a ≤≤+, p 是q 的充分不必要条件,p q ∴⇒,q p ⇒/,112x x ⎧⎫∴≤≤⎨⎬⎩⎭⫋{}1x a x a ≤≤+, 1211a a ⎧≤⎪∴⎨⎪+≥⎩,解得102a ≤≤,所以a 的取值范围为102a a ⎧⎫≤≤⎨⎬⎩⎭. 例7. 求证:一元二次方程20ax bx c ++=有一正根和一负根的充要条件是0ac <.【证明】充分性:若0ac <,则一元二次方程20ax bx c ++=的判别式240b ac ∆=->, 所以方程一定有两不等实根,设为12,x x ,则120c x x a=<, 所以方程的两根异号,即方程20ax bx c ++=有一正根和一负根;必要性:若一元二次方程20ax bx c ++=有一正根和一负根,设为12,x x ,根据韦达定理得120c x x a=<,即0ac <. 综上可知,一元二次方程20ax bx c ++=有一正根和一负根的充要条件是0ac <.例8. 求关于x 的一元二次不等式21ax ax +>对于一切实数x 都成立的充要条件. 【答案】{}04a a <<【解析】必要性:若一元二次不等式21ax ax +>,即210ax ax -+>对于一切实数x 都成立, 则2040a a a >⎧⎨∆=-<⎩,解得04a <<; 充分性:若04a <<,则222111024a ax ax a x ⎛⎫-+=-+-> ⎪⎝⎭, 即一元二次不等式21ax ax +>对于一切实数x 都成立.综上可知,不等式21ax ax +>对于一切实数x 都成立的充要条件是{}04a a <<.例9. 已知全集U R =,非空集合203x A x x -⎧⎫=<⎨⎬-⎩⎭,()(){}220B x x a x a =---<. (1)当12a =时,求()U C B A ;(2)命题:p x A ∈,命题:q x B ∈,若q 是p 的必要不充分条件,求实数a 的取值范围.【答案】(1)122x x x ⎧⎫≤>⎨⎬⎩⎭或;(2){}112a a a ≤-≤≤或. 【解析】(1)当12a =时,191902424B x x x x x ⎧⎫⎛⎫⎛⎫⎧⎫=--<=<<⎨⎬⎨⎬ ⎪⎪⎝⎭⎝⎭⎩⎭⎩⎭, 1924U C B x x x ⎧⎫∴=≤≥⎨⎬⎩⎭或, 又{}20233x A x x x x -⎧⎫=<=<<⎨⎬-⎩⎭,()122U C B A x x x ⎧⎫∴=≤>⎨⎬⎩⎭或; (2)()22172024a a a ⎛⎫+-=-+> ⎪⎝⎭,()(){}{}22202B x x a x a x a x a ∴=---<=<<+, 若q 是p 的必要不充分条件,则A ⫋B ,所以2223a a ≤⎧⎨+≥⎩,解得1a ≤-或12a ≤≤, 所以a 的取值范围为{}112a a a ≤-≤≤或.跟踪训练1. “()210x x -=”是“0x =”的( )A. 充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】若()210x x -=,则0x =或12x =,即()2100x x x -=⇒=/,若0x =,则()210x x -=,即()0210x x x =⇒-=,所以“()210x x -=”是“0x =”的必要不充分条件,故选B.2. 设x R ∈,则“250x x -<”是“11x -<”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】由250x x -<得05x <<,由11x -<得111x -<-<,即02x <<,0502x x <<⇒<</,0205x x <<⇒<<,05x ∴<<是02x <<的必要不充分条件,即“250x x -<”是“11x -<”的必要不充分条件,故选B.3. 设:24p x -<<,()():20q x x a ++<;若q 是p 的必要不充分条件,则实数a 应满足( )A.4a >B.4a <-C.4a ≤-D.4a ≥【答案】B 【解析】若q 是p 的必要不充分条件,则{}24x x -<<⫋()(){}20x x x a ++<, 所以()(){}{}202x x x a x x a ++<=-<<-,且4a ->,即4a <-,故选B.4. 设:p 实数x 满足22430x ax a -+<(其中0a >),:23q x <≤.若p 是q 的必要不充分条件,则实数a 的取值范围是 . 【答案】{}12a a <≤【解析】由22430x ax a -+<得3a x a <<, p 是q 的必要不充分条件,{}23x x ∴<≤⫋{}3x a x a <<,233a a ≤⎧∴⎨>⎩,解得12a <≤,所以a 的取值范围是{}12a a <≤.5. 已知{}44P x a x a =-<<+,{}13Q x x =<<.“x P ∈”是“x Q ∈”的必要条件,则实数a 的取值范围是 . 【答案】{}15a a -≤≤【解析】由“x P ∈”是“x Q ∈”的必要条件可知Q P ⊆,所以4143a a -≤⎧⎨+≥⎩,解得15a -≤≤,所以a 的取值范围是{}15a a -≤≤.6. 已知条件2:340p x x --≤,条件22:690q x x m -+-≤.若p 是q 的充分不必要条件,求实数m 的取值范围. 【答案】{}44m m m ≤-≥或【解析】由2340x x --≤得14x -≤≤,由22690x x m -+-≤得()()330x m x m -+--≤⎡⎤⎡⎤⎣⎦⎣⎦, 当0m =时,:3q x =;当0m <时,:33q m x m +≤≤-;当0m >时,:33q m x m -≤≤+, p 是q 的充分不必要条件,{}14x x ∴-≤≤⫋()(){}330x x m x m -+--≤⎡⎤⎡⎤⎣⎦⎣⎦, 03134m m m <⎧⎪∴+≤-⎨⎪-≥⎩或03134m m m >⎧⎪-≤-⎨⎪+≥⎩,解得4m ≤-或4m ≥, 综上可知,m 的取值范围为{}44m m m ≤-≥或.7. 已知,x y 是非零实数,且x y >,求证:11x y<的充要条件为0xy >. 【证明】充分性:若0xy >,则110y x x y xy --=<,即11x y<成立; 必要性:若11x y <,则110y x x y xy--=<,即0xy >成立. 综上所述,11x y<的充要条件为0xy >.。
初二上册数学第二章实数无理数、平方根和算术平方根讲义
无理数概念与平方根知识点1 算术平方根概念及性质22=x ,32=y ,42=z ,52=w ,已知幂和指数,怎么求求底数呢?我们知道:19614,16913,14412,121112222==== 那么请按照要求填写下表 1.已知边长求面积正方形边长 正方形面积 2.已知面积求边长正方形边长 正方形面积 11 121 13 169 0.3 0.09 12一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=.由算术平方根的定义我们可知:a 的算术平方根a 是一个非负数;我们知道0²=0,正数x =a >0,所以a ≥0.即算术平方根定义中:a 中的a 是一个非负数,a 的算术平方根a 也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.例1.求下列各数的算术平方根:(1) 900; (2) 1; (3) 6449; (4) 14.例2.自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?例3. 01)22=++++y x y (则xy =知识点2 平方根的概念及性质平方根的概念我们知道1²=(-1)²=1, 2²=(-2)²=4, 3²=(-3)²=9,……,a ²=(-a )²=a ², 如果一个数x 的平方等于a ,即x ²=a .那么x 就叫做a 的平方根.正数a 的两个平方根可以用“a ±”表示,其中a 表示a 的正的平方根(又叫算术平方根),读作“根号a ”; -a 表示a 的负的平方根,读作“负根号a ”. ①一个正数a 的平方根有两个,记为a ± ,它们互为相反数.②0的平方根是0. ③负数没有平方根.知识点3 开平方求一个数a 的平方根的运算叫做开平方,a 叫做被开方数.(开平方与平方互为逆运算)平方和开平方是互逆运算:2()a a (0)a ≥;2(0)(0)a a a aa a例1.如果x ²=a ,那么下列说法错误是( )A .若x 确定,则a 的值是唯一的B .若a 确定,则x 的值是唯一的C .a 是x 的平方D .x 是a 的平方根例2. a ±的意义是( )A .a 的平方根B .a 的算术平方根C .当a ≥0时,a ±是a 的平方根 D .以上都不正确例3.若1-x +(y +2)²=0,则2018)(y x +等于( )A .﹣1B .1C .20183D .20183-例4.一个正数的平方根是2a ﹣3与a ﹣12,则这个正数为( ) A .3 B .5 C .7 D .49例5.已知2-x 的平方根是2±,72++y x 的平方根是±3,求22y x +的平方根例6.已知2m +3和4m +9是一个正数的两个不同的平方根,求m 的值和这个正数的平方根.练习题:1.16的平方根是( )A .±4B .4C .±2D .22.4的平方根是 ;3的平方根是 16的平方根是 , 25)(-的平方根是________.3.下列运算正确的是( )A .﹣213)(- =13 B .26)(- =﹣6 C .﹣25 =﹣5 D .9 =±34.若正方形的边长为a ,面积为s ,则( )A .s 的平方根是aB .a 是s 的算术平方根C .a =±D .s =5.如果将一个长方形ABCD 折叠,得到一个面积为144cm2的正方形ABFE ,已知正方形ABFE 的面积等于长方形CDEF 面积的2倍,求长方形ABCD 的长和宽.6.若(a -1)²+|b -9|=0,则a b 的平方根是 .7..求下列各式的值:(1)44.1; (2)649; (3)25241 . 8.在,3.1415926535,三个实数中,无理数的个数有( )A .3B .2C .1D .09.下列各数中,无理数是( ) A .2 B .﹣C .20%D .π10.下列各数,3.14159265,,﹣8,,,中,无理数有( )A .2个B .3个C .4个D .5个11.下列各数:﹣1,,0,,3.14,4.121121112……,其中无理数有( )A .1个B .2个C .3个D .4个12.下列一组数:﹣8,2.6,﹣|﹣3|,﹣π,,0.1010010001…,(每两个1之间依次多一个0)中,无理数有( ) A .0个 B .1个C .2个D .3个13.在,中,无理数有()A.1个B.2个C.3个D.4个14.在实数﹣,0.21,,,,0.20202中,无理数的个数为()A.1B.2C.3D.415.下列各数,,π,0.2020020002…,,,中,无理数有()A.2个B.3个C.4个D.5个16.下列各数中一定有平方根的是()A.m2﹣1B.﹣m C.m+1D.m2+117.一个正数的两个平方根分别是2a﹣5和﹣a+1,则这个正数为()A.4B.16C.3D.918.一个正数a的平方根是2x﹣3与5﹣x,则这个正数a的值是()A.25B.49C.64D.8119.16的平方根是()A.16B.﹣4C.±4D.没有平方根20.若a,b(a≠b)是64的平方根,则+的值为()A.8B.﹣8C.4D.021.若一个数的平方等于81,则这个数是()A.9B.﹣9C.±9D.±8122.下列计算不正确的是()A.B.2ab+3ba=5abC.3x﹣2x=1D.|﹣3|=323.一个正数的两个平方根分别为a+3和4﹣2a,则这个正数为()A.7B.10C.﹣10D.10024.有理数a2=(﹣5)2,则a等于()A.﹣5B.5C.25D.±525.求下列各式中的x:()(1)9x2﹣25=0;(2)4(2x﹣1)2=36.A.x=和x=2B.x=﹣和x=2或x=﹣1 C.x=±和x=﹣1D.x=±和x=2或x=﹣1 26.平方根等于它自己的数是()A.0B.1C.﹣1D.4 27.36的平方根是()A.18B.6C.±6D.±18 28.下列说法正确的是()A.0的平方根是0B.1的平方根是1C.1的平方根是﹣1D.﹣1的平方根是﹣129.如果自然数a的平方根是±m,那么a+1的平方根用m表示为()A.±(m+1)B.(m2+1)C.D.30.2a﹣1和a﹣5是某个正数的两个不等的平方根,则实数a的值为()A.B.﹣C.2D.﹣2 31.一个正数的平方根是2m+3和m+1,则这个数为()A.﹣B.C.D.1或32.一个正数m的两个平方根分别是2a﹣2和a﹣4,则m的值是()A.2B.2或﹣2C.4D.4或36 33.(﹣10)2的平方根是()A.﹣10B.10C.±10D.100 34.已知(x+1)2=4,则x值为()A.1B.±1C.1或﹣3D.3或﹣1 35.一个正数x的两个平方根分别是a﹣7和2a+1,则这个正数x=()A.2B.5C.16D.2536.下列说法:①0的平方根是0;②﹣1的平方根是﹣1;③(﹣4)2的平方根是﹣4;④0.01是0.1的平方根;正确的有()A.1个B.2个C.3个D.4个37.已知一个正数的两个平方根分别为x+2和2x﹣5,则这个正数是()A.1B.7C.9D.8138.若2m﹣4与3m﹣1是同一个正数的平方根,则m为()A.﹣3B.1C.﹣1D.﹣3或139.下列叙述中,不正确的是()A.0的平方根是0B.﹣22的平方根是±2C.正数的平方根是互为相反数D.是一个无理数40.下面说法中错误的是()A.6是36的平方根B.﹣6是36的平方根C.36的平方根是±6D.36的平方根是641.在(﹣)2,0.9,﹣23(﹣a2+2),0,17六个数中,一定有平方根的个数是()A.2B.4C.3D.542.2.89的正的平方根是()A.1.7B.﹣1.7C.±1.7D.±1743.a是有理数,在a2+2,3|a|+5,|a|﹣4,5a2+2a2中一定有平方根的有()A.1个B.2个C.3个D.4个44.下列各数中,没有平方根的数是()A.﹣(﹣2)3B.﹣(﹣47)C.1﹣(﹣2)D.﹣|﹣3|45.下列说法正确的是()A.9是3的算术平方根B.5是25的算术平方根C.0.1的平方根是0.01D.是的算术平方根46.﹣可以表示()A.0.2的平方根B.﹣0.2的算术平方根C.0.2的负的平方根D.﹣0.2的平方根47.81的平方根是()A.B.﹣9C.9D.±948.下列说法正确的是()A.﹣7是49的算术平方根B.7是(﹣7)2的算术平方根C.±7是49的平方根,即=±7D.7是49的平方根,即±=749.根据以下程序,当输入时,输出结果为()A.B.2C.6D.50.下列计算正确的是()A.=±3B.|﹣3|=﹣3C.=2D.﹣32=9 51.实数9的算术平方根是()A.3B.±3C.﹣3D.±952.下列说法错误的是()A.4是16的算术平方根B.2是4的一个平方根C.0的平方根与算术平方根都是0D.(﹣3)2的平方根是﹣353.下列计算正确的是()A.B.C.D.54.下列运算正确的是()A.﹣2×(﹣3)=﹣6B.(﹣4)2=8C.﹣10﹣8=﹣18D.=±255.下列各式中,正确的个数是()①=4 ②=③﹣32的平方根是﹣3 ④的算术平方根是﹣5 ⑤是的平方根A.1个B.2个C.3个D.4个56.=()A.﹣3B.3C.D.57.已知≈4.858,≈1.536,则﹣≈()A.﹣485.8B.﹣48.58C.﹣153.6D.﹣1536 58.下列叙述中正确的是()A.﹣2是4的平方根B.4的平方根是﹣2C.﹣2是(﹣2)2的算术平方根D.±2是(﹣2)2的算术平方根59.的平方根是()A.9B.9或﹣9C.3D.3或﹣3 60.的平方根是()A.16B.±16C.4D.±461.在1,,0,﹣四个实数中,最小数的是()A.1B.C.0D.﹣62.有一个数值转换器,原理如下:当输入的x为16时,输出的y是()A.B.C.4D.863.=3,则a的值为()A.±9B.9C.3D.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
57-12数巩5 1/10 LJJ★★★ 一、主要知识点回顾 1、数的算术平方根、平方根及开平方运算的概念。 (1)一般地,如果正数4的平方为 ,即 2= ,则正数4叫做 的算术平方根, 记为16,读作根号16,其中 叫做被开方数。 (2)如果( )2 =9,那么 就叫做9的平方根或二次方根,用符号表示为:若 2,xaaa,求一个数a的平方根的运算叫做开平方运算。
(3)若2(5)25,则25平方根是 ,即25= ,正数的平方根有 个; 若2(0)0,则0平方根是 ,即0= ,0的平方根有 个;负数 平方根。 2、立方根的概念。
如果-2的立方等于 ,所以-2叫做 的立方根(也叫做三次方根),用符号表示为:若3xa,则3xa,求一个数a的立方根的运算叫做开立方运算。
3、实数的分类。_______________整数有限有理数实数分数有限小数或无限小数无理数无限小数
4、如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的_______线。因此,我们只 要找到一对对应点,作出所连线段的________线,就可以得到这两个图形的对称轴。
二、感悟与实践 例1、有一个数值转换器,原理如下:
当输入的64x时,输出的y等于多少?
初二数学(巩固)班讲义(57期) 第五讲 实数 57-12数巩5 2/10 LJJ★★★ 变式练习1、计算: (1)56-43-(623); (2)25555
例2、求下列各式的x值: (1)2(1)x=4; (2)3(1)x=-1
(3)1x=3 变式练习2、解方程: (1)2280x; (2)38x+27=0;
例3、xy,为实数,且110xy,求2011xy的值? 变式练习3、已知|x-3|+6y=0,则以x,y为两边长的等腰三角形的周长是 。 例4、把下列各数填入相应的集合里:
0,22,4,3.141 592 6,-2,0.12,3,13,227,1.212 121„,π4, 0.202 002 000 2„(两个“2”之间依次多1个0)。 自然数集合{ } 有理数集合{ } 正数集合{ } 57-12数巩5 3/10 LJJ★★★
整数集合{ } 无理数集合{ } 分数集合{ } 变式练习4、列说法正确的是( )
A.a一定是正数 B.20113是有理数 C.22是有理数 D.平方等于自身的数只有1 例5、设实数ab、在数轴上对应的位置如图所示,化简2aab。
变式练习5、如果2(21)12aa,则( ) A.a<12 B.a≤12 C.a>12 D.a≥12
三、巩固与提高 (A)巩固练习 1、以下各数没有平方根的是( ) A.64 B.5(2) C.0 D.[3(3)]2 2、当a<0时,-a的平方根是( ) A.a B.a C.±a D.a 3、16的平方根是( ) A.4 B.±4 C.2 D.±2 4、下列各式正确的是( )
A.25±5 B.255 C.2(5)5 D.2(5)5 5、一个数的算术平方根是a,那么比这个数大5的数是( ) A.a+5 B.-a C.a2+5 D.a2-5 6、使式子2(1)a有意义的数a的个数是( ) A.0 B.-1 C.2 D.无数 7、若1.331.153,当x0.011 53时,x为( ) A.1300 B.0.133 C.0.001 33 D.0.000 133
8、当0a时,2a的值是( ) A.a B.a C.a D.没有意义 57-12数巩5 4/10 LJJ★★★
9、与270最接近的整数是( ) A.15 B.16 C.17 D.18 10、如果某个数的平方根是a+3及2a-15,那么这个数等于( ) A.49 B.441 C.7或21 D.49或441
11、当x 时,41x无意义。 12、1a+2的最小值是 ,此时a的取值是 。 13、下列语句正确的是( ) A.一个数的立方根有两个,它们互为相反数 B.一个数的立方根不是正数就是负数 C.负数没有立方根 D.一个数的立方根与这个数同号,0的立方根是0 14、下列说法正确的是( )
A.27的立方根是3 B.-2764的立方根是34 C.2的立方根是8 D.8的立方根是2 15、如果一个数的平方根与立方根相同,那么这个数是( ) A.0 B.1 C.-1 D.1 16、26的立方根是( ) A.2 B.2 C.1 D.0或1 17、3()mn的立方根是( ) A.nm B.mn C.()mn D.2()mn 18、下列各数中,立方根一定是负数的是( ) A.a B.2a C.21a D.21a
19、若一个正方体的体积是643m,则它的棱长是 m。 20、若33(4)4kk,则k的值是 。
(B)能力提高 1、已知一个正方形的边长为a,面积为S,则( ) A.Sa B.S的平方根是a C.a是S的算术平方根 D.a=S 2、下列各式计算正确的是( ) A.93 B.382 C.3388 D.93 3、2(5)的平方根是( ) A.5 B.5 C.-5 D.5 4、一个数的算术平方根与这个数的立方根相等,则这个数是( ) A.1和0 B.0 C.1 D.1和0 57-12数巩5 5/10 LJJ★★★
5、要使代数式23x有意义,则x的取值范围是( ) A.2x B.2x≥ C.x>2 D.2x≤ 6、若a=1.164,ab=116.4,则b等于( ) A.10 B.100 C.1000 D.10000 7、如图,数轴上点N表示的数可能是( ) A.10 B.5 C.3 D.2
8、若a,b为实数,且b=221147aaa,则a+b的值为( ) A.1 B.4 C.3或5 D.5 9、计算:
(1)2-323; (2)6×23103251275;
(3)2(32); (4)1333 10、求下列各式中x的值: (1)32x-75=0 (2)327(23)64x
(C)趣味数学 有位老师,想辨别他的3个学生谁更聪明。他采用如下的方法:事先准备 好3顶白帽子,1顶黑帽子,让他们看到,然后,叫他们闭上眼睛,分别给戴 上帽子,藏起剩下的1顶帽子,最后,叫他们睁开眼,看着别人的帽子,说出 自己所戴帽子的颜色。3个学生互相看了看,都踌躇了一会,并异口同声地说 出自己戴的是白帽子。 聪明的你,想想看,他们是怎么知道帽子颜色的呢? 57-12数巩5 6/10 LJJ★★★
四、考考你 1、(2008北京石景山)如果23(82)xy=0,那么xy= 。 2、(2008武汉,4)计算4的结果是( ) A.2 B.2 C.-2 D.4 3、(2008苏州,13)下列计算正确的是( ) A.33 B.33 C.93 D.93 4、(208北京,7)若230xy,则xy有值为( ) A.-8 B.-6 C.5 D.6 5、(2008天津,8)若404m,则估计m的取值范围是( ) A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<5
五、课外练习 求下列各式的值:
1、-25; 2、49;
3、30; 4、33(4); 5、310227 57-12数巩5 7/10 LJJ★★★
1、用“*”表示一种新运算:对于任意正实数a、b,都有*1abb,例如8*9914, 那么15*196= ,当*(*16)mm 。 2、m<0时,化简323mmmm。
3、已知ab、为有理数,mn、分别表示57的整数部分和小数部分,且20amnbn,则 ab 。
4、若a的两个平方根是方程322xy的一组解。 (1)求a的值。
(2)求2a的算术平方根。
初二数学(巩固)班补充讲义(57期) 第五讲 实数 57-12数巩5 8/10 LJJ★★★ 【课堂小测】(每小题20分,共100分) 1、化简16的值为( ) A.4 B.4 C.4 D.16 2、下列四个命题中,正确的是( ) A.绝对值等于它本身的实数只有零 B.倒数等于它本身的实数只有l C.相反数等于它本身的实数只有零 D.算术平方根等于它本身的实数只有l 3、下列运算正确的是( )
A.3=3 B.13-1=-3 C.9=±3 D.327=-3
4、在-1.414,2,227,π3,3.142,23,2.121121112中,无理数的个数是( ) A.1 B.2 C.3 D.4 5、实数a,b在数轴上对应的位置如图所示,则222abaabb等于( ) A.-2a B.2b C.2a D.-2b