2018-2019鸡西市小学毕业数学总复习小升初模拟训练试卷12-14(共3套)附详细试题答案
2018-2019江门小学毕业数学总复习小升初模拟训练试卷13-14(共2套)附详细试题答案

小升初数学综合模拟试卷13一、填空题:2.已知A=2×3×3×3×3×5×5×7,在A的两位数的因数中,最大的是______.3.在图中所示的方格中适当地填上1、2、3、4、5、6、7、8,使它的和为153.此时所有“个位数字”之和与所有“十位数字”之和相差_______.4.A、B两只青蛙玩跳跃游戏,A每次跳10厘米,B每次跳15厘米,它们每秒都只跳1次,且一起从起点开始.在比赛途中,每隔12厘米有一陷阱,当它们中第一只掉进陷阱时,另一只距离最近的陷阱有______厘米.5.如图所示,按一定规律用火柴棍摆放图案:一层的图案用火柴棍2支,二层的图案用火柴棍7支,三层的图案用火柴棍15支,……,二十层的图案用火柴棍______支.6.图中ABCD是梯形,AECD是平行四边形,则阴影部分的面积是______平方厘米(图中单位:厘米).7.用43个边长1厘米的白色小正方体和21个边长1厘米的黑色小正方体堆成如图所示的大正方体,使黑色的面向外露的面积要尽量大.那么这个立方体的表面积上有______平方厘米是黑色的.8.甲、乙、丙三人射击,每人打5发子弹,中靶的位置在图中用点表示.计算成绩时发现三人得分相同.甲说:“我头两发共打了8环.”乙说:“我头两发共打了9环.”那么唯一的10环是______打的.9.有三堆棋子,每堆棋子一样多,并且都有黑白两色棋子.第一堆里黑棋子和第二堆里白棋子的数目相等,第三堆里的黑棋_______分之_______.10.若干名战士排成八列长方形队列,若增加120人或减少120人都能组成一个新的正方形队列.那么,原有战士_______名.二、解答题:1.计算:2.甲有桌子若干张,乙有椅子若干把,如果乙用全部椅子换回数量同样多的桌子,则乙需补给甲320元,如乙不补钱,就要少换回5张桌子.已知3张桌子比5把椅子的价钱少48元,那么乙原有椅子多少把?3.有30个贰分硬币和8个伍分硬币,用这些硬币不能构成1分到1元之间的币值有多少种?4.快、中、慢三辆车同时从A地沿同一公路开往B地,途中有一骑车人也同方向行进.这三辆车分别用7分、8分、14分追上骑车人.已知快车每分行800米,慢车每分行600米,求中速车的速度.答案一、填空题:1.102.902×32×5=903.10所有“个位数字”之和=23,所有“十位数字”之和=13,所以23-13=10.4.410与12的最小公倍数是60,15和12的最小公倍数也是60.当第一只掉进陷阱时,第二只跳到10×(60÷15)=40厘米处,此时距离最近的陷阱有40-12×3=4(厘米).第一层:1×2第二层:1×2+1+2×2第三层:1×2+1+2×2+2+3×2第二十层:1×2+1+2×2+2+3×2+…+19+20×2=(1+2+…+19)+1×2+2×2+…+20×2=190+21×20=6106.60阴影部分的面积等于以12为底以10为高的平行四边形面积的一半,即12×10÷2=60(平方厘米).7.50八个顶点用去8个黑色小立方体,还剩13个黑色小立方体放在棱上,所以大立方体上黑色的面积为3×8+2×(21-8)=24+26=50(平方厘米)8.丙.从图中可以看出,总环数为1×2+2×6+4×3+7×3+10×1=57(环),每人五发子弹打(57÷3=)19环.从图中还可看出2+6+3+3+1=15,即每人五发子弹均中靶.因为甲、乙头两发子弹总成绩已分别为8环、9环,所以后三发中不可能有10环,否则总成绩将大于19环.由此可知,10环是丙打的.根据条件可知,第一、二堆中,白色棋子与黑色棋子数目相同,所以第一、二堆中的白棋子也可分成同样的3份,因为三堆棋子数相同,所以每堆棋子数相当于3份.根据第三堆中黑棋子占2份,可知第三堆中白棋子占1份.因为增加120人可构成大正方形(设边长为a),减少120人可构成小正方形(设边长为b),所以大、小正方形的面积差为240.利用弦图求大、小正方形的边长(只求其中一个即可),如右图所示,可知每个小长方形的面积为(240÷4)=60.根据60=2×30=3×20=4×15=5×12=6×10,试验.①长=30,宽=2,则b=30-2=28.原有人数=28×28+120=904(人),经检验是8的倍数(原有8列纵队),满足条件.②长=20,宽=3,则b=20-3=17.原有人数为奇数,不能排成8列纵队,舍。
小学数学六年级小升初毕业复习模拟试卷(附答案解析)

小学数学六年级小升初毕业复习模拟试卷(附答案解析)一、选择题1.在一幅地图上,用2厘米表示实际距离90千米,这幅地图的比例尺是().A.B.C.2.钟面上分针旋转12圈,那么时针旋转的角度是()度.A.180 B.450 C.15 D.303.光明村今年每百户拥有电脑96台,比去年增加了32台,今年比去年增加了百分之多少?正确的算式是().A.32÷96×100%B.32÷(96-32)×100%C.96÷32×100%4.如果一个三角形的三个内角度数之比为5∶4∶9,那么这个三角形是()。
A.锐角三角形B.直角三角形C.钝角三角形D.无法确定5.六(1)班有女生24人,比男生人数的57多4人,男生有多少人?解:设男生有x人,下列方程错误的是()。
A.524x47-=B.5x4247+=C.5x2447=-D.5x4247-=6.明明用同样大的正方体拼成了一个长方体,从正面和上面看到的形状如下图,那么从右面看到的形状应是下面第()个图形。
A.B.C.7.下面各句话中,表述错误的是()。
A.三个奇数的和一定是奇数B.2020年的第一季度共有91天C.一个三角形的面积比与它等底等高的平行四边形的面积少50%D.在﹣1、0、3、﹣2、﹣0.1这几个数中,最小的数是﹣0.18.一个圆柱的底面直径扩大到原来的2倍,高不变,这个圆柱的侧面积就扩大到原来的()。
A.2倍B.3倍C.4倍D.5倍9.一件商品原价180元,先降价110,再提价110,现价比原价()A.没变B.提高了C.降低了D.无法确定10.下图是按一定规律连续拼摆制作的图案,按此规律N处的图案应是()A.B.C.D.二、填空题11.8.4立方分米=(________)升=(________)毫升25分=(________)时35平方分米=(________)平方米12.()20=6∶5=18÷()=()%=()(填小数)。
2018-2019贺州市小学毕业数学总复习小升初模拟训练试卷13-14(共2套)附详细试题答案

小升初数学综合模拟试卷13一、填空题:2.已知A=2×3×3×3×3×5×5×7,在A的两位数的因数中,最大的是______.3.在图中所示的方格中适当地填上1、2、3、4、5、6、7、8,使它的和为153.此时所有“个位数字”之和与所有“十位数字”之和相差_______.4.A、B两只青蛙玩跳跃游戏,A每次跳10厘米,B每次跳15厘米,它们每秒都只跳1次,且一起从起点开始.在比赛途中,每隔12厘米有一陷阱,当它们中第一只掉进陷阱时,另一只距离最近的陷阱有______厘米.5.如图所示,按一定规律用火柴棍摆放图案:一层的图案用火柴棍2支,二层的图案用火柴棍7支,三层的图案用火柴棍15支,……,二十层的图案用火柴棍______支.6.图中ABCD是梯形,AECD是平行四边形,则阴影部分的面积是______平方厘米(图中单位:厘米).7.用43个边长1厘米的白色小正方体和21个边长1厘米的黑色小正方体堆成如图所示的大正方体,使黑色的面向外露的面积要尽量大.那么这个立方体的表面积上有______平方厘米是黑色的.8.甲、乙、丙三人射击,每人打5发子弹,中靶的位置在图中用点表示.计算成绩时发现三人得分相同.甲说:“我头两发共打了8环.”乙说:“我头两发共打了9环.”那么唯一的10环是______打的.9.有三堆棋子,每堆棋子一样多,并且都有黑白两色棋子.第一堆里黑棋子和第二堆里白棋子的数目相等,第三堆里的黑棋_______分之_______.10.若干名战士排成八列长方形队列,若增加120人或减少120人都能组成一个新的正方形队列.那么,原有战士_______名.二、解答题:1.计算:2.甲有桌子若干张,乙有椅子若干把,如果乙用全部椅子换回数量同样多的桌子,则乙需补给甲320元,如乙不补钱,就要少换回5张桌子.已知3张桌子比5把椅子的价钱少48元,那么乙原有椅子多少把?3.有30个贰分硬币和8个伍分硬币,用这些硬币不能构成1分到1元之间的币值有多少种?4.快、中、慢三辆车同时从A地沿同一公路开往B地,途中有一骑车人也同方向行进.这三辆车分别用7分、8分、14分追上骑车人.已知快车每分行800米,慢车每分行600米,求中速车的速度.答案一、填空题:1.102.902×32×5=903.10所有“个位数字”之和=23,所有“十位数字”之和=13,所以23-13=10.4.410与12的最小公倍数是60,15和12的最小公倍数也是60.当第一只掉进陷阱时,第二只跳到10×(60÷15)=40厘米处,此时距离最近的陷阱有40-12×3=4(厘米).第一层:1×2第二层:1×2+1+2×2第三层:1×2+1+2×2+2+3×2第二十层:1×2+1+2×2+2+3×2+…+19+20×2=(1+2+…+19)+1×2+2×2+…+20×2=190+21×20=6106.60阴影部分的面积等于以12为底以10为高的平行四边形面积的一半,即12×10÷2=60(平方厘米).7.50八个顶点用去8个黑色小立方体,还剩13个黑色小立方体放在棱上,所以大立方体上黑色的面积为3×8+2×(21-8)=24+26=50(平方厘米)8.丙.从图中可以看出,总环数为1×2+2×6+4×3+7×3+10×1=57(环),每人五发子弹打(57÷3=)19环.从图中还可看出2+6+3+3+1=15,即每人五发子弹均中靶.因为甲、乙头两发子弹总成绩已分别为8环、9环,所以后三发中不可能有10环,否则总成绩将大于19环.由此可知,10环是丙打的.根据条件可知,第一、二堆中,白色棋子与黑色棋子数目相同,所以第一、二堆中的白棋子也可分成同样的3份,因为三堆棋子数相同,所以每堆棋子数相当于3份.根据第三堆中黑棋子占2份,可知第三堆中白棋子占1份.因为增加120人可构成大正方形(设边长为a),减少120人可构成小正方形(设边长为b),所以大、小正方形的面积差为240.利用弦图求大、小正方形的边长(只求其中一个即可),如右图所示,可知每个小长方形的面积为(240÷4)=60.根据60=2×30=3×20=4×15=5×12=6×10,试验.①长=30,宽=2,则b=30-2=28.原有人数=28×28+120=904(人),经检验是8的倍数(原有8列纵队),满足条件.②长=20,宽=3,则b=20-3=17.原有人数为奇数,不能排成8列纵队,舍。
2018-2019亳州市小学毕业数学总复习小升初模拟训练试卷13-14(共2套)附详细试题答案

小升初数学综合模拟试卷13一、填空题:2.已知A=2×3×3×3×3×5×5×7,在A的两位数的因数中,最大的是______.3.在图中所示的方格中适当地填上1、2、3、4、5、6、7、8,使它的和为153.此时所有“个位数字”之和与所有“十位数字”之和相差_______.4.A、B两只青蛙玩跳跃游戏,A每次跳10厘米,B每次跳15厘米,它们每秒都只跳1次,且一起从起点开始.在比赛途中,每隔12厘米有一陷阱,当它们中第一只掉进陷阱时,另一只距离最近的陷阱有______厘米.5.如图所示,按一定规律用火柴棍摆放图案:一层的图案用火柴棍2支,二层的图案用火柴棍7支,三层的图案用火柴棍15支,……,二十层的图案用火柴棍______支.6.图中ABCD是梯形,AECD是平行四边形,则阴影部分的面积是______平方厘米(图中单位:厘米).7.用43个边长1厘米的白色小正方体和21个边长1厘米的黑色小正方体堆成如图所示的大正方体,使黑色的面向外露的面积要尽量大.那么这个立方体的表面积上有______平方厘米是黑色的.8.甲、乙、丙三人射击,每人打5发子弹,中靶的位置在图中用点表示.计算成绩时发现三人得分相同.甲说:“我头两发共打了8环.”乙说:“我头两发共打了9环.”那么唯一的10环是______打的.9.有三堆棋子,每堆棋子一样多,并且都有黑白两色棋子.第一堆里黑棋子和第二堆里白棋子的数目相等,第三堆里的黑棋_______分之_______.10.若干名战士排成八列长方形队列,若增加120人或减少120人都能组成一个新的正方形队列.那么,原有战士_______名.二、解答题:1.计算:2.甲有桌子若干张,乙有椅子若干把,如果乙用全部椅子换回数量同样多的桌子,则乙需补给甲320元,如乙不补钱,就要少换回5张桌子.已知3张桌子比5把椅子的价钱少48元,那么乙原有椅子多少把?3.有30个贰分硬币和8个伍分硬币,用这些硬币不能构成1分到1元之间的币值有多少种?4.快、中、慢三辆车同时从A地沿同一公路开往B地,途中有一骑车人也同方向行进.这三辆车分别用7分、8分、14分追上骑车人.已知快车每分行800米,慢车每分行600米,求中速车的速度.答案一、填空题:1.102.902×32×5=903.10所有“个位数字”之和=23,所有“十位数字”之和=13,所以23-13=10.4.410与12的最小公倍数是60,15和12的最小公倍数也是60.当第一只掉进陷阱时,第二只跳到10×(60÷15)=40厘米处,此时距离最近的陷阱有40-12×3=4(厘米).第一层:1×2第二层:1×2+1+2×2第三层:1×2+1+2×2+2+3×2第二十层:1×2+1+2×2+2+3×2+…+19+20×2=(1+2+…+19)+1×2+2×2+…+20×2=190+21×20=6106.60阴影部分的面积等于以12为底以10为高的平行四边形面积的一半,即12×10÷2=60(平方厘米).7.50八个顶点用去8个黑色小立方体,还剩13个黑色小立方体放在棱上,所以大立方体上黑色的面积为3×8+2×(21-8)=24+26=50(平方厘米)8.丙.从图中可以看出,总环数为1×2+2×6+4×3+7×3+10×1=57(环),每人五发子弹打(57÷3=)19环.从图中还可看出2+6+3+3+1=15,即每人五发子弹均中靶.因为甲、乙头两发子弹总成绩已分别为8环、9环,所以后三发中不可能有10环,否则总成绩将大于19环.由此可知,10环是丙打的.根据条件可知,第一、二堆中,白色棋子与黑色棋子数目相同,所以第一、二堆中的白棋子也可分成同样的3份,因为三堆棋子数相同,所以每堆棋子数相当于3份.根据第三堆中黑棋子占2份,可知第三堆中白棋子占1份.因为增加120人可构成大正方形(设边长为a),减少120人可构成小正方形(设边长为b),所以大、小正方形的面积差为240.利用弦图求大、小正方形的边长(只求其中一个即可),如右图所示,可知每个小长方形的面积为(240÷4)=60.根据60=2×30=3×20=4×15=5×12=6×10,试验.①长=30,宽=2,则b=30-2=28.原有人数=28×28+120=904(人),经检验是8的倍数(原有8列纵队),满足条件.②长=20,宽=3,则b=20-3=17.原有人数为奇数,不能排成8列纵队,舍。
2018--2019学年度小升初数学模拟试卷及答案(1)

2018--2019学年度小升初数学模拟试卷及答案(1)班级姓名成绩1.(1分)把两个完全一样的圆柱,拼成一个长30厘米的圆柱,则表面积减少25.12平方厘米,原来每个圆柱的体积是立方厘米.2.(1分)李明买了4000元国库券,定期三年,年利率为2.89%,到期后,他把利息捐给“希望工程”支援贫困儿童.李明可以捐元给“希望工程”.3.(1分)学校合唱队人数在40至60人之间,男生与女生的人数比是7:6,合唱队共有人.4.(2分)一个底面直径和高都是3分米的圆锥,它的体积是立方分米,一个与它等底等高的圆柱的体积比它大立方分米.(3分)一个数由3个亿,6个千万,4个千,8个一组成,这个数写作,5.改写成以“万”作单位的数是万,省略“亿”后面的尾数是亿.6.(3分)=25%= (填小数)= :16.7.(1分))小华身高1.6米,在照片上她的身高是5厘米,这张照片的比例尺是.8.(2分)陈明今年上半年每个月的零花钱如下表:月份一月二月三月四月五月六月钱数(元)10090120100125150他平均每个季度的零花钱是元.三月份比四月份度多用%.9.(1分)小明说:“我表妹是1998年2月29日出生的..(判断对错)10.(1分)圆锥的底面积一定,高和体积成反比例.(判断对错)11.(1分)任何质数加1都成为偶数..(判断对错)12.(1分)一个圆柱的底面半径是8厘米,它的侧面展开正好是一个正方形,这个圆柱的高是16厘米..(判断对错)13.(1分))甲乙两个圆的半径之比是1:3,它们的面积比也是1:3..14.(2分)在同时同地测得的杆高和影长()15.(2分)请你估计一下()最接近你自己现在的年龄.A.600分B.600周C.600时D.600月16.(2分)下列说法正确的是()A.分子一定,分数值和分母成正比例B.互质的两个数没有公因数C.圆锥的体积等于圆柱体积的D.采用24时记时法,凌晨2时就是2时,下午2时28分就是14时28分17.(2分)在某市举行的青年歌手大奖赛中,十一位评委给一位歌手的打分如下:9.8,9.7,9.7,9.6,9.6,9.6,9.6,9.5,9.4,9.4,9.1这组数据的中位数和众数分别为()A.9.6和9.6B.9.6和9.55C.9.8和9.118.(2分)某班有学生52人,那么这个班男女生人数的比可能是()A.8:7 B.7:6 C.6:5 D.5:419.(8分)直接写出得数.8.7﹣7= ÷=4﹣﹣= 7×÷7×=44÷= 75÷10%=0.9+99×0.9= 93=20.(9分)解方程.(1)x÷=(2)4x+3×0.9=24.7(3)6÷﹣3.5x=6.21.(15分)怎样算简便就怎样算.1.28+9.8+7.72+10.2 ×+×÷(﹣)××[﹣(+)] (80﹣9.8)×0.6﹣2.1 (﹣)×45.22.(8分)操作题:街心花园的直径是5米,现在在它的周围修一条1米宽的环形路,请按1:10的比例尺画好设计图,并求出路面的实际面积.23.(5分)六年级同学植树98棵,五年级比六年级植树棵数的2倍多6棵.五年级植树多少棵?24.(5分)小高家和学校大约相距4144米.一辆自行车的车轮直径大约66厘米,按车轮每分转100圈计算,小高骑这辆车从家到学校大约需要多少分?25.(5分)某布料加工厂5天缝制衬衣1600件.照这样计算,缝制2400件衬衣需要多少天?26.(5分)六一儿童节学校买回的苹果比桔子多150千克,已知桔子占苹果重量的40%,学校买回苹果多少千克?27.(10分)如图是小明和小东家到学校的路线图.(1)量一量:小东和小明家到学校的图上距离分别是厘米和厘米.(量得的结果取整厘米数)(2)如果小东家到学校的实际距离是1000米,请算出这幅图的比例尺,并填在图中相应的括号里.(3)小明家到学校实际距离是米.(4)某天他们两人同时从家里出发上学,同时到达学校,已知小东每分走50米,那么小明每分走多少米?(列式解答)参考答案1.188.4.【解析】试题分析:由题意可知,两个完全一样的圆柱拼成一个圆柱后,高是原来的2倍,可求出原来每个圆柱的高;表面积减少了2个底面,因表面积减少25.12平方厘米,即可求出圆柱的一个底面积,再根据圆柱的体积=底面积×高,即可列式解决问题.解:25.12÷2×(30÷2)=12.56×15,=188.4(立方厘米);答:原来每个圆柱的体积是188.4立方厘米.故答案为:188.4.点评:此题主要根据圆柱的体积=底面积×高,本题关键是弄清表面积减少了几个面,是什么样的面.2.346.8元【解析】试题分析:此题应根据公式:利息=本金×利率×时间,算出即可.解:4000×2.89%×3,=115.6×3,=346.8(元).答:李明可以捐 346.8元给“希望工程”.点评:此题主要考查利息公式的应用.3.52.【解析】试题分析:由“男生与女生的人数比是7:6”可知,总人数相当于7+6=13份,也就是说总人数是13的倍数,那么在“40﹣60”之间只有52符合题意,由此可知总人数就是52.解:由男女生人数的比是7:6可知:总人数是7+6=13(份),即总人数是13的倍数;又因为合唱队人数在40至60人之间,那么合唱队的人数就应是52;故答案为:52.点评:此题是考查比的应用,要把比理解为几份和几份的比.4.7.065;14.13.【解析】试题分析:(1)利用圆锥的体积=πr2×h,代入数据即可解决问题;(2)等底等高的圆柱的体积是圆锥的体积的3倍,所以与它等底等高的圆柱就比这个圆锥大了它的2倍,由此即可解决问题.解: 3.14××3,=×3.14××3,=7.065(立方分米),7.065×2=14.13(立方分米),答:它的体积是7.065立方分米,一个与它等底等高的圆柱的体积比它大 14.13立方分米.故答案为:7.065;14.13.点评:此题考查了圆锥的体积公式以及等底等高的圆柱与圆锥的体积的3倍关系的灵活应用.5.360004008,36000.4008,4.【解析】试题分析:(1)本题可以用数位顺序表来写出这个数,有几个计数单位,这一位上就是几,没有的就写0;(2)改写成以万为单位的方法:在万位数字的后面点上小数点,前面的数字就是整数部分,后面的就是小数部分,化简后在最后加上单位万.(3)省略亿后面的尾数就是四舍五入到亿位,看它的千万位数,利用四舍五入后把亿位后面的数省略写上单位“亿”.解:(1)3在亿位,6在千万位,4在千位,8在个位,其它数位为0,这个数写作:360004008;(2)360004008=36000.4008万;(3)360004008≈4亿.故答案为:360004008,36000.4008,4.点评:此题考查写数、求近似数:写数要先分级并依次写出各位上的数;求近似数要省略“谁”后面的尾数,就把“谁”下一位上的数字进行四舍五入,还要带上计数单位.6.1,0.25,4.【解析】试题分析:解决此题关键在于25%,25%去掉百分号,小数点向左移动两位可化成0.25;0.25可化成分数,的分子和分母同时除以25可化成最简分数;用分子1做比的前项,分母4做比的后项可化成1:4,1:4的前项和后项同时乘上4可化成4:16;由此进行转化并填空.解:=25%=0.25=4:16.故答案为:1,0.25,4.点评:此题考查比、分数、百分数和小数之间的转化,根据它们之间的关系和性质进行转化即可.7.1:32.【解析】试题分析:根据比例尺=照片上的身高:实际小华身高,可直接求得这张照片的比例尺.解:1.6米=160厘米,5:160=1:32,这张照片的比例尺为1:32.故答案为:1:32.点评:考查了比例尺的概念,表示比例尺的时候,注意统一单位长度.8.342.5,20.【解析】试题分析:上半年有两个季度,先求出上半年的总钱数,即可求出平均每个季度的钱数;要求三月份比四月份多用百分之几,只要用多用的钱数除以四月份的钱数即可.解:(100+90+120+100+125+150)÷2=685÷2=342.5(元),(120﹣100)÷100=20%;故答案为:342.5,20.点评:此题主要考查求一个数比另一个数多百分之几的解答方法以及求平均数的方法.9.错误【解析】试题分析:根据平年的2月有28天,闰年的2月有29天,只要推算出1998年是闰年还是平年即可.解:1998÷4=499…2,1998年是平年2月只有28天,没有2月29日.故答案为:错误.点评:判断闰年和平年可以根据:四年一闰,百年不闰,四百年再闰来判断.10.错误【解析】试题分析:判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为圆锥的体积=×底面积×高,则=×底面积(定值),所以圆锥的体积和高成正比例;故答案为:×.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.11.错误【解析】试题分析:根据质数的定义,2为最小的质数,但是2+1=3,3为质数.解:由于2为最小的质数,2+1=3,3为奇数.所以任何质数加1都成为偶数的说法是错误的.故答案为:错误.点评:除了2之外,任何质数加1都成为偶数的说法是正确的.12.错误【解析】试题分析:根据圆柱的侧面展开是一个长方形,其长为底面周长,宽为高来计算后判断即可.解:侧面展开后长方形的长(底面周长)=2πr=2×3.14×8=50.24(厘米);又因为侧面展开后是正方形所以:宽=长=50.24厘米;侧面展开后长方形的宽又是圆柱的高,即高=50.24厘米;故答案为:×.点评:此题重点考查圆柱的侧面展开图.13.错误【解析】试题分析:设甲圆的半径是r,则乙圆的半径为3r,根据“圆的面积=πr2”分别求出甲、乙两个圆的面积,然后根据题意进行比即可.解:设甲圆的半径是r,则乙圆的半径为3r,则:(πr2):[π(3r)2],=(πr2):[9πr2],=1:9;故答案为:错误.点评:解答此题用到的知识点:(1)比的意义;(2)圆的面积的计算公式;注意:圆的半径比,即直径比、周长比;圆的面积比等于半径的平方的比.14.B【解析】试题分析:根据正比例的意义及关系式:,在同时同地测得的杆高和影长的比值一定,由此即可得答案.解:因为在同时同地测得的杆高和影长的比值一定,所以杆高和影长成正比例.故选:B.点评:此题主要考查判断正、反比例的方法,根据它们的关系式判断即可.15.B【解析】试题分析:此题用到时间单位分、时、日、星期、月、年之间的换算,用到的进率有1时=60分、1日=24时、1年=12个月、1年≈52个星期,据此将每个选项分别换算成比较接近人的年龄的单位,即600分=10时,600时=25日,600周≈12年,600月=50年,由此做出选择.解:600月÷12=50(岁);600周÷52≈12(岁);600时÷24时=25(天);600分=10时;所以只有600周符合学生的年龄.故选:B.点评:此题考查对时间单位时、分,日、星期、月、年之间的换算,并根据具体情况进行选择.16.D【解析】试题分析:逐项分析后,再选出正确的选项.解:A、分数值×分母=分子(一定),是乘积一定,分数值和分母成反比例,原句错误;B、互质的两个数的公因数是1,原句错误;C、等底等高的圆锥的体积等于圆柱体积的,原句错误;D、采用24时计时法,凌晨2时就是2时,下午2时28分就是14时28分,原句正确.故选:D.点评:此题考查的知识点较多,解答此题关键是根据相关的知识逐项进行分析,再做出选择.17.A【解析】试题分析:(1)中位数:将数据按照大小顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据个数是偶数,则中间两个数据的平均数是这组数据的中位数;(2)众数:是指在一组数据中出现次数最多的那个数;据此解答.解:(1)将数据按照从大到小的顺序排列为:9.8,9.7,9.7,9.6,9.6,9.6,9.6,9.5,9.4,9.4,9.1因为数据个数是11,是奇数,所以中位数是9.6;(2)这组数据中出现次数最多的数是9.6,所以9.6是这组数据的众数;故选:A.点评:此题考查一组数据的中位数和众数的意义和求解方法,按照各自的方法分别求出即可.18.B【解析】试题分析:学生总数和男女生人数的比已知,看哪个比的前项与后项的和能整除全班人数,那个比就是正确答案.解:选项A,52÷(8+7)=3…7,故不符合要求;选项B,52÷(7+6)=4,故符合要求;选项C,52÷(6+5)=4…8,故不符合要求;选项D,52÷(5+4)=5…7,故不符合要求;故选:B.点评:解答此题的关键是:看比的前项与后项的和能否整除全班人数,从而选出正确答案.19.1.7;;3;;40;750;90;729.【解析】试题分析:根据分数、小数四则运算的计算法则,直接进行口算,其中4,根据减法的运算性质进行简算,0.9+99×0.9,运用乘法分配律进行简算.解:8.7﹣7=1.7;÷=;4﹣﹣=3;7×÷7×=;44÷=40;75÷10%=750;0.9+99×0.9=90; 93=729.点评:此题考查的目的是牢固掌握分数、小数四则运算的计算法则,并且能够灵活整数的运算定律和运算性质进行简便计算.20.2;5.5;.【解析】试题分析:(1)题根据等式的性质,方程两边同时乘来解;(2)题先计算3×0.9的值,再根据等式的性质,方程两边同时减去2.7,然后同时除以4来解;(3)题先计算6÷的值,再根据等式的性质,方程两边同时加上3.5x,再同时减去6,然后同时除以3.5来解.(1)x÷=x÷×=×,x=2;(2)4x+3×0.9=24.74x+2.7=24.7,4x+2.7﹣2.7=24.7﹣2.7,4x=22,4x÷4=22÷4,x=5.5;(3)6÷﹣3.5x=69﹣3.5x=6,9﹣3.5x+3.5x=6+3.5x,3.5x+6=9,3.5x+6﹣6=9﹣6,3.5x=3,3.5x÷3.5=3÷3.5,x=.点评:根据等式的性质“等式两边同时加上、减去、乘上或除以同一个不为零的数,等式仍然成立”进行解答;注意等号对齐.21.29;;;;40.02;6;【解析】试题分析:(1)运用加法结合律简算;(2)运用乘法分配律简算;(3)先算小括号里面的减法,再算括号外除法,最后算乘法;(4)先算小括号里面的加法,再算中括号里面的减法,最后算括号外的乘法;(5)先算小括号里面的减法,再算括号外的乘法,最后算括号外的减法;(6)运用乘法分配律简算.解:(1)1.28+9.8+7.72+10.2,=(1.28+7.72)+(9.8+10.2),=9+20,=29;(2)×+×,=×(+),=×,=;(3)÷(﹣)×,=÷×,=××,=×,=;(4)×[﹣(+)],=×[﹣],=×,=;(5)(80﹣9.8)×0.6﹣2.1,=70.2×0.6﹣2.1,=42.12﹣2.1,=40.02;(6)(﹣)×45,=×45﹣×45,=15﹣9,=6.点评:此题主要考查分数、整数、小数的四则混合运算的运算顺序和应用运算定律进行简便计算.22.路面的实际面积18.84m2.设计图如下:【解析】试题分析:先根据比例尺求出街心花园的直径和1米宽的环形路在图形上的长度,再在设计图上画出图形;根据圆环的面积公式即可求出路面的实际面积.解:5米=500厘米,1米=100厘米,500×=50(厘米)100×=10(厘米)所以内圆半径为:50÷2=25(厘米)外圆半径为:25+10=35(厘米)于是以点O为圆心,分别以25厘米和35厘米为半径画圆如下:路面的实际面积为:3.14×[(5÷2+1)2﹣(5÷2)2]=3.14×(12.25﹣6.25)=3.14×6=18.84(m2).答路面的实际面积18.84m2.点评:考查了应用比例尺画图,圆环的面积.能够根据比例尺正确进行计算,注意单位的统一.23.202棵【解析】试题分析:根据题意,五年级比六年级植树棵数的2倍多6棵,因为六年级同学植树98棵,可知六年级植树棵数的2倍再加上6棵就是五年级植树棵数,列出算式解答即可.解:五年级植树的棵数是:98×2+6=202(棵);答:五年级植树202棵.点评:根据题意,分析两个年级植树棵数之间的关系,列式计算即可.24.20分.【解析】试题分析:根据自行车的车轮直径大约66厘米,按车轮每分转100圈,可先求每圈长度,再求出100圈的路程,然后求出自行车的速度,然后根据关系式:路程÷速度=时间即可列式解答.解:66厘米=0.66米,0.66×100×3.14=207.24(米),4144÷207.24≈20(分);答:小高骑这辆车从家到学校大约需要20分.点评:此题主要考查基本关系式:时间=路程÷速度,列式解答即可.解答时注意单位的换算.25.7.5天.【解析】试题分析:由题意知道工作效率一定,工作时间和工作量成正比例.由此列式解答即可.解:设缝制2400件衬衣需要x天,1600:5=2400:x1600x=5×2400x=7.5;答:缝制2400件衬衣需要7.5天.点评:解答此题的关键是,要先判断题中的两种相关联的量成何比例,并找准对应量.26.250千克.【解析】试题分析:已知桔子占苹果重量的40%,根据分数减法的意义,桔子比苹果重量少1﹣40%,买回的苹果比桔子多150千克,即这150千克占苹果重量的1﹣40%,根据分数除法的意义,苹果有150÷(1﹣40%)千克.解:150÷(1﹣40%)=150÷60%=250(千克)答:苹果有250千克.点评:首先根据分数减法的意义求出150千克占苹果重量的分率是完成本题的关键.27.(1) 5; 6;(2)比例尺为:1:20000;填图如下:(3)1200;(4)60米.【解析】试题分析:(1)用尺子直接测量即可得到小东和小明家到学校的图上距离;(2)根据比例尺=图上距离;实际距离即可求得比例尺;(3)实际距离=图上距离÷比例尺,据此求得小明家到学校实际距离;(4)他俩的时间一样,先用小东家到学校的路程÷小东的速度求出时间,然后用小明家到学校路程÷时间即可.解:(1)小东和小明家到学校的图上距离分别是 5厘米和 6厘米;(2)5厘米:1000米,=5厘米:100000厘米,=1:20000;填图如下:(3)6÷=120000(厘米),120000厘米=1200米,答:小明家到学校实际距离是1200米.(4)1000÷50=20(分钟),1200÷20=60(米),答:小明每分走60米.点评:解答图上距离的测量时,注意测量的方法;解答比例尺的意义及求法时,注意掌握比例尺的公式及应用;解答行程问题时,注意掌握基本的关系式:速度×时间=路程.。
2018-2019贺州市小学毕业数学总复习小升初模拟训练试卷12-13(共2套)附详细试题答案

小升初数学综合模拟试卷12一、填空题:2.“趣味数学”表示四个不同的数字:则“趣味数学”为_______.正好是第二季度计划产量的75%,则第二季度计划产钢______吨.个数字的和是_______.积会减少______.6.两只同样大的量杯,甲杯装着半杯纯酒精,乙杯装半杯水.从甲杯倒出一些酒精到乙杯内.混合均匀后,再从乙杯倒同样的体积混合液到甲杯中,则这时甲杯中含水和乙杯中含酒精的体积,哪一个大?______7.加工一批零件,甲、乙二人合作需12天完成;现由甲先工作3天,则这批零件共有______个.8.一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图所示.它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米,瓶子倒放时,空余部分的高为2厘米,则瓶内酒精体积是______立方厘米.9.有一个算式,上边方格里都是整数,右边答案只写出了四舍五入后四位数是______.二、解答题:1.如图,阴影部分是正方形,则最大长方形的周长是______厘米.2.如图为两互相咬合的齿轮.大的是主动轮,小的是从动轮.大轮半径为105,小轮半径为90,现两轮标志线在同一直线上,问大轮至少转了多少圈后,两条标志线又在同一直线上?3.请你用1,2,3,4,5,6,7,8,9这九个数字,每个只能用一次,拼凑出五个自然数.让第二个是第一个的2倍,第3个是第一个的3倍,第四个是第一个的4倍,第五个是第一个的5倍.4.有一列数2,9,8,2,6,…从第3个数起,每个数都是前面两个数乘积的个位数字.例如第四个数就是第二、第三两数乘积9×8=72的个位数字2.问这一列数第1997个数是几?答案一、填空题:1.(81.4)2.(3201)乘积前两位数字是1和0.“趣味数学”ד趣”的千位数字是9,就有“趣”=3,显然,“数”=0.而味“味”ד趣”不能有进位,2ד味”ד趣”向百万位进1,所以“味”=2,同理,“学”=1.3.(24000)÷75%=24000(吨).4.(8,447)由周期性可得,(1)100=16×6+4,所以小数点后第100个数字与小数点后第4个数字一样即为8;(2)小数点后前100个数字的和是:16×(1+4+2+8+5+7)+1+4+2+8=447.6.(一样大)甲、乙两杯中液体的体积,最后与开始一样多,所以有多大体积纯酒精从甲杯转到乙杯,就有多大体积的水从乙杯转入了甲杯,即甲杯中含水和乙杯中含酒精体积相同.7.(240个)8.(62.172,取π=3.14)液体体积不变,瓶内空余部分的体积也是不变的,因此可知液体体积是9.(1,2,3)10.(7744)到9999中找出121的倍数,共73个,即121×10,121×11,121×12,…,积,只能取16,25,36,49,64,81经验算所求四位数为7744=121×64.二、解答题:1.(30)由图可知正方形的边长等于长方形的宽边,这样长方形的周长应等于长方形的长边与正方形的边长之和的两倍.(9+6)×2=30(cm).2.(3圈)3.(9,18,27,36,45)第一个数一定是一位数,其余为两位数,为使它的2倍是两位数,这个数必须大于4;由于给出九数中只有四个偶数,所以第一个数只能是奇数;由于没有0,所以这个数不是5,又7×2=14,7×3=21有重复数字1,所以不能是7,由此这个一位数是9.4.(6)这列数为2,9,8,2,6,2,2,4,8,2,6,2,2,4,8,2…除去前两个数2,9外,后面8,2,6,2,2,4六数一个循环.(1997-2)÷6=332余3.小升初数学综合模拟试卷13一、填空题:2.已知A=2×3×3×3×3×5×5×7,在A的两位数的因数中,最大的是______.3.在图中所示的方格中适当地填上1、2、3、4、5、6、7、8,使它的和为153.此时所有“个位数字”之和与所有“十位数字”之和相差_______.4.A、B两只青蛙玩跳跃游戏,A每次跳10厘米,B每次跳15厘米,它们每秒都只跳1次,且一起从起点开始.在比赛途中,每隔12厘米有一陷阱,当它们中第一只掉进陷阱时,另一只距离最近的陷阱有______厘米.5.如图所示,按一定规律用火柴棍摆放图案:一层的图案用火柴棍2支,二层的图案用火柴棍7支,三层的图案用火柴棍15支,……,二十层的图案用火柴棍______支.6.图中ABCD是梯形,AECD是平行四边形,则阴影部分的面积是______平方厘米(图中单位:厘米).7.用43个边长1厘米的白色小正方体和21个边长1厘米的黑色小正方体堆成如图所示的大正方体,使黑色的面向外露的面积要尽量大.那么这个立方体的表面积上有______平方厘米是黑色的.8.甲、乙、丙三人射击,每人打5发子弹,中靶的位置在图中用点表示.计算成绩时发现三人得分相同.甲说:“我头两发共打了8环.”乙说:“我头两发共打了9环.”那么唯一的10环是______打的.9.有三堆棋子,每堆棋子一样多,并且都有黑白两色棋子.第一堆里黑棋子和第二堆里白棋子的数目相等,第三堆里的黑棋_______分之_______.10.若干名战士排成八列长方形队列,若增加120人或减少120人都能组成一个新的正方形队列.那么,原有战士_______名.二、解答题:1.计算:2.甲有桌子若干张,乙有椅子若干把,如果乙用全部椅子换回数量同样多的桌子,则乙需补给甲320元,如乙不补钱,就要少换回5张桌子.已知3张桌子比5把椅子的价钱少48元,那么乙原有椅子多少把?3.有30个贰分硬币和8个伍分硬币,用这些硬币不能构成1分到1元之间的币值有多少种?4.快、中、慢三辆车同时从A地沿同一公路开往B地,途中有一骑车人也同方向行进.这三辆车分别用7分、8分、14分追上骑车人.已知快车每分行800米,慢车每分行600米,求中速车的速度.答案一、填空题:1.102.902×32×5=903.10所有“个位数字”之和=23,所有“十位数字”之和=13,所以23-13=10.4.410与12的最小公倍数是60,15和12的最小公倍数也是60.当第一只掉进陷阱时,第二只跳到10×(60÷15)=40厘米处,此时距离最近的陷阱有40-12×3=4(厘米).第一层:1×2第二层:1×2+1+2×2第三层:1×2+1+2×2+2+3×2第二十层:1×2+1+2×2+2+3×2+…+19+20×2=(1+2+…+19)+1×2+2×2+…+20×2=190+21×20=6106.60阴影部分的面积等于以12为底以10为高的平行四边形面积的一半,即12×10÷2=60(平方厘米).7.50八个顶点用去8个黑色小立方体,还剩13个黑色小立方体放在棱上,所以大立方体上黑色的面积为3×8+2×(21-8)=24+26=50(平方厘米)8.丙.从图中可以看出,总环数为1×2+2×6+4×3+7×3+10×1=57(环),每人五发子弹打(57÷3=)19环.从图中还可看出2+6+3+3+1=15,即每人五发子弹均中靶.因为甲、乙头两发子弹总成绩已分别为8环、9环,所以后三发中不可能有10环,否则总成绩将大于19环.由此可知,10环是丙打的.根据条件可知,第一、二堆中,白色棋子与黑色棋子数目相同,所以第一、二堆中的白棋子也可分成同样的3份,因为三堆棋子数相同,所以每堆棋子数相当于3份.根据第三堆中黑棋子占2份,可知第三堆中白棋子占1份.因为增加120人可构成大正方形(设边长为a),减少120人可构成小正方形(设边长为b),所以大、小正方形的面积差为240.利用弦图求大、小正方形的边长(只求其中一个即可),如右图所示,可知每个小长方形的面积为(240÷4)=60.根据60=2×30=3×20=4×15=5×12=6×10,试验.①长=30,宽=2,则b=30-2=28.原有人数=28×28+120=904(人),经检验是8的倍数(原有8列纵队),满足条件.②长=20,宽=3,则b=20-3=17.原有人数为奇数,不能排成8列纵队,舍。
2018-2019鸡西市小学毕业数学总复习小升初模拟训练试卷9-10(共2套)附详细试题答案
小升初数学综合模拟试卷9一、填空题:1.在下面的四个算式中,最大的得数是______:(1)1994×1999+1999,(2)1995×1998+1998,(3)1996×1997+1997,(4)1997×1996+1996.2.今有1000千克苹果,刚入库时测得含水量为96%;一个月后,测得含水量为95%,则这批苹果的总重量损失了______.3.填写下面的等式:4.任意调换五位数54321的各个数位上的数字位置,所得的五位数中的质数共有______.5.下面式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:则被乘数为______.6.如图,每个小方格的面积是1cm2,那么△ABC的面积是______cm2.7.如图,A1,A2,A3,A4是线段AA5上的分点,则图中以A,A1,A2,A3,A4,A5这六个点为端点的线段共有______条.8.10点15分时,时针和分针的夹角是______.9.一房间中有红、黄、蓝三种灯,当房间中所有灯都关闭时,拉一次开关,红灯亮;第二次拉开关,红黄灯都亮;第三次拉开关,红黄蓝三灯都亮;第四次拉开关,三灯全关闭,现在从1~100编号的同学走过该房间,并将开关拉若干次,他们拉开关的方式为:编号为奇数者,他拉的次数就是他的号数;编号为偶数者,其编号可以写成2r·p(其中p为正奇数,r为正整数),就拉p次,当100人都走过房间后,房间中灯的情况为______.10.老师带99名同学种树100棵,老师先种一棵,然后对同学们说:“男生每人种两棵,女生每两人合种一棵。
”说完把99棵树苗分给了大家,正好按要求把树苗分完,则99名学生中男生为______名.二、解答题:1.如图,某公园的外轮廓是四边形ABCD,被对角线AC、BD分成四个部分.△AOB的面积是2平方千米,△COD的面积是3平方千米,公园陆地面积为6.92平方千米,那么人工湖的面积是______平方千米.2.汽车往返于甲、乙两地之间,上行速度为每小时30千米,下行速度为每小时60千米,求往返的平均速度.3.已知一个数是1个2,2个3,3个5,2个7的连乘积,试求这个数的最大的两位数因数.4.某轮船公司较长时间以来,每天中午有一只轮船从哈佛开往纽约,并且在每天的同一时间也有一只轮船从纽约开往哈佛,轮船在途中所花的时间,来去都是七昼夜,问今天中午从哈佛开出的轮船,在整个航运途中,将会遇到几只同一公司的轮船从对面开来?答案一、填空题:1.(3988009)由乘法分配律,四个算式分别简化成:1995×1999,1996×1998,1997×1997,1996×1998,由“和相等的两个数,相差越小积越大”,所以1997×1997最大,为3988009.2.(200千克)苹果含水96%.所以苹果肉重1000×(1-96%)=40千克,一个月后,测得含水量为95%,即肉重占1-95%=5%,所以苹果重为40÷(1-95%)3.(1)26,26或14,182.(2)46、46.4.(0个)因为5+4+3+2+1=15,是3的倍数.所以任意调换54321各位数字所得的五位数均能被3整除,为合数,因此共有0个质数.5.142857或285714易知“数”只能是1或2或3,经过分析试证可知排除3,并得到两个答案.6.(8.5)2.5-6=8.5(cm2)7.(15条)以A为左端点的线段共5条,以A1为端点的线段共4条;以A2为左端点的线段共3条;以A3为左端点的线段共2条;以A4为左端点的线段共1条,总计5+4+3+2+1=15(条).8.(142°30′)10点15′时,时针从0点开始转过的角度是30°×10.25=307.5°,从而时针与钟表盘12所在的位置之间的夹角为360°-307.5°=52°30′,此时时针与分针之间的夹角为90°+52°30′=142°30′.9.(都不亮)奇数和为1+3+5+…+99=2500,编号为2P者有2×1,2×3,2×5,…,2×49,他们拉开关次数为1+3+5+…+49=625;编号为22p者有22×1,22×3,22×5,…,22×25,拉开关次数为1+3+5+……+25=169;同理可得编号23·p者拉36次;24·p者9次,25·p与26·p分别有25·1,25·3,26拉开关次数1+3+1=5次.总计2500+625+169+36+9+5=3344=4×836.所以最后三灯全关闭.10.(33)把问题简化:3人种3棵(指1男生2个女生),则99名分成33组,每组1男2女,所以共有男生:99÷(2+1)=33(名).二、解答题:1.(0.58)由△BOC与△DOC等高h1,△BOA与△DOA等高h2,利用面积公式:2.(40千米/小时)设两地距离为a,则总距离为2a.3.(98)由已知数=2×3×3×5×5×5×7×7.所以它的两位数的因数有很多个.因此我们可从两位数中最大数找起.99=9×11=3×3×11,而11不是原数因数,所以99不符合;98=2×49=2×7×7,因为2、7都是原数的因数,所以98符合要求.4.(15只)利用图解法代表今天中午从哈佛开往纽约的轮船的带箭头的线段.与另一簇代表从纽约开往哈佛的轮船行驶路线的15条平行线相交.其中一只是在出发时遇到,一只到达时遇到,剩下的13只则在海上相遇.小升初数学综合模拟试卷10一、填空题:1.29×12+29×13+29×25+29×10=______.2.2,4,10,10四个数,用四则运算来组成一个算式,使结果等于24.______.______页.4.如图所示为一个棱长6厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,则剩下的体积是原正方体的百分之______(保留一位小数).5.某校五年级(共3个班)的学生排队,每排3人、5人或7人,最后一排都只有2人.这个学校五年级有______名学生.6.掷两粒骰子,出现点数和为7、为8的可能性大的是______.7.老妇提篮卖蛋.第一次卖了全部的一半又半个,第二次卖了余下的一半又半个,第三次卖了第二次余下的一半又半个,第四次卖了第三次余下的一半又半个.这时,全部鸡蛋都卖完了.老妇篮中原有鸡蛋______个.8.一组自行车运动员在一条不宽的道路上作赛前训练,他们以每小时35千米的速度向前行驶.突然运动员甲离开小组,以每小时45千米的速度向前行驶10千米,然后转回来,以同样的速度行驶,重新和小组汇合,运动员甲从离开小组到重新和小组汇合这段时间是______.9.一对成熟的兔子每月繁殖一对小兔子,而每对小兔子一个月后就变成一对成熟的兔子.那么,从一对刚出生的兔子开始,一年后可变成______对兔子.10.有一个10级的楼梯,某人每次能登上1级或2级,现在他要从地面登上第10级,有______种不同的方式.二、解答题:1.甲、乙二人步行的速度相等,骑自行车的速度也相等,他们都要由A处到B处.甲计划骑自行车和步行所经过的路程相等;乙计划骑自行车和步行的时间相等.谁先到达目的地?共有多少个?3.某商店同时出售两件商品,售价都是600元,一件是正品,可赚20%;另一件是处理品,要赔20%,以这两件商品而言,是赚,还是赔?4.有一路电车起点站和终点站分别是甲站和乙站.每隔5分钟有一辆电车从甲站出发开往乙站,全程要走15分钟.有一个人从乙站出发沿电车路线骑车前往甲站.他出发时,恰有一辆电车到达乙站.在路上遇到了10辆迎面开来的电车.当到达甲站时,恰又有一辆电车从甲站开出,问他从乙站到甲站用了多少分钟?答案一、填空题:1.(1740)29×(12+13+25+10)=29×60=17402.(2+4÷10)×103.(200页)4.(73.8%)(cm3),剩下体积占正方体的:(216-56.52)÷216≈0.738≈73.5.(107)3×5×7+2=105+2=1076.(7的可能性大)出现和等于7的情况有6种:1与6,2与5.3与4,4与3,5与2,6与1;出现和为8的情况5种:2和6,3与5,4与4,5与3,6与2.7.(15)从图上看出,在这段时间内,运动员甲和运动员队分别以每小时45千米9.(233)从第二个月起,每个月兔子的对数都等于相邻的前两个月的兔子对数的和.即1,1,2,3,5,8,13,21,34,55,89,144,233,…所以,从一对新生兔开始,一年后就变成了233对兔子.10.(89种)用递推法.他要到第10级只能从第9级或第8级直接登上。
2018-2019学年人教版数学六年级下册小升初总复习第二章《数的运算》综合测试卷(word无答案)
2018-2019学年人教版数学六年级下册小升初总复习第二章《数的运算》综合测试卷(word无答案)一、填空题(★★) 1 . 把一个小数扩大到原数的10倍后,小数点再向左移动两位是5.32,原来的小数是(___)。
(★★) 2 . 甲数比乙数多5,乙数的小数点向左移动两位后是0.25,原来甲、乙两数的和是(____)。
(★) 3 . 0与任何数相乘,积都等于(____)。
一个数与1相乘,积等于(____)。
0除以一个不等于0的数,商等于(___)。
一个数除以1,商等于(____)。
相同的数(0除外)相除,商等于(____)。
两个数的差是3.2,被减数不变,减数增加0.2,差是(____)。
(★★) 4 . 甲数的是20,乙数是100的25%,乙数是甲数的(____)%。
(★★) 5 . 甲数除以乙数,商5余4,如果甲、乙两数都扩大到原来的10倍,那么商(____)余(____)。
(★★) 6 . 甲数的等于乙数的50%,甲数是乙数的(____)%,甲数比乙数多(____)%,乙数比甲数少(____)(填分数)。
(★★) 7 . 定义新运算,如果 A△ B=;4△6=(____);5△(6△8)=(____)。
(★★)8 . 已知甲、乙两数之和是473,乙数的末尾是0,如果把末尾的0去掉,正好等于甲数。
甲数是(____),乙数是(____)。
(★★) 9 . 在里填上“>”“<”或“=”。
二、解答题(★★) 10 . 我、爸爸、妈妈三人今年的平均年龄是30岁,已知爸爸和妈妈两人的平均年龄是39岁,你猜我今年是多少岁?(★★★★) 11 . 哥哥5年后的年龄与弟弟3年前的年龄和是29岁,弟弟今年的年龄是两人年龄差的4倍。
哥哥今年多少岁?(★★) 12 . 同学们去敬老院给老人送水果,每次从篮子里面取出2个橘子和3个梨送给一位老人,最后剩下12个梨,橘子正好分完,这时他们才想起原来梨的数量是橘子的2倍。
【最新精编】2018-2019年小升初数学毕业升学考试试卷(共10套试卷)
2018-2019年小升初六年级期末毕业数学试题(共十套试卷)一、看清题目,巧思妙算。
(共30分) 1、直接写得数(每小题1分,共10分)85+0.25= 1787-998= 1÷20%= 6÷0.05=12.5×32×2.5= 5-=+9792 9.7-0.03= 54×25==+-+31213121=⨯÷737112、求未知数X (每小题2分,共8分) 1.8χ-0.7=2.9 7385=-χχ80%χ-18×32=4χ4.6=0.12:1.53、计算下列各题,能简算的要简算(每小题3分,共12分)。
1853-(2.35+8.6) 3.5×10.181×[)×(9105321÷] (43+611-2413)×12二、认真思考,谨慎填空(每空1分,共23分)1、 2时40分=( )时 3.8公顷=( )公顷( )平方米2、在86%,76,0.88,98四个数中,最大的数是( ),最小的数是( )。
3、一幢大楼地面以上有19层,地面以下有2层,地面以上第6层记作+6层,地面以下第2层记作( )层。
4、浩浩每天放学回家要花1小时完成语文、数学、英语三科作业。
如果每科作业花的时间都一样,完成每科作业需( )分钟,每科作业占总时间的( )。
5、将圆规两脚之间的距离定为( )厘米时,可以画出直径为6厘米的圆,这个圆的面积是( )平方厘米。
6、把右边的长方形以它的长为轴旋转一周,会得到一个( ),体积是( )立方厘米 。
7、按糖和水的比为1:19配制一种糖水,这种糖水的含糖率是( ) 现有糖50克,可配制这种糖水( )克。
8、有一种手表零件长5毫米。
在设计图纸上的长度是10厘米,这幅图纸的比例尺是( )。
9、右图是某粮食仓库储藏情况统计图。
已知仓库中大豆有4吨,那么其中玉米( )吨。
10、有40张5元和1元的人民币,面值共152元,5元的有( )张,1元的有( )张。
2018-2019鸡西市小学毕业数学总复习小升初模拟训练试卷4-5(共2套)附详细试题答案
小升初数学综合模拟试卷4一、填空题:1.41.2×8.1+11×9.25+537×0.19=______.2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5.2.如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′CD=DC′,DAAD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?答案一、填空题1.(537.5)原式=412×0.81+537×0.19+11×9.25=412×0.81+(412+125)×0.19+11×9.25=412×(0.81+0.19)+1.25×19+11×(1.25+8)=412+1.25×(19+11)+88=537.52.(5283)从*×9,尾数为7入手依次推进即可.3.(6年)爸爸比小惠大:6×5-6=24(岁),爸爸年龄是小惠的3倍,也就是比她多2倍,则一倍量为:24÷2=12(岁),12-6=6(年).4.(14厘米).2+2+5+5=14(厘米).5.(225,150)因450÷75=6,所以最大公约数为75,最小公倍数450的两整数有75×6,75×1和75×3,75×2两组,经比较后一种差较小,即225和150为所求.6.(45,15)假设60只全是鸡,脚总数为60×2=120.此时兔脚数为0,鸡脚比兔脚多120只,而实际只多30,因此差数比实际多了120-30=90(只).这因为把其中的兔换成了鸡.每把一只兔换成鸡.鸡的脚数将增加2只,兔的脚数减少4只,那么鸡脚与兔脚的差数增加了2+4=6(只),所以换成鸡的兔子有90÷6=15(只),鸡有60-15=45(只).7.(77,92)由师傅产量是徒弟产量的2倍,所以师傅产量数总是偶数.利用整数加法的奇偶性可知标明“77”的筐中的产品是徒弟制造的.利用“和倍问题”方法.徒弟加工零件是(78+94+86+77+92+80)÷(2+1)=169(只)∴169-77=92(只)8.(8分)紧邻两辆车间的距离不变,当一辆公共汽车超过步行人时,紧接着下一辆公汽与步行人间的距离,就是汽车间隔距离.当一辆汽车超过行人时,下一辆汽车要用10分才能追上步行人.即追及距离=(汽车速度-步行速度)×10.对汽车超过骑车人的情形作同样分析,再由倍速关系可得汽车间隔时间等于汽车间隔距离除以5倍的步行速度.即10×4×步行速度÷(5×步行速度)=8(分)9.(44)10.(16)满足条件的偶数和奇数的可能很多,要求的是使两个偶数之和最小的那仍为偶数,所求的这两个偶数之和一定是8的倍数.经试验,和不能是8,二、解答题:EC,则△CDE、△ACE,△ADB的面积比就是2∶3∶5.如图.2.(5)连结AC′,AC,A′C考虑△C′D′D的面积,由已知DA=D′A,所以S△C′D′D=2S△C′AD.同理S △C′D′D=2S△ACD,S△A′B′B=2S△ABC,而S四边形ABCD=S△ACD+S△ABC,所以S△C′D′D+SS△A′B′B=2S四边形ABCD.同样可得S△A′D′A+S△B′C′C=2S四边形ABCD,所以S四边形A′B′C′D′=5S 四边形ABCD.3.(14,10,35)用甲齿、乙齿、丙齿代表三个齿轮的齿数.甲乙丙三个齿轮转数比为5∶7∶2,根据齿数与转数成反比例的关系.甲齿∶乙齿=7∶5=14∶10,乙齿∶丙齿=2∶7=10∶35,所以甲齿∶乙齿∶丙齿=14∶10∶35由于14,10,35三个数互质,且齿数需是自然数,所以甲、乙、丙三个齿轮齿数最少应分别是14,10,35.4.(1)三面红色的小方块只能在立方体的角上,故共有8块.两面红色的小方块只能在立方体的棱上(除去八个角),故共有12块.一面红色的小方块只能在立方体的面内(除去靠边的那些小方格),故共有6块.(2)各面都没有颜色的小方块不可能在立方体的各面上.设大立方体被分成n3个小方块,除去位于表面上的(因而必有含红色的面)方块外,共有(n-2)3个各面均是白色的小方块.因为53=125>120,43=64<120,所以n-2=5,从而,n=7,因此,各面至少要切6刀.(3)由于一面为红色的小方块只能在表面上,且要除去边上的那些方块,设立方体被分成n3个小方块,则每一个表面含有n2个小方块,其中仅涂一面红色的小方块有(n-2)2块,6面共6×(n-2)2个仅涂一面红色的小方块.因为6×32=54>53,6×22=24<53,所以n-2=3,即n=5,故各面至少要切4刀.小升初数学综合模拟试卷5一、填空题:1.一个学生用计算器算题,在最后一步应除以10,错误的乘以10了,因此得出的错误答数500,正确答案应是______.2.把0,1,2,…,9十个数字填入下面的小方格中,使三个算式都成立:□+□=□□-□=□□×□=□□3.两个两位自然数,它们的最大公约数是8,最小公倍数是96,这两个自然数的和是______.4.一本数学辞典售价a元,利润是成本的20%,如果把利润提高到30%,那么应提高售价______元.5.图中有______个梯形.6.小莉8点整出门,步行去12千米远的同学家,她步行速度是每小时3千米,但她每走50分钟就要休息10分钟.则她______时到达.7.一天甲、乙、丙三个同学做数学题.已知甲比乙多做了6道,丙做的是甲的2倍,比乙多22道,则他们一共做了______道数学题.8.在右图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为______.9.有a、b两条绳,第一次剪去a的2/5,b的2/3;第二次剪去a绳剩下的2/3,b绳剩下的2/5;第三次剪去a绳剩下的2/5,b绳的剩下部分的2/3,最后a剩下的长度与b剩下的长度之比为2∶1,则原来两绳长度的比为______.10.有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出______只袜子.二、解答题:1.字母A、B、C、D、E和数字1997分别按下列方式变动其次序:A B C D E 1 9 9 7B C D E A 9 9 7 1(第一次变动)C D E A B 9 7 1 9(第二次变动)D E A B C 7 1 9 9(第三次变动)……问最少经过几次变动后ABCDE1997将重新出现?2.把下面各循环小数化成分数:3.如图所示的四个圆形跑道,每个跑道的长都是1千米,A、B、C、D 四位运动员同时从交点O出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米,每小时12千米.问从出发到四人再次相遇,四人共跑了多少千米?4.某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?答案一、填空题:1.(5)500÷10÷10=52.(1+7=8,9-3=6,4×5=20)首先考虑0只能出现在乘积式中.即分析2×5,4×5,5×6,8×5几种情况.最后得以上结论.3.(56)96÷8=12=3×4,所以两个数为8×3=24,4×8=32,和为32+24=56.5.(210)梯形的总数为:BC上线段总数×BD上线段总数,即(4+3+2+1)×(6+5+4+3+2+1)=2106.(中午12点40分)3千米/小时=0.05千米/分,0.05×50=2.5千米,即每小时她走2.5千米.12÷2.5=4.8,即4小时后她走4×2.5=10千米.(12-10)÷0.05=40(分),最后不许休息,即共用4小时40分.7.(58)画图分析可得22-6=16为甲做题数,所以可得乙10道,丙16×2=32道,一共16+10+32=58(道).8.(36)长方形的宽是“一”与“二”两个正方形的边长之和.长方形的长是“一”、“二”、“三”三个正方形的边长之和.长-宽=30-22=8是“三”正方形的边长.宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=22-8×2=6,中间小正方形面积=6×6=36.9.(10∶9)10.(13)考虑最坏的情形,把某一种颜色的袜子全部先取出,然后,在剩下两色袜子中各取出一只,这时再任意取一只都必将有两双袜子不同色,即10+2+1=13(只).二、解答题:1.(20)由变动规律知,A、B、C、D、E经5次变动重新出现,而1997经过4次即重新出现,故要使ABCDE1997重新出现最少需20次(即4和5的最小公倍数.)3.(15千米)4.(56个)本题可列表解.除终点,我们将车站编号列表:共需座位:14+12+10+8+6+4+2=56(个)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学综合模拟试卷12 一、填空题:
2.“趣味数学”表示四个不同的数字:
则“趣味数学”为_______. 正好是第二季度计划产量的75%,则第二季度计划产钢______吨. 个数字的和是_______.
积会减少______. 6.两只同样大的量杯,甲杯装着半杯纯酒精,乙杯装半杯水.从甲杯倒出一些酒精到乙杯内.混合均匀后,再从乙杯倒同样的体积混合液到甲杯中,则这时甲杯中含水和乙杯中含酒精的体积,哪一个大?______ 7.加工一批零件,甲、乙二人合作需12天完成;现由甲先工作3天,
则这批零件共有______个. 8.一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图所示.它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米,瓶子倒放时,空余部分的高为2厘米,则瓶内酒精体积是______立方厘米.
9.有一个算式,上边方格里都是整数,右边答案只写出了四舍五入后
四位数是______. 二、解答题: 1.如图,阴影部分是正方形,则最大长方形的周长是______厘米.
2.如图为两互相咬合的齿轮.大的是主动轮,小的是从动轮.大轮半径为105,小轮半径为90,现两轮标志线在同一直线上,问大轮至少转了多少圈后,两条标志线又在同一直线上?
3.请你用1,2,3,4,5,6,7,8,9这九个数字,每个只能用一次,拼凑出五个自然数.让第二个是第一个的2倍,第3个是第一个的3倍,第四个是第一个的4倍,第五个是第一个的5倍. 4.有一列数2,9,8,2,6,…从第3个数起,每个数都是前面两个数乘积的个位数字.例如第四个数就是第二、第三两数乘积9×8=72的个位数字2.问这一列数第1997个数是几? 答案 一、填空题: 1.(81.4)
2.(3201) 乘积前两位数字是1和0.“趣味数学”ד趣”的千位数字是9,就有“趣”=3,显然,“数”=0.而味“味”ד趣”不能有进位,2ד味”ד趣”向百万位进1,所以“味”=2,同理,“学”=1. 3.(24000)
÷75%=24000(吨). 4.(8,447) 由周期性可得,(1)100=16×6+4,所以小数点后第100个数字与小数点后第4个数字一样即为8;(2)小数点后前100个数字的和是:16×(1+4+2+8+5+7)+1+4+2+8=447.
6.(一样大) 甲、乙两杯中液体的体积,最后与开始一样多,所以有多大体积纯酒精从甲杯转到乙杯,就有多大体积的水从乙杯转入了甲杯,即甲杯中含水和乙杯中含酒精体积相同. 7.(240个) 8.(62.172,取π=3.14) 液体体积不变,瓶内空余部分的体积也是不变的,因此可知液体体积是
9.(1,2,3)
10.(7744) 到9999中找出121的倍数,共73个,即121×10,121×11,121×12,…, 积,只能取16,25,36,49,64,81经验算所求四位数为7744=121×64. 二、解答题: 1.(30) 由图可知正方形的边长等于长方形的宽边,这样长方形的周长应等于长方形的长边与正方形的边长之和的两倍.(9+6)×2=30(cm). 2.(3圈)
3.(9,18,27,36,45) 第一个数一定是一位数,其余为两位数,为使它的2倍是两位数,这个数必须大于4;由于给出九数中只有四个偶数,所以第一个数只能是奇数;由于没有0,所以这个数不是5,又7×2=14,7×3=21有重复数字1,所以不能是7,由此这个一位数是9. 4.(6) 这列数为2,9,8,2,6,2,2,4,8,2,6,2,2,4,8,2…除去前两个数2,9外,后面8,2,6,2,2,4六数一个循环. (1997-2)÷6=332余3. 小升初数学综合模拟试卷13
一、填空题:
2.已知A=2×3×3×3×3×5×5×7,在A的两位数的因数中,最大的是______. 3.在图中所示的方格中适当地填上1、2、3、4、5、6、7、8,使它的和为153.此时所有“个位数字”之和与所有“十位数字”之和相差_______.
4.A、B两只青蛙玩跳跃游戏,A每次跳10厘米,B每次跳15厘米,它们每秒都只跳1次,且一起从起点开始.在比赛途中,每隔12厘米有一陷阱,当它们中第一只掉进陷阱时,另一只距离最近的陷阱有______厘米. 5.如图所示,按一定规律用火柴棍摆放图案:一层的图案用火柴棍2支,二层的图案用火柴棍7支,三层的图案用火柴棍15支,……,二十层的图案用火柴棍______支.
6.图中ABCD是梯形,AECD是平行四边形,则阴影部分的面积是______平方厘米(图中单位:厘米). 7.用43个边长1厘米的白色小正方体和21个边长1厘米的黑色小正方体堆成如图所示的大正方体,使黑色的面向外露的面积要尽量大.那么这个立方体的表面积上有______平方厘米是黑色的.
8.甲、乙、丙三人射击,每人打5发子弹,中靶的位置在图中用点表示.计算成绩时发现三人得分相同. 甲说:“我头两发共打了8环.” 乙说:“我头两发共打了9环.” 那么唯一的10环是______打的.
9.有三堆棋子,每堆棋子一样多,并且都有黑白两色棋子.第一堆里黑棋子和第二堆里白棋子的数目相等,第三堆里的黑棋
_______分之_______. 10.若干名战士排成八列长方形队列,若增加120人或减少120人都能组成一个新的正方形队列.那么,原有战士_______名. 二、解答题: 1.计算: 2.甲有桌子若干张,乙有椅子若干把,如果乙用全部椅子换回数量同样多的桌子,则乙需补给甲320元,如乙不补钱,就要少换回5张桌子.已知3张桌子比5把椅子的价钱少48元,那么乙原有椅子多少把? 3.有30个贰分硬币和8个伍分硬币,用这些硬币不能构成1分到1元之间的币值有多少种? 4.快、中、慢三辆车同时从A地沿同一公路开往B地,途中有一骑车人也同方向行进.这三辆车分别用7分、8分、14分追上骑车人.已知快车每分行800米,慢车每分行600米,求中速车的速度.
答案 一、填空题: 1.10
2.90 2×32×5=90 3.10 所有“个位数字”之和=23,所有“十位数字”之和=13,所以23-13=10. 4.4 10与12的最小公倍数是60,15和12的最小公倍数也是60.当第一只掉进陷阱时,第二只跳到10×(60÷15)=40厘米处,此时距离最近的陷阱有40-12×3=4(厘米). 第一层:1×2 第二层:1×2+1+2×2 第三层:1×2+1+2×2+2+3×2 第二十层:1×2+1+2×2+2+3×2+…+19+20×2 =(1+2+…+19)+1×2+2×2+…+20×2 =190+21×20 =610 6.60 阴影部分的面积等于以12为底以10为高的平行四边形面积的一半,即12×10÷2=60(平方厘米). 7.50 八个顶点用去8个黑色小立方体,还剩13个黑色小立方体放在棱上,所以大立方体上黑色的面积为 3×8+2×(21-8)=24+26=50(平方厘米) 8.丙. 从图中可以看出,总环数为1×2+2×6+4×3+7×3+10×1=57(环),每人五发子弹打(57÷3=)19环. 从图中还可看出2+6+3+3+1=15,即每人五发子弹均中靶. 因为甲、乙头两发子弹总成绩已分别为8环、9环,所以后三发中不可能有10环,否则总成绩将大于19环. 由此可知,10环是丙打的.
根据条件可知,第一、二堆中,白色棋子与黑色棋子数目相同,所以第一、二堆中的白棋子也可分成同样的3份,因为三堆棋子数相同,所以每堆棋子数相当于3份. 根据第三堆中黑棋子占2份,可知第三堆中白棋子占1份.
因为增加120人可构成大正方形(设边长为a),减少120人可构成小正方形(设边长为b),所以
大、小正方形的面积差为240. 利用弦图求大、小正方形的边长(只求其中一个即可),如右图所示,可知每个小长方形的面积为(240÷4)=60. 根据60=2×30=3×20=4×15=5×12=6×10,试验. ①长=30,宽=2,则b=30-2=28. 原有人数=28×28+120=904(人),经检验是8的倍数(原有8列纵队),满足条件. ②长=20,宽=3,则b=20-3=17. 原有人数为奇数,不能排成8列纵队,舍。 ③长=15,宽=4,则b=15-4=11. 原有人数为奇数,不能排成8列纵队,舍. ④长=12,宽=5,则b=12-5=7. 原有人数为奇数,不能排成8列纵队,舍. ⑤长=10,宽=6,则b=10-6=4. 原有人数=4×4+120=136(人).经检验是8的倍数.满足条件. 所以原有战士904人或136人. 二、解答题 1.2475
2.20把. (1)每张桌子多少元? 320÷5=64(元) (2)每把椅子多少元? (64×3+48)÷5=48(元) (3)乙原有椅子多少把? 320÷(64-48)=20(把) 3.4种. 共有人民币:2×30+5×8=100(分)=1(元).