逻辑命题、充要条件
充分条件与必要条件

x 2 x y 4 (4) 是 的 充分不必要 y 2 xy 4
(5)设x R,则“x 5”是“x 4”的 充分不必要
条件.
(6)“x( y 3) 0”是“x 2 ( y 3)2 0”的 必要不充分 条件.
(7)“一元二次方程ax 2 bx c 0有一个正根和一个负根”是“ac 0” 充要条件 的 条件.
能 力 测 试
例2、用符号“充分”或“必要”填空:
充分 (1)“0<x <5”是“ x – 2 <3”的______条件。
(2)“四边形的对角线相等”是“这个平行四边形 必要 为正方形”的______条件。
充分 (3)“xy > 0”是“ x+y = x + y ”的______条件。
(4)“个位数是5的整数”是“这个数能被5整除”
一、知识回顾
1、命题:可以判断真假的陈述句,可写成:若p则q 2、四种命题及相互关系: 。
原命题 若p则q
互 否
互逆
逆命题 若q则p
互 否
互为
逆否
否命题 若 p则 q
互逆
逆否命题 若 q则 p
注:两个命题互为逆否命题,它们有相同的真假性。
【实例引入】
同学们,当某一天你和你妈妈在街上遇到老 师的时候,你向老师介绍你的妈妈说:“这是我 的妈妈”。那么大家想一想这个时候你的妈妈还 会不会补充说:“这是我的孩子”呢?
引入
判断下列命题的真假.
(1)若x a b , 则x 2ab. 真
2 2
x a b x 2ab
2 2
(2)若ab 0, 则a 0.
假
充分条件与必要条件-集合与常用逻辑用语PPT课件

(3)p 是 q 的充分条件或 q 的充分条件是 p.
(4)只要有条件 p,就一定有结论 q,即 p 对于 q 是充分的.
(5)q 是 p 的必要条件或 p 的必要条件是 q.
(6)为得到结论 q,具备条件 p 就可以推出.
显然,“p 是 q 的充分条件”与“q 是 p 的必要条件”表述的是
同一个逻辑关系,即 p⇒q,只是说法不同.
栏目 导引
第一章 集合与常用逻辑用语
“ac=bc”是“a=b”的________条件. 解析:若 ac=bc,当 c=0 时不一定有 a=b;反之若 a=b,则 有 ac=bc 成立.故 ac=bc 是 a=b 的必要不充分条件. 答案:必要不充分
栏目 导引
第一章 集合与常用逻辑用语
充分、必要、充要条件的判断 下列各题中,p 是 q 的什么条件?(指充分不必要、必要 不充分、充要、既不充分也不必要条件) (1)p:x=1 或 x=2,q:x-1= x-1; (2)p:四边形是正方形,q:四边形的对角线互相垂直平分; (3)p:xy>0,q:x>0,y>0. (4)p:四边形的对角线相等,q:四边形是平行四边形.
栏目 导引
第一章 集合与常用逻辑用语
设 p:x<3,q:-1<x<3,则 p 是 q 成立的( ) A.充分必要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 解析:选 C.因为x|-1<x<3 {x|x<3},所以 p 是 q 成立的必要 不充分条件.
栏目 导引
第一章 集合与常用逻辑用语
栏目 导引
第一章 集合与常用逻辑用语
【解】 (1)因为 x=1 或 x=2⇒x-1= x-1,x-1= x-1⇒x =1 或 x=2,所以 p 是 q 的充要条件. (2)若一个四边形是正方形,则它的对角线互相垂直平分,即 p⇒q.反之,若四边形的对角线互相垂直平分,该四边形不一定 是正方形,即 q⇒/ p. 所以 p 是 q 的充分不必要条件.
上课1.2《充分条件与必要条件》课件 (共20张PPT)

(充要条件) 4)同旁内角互补 " "是 " 两直线平行 "的
5)" x 5" 是 " x 3"的
(必要不充分条件) 6)" a b " 是 " a c b c "的 (充要条件)
7)已知ABC不是直角三角形, "A<B" 是 "tan A tan B "的 (既不充分也不必要条件)
定义: 对于命题“若p则q”
1.若p q, q p, 则p是q的充分不必要条件. q是p的必要不充分条件.
2.若p q, q p,即p q, 则p是q充分必要条件, 简称充要条件 . 也说p与q互为充要条件 .
3.若p q, q p, 则p是q的既充分不必要条件. q是p的既必要不充分条件.
作业:
• P.15 A组 第4题 B组第2题
真
2 0 ac 00 (5方程有 )若ab ax ,则 ; 假 bx (a 0) 两个不等的实数解 b 2 4ac 0
(6) 若两三角形全等 ,则两三角形面积相等; 两三角形全等
真
两三角形面积相等
定义:
充分条件与必要条件:一般地,如果已知 p q , 即命题“若p则q” 为真命题,那么就说,p 是q 的充分条件, q 是p 的必要条件.
1 1 当x 0, y 0时,有: . x y
必要性(q p) 1 1 yx 若 , 则有: 0,即xy( y x) 0. x y xy x y y x 0 xy 0.
例2、已知ab 0, 求证:a b 1的充要条件是 a 3 b3 ab a 2 b 2 0.
18高考数学大一轮复习第一章集合与常用逻辑用语第二节命题及其关系、充分条件与必要条件课件文

解析:①命题“若x+y=0,则x,y互为相反数”的逆命 题为“若x,y互为相反数,则x+y=0”,显然①为真命 题;②不全等的三角形的面积也可能相等,故②为假命 题;③原命题正确,所以它的逆否命题也正确,故③为 真命题;④若ab是正整数,但a,b不一定都是正整数, 例如a=-1,b=-3,故④为假命题. 答案:①③
[由题悟法]
充要条件的3种判断方法 (1)定义法:根据p⇒q,q⇒p进行判断; (2)集合法:根据p,q成立的对象的集合之间的包含关系进 行判断; (3)等价转化法:根据一个命题与其逆否命题的等价性,把 判断的命题转化为其逆否命题进行判断.这个方法特别适合以 否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的某种条 件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.
[小题纠偏]
1.设a,b均为非零向量,则“a∥b”是“a与b的方向相 同”的________条件.
答案:必要不充分 2.“在△ABC中,若∠C=90° ,则∠A,∠B都是锐角”
的否命题为:________________.
解析:原命题的条件:在△ABC 中,∠C=90° , 结论:∠A,∠B 都是锐角.否命题是否定条件和结论.
2.(2017· 衡阳联考)设p:x2-x-20>0,q:log2(x-5)<2,则p 是q的 A.充分不必要条件 C.充要条件 B.必要不充分条件 D.既不充分也不必要条件 ( )
解析:∵x2-x-20>0,∴x>5或x<-4,∴p:x>5或x< -4.∵log2(x-5)<2,∴0<x-5<4,即5<x<9,∴q: 5<x<9,∵{x|5<x<9} {x|x>5或x<-4},∴p是q的必要不 充分条件.故选B. 答案:B
第二节 命题及其关系、充分条件与必要条件

p是q的充 分条件
p⇒q
A⊆B
p是q的必要条件
q⇒p
A⊇B
p是q的充要条件
p⇒q且q⇒p A=B
p是q的充分不必要条件 p⇒q且q p A B
p是q的必要不充分条件 p q且q⇒p A B
p是q的既不充分条件 也不必要条件
p q且q p A B且A B
二、“基本技能”运用好 1.通过对四种命题及其相互关系的复习,提高学生的抽象概
答案:A
[一“点”就过] 判断命题真假的 2 种方法
直接 判断
判断一个命题为真命题,要给出严格的推理 证明;说明一个命题是假命题,只需举出一 个反例即可
根据“原命题与逆否命题同真同假,逆命题 间接 与否命题同真同假”这一性质,当一个命题 判断 直接判断不易进行时,可转化为判断其逆否
命题的真假
[提醒] (1)对于不是“若p,则q”形式的命题,需先改 写;(2)当命题有大前提时,写其他三种命题时需保留大前 提.(3)命题的否命题是条件和结论都否定,而命题的否定是条 件不变只否定结论.
答案:充分不必要 充要
三、“基本思想”很重要 1.利用等价转化思想判断命题真假及充分与必要条件. 2.利用集合思想、数形结合思想解决充分、必要条件的应用
问题.
1.命题“若α=π4,则tan α=1”的逆否命题是
()
A.若α≠π4,则tan α≠1
B.若α=π4,则tan α≠1
C.若tan α≠1,则α≠π4
答案:C
3.(2020·广东中山一中第一次统测)下列命题中为真命题的是
A.命题“若x>y,则x>|y|”的逆命题
()
B.命题“若x>1,则x2>1”的否命题
高中数学充分条件、必要条件与命题的四种形式例题解析

§1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件学习目标 1.理解充分条件、必要条件、充要条件的定义.2.会求某些简单问题成立的充分条件、必要条件、充要条件.3.能够利用命题之间的关系判定充要关系或进行充要条件的证明.知识点一充分条件与必要条件1.当命题“如果p,则q”经过推理证明判定为真命题时,我们就说,由p可推出q,记作p⇒q,并且说p是q的充分条件,q是p的必要条件.这几种形式的表达,讲的是同一个逻辑关系,只是说法不同而已.2.若p⇒q,但q⇏p,称p是q的充分不必要条件,若q⇒p,但p⇏q,称p是q的必要不充分条件.知识点二充要条件1.一般地,如果p⇒q,且q⇒p,就记作p⇔q,此时,我们说,p是q的充分且必要条件,简称充要条件.p是q的充要条件,又常说成q当且仅当p,或p与q等价.2.从集合的角度判断充分条件、必要条件和充要条件.若A⊆B,则p是q的充分条件,若A B,则p是q的充分不必要条件若B⊆A,则p是q的必要条件,若B A,则p是q的必要不充分条件若A=B,则p,q互为充要条件若A⊈B且B⊈A,则p既不是q的充分条件,也不是q的必要条件其中p:A={x|p(x)成立},q:B={x|q(x)成立}.1.若p是q的充分条件,则p是唯一的.(×)2.“若p,则q”是真命题,而“若q,则p”是假命题,则p是q的充分不必要条件.(√) 3.q不是p的必要条件时,“p⇏q”成立.(√)4.若p是q的充要条件,则命题p和q是两个相互等价的命题.(√)5.若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.(√)题型一充分、必要、充要条件的判断例1下列各题中,p是q的什么条件?(指充分不必要、必要不充分、充要、既不充分也不必要条件)(1)p:x=1或x=2,q:x-1=x-1;(2)p:m>0,q:x2+x-m=0有实根;(3)p:四边形的对角线相等,q:四边形是平行四边形.考点充要条件的概念及判断题点充要条件的判断解(1)因为x=1或x=2⇒x-1=x-1,x-1=x-1⇒x=1或x=2,所以p是q的充要条件.(2)因为m>0⇒方程x2+x-m=0的判别式Δ=1+4m>0,即方程有实根,方程x2+x-m=0有实根,即Δ=1+4m≥0⇏m>0,所以p是q的充分不必要条件.(3)p是q的既不充分也不必要条件.反思感悟充分条件、必要条件的两种常用的判断方法(1)定义法:①确定谁是条件,谁是结论;②尝试从条件推结论,若条件能推出结论,则条件为充分条件,否则就不是充分条件;③尝试从结论推条件,若结论能推出条件,则条件为必要条件,否则就不是必要条件.(2)命题判断法:①如果命题:“若p,则q”为真命题,那么p是q的充分条件,同时q是p的必要条件;②如果命题:“若p,则q”为假命题,那么p不是q的充分条件,同时q也不是p的必要条件.跟踪训练1下列各题中,试分别指出p是q的什么条件.(1)p :两个三角形相似,q :两个三角形全等; (2)p :f (x )=x ,q :f (x )在(-∞,+∞)上为增函数; (3)p :A ⊆B ,q :A ∩B =A ; (4)p :a >b ,q :ac >bc . 考点 充要条件的概念及判断 题点 充要条件的判断解 (1)∵两个三角形相似⇏两个三角形全等,但两个三角形全等⇒两个三角形相似, ∴p 是q 的必要不充分条件.(2)∵f (x )=x ⇒f (x )在(-∞,+∞)上为增函数,但f (x )在(-∞,+∞)上为增函数⇏f (x )=x ,∴p 是q 的充分不必要条件.(3)∵p ⇒q ,且q ⇒p ,∴p 是q 的充要条件.(4)∵p ⇏q ,且q ⇏p ,∴p 是q 的既不充分也不必要条件.题型二 充分条件、必要条件、充要条件的应用命题角度1 由充分条件、必要条件求参数范围例2 已知p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0),若p 是q 的必要不充分条件,求实数m 的取值范围.考点 充分、必要条件的综合应用 题点 由充分、必要条件求参数的范围解 p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0). 因为p 是q 的必要不充分条件, 所以q 是p 的充分不必要条件,即{x |1-m ≤x ≤1+m }{x |-2≤x ≤10},故有⎩⎪⎨⎪⎧ 1-m ≥-2,1+m <10或⎩⎪⎨⎪⎧1-m >-2,1+m ≤10,解得m ≤3.又m >0,所以实数m 的取值范围为{m |0<m ≤3}. 引申探究1.若本例中“p 是q 的必要不充分条件”改为“p 是q 的充分不必要条件”,其他条件不变,求实数m 的取值范围.解 p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0). 因为p 是q 的充分不必要条件,设p 代表的集合为A ,q 代表的集合为B ,所以A B .所以⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.解不等式组得m >9或m ≥9, 所以m ≥9,即实数m 的取值范围是[9,+∞).2.若本例中p ,q 不变,是否存在实数m 使p 是q 的充要条件?若存在,求出m 的值;若不存在,说明理由.解 因为p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0).若p 是q 的充要条件,则⎩⎪⎨⎪⎧-2=1-m ,10=1+m ,m 不存在.反思感悟 由条件关系求参数的取值(范围)的步骤 (1)根据条件关系建立条件构成的集合之间的关系. (2)根据集合端点或数形结合列方程或不等式(组)求解.跟踪训练2 (1)“不等式(a +x )(1+x )<0成立”的一个充分不必要条件是“-2<x <-1”,则实数a 的取值范围是________. 考点 充分、必要条件的综合应用 题点 由充分、必要条件求参数的范围 答案 (2,+∞)解析 不等式变形为(x +1)(x +a )<0, 因为当-2<x <-1时不等式成立, 所以不等式的解集是-a <x <-1. 由题意有(-2,-1)(-a ,-1), 所以-2>-a ,即a >2.(2)已知P ={x |a -4<x <a +4},Q ={x |1<x <3},“x ∈P ”是“x ∈Q ”的必要条件,则实数a 的取值范围是________.考点 充分、必要条件的综合应用 题点 由充分、必要条件求参数的范围 答案 [-1,5]解析 因为“x ∈P ”是“x ∈Q ”的必要条件,所以Q ⊆P ,所以⎩⎪⎨⎪⎧ a -4≤1,a +4≥3,即⎩⎪⎨⎪⎧a ≤5,a ≥-1,所以-1≤a ≤5.命题角度2 探求充要条件例3 求关于x 的一元二次不等式ax 2+1>ax 对于一切实数x 都成立的充要条件. 考点 充要条件的概念及判断 题点 寻求充要条件解 由题意可知,关于x 的一元二次不等式ax 2+1>ax 对于一切实数x 都成立,等价于对于方程ax 2-ax +1=0中,⎩⎨⎧a >0,Δ<0⇔0<a <4.反思感悟 求一个问题的充要条件,就是利用等价转化的思想,使得转化前后的两个命题所对应的解集是两个相同的集合,这就要求我们转化的时候思维要缜密.跟踪训练3 直线x +y +m =0与圆(x -1)2+(y -1)2=2相切的充要条件是m =________. 考点 充要条件的概念及判断 题点 寻求充要条件 答案 -4或0解析 由题意知,直线与圆相切等价于圆心(1,1)到直线x +y +m =0的距离等于半径2, 即|2+m |2=2,得m =-4或0.充要条件的证明典例 求证:一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0. 证明 充分性(由ac <0推证方程有一正根和一负根),∵ac <0,∴一元二次方程ax 2+bx +c =0的判别式Δ=b 2-4ac >0, ∴原方程一定有两不等实根,不妨设为x 1,x 2,则x 1x 2=ca <0,∴原方程的两根异号,即一元二次方程ax 2+bx +c =0有一正根和一负根. 必要性(由方程有一正根和一负根推证ac <0), ∵一元二次方程ax 2+bx +c =0有一正根和一负根, 不妨设为x 1,x 2,∴由根与系数的关系得x 1x 2=ca <0,即ac <0,此时Δ=b 2-4ac >0,满足原方程有两个不等实根.综上可知,一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.[素养评析] (1)一般地,证明“p 成立的充要条件为q ”时,在证充分性时应以q 为“已知条件”,p 是该步中要证明的“结论”,即q ⇒p ;证明必要性时则是以p 为“已知条件”,q 为该步中要证明的“结论”,即p ⇒q .(2)通过论证数学命题,学会有逻辑地思考问题,探索和表述论证过程,能很好的提升学生的逻辑思维品质.1.“-2<x <1”是“x >1或x <-1”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分也不必要条件 D .充要条件 答案 C解析 ∵-2<x <1⇏x >1或x <-1,且x >1或x <-1⇏-2<x <1,∴“-2<x <1”是“x >1或x <-1”的既不充分也不必要条件.2.设命题p :x 2-3x +2<0,q :x -1x -2≤0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 命题p :1<x <2;命题q :1≤x <2,故p 是q 的充分不必要条件. 3.“θ=0”是“sin θ=0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 由于当“θ=0”时,一定有“sin θ=0”成立,反之不成立,所以“θ=0”是“sin θ=0”的充分不必要条件.4.记不等式x 2+x -6<0的解集为集合A ,函数y =lg(x -a )的定义域为集合B .若“x ∈A ”是“x ∈B ”的充分条件,则实数a 的取值范围为________. 答案 (-∞,-3]解析 由于A ={x |x 2+x -6<0}={x |-3<x <2},B ={x |y =lg(x -a )}={x |x >a },而“x ∈A ”是“x ∈B ”的充分条件,则有A ⊆B ,则有a ≤-3.5.“a =0”是“直线l 1:x -2ay -1=0与l 2:2x -2ay -1=0平行”的________条件. 答案 充要解析 (1)∵a =0,∴l 1:x -1=0,l 2:2x -1=0, ∴l 1∥l 2,即a =0⇒l 1∥l 2. (2)若l 1∥l 2,当a ≠0时, l 1:y =12a x -12a ,l 2:y =1a x -12a .令12a =1a,方程无解. 当a =0时,l 1:x -1=0,l 2:2x -1=0,显然l 1∥l 2. ∴a =0是直线l 1与l 2平行的充要条件.充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件反映了条件p 和结论q 之间的因果关系,在结合具体问题进行判断时,常采用如下方法:(1)定义法:分清条件p 和结论q ,然后判断“p ⇒q ”及“q ⇒p ”的真假,根据定义下结论.(2)等价法:将命题转化为另一个与之等价的又便于判断真假的命题.(3)集合法:写出集合A={x|p(x)}及集合B={x|q(x)},利用集合之间的包含关系加以判断.一、选择题1.“ab ≠0”是“直线ax +by +c =0与两坐标轴都相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 ab ≠0,即a ≠0且b ≠0,此时直线ax +by +c =0与两坐标轴都相交;又当ax +by +c =0与两坐标轴都相交时,a ≠0且b ≠0.2.下列“若p ,则q ”形式的命题中,p 是q 的充分条件的命题个数为( ) ①若f (x )是周期函数,则f (x )=sin x ; ②若x >5,则x >2; ③若x 2-9=0,则x =3. A .0 B .1 C .2 D .3 答案 B解析 ①中,周期函数还有很多,如y =cos x ,所以①中p 不是q 的充分条件;很明显②中p 是q 的充分条件;③中,当x 2-9=0时,x =3或x =-3,所以③中p 不是q 的充分条件.所以p 是q 的充分条件的命题的个数为1,故选B.3.已知向量a ,b 为非零向量,则“a ⊥b ”是“|a +b |=|a -b |”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 C解析 |a +b |2=|a -b |2⇔a 2+b 2+2a ·b =a 2+b 2-2a ·b ⇔a ·b =0.4.已知圆O :x 2+y 2=1,直线l :ax +by +c =0,则a 2+b 2=c 2是圆O 与直线l 相切的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 C解析 由直线与圆相切得|c |a 2+b 2=1,即a 2+b 2=c 2;a 2+b 2=c 2时也有|c |a 2+b 2=1成立,即直线与圆相切.5.若a ,b ,c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,都有ax 2+bx +c >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 当a >0且b 2-4ac <0时,对任意x ∈R ,ax 2+bx +c >0成立,即充分性成立.反之,则不一定成立.如当a =0,b =0,且c >0时,对任意x ∈R ,ax 2+bx +c >0成立.综上,“a >0且b 2-4ac <0”是“对任意x ∈R ,都有ax 2+bx +c >0”的充分不必要条件.6.设函数f (x )=|log 2x |,则f (x )在区间(m,2m +1)(m >0)内不是单调函数的充要条件是( ) A .0<m <12B .0<m <1 C.12<m <1 D .m >1答案 B解析 f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,-log 2x ,0<x <1.f (x )的图象在(0,1)内单调递减, 在(1,+∞)内单调递增.f (x )在(m,2m +1)(m >0)上不是单调函数等价于⎩⎪⎨⎪⎧m <1,2m +1>1⇔0<m <1. 7.已知a ,b 是不共线的向量,若AB →=λ1a +b ,AC →=a +λ2b (λ1,λ2∈R ),则A ,B ,C 三点共线的充要条件是( ) A .λ1=λ2=-1 B .λ1=λ2=1 C .λ1λ2=1 D .λ1λ2=-1答案 C解析 依题意,知A ,B ,C 三点共线⇔AB →=λAC →⇔λ1a +b =λa +λλ2b ⇔⎩⎪⎨⎪⎧λ1=λ,λλ2=1,即λ1λ2=1.故选C.8.设a 1,b 1,c 1,a 2,b 2,c 2均为非零实数,不等式a 1x 2+b 1x +c 1>0和a 2x 2+b 2x +c 2>0的解集分别是集合M 和N ,那么“a 1a 2=b 1b 2=c 1c 2”是“M =N ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 若a 1a 2=b 1b 2=c 1c 2<0,则M ≠N , 即a 1a 2=b 1b 2=c 1c 2⇏M =N ; 反之,若M =N =∅,即两个一元二次不等式的解集为空集时,只要求判别式Δ1<0,Δ2<0(a 1<0,a 2<0),而与系数之比无关.二、填空题9.设n ∈N +,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________. 答案 3或4解析 由于方程有整数根,由判别式Δ=16-4n ≥0.得1≤n ≤4,逐个分析,当n =1,2时,方程没有整数解;而当n =3时,方程有正整数解1,3;当n =4时,方程有正整数解2.故n =3或4.10.设p :1≤x <4,q :x <m ,若p 是q 的充分条件,则实数m 的取值范围为________. 答案 [4,+∞)解析 据题意知,p ⇒q ,则m ≥4.11.给出下列三个命题:①“a >b ”是“3a >3b ”的充分不必要条件;②“α>β”是“cos α<cos β”的必要不充分条件;③“a =0”是“函数f (x )=x 3+ax 2(x ∈R )为奇函数”的充要条件.其中真命题的序号为________.答案 ③解析 ①∵函数y =3x 是R 上的增函数,∴“a >b ”是“3a >3b ”的充要条件,故①错误;②∵2π>π2,cos 2π>cos π2,∴α>β⇏cos α<cos β;∵cos π<cos 2π,π<2π,∴cos α<cos β⇏α>β.∴“α>β”是“cos α<cos β”的既不充分也不必要条件,故②错误;③“a =0”是“函数f (x )=x 3+ax 2(x ∈R )为奇函数”的充要条件,正确.三、解答题12.已知条件p :A ={x |2a ≤x ≤a 2+1},条件q :B ={x |x 2-3(a +1)x +2(3a +1)≤0},若p 是q 的充分条件,求实数a 的取值范围.解 化简B ={x |(x -2)[x -(3a +1)]≤0},①当a ≥13时,B ={x |2≤x ≤3a +1}; ②当a <13时,B ={x |3a +1≤x ≤2}. 因为p 是q 的充分条件且A 为非空集合,所以A ⊆B ,于是有⎩⎪⎨⎪⎧ a ≥13,a 2+1≤3a +1,2a ≥2,或⎩⎪⎨⎪⎧ a <13,a 2+1≤2,2a ≥3a +1,解得1≤a ≤3或a =-1.综上,a 的取值范围是{a |1≤a ≤3或a =-1}.13.设a ,b ,c 是△ABC 的三个内角A ,B ,C 所对的边.求证:a 2=b (b +c )的充要条件是A =2B .证明 充分性:∵A =2B ,∴A -B =B ,则sin(A -B )=sin B ,则sin A cos B -cos A sin B =sinB ,结合正弦、余弦定理得a ·a 2+c 2-b 22ac -b ·b 2+c 2-a 22bc=b ,化简整理得a 2=b (b +c ); 必要性:由余弦定理a 2=b 2+c 2-2bc cos A ,且a 2=b (b +c ),得b 2+bc =b 2+c 2-2bc cos A ,∴1+2cos A =c b =sin C sin B, 即sin B +2sin B cos A =sin C =sin(A +B )=sin A cos B +cos A sin B ,∴sin B =sin A cos B -cos A sin B =sin(A -B ),由于A ,B 均为三角形的内角,故必有B =A -B ,即A =2B . 综上,知a 2=b (b +c )的充要条件是A =2B .14.已知p :x 2+2x -3>0,q :x >a (a 为实数).若綈q 的一个充分不必要条件是綈p ,则实数a 的取值范围是________.答案 [1,+∞)解析 将x 2+2x -3>0化为(x -1)(x +3)>0,所以p :x >1或x <-3,所以綈p :-3≤x ≤1.又綈q :x ≤a ,且綈q 的一个充分不必要条件是綈p ,所以a ≥1.15.设x ,y ∈R ,求证:|x +y |=|x |+|y |成立的充要条件是xy ≥0.证明 充分性:如果xy ≥0,则有xy =0和xy >0两种情况,当xy =0时,不妨设x =0,得|x+y|=|y|,|x|+|y|=|y|,∴等式成立.当xy>0,即x>0,y>0或x<0,y<0时,又当x>0,y>0时,|x+y|=x+y,|x|+|y|=x+y,∴等式成立.当x<0,y<0时,|x+y|=-(x+y),|x|+|y|=-x-y=-(x+y),∴等式成立.总之,当xy≥0时,|x+y|=|x|+|y|成立.必要性:若|x+y|=|x|+|y|且x,y∈R,得|x+y|2=(|x|+|y|)2,即x2+2xy+y2=x2+y2+2|x|·|y|,∴|xy|=xy,∴xy≥0.综上可知,xy≥0是等式|x+y|=|x|+|y|成立的充要条件。
从高考题看“充分条件与必要条件”的判断方法
从高考题看“充分条件与必要条件”的判断方法我在教学过程中,发现许多同学对“充分条件和必要条件”的学习,感到比较困难,经常会判断错.的确,充分条件和必要条件是研究命题条件与结论关系的一个重要概念,较为抽象,也比较容易混淆,因而是一个学习的难点.弄懂这些知识,有助于更好的理解命题成立的条件和提高逻辑推理能力.现在,我通过整理近年来全国各地的高考题,向同学们介绍几种判断充要条件的方法.一、 定义法利用定义判断充分条件和必要条件的方法当然是最基本、最常规的方法.根据定义:(1)若q p ⇒,则称p 是q 的充分条件,同时也称q 是p 的必要条件;(2)若q p ⇒且p q ⇒,则称p 是q 的充要条件;(3)若q p ⇒且q p ,则称p 是q 的充分不必要条件,也称q 是p的必要不充分条件;(4)若p q 且q p ,则称p 是q 的既不充分又不必要条件.所以只要判断p 能否推出q 或者q 能否推出p 即可.例 1 (2008年北京高考题)“函数))((R x x f ∈存在反函数”是“函数)(x f 在R 上为增函数”的( )A . 充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 解析:我们在学习反函数时,知道单调函数一定有反函数,但反函数不一定是增函数.所以, “函数))((R x x f ∈存在反函数” “函数)(x f 在R 上为增函数”,而“函数))((R x x f ∈存在反函数”⇐“函数)(x f 在R 上为增函数”.即“函数))((R x x f ∈存在反函数”是“函数)(x f 在R 上为增函数”的必要而不充分条件.所以选B.二、 传递性法对于较复杂的(如连锁式)的关系,常用,,,⇒⇐⇔等符号进行传递,根据这些符号所组成的图示就可以得出结论.例2 (2007年湖北高考题)已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④⌝p 是⌝s 的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件.则正确命题的序号是 ( )A.①④⑤B. ①②④C. ②③⑤D. ②④⑤解析:对于条件比较多且关系复杂的问题,用推断符号“⇒” 可以直观表示条件与结论之间的关系,结合条件的传递性,易于判断充分必要条件.由题意,s r q p ,,,之间的关系可表示为:由图易知:s 是q 的充要条件;p 是q 的充分不必要条件;而s 是p 的必要条件而不是充分条件,所以⌝p 是⌝s 的必要条件而不是充分条件.所以①②④是正确的,故选B.至于④为什么是正确的,这就是我下面将要介绍的等价命题法.三、等价命题法当所给命题的充要条件不好判定时,可利用四种命题的关系,对命题进行等价转换.常利用原命题与逆命题的真假来判断p 与q 的关系.令p 为命题的条件, q 为命题的结论.具体对应关系如下: ① 如果原命题真而逆命题假,那么p 是q 的充分而不必要条件;② 如果原命题假而逆命题真,那么p 是q 的必要而不充分条件;③ 如果原命题真而逆命题真,那么p 是q 的充要条件;④ 如果原命题假而逆命题假,那么p 是q 的既不充分也不必要条件.例3(2008年陕西高考题)“18a =”是“对任意的正数,21a x x x +≥”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 解析:先判断原命题:“对任意的正数x ,若18a =,则21a x x +≥”的真假. 18a =,11222188x x ∴+≥=,即原命题为真.再判断逆命题:“对任意的正数x ,若21a x x+≥,则18a =”的真假.2222288a a x x a x x +≥=,而当221a ≥时,即18a ≥, 所以逆命题为假.即“18a =”是“对任意的正数,21a x x x+≥”的充分而不必要条件. 而对于一些否定形式的命题常用“原命题⇔逆否命题”,“否命题⇔逆命题”的等价关系,来讨论p 与q 的关系.例4 (2005年福建高考题)已知:0,:0p a q ab ≠≠,则p 是q 的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:先判断原命题“若p 则q ”的真假,原命题的真假较难判断,但它的逆否命题“若┐q 则┐p ”,即“若0ab =,则0a =”显然为假,故原命题也为假,即p q .逆命题的真假较难判断,但它的等价命题否命题“若0a =,则0ab =”显然为真,故逆命题也为真,即p q ⇐.所以p 是q 的必要不充分条件.四、集合法涉及方程的解集,不等式的解集,点集等与集合相关的命题时,一般采用集合间的包含关系来判定两命题之间的充要性.具体对应关系如下:设满足条件p 的元素构成集合A ,满足条件q 的元素构成集合B ,则(1)若A ⊂≠B ,则称p 是q 的充分不必要条件;(2)若B ⊂≠A ,则称p 是q 的必要不充分条件(3)若B A =,则p 是q 的充要条件;(4)若A B 且B A ,则p 是q 的既不充分又不必要条件.当条件与结论能够用集合形式表示时,采用这种方法即将问题转变成了某两个集合的包含关系的判断,又将复杂问题化成了简单问题解决.例5 (2008年湖南高考题)“12x -<成立”是“(3)0x x -<成立”的 ( )A . 充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由12x -<可得{}13A x x =-<<,由(3)0x x -<可得{}03B x x =<<,B ⊂≠A ,∴“12x -<成立”是“(3)0x x -<成立”的必要不充分条件,故选B .从考试要求来看,对充要条件的考查要求是B 级,即要达到理解层次.所以从各类考试中,能够发现对充要条件的考查主要体现在综合问题上,把充要条件与其它知识结合,用充要条件作为载体,而且有时候问题的难点不在充要条件,在其它知识上,此刻的充要条件是作为一种“包装”出现的,而单纯考查充要条件(如例2)这类问题却是不多见的,即使出现,也是以选择题,填空题的形式居多.所以同学们在能正确判断充要条件的基础上,更多的是要注意对充要条件的灵活应用.充分条件、必要条件的判断是对这一知识点最基本的考查.只要领会上面所提到的判断方法,就可以轻松解决这类问题.无论哪一种方法或角度,都需要同学们首先能深刻理解充要条件的定义,会用逻辑语言表达,然后能根据题目条件,考虑是从命题角度还是从集合角度进行判断,而且这种方法的选择是显而易见的.希望大家看了本文后,能有所收获,能灵活运用上述方法去解决问题.。
逻辑三大命题
逻辑三大命题一、选言命题结构:或者+选言肢,或者+选言肢。
1、相容选言命题逻辑形式:或者P,或者Q。
真假判断:至少有一肢判断为真。
P非则Q真;Q非则P真;P、Q都为真。
常用的联结项:或者…或者…;可能…也可能…;也许…也许…等。
2、不相容选言命题逻辑形式:要么P,要么Q。
真假判断:有且只能有一肢判断为真。
P真则Q非;Q真则P非。
常用的联结项:要么…,要么…;不是…就是…;…二者必居其一等。
二、联言命题结构:联言肢并且联言肢。
逻辑形式:P并且Q。
真假判断:所有联言肢为真,命题为真。
P真,Q真。
常用的联结项:并且;既…又…;不但…而且…;虽然…但是…;一面…一面…等。
三、假言命题(条件命题)结构:由前件(表示条件的肢判断)、后件(表示结果的肢判断)、联结项三部分组成。
1、充分条件假言命题特征:有此条件必有此结果;无此条件不一定无此结果。
逻辑形式:如果P,那么Q。
真假判断:若P真,Q真,则充分条件假言命题可为真;若P真,Q假,则充分条件假言命题必为假;若P假,Q真,则充分条件假言命题可为真;若P假,Q假,则充分条件假言命题可为真;常用的联结项:如果…那么…;只要…就…;若…则…;所有…都…等。
2、必要条件假言命题特征:无此条件必无此结果,有此条件不一定有此结果。
逻辑形式:只有P,才有Q。
真假判断:若P真,Q真,则必要条件假言命题可为真;若P真,Q假,则必要条件假言命题可为真;若P假,Q真,则必要条件假言命题必为假;若P假,Q假,则必要条件假言命题可为真;常用的联结项:只有…才…;必须…才…;除非…才…;不…不…;没有…就没有…等。
3、充要条件假言命题特征:有此条件必有此结果;无此条件必无此结果。
逻辑形式:只要并且只有P,才有Q。
真假判断:若P真,Q真,则充要条件假言命题可为真;若P真,Q假,则充要条件假言命题必为假;若P假,Q真,则充要条件假言命题必为假;若P假,Q假,则充要条件假言命题可为真;常用的联结项:如果…那么…并且只有…才…;只要…就…并且只有…才…;…当且仅当…等。
怎样判断充分条件与必要条件
判断充分条件与必要条件的问题比较常见,此类题目的难度虽然不大,但对同学们的逻辑思维能力和分析推理能力要求较高.要想准确判断出充分条件与必要条件,我们需熟练掌握以下三种方法.一、定义法充分条件和必要条件是《简易逻辑用语》中的两个重要概念.一般地,若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件.定义法是指借助充分、必要条件的定义进行判断的方法.这是判断充分条件和必要条件的基本方法.一般地,若p ⇒q 且q p ,则p 是q 的充分不必要条件;若pq 且q ⇒p ,则p 是q 的必要不充分条件;若p ⇔q ,则p 是q 的充要条件;若pq 且qp ,则p 是q 的既不充分也不必要条件.例1.已m ,n ∈R ,则“(m -n )m 2<0”是“m <n ”的.(填充分而不必要条件、必要而不充分条件、充要条件、既不充分也不必要条件)解析:若(m -n )m 2<0,则m ≠0,可知m <n ,所以“(m -n )m 2<0”是“m <n ”的充分条件;若m <n ,则m-n <0,但当m =0时,(m -n )m 2=0,所以“(m-n )m 2<0”不是“m <n ”的必要条件.综上所述,“(m -n )m 2<0”是“m <n ”的充分而不必要条件.在利用定义法判定充分条件与必要条件时,首先要注意明确条件和结论各是什么,然后弄清由命题p 能否推出命题q ,判定命题的充分性;再看由命题q 能否推出命题p ,判定命题的必要性,最后综合归纳得出最终结论即可.二、传递法我们知道,⇒、⇐、⇔等符号具有传递性,在判断充分条件和必要条件时,我们可以根据命题之间的这些关系得出相关结论,进而判断出命题的真假.例如,若p ⇒r ,r ⇒s ,s ⇒q ,则p ⇒q ;若p ⇔r ,r ⇔s ,则p ⇔s .值得注意的是,在解题时,同学们要注意先判断命题的充分性和必要性,这样便于准确识别充分条件和必要条件.例2.已知a 是b 的充分不必要条件,n 是a 的充分条件,b 是a 的必要条件,n 是b 的必要条件,现有下列命题:①b 是n 的必要条件;②m 是n 的充分不必要条件;③a 是n 的必要不充分条件;④a 是b 的充分不必要条件.其中真命题的个数是.解析:由于m 是a 的充分不必要条件,则m ⇒a ,但a 不能推出m ;n 是a 的充分条件,即n ⇒a ;b 是a 的必要条件,即a ⇒b ;n 是b 的必要条件,即b ⇒n .可以画出m ,a ,n ,b 之间的关系图,如图所示.结合关系图可知,n ⇒a ,a ⇒b ,则n⇒b ,又b ⇒n ,所以n ⇔b ,故b 是n 的必要条件成立,所以命题①为真命题.由a ⇒b ,b ⇒n ,则a ⇒n ,又m ⇒a ,所以m ⇒n ,但n 无法推出m ,故m 是n 的充分不必要条件,所以命题②为真命题.由a ⇒b ,b ⇒n 可知a ⇒n ,又n ⇒a ,所以a ⇔n ,故a 是n 的充要条件,所以命题③为假命题.由b ⇒n ,n ⇒a ,则b ⇒a ,又a ⇒b ,所以a ⇔b ,故a 是b 的充要条件,所以命题④为假命题,故真命题的个数为2.对于条件较多且关系复杂的问题,若能通过传递法来判断充分、必要条件,则可以化繁为简,直观快捷地解答问题.三、集合法集合法即利用集合间的包含关系进行判断的方法.通常来说,命题p 、q 能够用集合A ={x |p (x )}、集合B ={x |q (x )}的形式表示.若A ⊆B ,则p 是q 的充分条件;若B ⊆A ,则p 是q 的必要条件;若A =B ,即A ⊆B ,B ⊆A ,则p 是q 的充分必要条件;若上述三种关系都不成立,则p 是q 的既不充分也不必要条件.例3.x 2+y 2≤1是|x |+|y |≤1的.(填充分而不必要条件、必要而不充分条件、充分必要条件、既不充分又不必要条件)解析:设A ={(x ,y )|x 2+y 2≤1},B ={(x ,y )|x |+|y |≤1},则A 表示的是以原点为圆心、1为半径的圆周及其内部的点,而B 表示的是以(0,1)、(1,0)、(0,-1)为顶点的正方形边界及其内部的点,所以B ⊂A ,所以x 2+y 2≤1是|x |+|y |≤1的必要非充分条件.利用集合法可以将问题转化为集合间的运算问题来求解,我们根据集合运算法则和Veen 图便可判断出充分和必要条件.总之,在平时的学习中,同学们既要透彻理解和掌握充分、必要条件的概念,又要注意总结和归纳判断充分、必要条件的方法,并结合实际问题灵活运用,这样便能准确、快速地解题.(作者单位:江苏省上冈高级中学)知识导航38。
高考一轮复习第1章集合与常用逻辑用语第2讲命题及其关系充分条件与必要条件
第二讲命题及其关系、充分条件与必要条件知识梳理·双基自测知识点一命题及四种命题之间的关系1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①若两个命题互为逆否命题,则它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.知识点二充分条件与必要条件若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且qpp是q的必要不充分条件pq且q⇒pp是q的充要条件p⇔qp是q的既不充分又不必要条件pq且qp重要结论1.若A={x|p(x)},B={x|q(x)},则(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A B且AB,则p是q的既不充分也不必要条件.2.充分条件与必要条件的两个特征:(1)对称性:若p是q的充分条件,则q是p的必要条件,即“p⇒q”⇔“q⇐p”.(2)传递性:若p 是q 的充分(必要)条件,q 是r 的充分(必要)条件,则p 是r 的充分(必要)条件,即“p ⇒q 且q ⇒r ”⇒“p ⇒r ”(“p ⇐q 且q ⇐r ”⇒“p ⇐r ”).注意:不能将“若p ,则q”与“p ⇒q ”混为一谈,只有“若p ,则q”为真命题时,才有“p ⇒q ”,即“p ⇒q ”⇔“若p ,则q”为真命题.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)语句x 2-3x +2=0是命题.( × )(2)命题“三角形的内角和是180°”的否命题是“三角形的内角和不是180°”.( × ) (3)已知集合A ,B ,则A∪B=A∩B 的充要条件是A =B .( √ ) (4)“α=β”是“tan α=tan β”的充分不必要条件.( × ) (5)“若p 不成立,则q 不成立”等价于“若q 成立,则p 成立”.( √ )[解析] (4)当α=β=π2时,tan α、tan β都无意义.因此不能推出tan α=tan β,当tan α=tan β时,α=β+k π,k∈Z,不一定α=β,因此是既不充分也不必要条件.题组二 走进教材2.(选修2-1P 8T3改编)下列命题是真命题的是( A ) A .矩形的对角线相等 B .若a>b ,c>d ,则ac>bd C .若整数a 是素数,则a 是奇数 D .命题“若x 2>0,则x>1”的逆否命题3.(选修2-1P 10T4改编)x 2-3x +2≠0是x≠1的充分不必要条件. [解析] x =1是x 2-3x +2=0的充分不必要条件. 题组三 走向高考4.(2020·天津,2,5分)设a∈R,则“a>1”是“a 2>a ”的( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件[解析] 易知a>1⇒a 2>a ,而a 2>a ⇒a<0或a>1,所以“a>1”是“a 2>a ”的充分不必要条件. 5.(2015·山东,5分)设m∈R,命题“若m>0,则方程x 2+x -m =0有实根”的逆否命题是( D ) A .若方程x 2+x -m =0有实根,则m>0 B .若方程x 2+x -m =0有实根,则m≤0 C .若方程x 2+x -m =0没有实根,则m>0 D .若方程x 2+x -m =0没有实根,则m≤0 [解析] 由原命题和逆否命题的关系可知D 正确.6.(2018·北京,5分)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是f(x)=sin_x(答案不唯一).[解析]这是一道开放性试题,答案不唯一,只要满足f(x)>f(0)对任意的x∈(0,2]都成立,且函数f(x)在[0,2]上不是增函数即可.如f(x)=sin x,答案不唯一.考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU考点一命题及其关系——自主练透例1 (1)(2021·新高考八省联考)关于x的方程x2+ax+b=0,有下列四个命题:甲:x=1是该方程的根;乙:x=3是该方程的根;丙:该方程两根之和为2;丁:该方程两根异号.如果只有一个假命题,则该命题是( A )A.甲B.乙C.丙D.丁(2)(2021·长春模拟)已知命题α:如果x<3,那么x<5,命题β:如果x≥3,那么x≥5,则命题α是命题β的( A )A.否命题B.逆命题C.逆否命题D.否定形式(3)(多选题)下列命题为真命题的是( CD )A.“若a2<b2,则a<b”的否命题B.“全等三角形面积相等”的逆命题C.“若a>1,则ax2-2ax+a+3>0的解集为R”的逆否命题D.“若3x(x≠0)为有理数,则x为无理数”的逆否命题(4)命题“若a+b=0,则a,b中最多有一个大于零”的否定形式为若a+b=0,则a,b都大于零,否命题为若a+b≠0,则a,b都大于零.[解析](1)若乙、丙、丁正确,显然x1=-1,x2=3,两根异号,x1+x2=2,故甲错,因此选A.(2)命题α:如果x<3,那么x<5,命题β:如果x≥3,那么x≥5,则命题α是命题β的否命题.(3)对于A ,否命题为“若a 2≥b 2,则a≥b”,为假命题;对于B ,逆命题为“面积相等的三角形是全等三角形”,是假命题;对于C ,当a>1时,Δ=-12a<0,原命题正确,从而其逆否命题正确,故C 正确;对于D ,原命题正确,因此该命题的逆否命题也正确,D 正确.故选C 、D .(4)否定形式:若a +b =0,则a ,b 都大于零.否命题:若a +b ≠0,则a ,b 都大于零. 名师点拨 MING SHI DIAN BO(1)由原命题写出其他三种命题,关键要分清原命题的条件和结论,如果命题不是“若p ,则q”的形式,应先改写成“若p ,则q”的形式;如果命题有大前提,写其他三种命题时需保留大前提不变.(2)判断一个命题为真命题,要给出严格的推理证明;判断一个命题为假命题,只需举出反例. (3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.考点二 充分必要条件考向1 充分条件与必要条件的判断——师生共研 方法1:定义法判断例2 ( 2020·北京,9,4分)已知α,β∈R,则“存在k∈Z 使得α=k π+(-1)kβ”是“sinα=sin β”的( C )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析] (1)充分性:已知存在k∈Z 使得α=k π+(-1)kβ,(ⅰ)若k 为奇数,则k =2n +1,n∈Z,此时α=(2n +1)π-β,n∈Z,sin α=sin(2n π+π-β)=sin(π-β)=sin β;(ⅱ)若k 为偶数,则k =2n ,n∈Z,此时α=2n π+β,n∈Z,sin α=sin(2n π+β)=sin β. 由(ⅰ)(ⅱ)知,充分性成立.(2)必要性:若sin α=sin β成立,则角α与β的终边重合或角α与β的终边关于y 轴对称,即α=β+2m π或α+β=2m π+π,m∈Z,即存在k∈Z 使得α=k π+(-1)kβ,必要性也成立,故选C . 方法2:集合法判断例3 (2020·天津一中高三月考)设x∈R,则“|x-1|<4”是“x -52-x >0”的( B )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析] 解绝对值不等式可得-4<x -1<4,即-3<x<5, 将分式不等式变形可得x -5x -2<0,解得2<x<5,因为(2,5)(-3,5),所以“|x-1|<4”是“x -52-x >0”的必要而不充分条件.方法3 等价转化法判断例4 (1)给定两个条件p ,q ,若¬ p 是q 的必要不充分条件,则p 是¬q 的( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件(2)“已知命题p :cos α≠12,命题q :α≠π3”,则命题p 是命题q 的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] (1)因为¬ p 是q 的必要不充分条件,则q ⇒¬ p ,但¬pq ,其逆否命题为p ⇒¬q ,但¬qp ,所以p 是¬q 的充分不必要条件.(2) ¬p :cos α=12,¬q :α=π3,显然¬q ⇒¬p ,¬p ¬q ,∴¬q 是¬p 的充分不必要条件,从而p 是q 的充分不必要条件,故选A .另解:若cos α≠12,则α≠2kπ±π3(k∈Z),则α也必然不等于π3,故p ⇒q ;若α≠π3,但α=-π3时,依然有cos α=12,故q p.所以p 是q 的充分不必要条件.故选A . 名师点拨 MING SHI DIAN BO有关充要条件的判断常用的方法(1)根据定义判断:①弄清条件p 和结论q 分别是什么;②尝试p ⇒q ,q ⇒p.若p ⇒q ,则p 是q 的充分条件;若q ⇒p ,则p 是q 的必要条件;若p ⇒q ,qp ,则p 是q 的充分不必要条件;若pq ,q ⇒p ,则p 是q 的必要不充分条件;若p ⇒q ,q ⇒p ,则p 是q 的充要条件.(2)利用集合判断 记法 A ={x|p(x)},B ={x|q(x)} 关系 ABBAA =BAB 且BA结论p 是q 的充分不必要条件p 是q 的必要不充分条件p 是q 的充要条件p 是q 的既不充分也不必要条件断¬q 是¬p 的什么条件.〔变式训练1〕(1)指出下列各组中,p 是q 的什么条件(在“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”中选出一种作答).①非空集合A ,B 中,p :x∈(A∪B),q :x∈B;②已知x ,y∈R,p :(x -1)2+(y -2)2=0,q :(x -1)(y -2)=0; ③在△ABC 中,p :A =B ,q :sin A =sin B ; ④对于实数x ,y ,p :x +y≠8,q :x≠2或y≠6.(2)(2020·天津部分区期末)设x∈R,则“x 2-2x<0”是“|x-1|<2”的( A ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件[解析] (1)①显然x∈(A∪B)不一定有x∈B,但x∈B 一定有x∈(A∪B),所以p 是q 的必要不充分条件.②条件p :x =1且y =2,条件q :x =1或y =2,所以p ⇒q 但qp ,故p 是q 的充分不必要条件. ③在△ABC 中,A =B ⇒sin A =sin B ;反之,若sin A =sin B ,因为A 与B 不可能互补(三角形三个内角之和为180°),所以只有A =B ,故p 是q 的充要条件.④易知¬p :x +y =8,¬q :x =2且y =6,显然¬q ⇒¬p ,但¬p ¬q ,所以¬q 是¬p 的充分不必要条件,根据原命题和逆否命题的等价性知,p 是q 的充分不必要条件.(2)解不等式x 2-2x<0得0<x<2,解不等式|x -1|<2得-1<x<3,所以“x 2-2x<0”是“|x-1|<2”的充分不必要条件.故选A .考向2 充要条件的应用——多维探究 角度1 充要条件的探究例 5 (多选题)下列函数中,满足“x 1+x 2=0”是“f(x 1)+f(x 2)=0”的充要条件的是( BC )A .f(x)=tan xB .f(x)=3x -3-xC .f(x)=x 3D .f(x)=log 3|x|[解析] 因为f(x)=tan x 是奇函数,所以x 1+x 2=0⇒f(x 1)+f(x 2)=0,但f ⎝ ⎛⎭⎪⎫π4+f ⎝ ⎛⎭⎪⎫3π4=0时,π4+3π4≠0,不符合要求,所以A 不符合题意;因为f(x)=3x -3-x 和f(x)=x 3均为单调递增的奇函数,所以满足“x 1+x 2=0”是“f(x 1)+f(x 2)=0”的充要条件,符合题意;对于选项D ,由f(x)=log 3|x|的图象易知不符合题意,故选BC .注:满足条件的函数是奇函数且单调. 角度2 利用充要条件求参数的值或取值范围例6 已知P ={x|x 2-8x -20≤0},非空集合S ={x|1-m ≤x ≤1+m}.若x ∈P 是x∈S 的必要条件,则m 的取值范围是[0,3].[解析] 由x 2-8x -20≤0,得-2≤x≤10, 所以P ={x|-2≤x≤10},由x∈P 是x∈S 的必要条件,知S ⊆P.则⎩⎪⎨⎪⎧1-m≤1+m ,1-m≥-2,1+m≤10,所以0≤m≤3. 所以当0≤m≤3时,x∈P 是x∈S 的必要条件,即所求m 的取值范围是[0,3].[引申1]若本例将条件“若x∈P 是x∈S 的必要条件”改为“若x∈P 是x∈S 的必要不充分条件”,则m 的取值范围是[0,3].[解析] 解法一:由(1)若x∈P 是x∈S 的必要条件,则0≤m ≤3,当m =0时,S ={1},不充分;当m =3时,S ={x|-2≤x≤4}也不充分,故m 的取值范围为[0,3].解法二:若x∈P 是x∈S 的必要且充分条件,则P =S ,即⎩⎪⎨⎪⎧1-m =-2,1+m =10⇒m 无解,∴m 的取值范围是[0,3].[引申2]若本例将条件“若x∈P 是x∈S 的必要条件”变为“若非P 是非S 的必要不充分条件”,其他条件不变,则m 的取值范围是[9,+∞).[解析] 由(1)知P ={x|-2≤x≤10), ∵非P 是非S 的必要不充分条件, ∴S 是P 的必要不充分条件,∴P ⇒S 且SP. ∴[-2,10] [1-m ,1+m].∴⎩⎪⎨⎪⎧1-m≤-2,1+m>10或⎩⎪⎨⎪⎧1-m<-2,1+m≥10. ∴m ≥9,即m 的取值范围是[9,+∞). 名师点拨 MING SHI DIAN BO充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)一定要注意端点值的取舍,处理不当容易出现漏解或增解的现象.(3)注意区别以下两种不同说法:①p 是q 的充分不必要条件,是指p ⇒q 但qp ;②p 的充分不必要条件是q ,是指q ⇒p 但pq.(4)注意下列条件的等价转化:①p 是q 的什么条件等价于¬q 是¬p 的什么条件,②p 是¬q 的什么条件等价于q 是¬ p 的什么条件.〔变式训练2〕(1)(角度1)(多选题)(2020·江西赣州十四县市高三上期中改编)角A ,B 是△ABC 的两个内角.下列四个条件下,“A>B”的充要条件是( ABD )A .sin A>sinB B .cos A<cos BC .tan A>tan BD .cos 2A<cos 2B(2)(角度2)(2021·山东省实验中学高三诊断)已知p :x≥k,q :(x +1)(2-x)<0.如果p 是q 的充分不必要条件,那么实数k 的取值范围是( B )A .[2,+∞)B .(2,+∞)C .[1,+∞)D .(-∞,-1][解析] (1)当A>B 时,根据“大边对大角”可知,a>b ,由于a sin A =bsin B ,所以sin A>sin B ,则A 是“A>B”的充要条件;由于0<B<A<π,余弦函数y =cos x 在区间(0,π)内单调递减,所以cos A<cosB ,则B 是“A>B”的充要条件;当A>B 时,若A 为钝角,B 为锐角,则tan A<0<tan B ,则C 不是“A>B”的充要条件;当cos 2A<cos 2B ,即1-sin 2A<1-sin 2B ,所以sin 2A>sin 2B ,所以D 是“A>B”的充要条件;故选A 、B 、D .(2)由q :(x +1)(2-x)<0,可知q :x<-1或x>2.因为p 是q 的充分不必要条件,所以x≥k ⇒x<-1或x>2,即[k ,+∞)是(-∞,-1)∪(2,+∞)的真子集,故k>2.故选B .名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG抽象命题间充要条件的判定例7 已知p 是r 的充分不必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题:①r 是q 的充要条件;②p 是q 的充分不必要条件;③r 是q 的必要不充分条件;④¬p 是¬s 的必要不充分条件;⑤r 是s 的充分不必要条件,则正确命题的序号是( B )A .①④⑤B .①②④C .②③⑤D .②④⑤[分析] 本题涉及命题较多,关系复杂,因此采用“图解法”.[解析] 由题意得p,显然q ⇒r 且r ⇒s ⇒q ,即q ⇔r ,①正确;p ⇒r ⇒s ⇒q 且qp ,②正确;r⇔q ,③错误;由p ⇒s 知¬ s ⇒¬ p ,但sp ,∴¬ p ¬ s ,④正确;r ⇔s ,⑤错误.故选B .名师点拨 MING SHI DIAN BO命题较多、关系复杂时,画出各命题间关系图求解,简洁直观,一目了然. 〔变式训练3〕若p 是r 的必要不充分条件,q 是r 的充分条件,则p 是q 的必要不充分条件. [解析] 由题意可知q ⇒rp ,∴p 是q 的必要不充分条件.。