电磁感应规律的综合应用2

合集下载

高考物理三轮冲刺:电磁感应综合应用+教案

高考物理三轮冲刺:电磁感应综合应用+教案

电磁感应综合应用1.掌握电磁感应与电路结合问题的分析方法2.掌握电磁感应动力学问题的重要求解内容3.能解决电磁感应与能量结合题型4.培养学生模型构建能力和运用科学思维解决问题的能力电磁感应中的电路问题1、分析电磁感应电路问题的基本思路对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.在闭合电路中,“相当于电源”的导体两端的电压与真实的电源两端的电压一样,等于路端电压,而不等于感应电动势.【例题1】用均匀导线做成的正方形线框边长为0.2m,正方形的一半放在垂直于纸面向里的匀强磁场中,如图所示,当磁场以10T/s的变化率增强时,线框中a、b两点间的电势差是()A.U ab=0.1V B.U ab=-0.1VC.U ab=0.2V D.U ab=-0.2V【演练1】如图所示,两个相同导线制成的开口圆环,大环半径为小环半径的2倍,现用电阻不计的导线将两环连接在一起,若将大环放入一均匀变化的磁场中,小环处在磁场外,a、b两点间电压为U1,若将小环放入这个磁场中,大环在磁场外,a、b两点间电压为U2,则()A.=1B.=2C.=4D.=【例题2】把总电阻为2R的均匀电阻丝焊接成一半径为a的圆环,水平固定在竖直向下的磁感应强度为B的匀强磁场中,如图所示,一长度为2a,电阻等于R,粗细均匀的金属棒MN放在圆环上,它与圆环始终保持良好的接触,当金属棒以恒定速度v向右移动经过环心O时,求:(1)棒上电流的大小和方向及棒两端的电压U MN;(2)圆环消耗的热功率和在圆环及金属棒上消耗的总热功率.【演练2】如图甲所示,固定在水平面上电阻不计的光滑金属导轨,间距d=0.5m.右端接一阻值为4Ω的小灯泡L,在CDEF矩形区域内有竖直向上的匀强磁场,磁感应强度B按如图乙规律变化.CF长为2m.在t=0时,金属棒从图中位置由静止在恒力F作用下向右运动到EF位置,整个过程中,小灯泡亮度始终不变.已知ab金属棒电阻为1Ω,求:(1)通过小灯泡的电流;(2)恒力F的大小;(3)金属棒的质量.电磁感应的动力学问题1.导体棒的两种运动状态(1)平衡状态——导体棒处于静止状态或匀速直线运动状态,加速度为零;(2)非平衡状态——导体棒的加速度不为零.2.两个研究对象及其关系电磁感应中导体棒既可看作电学对象(因为它相当于电源),又可看作力学对象(因为有感应电流而受到安培力),而感应电流I和导体棒的速度v是联系这两个对象的纽带.3.电磁感应中的动力学问题分析思路(1)电路分析:导体棒相当于电源,感应电动势相当于电源的电动势,导体棒的电阻相当于电源的内阻,感应电流I=.(2)受力分析:导体棒受到安培力及其他力,安培力F安=BIl=,根据牛顿第二定律:F合=ma.(3)过程分析:由于安培力是变力,导体棒做变加速运动或变减速运动,当加速度为零时,达到稳定状态,最后做匀速直线运动,根据共点力的平衡条件列方程:F合=0.4. 电磁感应中电量求解(1)利用法拉第电磁感应定律由整理得:若是单棒问题(2)利用动量定理单棒无动力运动时-BILΔt=mv2-mv1 又整理得:BLq= mv1-mv2【例题3】如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直于斜面向下.导轨和金属杆的电阻可忽略,让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图.(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小.(3)求在下滑过程中,ab杆可以达到的速度最大值.(4)若从开始下滑到最大速度时,下滑的距离为x,求这一过程中通过电阻R的电量q.【演练3】(多选)如图所示,电阻不计间距为L的光滑平行导轨水平放置,导轨左端接有阻值为R的电阻,以导轨的左端为原点,沿导轨方向建立x轴,导轨处于竖直向下的磁感应强度大小为B的匀强磁场中。

电磁感应规律的综合应用(解析版)-2023年高考物理压轴题专项训练(新高考专用)

电磁感应规律的综合应用(解析版)-2023年高考物理压轴题专项训练(新高考专用)

压轴题07电磁感应规律的综合应用目录一,考向分析 (1)二.题型及要领归纳 (2)热点题型一以动生电动势为基综合考查导体棒运动的问题 (2)热点题型二以感生电动势为基综合考查导体棒运动的问题 (9)热点题型三以等间距双导体棒模型考动量能量问题 (16)热点题型四以不等间距双导体棒模型考动量定理与电磁规律的综合问题 (21)热点题型五以棒+电容器模型考查力电综合问题 (27)三.压轴题速练 (33)一,考向分析1.本专题是运动学、动力学、恒定电流、电磁感应和能量等知识的综合应用,高考既以选择题的形式命题,也以计算题的形式命题。

2.学好本专题,可以极大地培养同学们数形结合的推理能力和电路分析能力,针对性的专题强化,可以提升同学们解决数形结合、利用动力学和功能关系解决电磁感应问题的信心。

3.用到的知识有:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、闭合电路欧姆定律、平衡条件、牛顿运动定律、函数图像、动能定理和能量守恒定律等。

电磁感应综合试题往往与导轨滑杆等模型结合,考查内容主要集中在电磁感应与力学中力的平衡、力与运动、动量与能量的关系上,有时也能与电磁感应的相关图像问题相结合。

通常还与电路等知识综合成难度较大的试题,与现代科技结合密切,对理论联系实际的能力要求较高。

4.电磁感应现象中的电源与电路(1)产生感应电动势的那部分导体相当于电源。

(2)在电源内部电流由负极流向正极。

(3)电源两端的电压为路端电压。

5.电荷量的求解电荷量q=IΔt,其中I必须是电流的平均值。

由E=n ΔΦΔt、I=ER总、q=IΔt联立可得q=n ΔΦR总,与时间无关。

6.求解焦耳热Q的三种方法(1)焦耳定律:Q=I2Rt,适用于电流、电阻不变。

(2)功能关系:Q=W克服安培力,电流变不变都适用。

(3)能量转化:Q=ΔE(其他能的减少量),电流变不变都适用。

7.用到的物理规律匀变速直线运动的规律、牛顿运动定律、动能定理、能量守恒定律等。

电磁感应的综合应用

电磁感应的综合应用

电磁感应的综合应用制作:张宝峰 审核:解鑫品 时间:1.19学习目标1.能认识电磁感应现象中的电路结构,并能计算电动势、电压、电流、电功等.2.会分析计算电磁感应中的安培力参与的导体的运动及平衡问题..3.会分析计算电磁感应中能量的转化与转移..4.能由给定的电磁感应过程判断或画出正确的图象或由给定的有关图象分析电磁感应过程,求解相应的物理量.一电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体就是电源.如:切割磁感线的导体棒、内有磁通量变化的线圈等.这种电源将其他形式能转化为电能.2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成. 3.问题分类(1)确定等效电源的正负极、感应电流的方向、电势高低、电容器极板带电性质等问题. (2)根据闭合电路求解电路中的总电阻、路端电压、电功率等问题.(3)根据电磁感应的平均感应电动势求解电路中通过的电荷量:E =n ΔΦΔt ,I =E R 总,q =I Δt =n ΔΦR 总.特别提醒 1.判断感应电流和感应电动势的方向,都是利用“相当于电源”的部分根据右手定则或楞次定律判定的.实际问题中应注意外电路电流由高电势流向低电势,而内电路则相反.4.在闭合电路中,“相当于电源”的导体两端的电压与真实的电源两端的电压一样,等于路 端电压,而不等于感应电动势.例1 如图1(a)所示,水平放置的两根平行金属导轨,间距L =0.3 m ,导轨左端连接R =0.6 Ω的电阻,区域abcd 内存在垂直于导轨平面B =0.6 T 的匀强磁场,磁场区域宽D =0.2 m .细金属棒A 1和A 2用长为2D =0.4 m 的轻质绝缘杆连接,放置在导轨平面上,并与导轨垂直,每根金属棒在导轨间的电阻均为r =0.3 Ω.导轨电阻不计.使金属棒以恒定速度v =1.0 m/s 沿导轨向右穿越磁场.计算从金属棒A 1进入磁场(t =0)到A 2离开磁场的时间内,不同时间段通过电阻R 的电流强度,并在图(b)中画出.二电磁感应中的动力学问题分析导体两种状态及处理方法(1)导体的平衡态——静止状态或匀速直线运动状态.处理方法:根据平衡条件合外力等于零列式分析.(2)导体的非平衡态——加速度不为零.处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析例2 如图6所示,两根足够长的光滑直金属导轨MN、PQ平行固定在倾角θ=37°的绝缘斜面上,两导轨间距L=1m,导轨的电阻可忽略.M、P两点间接有阻值为R的电阻.一根质量m=1 kg、电阻r=0.2 Ω的均匀直金属杆ab放在两导轨上,与导轨垂直且接触良好.整套装置处于磁感应强度B=0.5 T的匀强磁场中,磁场方向垂直斜面向下.自图示位置起,杆ab受到大小为F=0.5v+2(式中v为杆ab运动的速度,力F的单位为N)、方向平行导轨沿斜面向下的拉力作用,由静止开始运动,测得通过电阻R的电流随时间均匀增大.g取10 m/s2,sin 37°=0.6.(1)试判断金属杆ab在匀强磁场中做何种运动,并请写出推理过程;(2)求电阻R的阻值;(3)求金属杆ab自静止开始下滑通过位移x=1 m所需的时间t.三电磁感应中的能量问题分析1.过程分析(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.(2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.(3)当感应电流通过用电器时,电能又转化为其他形式的能.安培力做功的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能.2.求解思路(1)若回路中电流恒定,可以利用电路结构及W=UIt或Q=I2Rt直接进行计算.(2)若电流变化,则:①利用安培力做的功求解:电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能.例3 电阻可忽略的光滑平行金属导轨长s =1.15 m ,两导轨间距L =0.75 m ,导轨倾角为30°,导轨上 端ab 接一阻值R =1.5 Ω的电阻,磁感应强度B =0.8 T 的 匀强磁场垂直轨道平面向上,如图9所示.阻值r =0.5Ω,质量m =0.2 kg 的金属棒与轨道垂直且接触良好,从轨道上端ab 处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热Q 1=0.1 J .(取g =10 m/s 2)求: (1)金属棒在此过程中克服安培力的功W 安; (2)金属棒下滑速度v =2 m/s 时的加速度a ;(3)为求金属棒下滑的最大速度v m ,有同学解答如下:由动能定理,W G -W 安=12m v 2m ,.由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解.四 电磁感应中的图象问题 1问题概括图象 类型(1)随时间变化的图象如B -t 图象、Φ-t 图象、E -t 图象和i -t 图象(2)随位移x 变化的图象如E -x 图象和i -x 图象问题类型(1)由给定的电磁感应过程判断或画出正确的图象(画图象) (2)由给定的有关图象分析电磁感应过程,求解相应的物理量(用图象) 1应用知识左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、欧姆定律、牛顿运动定律、函数图象知识等图62.思路导图3.分析方法对图象的分析,应做到“四明确一理解”:(1)明确图象所描述的物理意义;明确各种“+”、“-”的含义;明确斜率的含义;明确图象和电磁感应过程之间的对应关系.(2)理解三个相似关系及其各自的物理意义:v -Δv -Δv Δt ,B -ΔB -ΔB Δt ,Φ-ΔΦ-ΔΦΔt .解决图象问题的一般步骤:(1)明确图象的种类,即是B -t 图象还是Φ-t 图象,或者E -t 图象、i -t 图象等. (2)分析电磁感应的具体过程.(3)用右手定则或楞次定律确定方向对应关系.(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式. (5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等. (6)画图象或判断图象.例4 如图6所示,两个相邻的有界匀强磁场区域,方向相反,且垂直纸面,磁感应强度的大小均为B ,以磁场区左边界为y 轴建 立坐标系,磁场区域在y 轴方向足够长,在x 轴方向宽度均为 a .矩形导线框ABCD 的CD 边与y 轴重合,AD 边长为a .线框从图示位置水平向右匀速穿过两磁场区域,且线框平面始终保持与磁场垂直,线框中感应电流i 与线框移动距离x 的关系图象正确的是(以逆时针方 向为电流的正方向)图10强化练习1.用相同导线绕制的边长为l 或2l 的四个闭合导体线框a 、b 、c 、d ,以相同的速度匀速进入右侧匀强磁场,如图9所示.在每个线框进入磁场的过程中,M 、N 两点间的电压分别为U a 、U b 、U c 和U d .下列判断正确的是A.U a <U b <U c <U dB.U a <U b <U d <U cC .U a =U b <U c =U dD .U b <U a <U d <U c2.如图10所示,垂直纸面的正方形匀强磁场区域内,有一位于纸面且电阻均匀的正方形导体框abcd ,现将导体框分别朝两个方向以v 、3v 速度匀速拉出磁场,则导体框从两个方向移出 磁场的两过程中 ( ) A .导体框中产生的感应电流方向相同 B .导体框中产生的焦耳热相同C .导体框ad 边两端电势差相同D .通过导体框截面的电荷量相同3.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是( )4 如图4所示,两光滑平行金属导轨间距为L ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B .电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计.现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右做匀速运动时A .电容器两端的电压为零B .电阻两端的电压为BL vC .电容器所带电荷量为CBL vD .为保持MN 匀速运动,需对其施加的拉力大小为B 2L 2vR5 两根平行的长直金属导轨,其电阻不计,导线ab、cd跨在导轨上且与导轨接触良好,如图9所示,ab的电阻大于cd的电阻,当cd 在外力F1(大小)的作用下,匀速向右运动时,ab在外力F2(大小)的作用下保持静止,那么在不计摩擦力的情况下(U ab、U cd是导线与导轨接触间的电势差) ()A.F1>F2,U ab>U cd B.F1<F2,U ab=U cdC.F1=F2,U ab>U cd D.F1=F2,U ab=U cd6如图3,EOF和E′O′F′为空间一匀强磁场的边界,其中EO∥E′O′,FO∥F′O′,且EO⊥OF;OO′为∠EOF的角平分线,OO′间的距离为l;磁场方向垂直于纸面向里.一边长为l的正方形导线框沿O′O方向匀速通过磁场,t=0时刻恰好位于图示位置.规定导线框中感应电流沿逆时针方向时为正,则感应电流i与时间t的关系图线可能正确的是()图37 如图4甲所示,光滑平行金属导轨MN、PQ所在平面与水平面成θ角,M、P两端接一阻值为R的定值电阻,阻值为r的金属棒ab垂直导轨放置,其他部分电阻不计.整个装置处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向上.t=0时对金属棒施加一平行于导轨的外力F,金属棒由静止开始沿导轨向上运动,通过R的感应电流I随时间t变化的关系如图乙所示.下列关于穿过回路abPMa的磁通量Φ和磁通量的瞬时变化率ΔΦΔt以及a、b两端的电势差U ab和通过金属棒的电荷量q随时间t变化的图象中,正确的是()8如图5所示,边长为L、总电阻为R的正方形线框abcd放置在光滑水平桌面上,其bc边紧靠磁感应强度为B、宽度为2L、方向竖直向下的有界匀强磁场的边缘.现使线框以初速度v0匀加速通过磁场,下列图线中能定性反映线框从开始进入到完全离开磁场的过程中,线框中的感应电流(以逆时针方向为正)的变化的是()9在竖直方向的匀强磁场中,水平放置一个面积不变的单匝金属圆线圈,规定线圈中感应电流的正方向如图11甲所示,取线圈中磁场B的方向向上为正,当磁场中的磁感应强度B随时间t如图乙变化时,下列图中能正确表示线圈中感应电流变化的是()10 .一矩形线圈abcd位于一随时间变化的匀强磁场内,磁场方向垂直线圈所在的平面向里(如图2甲所示),磁感应强度B随时间t变化的规律如图乙所示.以I表示线圈中的感应电流(图甲中线圈上箭头方向为电流的正方向),则下列选项中能正确表示线圈中电流I随时间t变化规律的是11 A和B是两个大小相同的环形线圈,将两线圈平行共轴放置,如图3(a)所示,当线圈A中的电流i1随时间变化的图象如图(b)所示时,若规定两电流方向如图(a)所示的方向为正方向,则线圈B中的电流i2随时间t变化的图象是图中的()(a)(b)12 如图5甲所示,正三角形导线框abc放在匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t的变化关系如图乙所示,t=0时刻,磁感应强度的方向垂直纸面向里.下列选项中能表示线框的ab边受到的磁场力F随时间t的变化关系的是(规定水平向左为力的正方向)13 如图7所示, 电阻R =1 Ω、半径r 1=0.2 m 的单匝圆形导线框P 内有一个与P 共面的圆形磁场区域Q ,P 、Q 的圆心相同,Q 的半径r 2 =0.1 m .t =0时刻,Q 内存在着垂直于圆面向里的磁场,磁感应 强度B 随时间t 变化的关系是B =2-t T .若规定逆时针方向为电流 的正方向,则线框P 中感应电流I 随时间t 变化的关系图象应该是下 列选项中的14 如图8所示,有一个等腰直角三角形的匀强磁场区域.直角边长为L ,磁感应强度大小为B ,方向垂直纸面向外, 一边长为L 、总电阻为R 的正方形闭合导线框abcd ,从图示位置开始沿x 轴正方向以速度v 垂直磁场匀速穿过磁场区域.取电流沿a →b →c →d →a的方向为正,则图中表示线框中感应电流i 随bc 边位置坐标x 变化的图象正确的是 ( )15如图1所示,匀强磁场的磁感应强度为B ,方向竖直向下,在磁场中有一个边长为L 的正方形刚性金属框,ab 边的质量为m ,电阻为R ,其他三边的质量和电阻均不计.cd 边上装有固定的水平轴,将金属框自水平位置由静止释放,第一次转到竖直位置时,ab 边的速度为v ,不计一切摩擦,重力加速度为g ,则在这个过程中,下列说法正确的是A .通过ab 边的电流方向为a →bB .ab 边经过最低点时的速度v =2gLC .a 、b 两点间的电压逐渐变大D .金属框中产生的焦耳热为mgL -12m v 2D .在导轨的a 、c 两端用导线连接一个电容器16.(2011·福建理综·17)如图2所示,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电荷量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中 ( )A .运动的平均速度大小为12vB .下滑的位移大小为qRBL C .产生的焦耳热为qBL vD .受到的最大安培力大小为B 2L 2vR sin θ17.如图5所示,光滑的“Π”形金属导体框竖直放置,质量为m 的金属棒MN 与框架接触良好.磁感应强度分别为B 1、B 2的有界匀强磁场方向相反,但均垂直于框架平面,分别处在abcd 和cdef 区域.现从图示位置由静止释放金属棒MN ,当金属棒进入磁场B 1区域后,恰好做匀速运动.以下说法中正确的是 A .若B 2=B 1,金属棒进入B 2区域后将加速下滑 B .若B 2=B 1,金属棒进入B 2区域后仍将保持匀速下滑 C .若B 2<B 1,金属棒进入B 2区域后将先加速后匀速下滑 D .若B 2>B 1,金属棒进入B 2区域后将先减速后匀速下滑。

高考物理复习高三一轮复习:课时跟踪检测36电磁感应的综合应用(二)

高考物理复习高三一轮复习:课时跟踪检测36电磁感应的综合应用(二)

高考物理复习课时跟踪检测(三十六) 电磁感应的综合应用(二)高考常考题型:选择题+计算题1.(2012·东城一模)如图1所示正方形闭合导线框处于磁感应强度恒定的匀强磁场中,C、E、D、F为线框中的四个顶点,图(甲)中的线框绕E点转动,图(乙)中的线框向右平动,磁场足够大。

下列判断正确的是( )图1A.图(甲)线框中有感应电流产生,C点电势比D点低B.图(甲)线框中无感应电流产生,C、D两点电势相等C.图(乙)线框中有感应电流产生,C点电势比D点低D.图(乙)线框中无感应电流产生,C、D两点电势相等2.在竖直方向的匀强磁场中,水平放置一个面积不变的单匝金属圆形线圈,规定线圈中感应电流的正方向如图2甲所示,取线圈中磁场方向向上为正,当磁感应强度B随时间t如图乙变化时,图3中能正确表示线圈中感应电流变化的是( )图2图33.如图4所示,ab是一个可以绕垂直于纸面的轴O转动的闭合矩形导体线圈,当滑动变阻器R的滑片P自左向右滑动过程中,线圈ab将( )A.静止不动B.逆时针转动图4C.顺时针转动D.发生转动,但因电源的极性不明,无法确定转动的方向4.矩形导线框abcd(如图5甲)放在匀强磁场中,磁感线方向与线框平面垂直,磁感应强度B随时间t变化的图象如图乙所示。

t=0时刻,磁感应强度的方向垂直纸面向里。

若规定导线框中感应电流逆时针方向为正,则在0~4 s时间内,线框中的感应电流I以及线框的ab边所受安培力F随时间变化的图象为(安培力取向上为正方向)( )图5图65. (2012·德州模拟)如图7所示,两固定的竖直光滑金属导轨足够长且电阻不计。

绝缘轻绳一端固定,另一端系于导体棒a的中点,轻绳保持竖直。

将导体棒b由边界水平的匀强磁场上方某一高度处静止释放。

匀强磁场的宽度一定,方向与导轨平面垂直,两导体棒电阻均为R且与导轨始终保持良好接触。

下列说法正确的是( )A.b进入磁场后,a中的电流方向向左图7B.b进入磁场后,轻绳对a的拉力增大C.b进入磁场后,重力做功的瞬时功率可能增大D.b由静止释放到穿出磁场的过程中,a中产生的焦耳热等于b减少的机械能6. (2012·浦东新区质量抽测)如图8所示,倾斜的平行导轨处在匀强磁场中,导轨上、下两边的电阻分别为R1=3 Ω和R2=6 Ω,金属棒ab的电阻R3=4 Ω,其余电阻不计。

高中物理一轮复习教案:10.4-电磁感应的综合应用

高中物理一轮复习教案:10.4-电磁感应的综合应用

基础点知识点1 电磁感应中的动力学问题1.安培力的大小⎭⎪⎬⎪⎫安培力公式:F A =BIl感应电动势:E =Bl v感应电流:I =E R ⇒F A=B 2l 2v R 2.安培力的方向(1)用左手定则判断:先用右手定则判断感应电流的方向,再用左手定则判定安培力的方向。

(2)用楞次定律判断:安培力的方向一定与导体切割磁感线的运动方向相反(选填“相同”或“相反”)。

3.安培力参与物体的运动:导体棒(或线框)在安培力和其他力的作用下,可以做加速运动、减速运动、匀速运动、静止或做其他类型的运动,可应用动能定理、牛顿运动定律等规律解题。

知识点2 电磁感应中的能量问题1.能量转化:感应电流在磁场中受安培力,外力克服安培力做功,将机械能转化为电能,电流做功再将电能转化为其他形式的能。

2.转化实质:电磁感应现象的能量转化,实质是其他形式的能与电能之间的转化。

3.电能的三种计算方法(1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功。

(2)利用能量守恒求解:机械能的减少量等于产生的电能。

(3)利用电路特征求解:通过电路中所产生的电热来计算。

重难点一、电磁感应中的动力学问题1.导体的两种运动状态(1)平衡状态:静止或匀速直线运动,F 合=0。

(2)非平衡状态:加速度不为零,F 合=ma 。

2.电磁感应综合问题的两大研究对象及其关系电磁感应中导体棒既可视为电学对象(因为它相当于电源),又可视为力学对象(因为感应电流的存在而受到安培力),而感应电流I 和导体棒的速度v 则是联系这两大对象的纽带。

3.解答电磁感应中的动力学问题的一般思路(1)电路分析:等效电路图(导体棒相当于电源)。

电路方程:I =BL v R +r。

(2)受力分析:受力分析图(安培力大小、方向),动力学方程:F 安=BIL ,F 合=ma (牛顿第二定律)。

其中I =BL v R 总,可得F 安=B 2L 2v R 总,注意这个公式是连接电学与力学问题的关键。

第十二章第三节 电磁感应规律的综合应用

第十二章第三节 电磁感应规律的综合应用

(2)利用能量守恒求解:机械能的减少 量等于产生的电能; (3)利用电路特征来求解:通过电路中 所产生的电能来计算. 3.解决此类问题的步骤
(1)用法拉第电磁感应定律和楞次定律
(包括右手定则)确定感应电动势的大
小和方向.
(2)画出等效电路图,写出回路中电阻
消耗的电功率的表达式.
(3)分析导体机械能的变化,用能量守 恒关系得到机械功率的改变与回路中 电功率的改变所满足的方程,联立求
2.感应电流在磁场中受安培力,外力 做功 克服安培力______,将其他形式的能 电能 转化为_____,电流做功再将电能转 内能 化为______. 3.电流做功产生的热量用焦耳定律计 Q=I2Rt 算,公式为_________.
名师点拨:电磁感应的能量转化符合 能量守恒定律,克服安培力做功是把 其他形式的能转化为电能,电能最终 转化为焦耳热.因此同一方程中,克 服安培力做功,转化成的电能及产生 的焦耳热不能同时出现.
)
A.换一个电阻为原来的2倍的灯泡,
其他不变
B.仅将磁感应强度B增大为原来的
2倍
C.将轨道倾斜角变成45°,并保持
磁场与轨道所在平面垂直且大小不变
D.仅将ab棒的质量增大为原来的2倍
解析: AC.据牛顿第二定律可知 ab 棒 选 mgRsinθ-B2l2v 下滑时加速度为 a= , 可 mR 知 ab 棒做加速度逐渐减小的加速运动, 当加速度 a 减为零时,ab 棒开始以达到 的最大速度做匀速运动,其最大速度为 mgRsinθ vm= , B 2l 2
B2L3 两边求和整理得: =v-v0,而 mR mR 4L =ρ0S· ρ =16ρ0ρL2 为常数,所以两 4L· S 线圈落地速度相等,由能量的转化及守 恒定律知,两线圈在运动过程中产生的 热量 Q1<Q2.

2025高考物理难点:电磁感应综合应用(含答案)

2025高考物理难点:电磁感应综合应用(含答案)

电磁感应综合应用1.(2024•浙江)某小组探究“法拉第圆盘发电机与电动机的功用”,设计了如图所示装置。

飞轮由三根长a=0.8m的辐条和金属圆环组成,可绕过其中心的水平固定轴转动,不可伸长细绳绕在圆环上,系着质量m=1kg的物块,细绳与圆环无相对滑动。

飞轮处在方向垂直环面的匀强磁场中,左侧电路通过电刷与转轴和圆环边缘良好接触,开关S可分别与图示中的电路连接。

已知电源电动势E0=12V、内阻r=0.1Ω、限流电阻R1=0.3Ω、飞轮每根辐条电阻R=0.9Ω,电路中还有可调电阻R2(待求)和电感L,不计其他电阻和阻力损耗,不计飞轮转轴大小。

(1)开关S掷1,“电动机”提升物块匀速上升时,理想电压表示数U=8V。

①判断磁场方向,并求流过电阻R1的电流I;②求物块匀速上升的速度v。

(2)开关S掷2,物块从静止开始下落,经过一段时间后,物块匀速下降的速度与“电动机”匀速提升物块的速度大小相等:①求可调电阻R2的阻值;②求磁感应强度B的大小。

2.(2024•广西)某兴趣小组为研究非摩擦形式的阻力设计了如图甲的模型。

模型由大齿轮、小齿轮、链条、阻力装置K及绝缘圆盘等组成。

K由固定在绝缘圆盘上两个完全相同的环状扇形线圈M1、M2组成,小齿轮与绝缘圆盘固定于同一转轴上,转轴轴线位于磁场边界处,方向与磁场方向平行,匀强磁场磁感应强度大小为B,方向垂直纸面向里,与K所在平面垂直。

大、小齿轮半径比为n,通过链条连接。

K的结构参数见图乙。

其中r1=r,r2=4r,每个线圈的圆心角为π-β,圆心在转轴轴线上,电阻为R。

不计摩擦,忽略磁场边界处的磁场,若大齿轮以ω的角速度保持匀速转动,以线圈M1的ab边某次进入磁场时为计时起点,求K转动一周:(1)不同时间线圈M1的ab边或cd边受到的安培力大小;(2)流过线圈M1的电流有效值;(3)装置K消耗的平均电功率。

3.(2024•河北)如图,边长为2L的正方形金属细框固定放置在绝缘水平面上,细框中心O处固定一竖直细导体轴OO'。

法拉第电磁感应定律(电路问题、力学问题、功能问题)

法拉第电磁感应定律(电路问题、力学问题、功能问题)

——电磁感应现象的电路问题在电磁感应现象中,有些问题往往可以归结为电路问题,在这类问题中,切割磁感线的导体或磁通量发生变化的回路就相当于电源,这部分的电阻相当于电源的内阻,其余部分相当于外电路。

解这类问题时,一般先画出等效电路图,然后应用电路的有关规律进行分析计算.【例1】如图所示,两个互连的金属圆环,粗金属环的电阻是细金属环电阻的二分之一。

磁场垂直穿过粗金属环所在区域,当磁感应强度随时间均匀变化时,在粗环内产生的感应电动势为E ,则a 、b 两点间的电势差为( )A .2EB .3EC .32ED .E【例2】粗细均习的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行。

现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框的一边a 、b 两点间电势差绝对值最大的是( )【例3】如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R 1和R 2相连,匀强磁场垂直穿过导轨平面.有一导体棒ab ,质量为m ,导体棒的电阻与固定电阻R 1和R 2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab 沿导轨向上滑动,当上滑的速度为v 时,受到安培力的大小为F .此时( )A .电阻R 1消耗的热功率为Fv /3B .电阻 R 2消耗的热功率为 Fv /6C .整个装置因摩擦而消耗的热功率为μmgvcosθD .整个装置消耗的机械功率为(F +μmgcosθ)v【例4】如图所示,OACO 为置于水平面内的光滑闭合金属导轨,O 、C 处分别接有短电阻丝(图中用粗线表示),R l =4Ω、R 2=8Ω(导轨其他部分电阻不计).导轨OAC 的形状满足方程⎪⎭⎫ ⎝⎛=x y 3sin 2π(单位:m).磁感应强度B =0.2T 的匀强磁场方向垂直于导轨平面.一足够长的金属棒在水平外力F 作用下,以恒定的速率v =5.0m/s 水平向右在导轨上从O 点滑动到C 点,棒与导轨接触良好且始终保持与OC 导轨垂直,不计棒的电阻.求:⑴外力F 的最大值;⑵金属棒在导轨上运动时电阻丝R l 上消耗的最大功率;⑶在滑动过程中通过金属棒的电流I 与时间t 的关系.【例5】如图所示,粗细均匀的金属环的电阻为R ,可绕轴O 转动的金属杆OA 的电阻R / 4,杆长为l ,A 端与环相接触,一阻值为R / 2的定值电阻分别与杆的端点O 及环边缘连接.杆OA 在垂直于环面向里的、磁感强度为B 的匀强磁场中,以角速度ω顺时针转动.求电路中总电流的变化范围.能力提升1.如图所示,两条平行的光滑水平导轨上,用套环连着一质量为0.2 kg 、电阻为2 Ω的导体杆ab ,导轨间匀强磁场的方向垂直纸面向里.已知R 1=3 Ω,R 2=6 Ω,电压表的量程为0~10 V ,电流表的量程为0~3 A(导轨的电阻不计).求:(1)将R 调到30 Ω时,用垂直于杆ab 的力F =40 N ,使杆ab 沿着导轨向右移动且达到最大速度时,两表中有一表的示数恰好满量程,另一表又能安全使用,则杆ab 的速度多大?(2)将R 调到3 Ω时,欲使杆ab 运动达到稳定状态时,两表中有一表的示数恰好满量程,另一表又能安全使用,则拉力应为多大?(3)在第(1)小题的条件下,当杆ab 运动达到最大速度时突然撤去拉力,则电阻R 1上还能产生多少热量?2.半径为a 的圆形区域内有均匀磁场,磁感应强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2, 两灯的电场均为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档