一元二次方程复习(测试)题(含答案)

合集下载

九年级数学解一元二次方程专项练习题(带答案)【40道】

九年级数学解一元二次方程专项练习题(带答案)【40道】

解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)

一元二次方程测试题(时间120分钟满分150分)一、填空题:(每题2分共50分)1.一元二次方程(1-3x)(x+3)=2x2+1 化为一般形式为:,二次项系数为:,一次项系数为:,常数项为:。

2.若m是方程x2+x-1=0的一个根,试求代数式m3+2m2+2013的值为。

3.方程是关于x的一元二次方程,则m的值为。

4.关于x的一元二次方程的一个根为0,则a的值为。

5.若代数式与的值互为相反数,则的值是。

6.已知的值为2,则的值为。

7.若方程是关于x的一元二次方程,则m的取值范围是。

8.已知关于x的一元二次方程的系数满足,则此方程必有一根为。

9.已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是。

10.设x1,x2是方程x2﹣x﹣2013=0的两实数根,则= 。

11.已知x=﹣2是方程x2+mx﹣6=0的一个根,则方程的另一个根是。

12.若,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是。

13.设m、n是一元二次方程x2+3x-7=0的两个根,则m2+4m+n=。

14.一元二次方程(a+1)x2-ax+a2-1=0的一个根为0,则a= 。

15.若关于x的方程x2+(a﹣1)x+a2=0的两根互为倒数,则a= 。

16.关于x的两个方程x2﹣x﹣2=0与有一个解相同,则a= 。

17.已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③.则正确结论的序号是.(填上你认为正确结论的所有序号)18.a是二次项系数,b是一次项系数,c是常数项,且满足+(b-2)2+|a+b+c|=0,满足条件的一元二次方程是。

19.巳知a、b是一元二次方程x2-2x-1=0的两个实数根,则代数式(a-b)(a+b-2)+ab的值等于____.20.已知关于x的方程x2+(2k+1)x+k2-2=0的两实根的平方和等于11,则k的值为.21.已知分式,当x=2时,分式无意义,则a= ;当a<6时,使分式无意义的x的值共有个.22.设x1、x2是一元二次方程x2+5x﹣3=0的两个实根,且,则a= 。

一元二次方程经典练习题(6套)附带详细答案

一元二次方程经典练习题(6套)附带详细答案

练习一一、选择题:(每小题3分,共24分)1.下列方程中,常数项为零的是( )A.x2+x=1B.2x2-x-12=12;C.2(x2-1)=3(x-1)D.2(x2+1)=x+22.下列方程:①x2=0,② -2=0,③2+3x=(1+2x)(2+x),④3-=0,⑤-8x+ 1=0中,一元二次方程的个数是( )A.1个 B2个 C.3个 D.4个3.把方程(x-)(x+)+(2x-1)2=0化为一元二次方程的一般形式是( )A.5x2-4x-4=0B.x2-5=.5x2-2x+1=0 D.5x2-4x+6=04.方程x2=6x的根是( )A.x1=0,x2=-6B.x1=0,x2=.x=6 D.x=05.方2x2-3x+1=0经为(x+a)2=b的形式,正确的是( )A. ;B.;C. ;D.以上都不对6.若两个连续整数的积是56,则它们的和是( )A.11B.-15 D.±157.不解方程判断下列方程中无实数根的是( )A.-x2=2x-1B.4x2+4x+=0;C.D.(x+2)(x-3)==-58.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000二、填空题:(每小题3分,共24分)9.方程化为一元二次方程的一般形式是________,它的一次项系数是______.10.关于x的一元二次方程x2+bx+c=0有实数解的条件是__________.11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x2+1与4x2-2x-5互为相反数,则x的值为________.13.如果关于x的一元二次方程2x(kx-4)-x2+6=0没有实数根,那么k 的最小整数值是__________.14.如果关于x的方程4mx2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______.16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________.三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y2+1=;(3)(x-a)2=1+a2(a是常数)18.(7分)已知关于x的一元二次方程x2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x的解,你能求出m和n 的值吗?19.(10分)已知关于x的一元二次方程x2-2kx+k2-2=0.(1)求证:不论k为何值,方程总有两不相等实数根.(2)设x1,x2是方程的根,且 x12-2kx1+2x1x2=5,求k的值.四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率.答案一、DAABC,DBD二、9.x2+4x-4=0,410.11.因式分解法12.1或13.214.15.16.30%三、17.(1)3,;(2);(3)1,-118.m=-6,n=819.(1)Δ=2k2+8>0, ∴不论k为何值,方程总有两不相等实数根.(2)四、20.20%21.20%练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

一元二次方程测试题及答案.doc

一元二次方程测试题及答案.doc

一元二次方程测试姓名学号一、选择题(每题 3 分,共 30 分):1.下列方程中不一定是一元二次方程的是 ( )A.(a-3)x 2 =8 (a ≠3)B.ax 2+bx+c=0C.(x+3)(x-2)=x+5D. 3x2 3 x 2 0572 下列方程中 , 常数项为零的是 ( )A.x 2+x=1B.2x 2 -x-12=12 ;C.2(x 2-1)=3(x-1)D.2(x 2+1)=x+23. 一元二次方程2x2 -3x+1=0 化为 (x+a) 2=b 的形式 , 正确的是( )2 2 1;C. 21 ;A. x 3 16;B. 2 x 3 x 32 4 16 4 16D.以上都不对4. 关于x的一元二次方程 a 1 x2 x a2 1 0 的一个根是 0,则 a 值为()A、 1 B 、 1 C 、1或 1 D 、125.已知三角形两边长分别为2 和 9, 第三边的长为二次方程x2-14x+48=0 的一根 , 则这个三角形的周长为 ( )A.11B.17C.17或19D.196.已知一个直角三角形的两条直角边的长恰好是方程2x2 8x 7 0 的两个根,则这个直角三角形的斜边长是()A、 3 B 、3 C 、6 D 、97. 使分式x25x6的值等于零的 x 是( )x 1A.6B.-1 或 6C.-1D.-68.若关于 y 的一元二次方程 ky2-4y-3=3y+4 有实根 , 则 k 的取值范围是 ( )A.k>- 7B.k ≥ -7且 k ≠ 0 C.k ≥ -7D.k>7 4 4 4且 k≠ 049. 已知方程x2 x 2 ,则下列说中,正确的是()(A)方程两根和是 1 (B)方程两根积是 2(C)方程两根和是 1 (D)方程两根积比两根和大210.某超市一月份的营业额为200 万元, 已知第一季度的总营业额共 1000 万元 , 如果平均每月增长率为 x, 则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+ (1+x) 2]=10001二、填空题 :( 每小题 3分,共30分)(3 x)2x 2522.x 2 2 3x 3 011. 2用______法解方程 3(x-2) =2x-4 比较简便 .12.22互为相反数 , 则 x 的值为 ________.如果 2x +1 与 4x -2x-5 13. x 23x _____ (x ____) 214. 若一元二次方程 ax 2+bx+c=0(a ≠0) 有一个根为 -1, 则 a 、 b 、 c 的关系是 ______.15. 已知方程 3ax 2 -bx-1=0 和 ax 2+2bx-5=0, 有共同的根 -1, 则 a= ______, b=______.16. 一元二次方程 x 2 -3x-1=0 与 x 2-x+3=0 的所有实数根的和等于____.17. 已知 3- 2 是方程 x 2+mx+7=0的一个根 , 则 m=________,另一根为 _______.18. 已知两数的积是 12, 这两数的平方和是 25, 以这两数为根的一元二次方程是 ___________.1 1 四、列方程解应用题:(每小题 8 分,共 48 分)23. 某电视机厂计划用两年的时间把某种型号的电视机的成本降低 36%, 若每年下降的百分数相同 , 求这个百分数 .19. 已知 x1 ,x2 是方程 x 22x 1 0 的两个根,则 x 1 x 2 等于__________.24. 如图所示,在宽为 20m ,长为 32m 的矩形耕地上,修筑同样20. 关于 x 的二次方程 x 2mx n0 有两个相等实根,则符合条宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验件 的 一 组 m, n 的 实 数 值可 以 是 m , 2田,要使试验田的面积为 570m ,道路应为多宽?n .三、用适当方法解方程: (每小题 5 分,共 10 分)226. 解答题25. 某商场销售一批名牌衬衫,平均每天可售出20 件,每件赢已知关于 x 的方程 x2 2(m 2) x m2 4 0 两根的平方和比两利 40 元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价 1 元,根的积大 21,求m的值商场平均每天可多售出 2 件。

初中一元二次方程专项练习题(含答案)

初中一元二次方程专项练习题(含答案)

初中一元二次方程专项练习题一、填空题1、若x1=-1是关于x的方程x2+mx-5=0的一个根,则此方程的另一个根x2=。

(答案:5)2、若a为方程x2+x-5=0的解,则a2+a+1=0的值为。

(答案:6)3、若x2+6x+9+√y−3=0,则x-y的值为。

(答案:-6)4、已知直角三角形的两条直角边的长恰好是方程x2-5x+6=0的两根,则此直角三角形的斜边长为。

(答案:√13)5、由关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a值为。

(答案:-1)6、已知三角形两边长分别为2和9,第三边的长为一元二次方程x2-14x+48=0的一根,则这个三角形的周长为。

(答案:19)的值等于零的x是。

(答案:6)7、使分式x2−5x−6x+18、若关于y的一元二次方程ky2-4y-3=3y+4有实根,则,且k≠0)k的取值范围是。

(答案:k≥-749、如果2x2+1与4x2-2x-5互为相反数,则x的值为。

)(答案:1或-2310、已知方程3ax 2-bx-1=0和ax 2+2bx-5=0,有共同的根-1,则a= ,b= 。

(答案:1,-2)11、一元二次方程x 2-3x-1=0与x 2-x+3=0的所有实数根的和等于 。

(答案:3)12、已知3-√2是方程x 2+mx+7=0的一个根,则m= ,另一根为 。

(答案:-6,3+√2)13、已知两数的积是12,这两数的平方和是25,以这两数为根的一元二次方程是 。

(答案:x 2-7x+12=0或x 2+7x+12=0)14、已知x 1,x 2是方程x 2-2x-1=0的两个根,则等于1x 1+1x 2 。

(答案:-2)15、设m 、n 是一元二次方程x 2+3x-7=0的两个根,则m 2+4m+n= 。

(答案:4)二、解答题21、解下列方程:(1)x 2-5x+1=0;(答案:5±√212) (2)3(x -2)2=x (x -2);(答案:2,3) (3)2x 2-2√2x -5=0;(答案:√2±2√32) (4)(y+2)2=(3y -1)2;(答案:-14,32) (5)x 2-7x -18=0;(答案:-2,9)(6)x 2-x -6=0;(答案:-2,3)(7)(3-x )2+x 2=5;(答案:1,2)(8)2x 2+12x -6=0;(答案:-3±2√3)22、已知关于x 的一元二次方程x 2+(2m -1)x+m 2=0有两个实数根和。

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)一元二次方程测试题一、填空题:(每题2分共5分)1.将一元二次方程(1-3x)(x+3)=2x2化为一般形式为:2x^2-9x-9=0,二次项系数为2,一次项系数为-9,常数项为-9.2.若m是方程x^2+x-1=0的一个根,代入m+2m+2013得到(m+1)^2+2012的值为。

3.方程2+x-1=0是关于x的一元二次方程,根据一元二次方程的定义,二次项系数为1,一次项系数为1,常数项为-1.所以m的值为1.4.关于x的一元二次方程a-2x+x^2+a-4=0的一个根为x=2,则代入得到a=5.5.代数式4x-2x-5与2x+1的值互为相反数,即4x-2x-5=-(2x+1),解得x=-3/2.代入4y^2+2y+1得到9/2.6.已知2y+y-3的值为2,则代入4y^2+2y+1得到21.7.若方程(m-1)x+m·x=1是关于x的一元二次方程,则根据一元二次方程的定义,二次项系数为m-1+m=2m-1,一次项系数为m,常数项为1.所以m的取值范围为m≠1/2.8.已知关于x的一元二次方程x^2-x-1=0的一个根为x=2,则代入得到另一个根为x=-1.9.已知关于x的一元二次方程x^2+mx-6=0的一个根为2,代入得到另一个根为-3,且m的取值范围为m≠0.10.设x1,x2是方程x^2+bx+b-1=0有两个相等的实数根,则根据一元二次方程的定义,判别式D=b^2-4(b-1)=0,解得b=2或b=-1.但由于有两个相等的实数根,所以b=2.11.已知x=-2是方程x^2-3x+k=0的一个根,代入得到k=-2.12.若2是方程x^2+mx-6=0的一个根,代入得到另一个根为-3,且一元二次方程kx+ax+b=0有两个实数根,则根据一元二次方程的定义,判别式D=a^2-4kb≥0,又因为有两个实数根,所以D>0,即a^2-4kb>0.代入得到k9/4.13.设m、n是一元二次方程x^2+2x-3=0的两个根,则根据一元二次方程的定义,二次项系数为1,一次项系数为2,常数项为-3,根据求根公式得到m+n=-2,mn=-3.代入得到m^2+n^2+4m+4n+4=10.14.一元二次方程(a+1)x^2-ax+a-1=0的一个根为x=1,则代入得到a=1/2.15.若关于x的方程x^2-2x+2=0的两个根互为倒数,则根据一元二次方程的定义,判别式D=8-8a≥0,解得0≤a≤1.代入得到a=1/2.16.关于x的两个方程x^2-2x+3=0和x^2-3x+2=0的公共根为x=1,则代入得到另一个根分别为2和1,正确结论的序号为①和②。

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案一、选择题1. 一元二次方程的一般形式是:A. ax^2 + bx + c = 0B. ax^2 + bx = 0C. ax^2 + c = 0D. ax + b = 0答案:A2. 下列哪个方程不是一元二次方程?A. x^2 - 3x + 2 = 0B. x^2 - 5 = 0C. 2x + 5 = 0D. 3x^2 - 7x = 0答案:C3. 一元二次方程 ax^2 + bx + c = 0 的判别式是:A. b^2 - 4acB. b^2 + 4acC. a^2 - 4bcD. a^2 + 4bc答案:A二、填空题4. 解一元二次方程 x^2 - 5x + 6 = 0,其判别式为 _______ 。

答案:15. 如果一元二次方程的根是 x1 = 2 和 x2 = 3,那么这个方程可以写成 _______ 。

答案:x^2 - 5x + 6 = 0三、解答题6. 解一元二次方程 2x^2 - 7x + 3 = 0。

解:首先计算判别式Δ = b^2 - 4ac = (-7)^2 - 4 * 2 * 3 = 49 - 24 = 25。

由于Δ > 0,方程有两个不相等的实数根。

根据求根公式 x = (-b ± √Δ) / (2a),我们得到:x1 = (7 + √25) / 4 = (7 + 5) / 4 = 12 / 4 = 3,x2 = (7 - √25) / 4 = (7 - 5) / 4 = 2 / 4 = 0.5。

7. 已知方程 x^2 + 4x + k = 0 的一个根是 x = -2,求 k 的值。

解:将 x = -2 代入方程,得到 (-2)^2 + 4 * (-2) + k = 0。

简化得 4 - 8 + k = 0,解得 k = 4。

四、应用题8. 一个长方形的长是宽的两倍,面积是 24 平方米,求这个长方形的长和宽。

解:设宽为 x 米,长为 2x 米。

一元二次方程100道计算题练习(含答案)

一元二次方程100道计算题练习(含答案)

一元二次方程100道计算题练习(含答案)1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2-23x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x2)2)(113(=--x x x (x +1)-5x =0. 3x (x -3) =2(x -1) (x +1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程复习(测试)题
1.要使分式2541
x x x -+-的值为零,x 应当是 (

A. 4
B. 4或1
C. 1
D. –4或-1
2.[]2210=+x x x ++( )( ); []2
2( )=-( )x bx x -+
3.如果42++ax x 是一个完全平方式,那么a= .
4.若n (n ≠0)是关于x 的二次方程x 2+mx +n =0的一个根,则m +n 的值是_______.
5. ①方程
的根是 。

②方程 0)2)(1(=-+x x 的根是 ;
方程x 2=3x 的根是 ;
6. 关于x 的方程0142
=++x mx 有两个不相等的实数根,则m 的取值范围是 。

7.根据下列表格中代数式ax 2+bx+c 与x 的对应值,判断方程ax 2+bx+c=1(a ≠0)的一个根x 的大致范围为 。

8.若代数式5242
--x x 与122+x 的值互为相反数,则x 的值是 。

9.若m 是一元二次方程2y 2+y-3=0的根,则①4m 2+2m+1的值为 ;②2m ²-3
3m 的值为。

10.某小化肥厂一月份生产化肥500吨,后来由于改进操作技术,使得第一季度共生产化肥1750吨,若设二、三月份平均每月的增产率为x ,则可列方程为 .
11.原价a 元的某商品经过两次降价后,现售价b 元,如果每次降价的百分比都为x ,那么下列各式中正确的是( )
()()b x a A =-21; ()()b x a B =-2
1; ()()a x b C =+21; ()()a x b D =+2
1。

12.某厂计划在两年内把产量提高44%,如果每年与上一年的增长率相同,那么这增长率是_ 。

13.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,若设每个支干长出x 个小分支,则可列方程为 。

14.解下列方程:
⑴26302
x x -+=(用配方法) ⑵910402
x x +-=(用公式法)
⑶2502
x x -=(因式分解法) ⑷


16)1(22=-x ⑺0222=--x x
15. 列方程解应用题:
⑴某林场第一年造林100亩,以后造林面积逐年增长,第二年、第三年共造林375亩,后两年平均每年的增长率是多少?
⑵现有一块底边BC 长为10cm ,高AD 为8cm 的纸片三角形ABC ,如图所示,在△ABC 中剪下
一个矩形,当EF 长为多少时,矩形EFGH 的面积为84
5 cm 2?
⑶某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价,若每件商品售价为25元,则可卖出100件,每涨价1元,就可少卖出10件,同时物价局限定每件商品加价不能超过进价的30%,商店计划要赚480元,需要卖出多少件商品?每件商品应售价多少元?(要求:用两种设法,用其中一种设法完整做出来)
⑷要在长32m,宽20m的长方形绿地上修建宽度相同的道路,六块绿地面积共570m2,问道路
宽应为多宽?
⑸某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?
⑹如图所示,利用22米长的墙为一边,用篱笆围成一个长方形养鸡场,中间用篱笆分割出两个小长方形,总共用去篱笆36米,为了使这个长方形ABCD的面积为96平方米,问AB和
BC边各应是多少?
⑺某水果批发商场经销一种高档水果如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
⑻.读诗词解题:(通过列方程式,算出周瑜去世时的年龄)
大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数; 十位恰小个位三,个位平方与寿符;哪位学生算得快,多少年华属周瑜?
16.若规定两数a, b 通过“※”运算, 得到4ab, 即 a ※b = 4ab , 例如 2※6 = 4×2×6 = 48. ⑴.求 3※5的值.
⑵.求x ※x + 2 ※x -2※4 = 0 中x 的值.
17.阅读下列材料, 解答问题: 阅读材料:
为解方程 (x 2 -1 )2 - 5(x 2 -1 ) + 4 = 0, 我们可以将x 2 -1视为一个整体, 然后设 x 2 -1 = y , 则 (x 2 -1 )2 = y 2, 原方程化为 y 2 - 5y + 4 = 0 . ① 解得 y 1 = 1, y 2 = 4.
当 y = 1 时, x 2 -1 = 1 , ∴ x 2
= 2, ∴x =
当 y = 4 时, x 2 -1 = 4 , ∴ x 2
= 5, ∴x =
∴原方程的解为 1234x x x x ===解答问题 :
(1)填空:在由原方程得到①的过程中, 利用______________达到了降次的目的, 体现了_____________的数学思想.(4分) (2)解方程x 4 -x 2 -6 = 0. (5分)
一元二次方程复习(测试)题答案
1.A
2.25 5 14 b 2 1
2 b 3.±4 4.-1 5. ①x 1=2, x 2=
3 ②x 1=0, x 2=3
6.m <4且m ≠0
7. 6.18<x <6.19
8. x 1=1, x 2=- 23
9. ①7 ②- 1
3
10.500+500(1+x)+500(1+x)2
=1750 11.B 12.20% 13. 1+(1+x)+ (1+x)2
=91 14. ⑴x=12 (3± 3 ) ⑵x=19 (-5±61 ) ⑶x 1=0, x 2= 5
2 ⑷x 1=3, x 2=4
⑸x 1=8, x 2= 45 ⑹x=1±2 2 ⑺x=1
4
(1±17 )
15. ⑴设增长率为x,依题意可列方程为:100(1+x)+100(1+x)2
=375 解得x 1=12 =50%, x 2=- 7
2 (不合题意,舍去) 答:略
⑵设EF=x,依题意可列方程得:x (8-45 x )=84
5
解得:x 1=3, x 2=7 答:略
⑶设涨价为x 元,依题意可列方程得:(x+4)(100-10x )=480,解得:x 1=2, x 2=4(舍去) 设售价为x 元,依题意可列方程为:(x-21)[100-10(x-25)]=480,解得x 1=27, x 2=29(舍去) ⑷设宽为x 米,依题意可列方程为:(32-2x )(20-x )=570,解得x 1=1, x 2=35(舍去) ⑸设传染x 台,依题意可列方程为:(1+x )2
=81,解得x 1=8, x 2=-10(舍去) (1+8)³=729>700
⑹设AB=x,依题意可列方程为:x (36-3x )=96,解得x 1=4(舍去), x 2=8 ⑺设涨价x 元,依题意可列方程为:(10+x )(500-20x )=6000, 解得:x 1=5, x 2=10(舍去)
⑻设十位数为x,依题意可列方程为:(x+3)2=10x+x+3,解得:x 1=2, x 2=3 当x=2时,(x+3)2
=25<30(舍去);当x=3时,(x+3)2
=36>30 16. ⑴60 ⑵x 1=2, x 2=-4 17.⑴换元 转化 ⑵x 1,2=± 3。

相关文档
最新文档