7.2 沸腾换热
《传热学》第七章 凝结与沸腾换热

适用范围:
水平管:
适用范围:
(由于管径不会很大, 一般不会到达紊流)
进行修正后,得到:
垂直壁层流膜状凝结换热平均表面传热系数:
垂直壁与水平管凝结换热强度的比较—— 由于垂直壁定型尺寸远大于水平管,因而水平管凝结换热性能 更好,在实际管外凝结式冷凝器设计中多采用水平管。
垂直壁层流膜状凝结换热另一准则方程:
层流膜状凝结换热 速度变化规律:
蒸气静止,且对液膜无黏滞应力作用
层流膜状凝结换热 温度变化规律:
ts为蒸气饱和温度
可采用对流换热微分方程组对垂直壁层流膜状凝结换热加以研究
1.X方向液膜动量方程: 将: 代入,得:
v为蒸汽密度
假定液膜流动缓慢,则惯性力项可忽略,动量方程可简化为:
一般情况下:
从而:
已知壁温:
二、管内沸腾换热
特征:由于流体温度随流向逐渐 升高,沸腾状态随流向不断改变
液相单相流 h较低
垂 直 管 内 沸 腾
Байду номын сангаас
泡状流
h升高
块状流
h高
环状流
h高
气相单相流
h急剧降低
水平管内沸腾
液 相 单 相 流
泡 状 流
块 状 流
波 浪 流
环 状 流
气 相 单 相 流
汽水分层,管上半部局部换热较差
第七章重点: 1.膜状凝结换热特征和计算方法
2.沸腾换热的四个阶段 3.热管的工作原理
谢谢观看
三、水平管束管外凝结换热
上一层管子的凝液流到下一层管 子上,使下一层管面的膜层增厚
下层管上的h比上层管的h低
计算方法:用nd代替d代入水平单管管外凝结换热计算式
7.4 沸腾传热的模式

7.4 沸腾传热的模式液体的汽化(vaporization)可区分为蒸发(evaporation)和沸腾(boiling)两种。
前者指发生在液体表面上的汽化过程,后者则指在液体内部以产生汽泡的形式进行的汽化过程。
就流体运动的动力而言,沸腾过程又有大容器沸腾,又称池沸腾(pool boiling)和管内沸腾(in-tube boiling)两种。
大容器沸腾时流体的运动是由于温差和汽泡的扰动所引起的,而管内沸腾则需外加的压差作用才能维持。
本节通过大容器沸腾的介绍阐明沸腾传热的机理和基本特点,管内沸腾则留待到沸腾传热的影响因素中去介绍。
7.4.1 大容器饱和沸腾的三个区域现在来做一个观察沸腾传热现象的实验。
在盛水的烧杯中置入一根不锈钢细管,通电加热以使其表面上产生汽泡。
烧杯底下的电热器用于将水加热到饱和温度,这样在不锈钢管表面上进行的沸腾称为饱和沸腾(saturated boiling)。
随着电流密度的加大,亦即表面温度与饱和温度的温差Δt = t w - t s(称为过热度)的增加,烧杯中的水与不锈钢管表面之间的热交换会依次出现以下区域(如图7-14所示):图7-14饱和水在水平加热面上沸腾的q~Δt曲线(p = 1.013×105Pa)(1)自然对流区:壁面过热度较小(对于水在一个大气压下的饱和沸腾为Δt < 4℃)时,壁面上没有汽泡产生,传热属于自然对流工况。
(2)核态沸腾区(nucleate boiling):当加热壁面的过热度Δt > 4℃后,壁面上个别地点(称为汽化核心)开始产生汽泡,汽化核心产生的汽泡彼此互不干扰,称孤立汽泡区,其沸腾景象如图7-15a所示。
随着Δt进一步增加,汽化核心增加,汽泡互相影响,并会合成气块及气柱,图景如图7-15b所示。
在这两个区中,汽泡的扰动剧烈,传热系数和热流密度都急剧增大。
由于汽化核心对传热起着决定性影响,这两区的沸腾统称为核态沸腾(或称泡状沸腾)。
纯质制冷剂管内沸腾换热的计算方法

纯质制冷剂管内沸腾换热的计算方法Key words local flow boiling heat transfer coefficients; quality; divisional calculation method目前各种教科书和设计手册中,在进行蒸发器设计时,制冷剂沸腾侧的换热系数都按不分流型的平均换热系数来计算。
然而在实际沸腾过程中,随着沸腾的不断进行,制冷剂的流动情况不同,处于不同的流型,而且壁温沿程也有较大的变化,这几方面的影响都使局部换热系数发生很大的变化。
因此,只按一个平均的换热系数来设计蒸发器必然造成较大的误差。
鉴于此,我们采用分段计算的方法来计算局部换热系数。
对于纯质制冷剂,不同的文献资料推荐的计算公式有差别,因此有必要对各个计算公式作分析比较,并与实验数据进行对比,筛选出与实验数据吻合良好的计算方法及计算公式,为经济而有效的设计蒸发器提供参考。
1 两相流换热区分流型的模型Chawla把制冷剂在管内蒸发时的传热粗略地分成两个换热区——沫态沸腾区换热和两相受迫对流换热区。
B·slipcevic按照Chawla的资料,整理出相应于不同换热区域的计算公式:沫态沸腾区(1)两相强制对流换热区(2)其中各参数的确定见参考文献[1]。
上面两个换热区的分界,视质量流速与热流密度的关系确定。
当时,按沫态沸腾换热(公式(1))计算,当时,应按两相强制对流换热(公式(2))计算。
本人对B·slipcevic整理出的相应于不同换热区域的公式的计算值与从不同文献[2~5]中收集到的R12、R22、R134a等不同工质的局部沸腾换热系数的实验数据进行了比较,结果显示B·slipcevic 公式的计算值与实验值相比主要偏高,绝对平均偏差为56.7%。
B·slipcevic公式在沫态沸腾区或两相强制对流换热区的计算值均不随干度变化,这与沫态沸腾区的实验情况比较相符,但与两相强制对流换热区的实验情况相差很远。
传热学第六章凝结与沸腾换热

珠状凝结:凝结液体不能很好地润湿壁面,凝结 液体在壁面上形成一个个小液珠。珠状凝结时, 所形成的液珠不断长大,在非水平的壁面上,因 受重力作用,液珠长大到一定尺寸后就沿壁面滚 下。在滚下的过程中,一方面会合相遇的液珠, 合并成更大的液滴,另一方面也扫清了沿途的液 珠,更利于蒸汽的凝结。凝结液只是局部隔断了 蒸汽与壁面间的换热,因此其热阻要远小于膜状 凝结。
层的导热热阻是主要热阻这一特点,忽略次要因 素,是分析求解换热问题的一个典范。 Nusselt膜状理论:凝结换热系数h只决定于膜的 厚度。
合理简化假设: 1)常物性; 2)蒸汽静止,汽液界面上无对液膜的粘滞应力; 3)液膜的惯性力可以忽略;
4)汽液界面无温差,界面上液膜温度等于饱和温度,tδ=ts;
7.凝结表面的几何形状
纯净水蒸气凝结表面传热系数很大,凝结侧热阻不是主要部 分。若实际运行中有空气漏入,则表面传热系数明显下降。
对制冷剂凝结,主要热阻在凝结一侧,必须对凝结换热进行 强化。方法:
(1)用各种带有尖锋的表面,使在其上凝结的液膜减薄; (2)使已凝结的液体尽快从换热表面排泄掉。 (3)对水平管外凝结,可采用各种类型锯齿管或低肋管冷凝
亦适用。实验表明:当膜层Re<1600时为层流。
2.湍流膜状凝结换热实验关联式
Nu = Ga1/(
Prw Prs
)
1 4
(Re
3 4
−
253)
+
9200
式中:Ga — 伽里略数,Ga = gl 3 .
ν2
Prw — 以tw为定性温度的 Pr Ga、Re 、Prs — 以ts为定性温度
4.液膜过冷度及温度分布的非线性
沸腾强化换热原因

沸腾强化换热原因
沸腾强化换热是指在传统换热过程中,由于流体的沸腾现象而引起的加强换热效果。
沸腾强化换热的原因主要包括以下几点:
1.传热面积增加:在沸腾过程中,流体与换热壁面之间会形成大量的气液界面,这些界面的形成增加了传热面积,从而增强了换热效果。
2.温度梯度增大:沸腾过程中,由于液态流体与蒸汽在温度上的差异,使得传热界面上的温度梯度增大。
温度梯度的增大将导致更大的传热驱动力,从而提高换热效率。
3.对流换热增强:在沸腾过程中,由于液相的剪切作用,蒸汽的产生和泡沫的移动导致了流体的对流换热,这种对流换热机制使得热量的传递更加迅速和有效。
4.泡沫脱落热传递:在沸腾过程中,泡沫在壁面上形成并快速脱落,这种泡沫脱落会带走大量的热量,从而促进了换热过程。
5.液体搅动增强:在沸腾过程中,蒸汽的产生和泡沫的移动会引起流体的搅动,这种液体搅动可以破坏边界层,促进流体与换热面之间的传热,从而增强了换热效果。
总的来说,沸腾强化换热的原因是由于沸腾过程中产生的气液界面、温度梯度增大、对流换热、泡沫脱落和液体搅动等因
素共同作用,这些因素使得沸腾强化换热具有高效、高传热能力的特点。
沸腾传热技术在能源领域的应用

沸腾传热技术在能源领域的应用随着科技的不断进步,在能源领域,沸腾传热技术已经成为了必不可少的一种技术手段。
所谓沸腾传热就是热量通过热液体表面产生的沸腾现象向介质传递。
这种方法能够在提高能源利用率的同时,也能够提高生产效率,减少能源消耗。
本文将着重介绍沸腾传热技术在能源领域的应用。
一、沸腾传热在换热器中的应用换热器是能源领域中广泛使用的一种设备。
而沸腾传热技术在换热器中的应用也越来越多。
通过沸腾传热技术,可以极大地提高换热器的换热效率,降低能源的消耗。
另外,在太阳能热水器、电站锅炉、汽车发动机等领域中,也广泛使用着换热器。
二、沸腾传热在太阳能领域中的应用太阳能的利用是一种可持续发展的能源形式。
在太阳能的利用过程中,沸腾传热技术也扮演着重要的角色。
太阳能热水器就是一种应用沸腾传热技术的典型例子。
其工作原理是通过太阳能将水加热至一定温度,当水温达到一定程度时,水中的液体开始沸腾,从而将热量释放出来。
通过这种方式,可以将太阳能转化为电能和热能,实现太阳能利用的最大化。
三、沸腾传热在核能领域中的应用沸腾传热技术在核能领域中也有着广泛的应用。
在核电站中,沸腾传热技术可以将反应堆中的热能传递至蒸汽发生器中。
蒸汽发生器中的液体经过沸腾传热后,能够将热能转化为电能。
在核电站中,沸腾传热技术的应用可以大大提高电站的效率,也能够减少燃料的消耗。
四、沸腾传热在航空航天领域中的应用作为一种重要的先进技术,沸腾传热在航空航天领域中也有着广泛的应用。
例如在火箭发动机喷气式比冲优化、超音速输运器导热保护等方面,沸腾传热技术都有着很好的应用前景。
此外,还可以利用沸腾传热技术研究高温高压环境下材料的物理化学特性,提高航空航天技术的发展水平。
总之,沸腾传热技术在能源领域的应用非常广泛。
它可以帮助各个领域提高生产效率,减少能源消耗,从而实现节能减排的目标。
未来,随着科技的不断发展,沸腾传热技术在能源领域中的应用还将有更加广阔的前景。
7.4沸腾传热

定义: a 沸腾:工质内部形成大量气泡并由液态转换到气态 的一种剧烈的汽化过程 b 沸腾换热:指工质通过气泡运动带走热量,并使壁 面冷却的一种传热方式
沸腾换热也是对流换热的一种,因此,牛顿冷却公式仍然适用
沸腾分类
饱和沸腾 大空间沸腾
过冷沸腾
管内沸腾 饱和沸腾 过冷沸腾
t ts t ts
2 过冷度 只影响过冷沸腾,不影响饱和沸腾,因自然对流换热
时, h (tw t f )n ,因此,过冷会强化换热。
3 液位高度
当传热表面上的液位足够高时, 沸腾换热表面传热系数与液位 高度无关。但当液位降低到一 定值(临界液位)时,表面传热 系数会明显地随液位的降低而 升高。
4 重力加速度
随着航空航天技术的进步,超重力和微重力条件下的传热规律
将同样的两滴水分别滴在温度为120℃和300 ℃的锅面上,试问哪只锅上的水先被烧干, 为什么?
大容器饱和沸腾曲线 t tw ts 0
Departure from Nucleate boiling
C E
B
Natural convection
Nucleate boiling
A
D
Transition boiling
dW 0, dV d 4 R3 , dA d 4R2 3
pv
pl
2
R
pv pl , pl ps Tv Tl Ts
大容器沸腾换热计算式
1 大容器饱和核态沸腾
影响核态沸腾的因素主要是过热度和汽化核心数,而 汽化核心数受材料、表面状况、压力等因素的支配,所以 沸腾换热的情况液比较复杂,导致计算公式分歧较大。目 前存在两种计算是,一种是针对某一种液体,另一种是广 泛适用于各种液体的。
热工原理·第10章凝结与沸腾换热

第七章 凝结与沸腾换热
13
4 湍流膜状凝结换热
液膜从层流转变为湍流的临界雷诺数可定为1600。横管因 直径较小,实践上均在层流范围。
对湍流液膜,除了靠近壁面的层流底层仍依靠导热来传递 热量外,层流底层之外以湍流传递为主,换热大为增强
对竖壁的湍流凝结换热,其沿整个壁面的平均表面传热
系数计算式为:
hhl
2020/10/29
第七章 凝结与沸腾换热
tw ts
g
5
虽然珠状凝结换热远大于膜状凝结,但可惜的是,珠状凝 结很难保持,因此,大多数工程中遇到的凝结换热大多属 于膜状凝结,因此,教材中只简单介绍了膜状凝结
2 纯净饱和蒸汽层流膜状凝结换热的分析
1916年,Nusselt提出的简单膜状凝结换热分析是近代膜状 凝结理论和传热分析的基础。自1916年以来,各种修正或 发展都是针对Nusselt分析的限制性假设而进行了,并形成 了各种实用的计算方法。所以,我们首先得了解Nusselt对 纯净饱和蒸汽膜状凝结换热的分析。
(2)对稳定膜态沸腾,因为热量必须穿过的是热阻较大的 汽膜,所以换热系数比凝结小得多。
2020/10/29
第七章 凝结与沸腾换热
25
§7-5 沸腾换热计算式
沸腾换热也是对流换热的一种,因此,牛顿冷却公式仍 然适用,即
qh(twts)ht
但对于沸腾换热的h却又许多不同的计算公式
1 大容器饱和核态沸腾
耶夫公式,压力范围:105~4106 Pa
hC1t2.33 p0.5 C 1 0 .1W 2(m 2 N 0 .5K 3 .3)3
按 q ht hC2q0.7p0.15
C 2 0 .5W 3 0 .33 (m 0 .3N 0 .15 K )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算中采用单组分加修正的方法
第七章 7.2节(19)
17
7.2.4 强迫对流沸腾
• 工程应用
• 外力驱动下流体在宏观定向运动过程中的 沸腾现象
• 若宏观运动由密度差引起,则为自然对流 沸腾
• 通常采用的计算模型是把管内单相对流传 热量与池沸腾换热量相叠加,或者再引入 适当的经验修正系数
第七章 7.2节(19)
6
• 大多数沸腾加热设 备以改变加热面的热 流密度 qw,而不是改 变沸腾温差 t 来调节 工况的。
• 一旦热流密度稍超 过qmax ,设备的实际 运行工况将瞬间跳到 E 点附近。加热壁面 的温度将迅速达到 1000 ℃以上。
以控制热流密度方式 运行的沸腾换热设备 决不能让实际热流密 度超过DNB点。
已经证实,重力加速度在非常大的变化范 围内对核态沸腾换热没有明显的影响。
第七章 7.2节(19)
16
多组分液体混合物沸腾
• 在化工、制药和制冷空调领域 • 传热和传质过程紧密地联系在一起,传热过程
和汽泡的生长受到一种成分在另一种成分中的 浓度扩散速率的影响和制约。一般特点是:
➢ 起始沸腾的壁面过热度增大,核态沸腾的起始点推迟, 导致表面传热系数降低
第七章 7.2节(19)
5
过渡沸腾: CD段,点D对应的温差约为120 ℃。 点C以后,热流密度下降。原因是:加热面上 汽泡过多并形成汽膜,阻碍了热表面向液体的
热量传递。
膜态沸腾:加热面上形成完全覆盖的稳定汽膜。 由于热表面温度已经相当高,辐射的作用凸显 出来,使热流密度重新转为上升。
特别值得注意的是:
7.2 沸腾换热
沸腾:液体温度超过相应压力下的饱 和温度。
分类: 均相沸腾:液体内部,无加热表面; 非均相沸腾:与液体直接接触的固体
加热表面上。
第七章 7.2节(19)
1ቤተ መጻሕፍቲ ባይዱ
按空间情况分为:
➢大空间沸腾,或池沸腾(pool boiling) ➢强迫流动沸腾(forced flow boiling)
或者按液体的温度分为:
h 4 / 3 hc4 / 3 hr h1/ 3
第七章 7.2节(19)
13
超低温液体的核态与膜态沸腾
• 物性的特点:汽化潜热小、物性随温度变化大、 对壁面的润湿性好
• 固体表面的情况也发生了变化
第七章 7.2节(19)
14
7.2.3 影响核态沸腾换热的主要因素
• 液体的热物性 • 加热表面的状况
膜态沸腾
• 超低温制冷与输运。
• 膜态沸腾的一个突出特点是和加热表面的状 况没有关系-为什么?
第七章 7.2节(19)
12
水平管外膜态沸腾表面传热系数计算式
h
0.62
r
g
v
(
l
v )3v
1/ 4
v d ( tw tsat )
• 物性的定性温度 • 考虑汽膜过热,r = r + 0.4 cp,v ( tw-tsat) • 应计入辐射分量(非线性叠加)
第七章 7.2节(19)
3
标准大气压下水的沸腾曲线
第七章 7.2节(19)
4
核态沸腾:壁面过热度约 5~30 ℃。 AB段, 在加热面上的一些固定位置生成越来越 多的孤立汽泡(核化点)。BC段,壁面 过热度增大,气泡(被激活的核化点) 数目越来越多,汽泡变大或合并,在浮 力作用下离开壁面,升至容器的自由液 面。汽泡的发生、跃离导致加热面附近 激烈的流体掺混,因此 h 和 q 都比较大。 P 相应于表面传热系数 h 的极值。点C相 应于热流密度的极值,即qc = qmax,称为 临界热流密度。
加热表面状况有重大影响,但定量描述始终是沸腾研
究中的一大难点。主要表现在:
(1) 壁面材料种类、热物性、壁面的厚度 (2) 表面的机械外观 (3) 壁面的氧化、老化和污垢沉积情况
第七章 7.2节(19)
15
影响核态沸腾换热的主要因素
• 液体的压力 • 其它因素
不凝气体的含量、加热表面的大小与方向、 液体自由表面的高度(即液位)。
第七章 7.2节(19)
7
第七章 7.2节(19)
8
粗糙光管表面上的池核沸腾景象之一
第七章 7.2节(19)
9
粗糙光管表面上的池核沸腾景象之二
第七章 7.2节(19)
10
7.2.2 池沸腾换热的计算关系式
Rohsenow 关系式
qw
l
r
g
(
l
v
)
1/
2
c
p,l ( tw ts Cwl rPrln
)
3
• 饱和液体的物性 • 仅针对清洁表面 • Cwl 与 n : 按不同的液体-表面组合给出 • 不同的计算量,导致不同的误差范围.
第七章 7.2节(19)
11
临界热流密度计算式
q max
0.149
r
1/2 v
g
(l
v ) 1/ 4
• 临界热流密度随压力发生较强烈的改变。在 比压力(液体的压力与其临界压力之比)大 约等于 0.3 时临界热流密度具有极大值。
➢ 饱和沸腾(saturated boiling) ➢ 过冷沸腾(subcooled boiling)
第七章 7.2节(19)
2
7.2.1 池沸腾换热曲线
饱和池沸腾现象的特征
描述这种基本特征的是:沸腾曲线
大空间饱和沸腾的四个阶段:
自然对流沸腾:加热面上有少数汽泡, 不会脱离上浮。流体运动和换热遵循 自然对流的规律。
第七章 7.2节(19)
18
竖圆管内的流动沸腾
• 过冷沸腾 • 整体达到饱和状态:饱和沸
腾阶段(泡状流、块状流) • 汽液比例达到一定程度时形
成环状流 • 壁面汽化完毕:夹带细微液
滴的雾状流
第七章 7.2节(19)
下一节
19