深井超深井钻井技术1
探究深井超深井和复杂结构井垂直钻井技术

探究深井超深井和复杂结构井垂直钻井技术
深井、超深井和复杂结构井垂直钻井技术是油气勘探与开发领域中的关键技术,它们的应用能够有效提高油气资源的开采效率和效益。
本文将从深井钻井技术、超深井钻井技术和复杂结构井钻井技术三个方面进行探究。
深井钻井技术是针对井深较大的油气井而设计的一项钻井技术。
一般而言,当井深超过3000米时,我们称为深井。
而在深井井段的钻进过程中,由于岩石力学性质的改变,钻井速度变慢,井漏、井塌等问题也随之增加。
深井钻井技术需要考虑钻井液体系的设计与优化、钻具与井眼之间的匹配、钻头的选择与设计等问题。
深井井下环境恶劣,对工具设备和井下作业人员有更高的要求,深井钻井技术还需要关注井下作业的安全性。
而复杂结构井钻井技术则是指针对复杂地质条件下的油气井而开发的钻井技术。
复杂地质条件包括但不限于水平井、斜井、S形井、复杂沉积层等。
针对这种类型的井,传统的垂直钻井技术往往难以达到预期的效果。
复杂结构井钻井技术需要解决的问题包括井眼的稳定性、钻进路径的控制、横向钻井技术的应用等。
通过合理的设计和技术手段,可以提高复杂结构井的构建效率和完整程度,从而提高油气资源的开采效益。
连续油管作业技术在超深井中的应用

连续油管作业技术在超深井中的应用一、连续油管作业技术概述连续油管作业技术,是指在油井或气井井筒内连续进行油管和继动钻具的作业过程。
这种作业方式通过连续往复的推进和拉扯油管,实现钻井、完井、修井和生产作业等功能。
相比传统钻井作业方式,连续油管作业技术具有作业效率高、安全性好、环境污染小等优点,因此在超深井勘探开发中得到了广泛应用。
二、连续油管作业技术在超深井中的应用1. 提高作业效率超深井的钻井和完井作业通常需要经历漫长的作业周期,而传统的井筒作业方式往往效率低下。
而采用连续油管作业技术,由于油管可以连续推进和回收,可以大大缩短作业周期,提高作业效率,降低生产成本。
2. 高强度作业超深井通常需要面对地热、高压等极端条件,作业环境十分恶劣。
传统的作业方式难以适应这些极端条件下的作业,而连续油管作业技术则可以适应高强度的作业环境,保证作业的顺利进行。
三、连续油管作业技术的优势1. 提高作业效率连续油管作业技术可以实现钻井、完井、修井等多功能连续作业,大大缩短了作业周期,提高了作业效率。
2. 降低作业成本由于连续油管作业技术可以实现高效作业,减少了作业周期的延长,降低了作业的成本。
3. 降低人力风险传统钻井作业需要大量的人员参与,存在较高的人力风险。
而连续油管作业技术可以实现自动化作业,降低了人力风险。
四、连续油管作业技术的挑战1. 技术难度大连续油管作业技术涉及到复杂的机械传动、井下控制等技术问题,技术难度大。
2. 环境适应性差在极端环境下的连续油管作业技术还存在环境适应性差的问题,需要进一步研究与改进。
3. 安全风险由于连续油管作业技术涉及到机械传动、高压液体等问题,存在一定的安全风险。
五、结语连续油管作业技术在超深井中的应用具有非常广阔的前景。
它可以提高作业效率、降低作业成本,同时还可以降低人力风险、提高安全性。
但是同时也需要我们克服技术难度大、环境适应性差、安全风险等问题,不断进行技术革新和改进,使其在超深井勘探开发中发挥更大的作用。
深井及超深井固井技术应用简析

改善薄水泥环的力学性能以满足后期施工的要求。
5
有:
双层组合套管、特制套管(如特厚壁套管)。
(2)优选抗盐水泥浆体系。目前国内外在解决盐
结论
(1)在深井及超深井的固井过程中,保证良好的井
(1)防止盐膏层挤毁套管通常采用的套管柱结构
眼质量和掌握地层温度及压力梯度是固井施工的前提
目前该技术不断发展为解决压力敏感地层和窄压力窗
口条件下固井的有效技术手段。
2021 年第 6 期
3
西部探矿工程
盐膏层固井技术应用
在深井及超深井固井施工的过程中,当进入海相
(1)采用新的井身结构或钻井工艺如钻后扩眼、随
钻扩眼等技术,增大环空间隙,改善流体流动通道;
地层以后,由于盐膏层的存在,对固井带来了一系列的
2021 年第 6 期
31
西部探矿工程
深井及超深井固井技术应用简析
唐
炜*,
余
建,
宾国成
(中国石油川庆钻探工程公司井下作业公司,四川 成都 610052)
摘
要:近年来,随着勘探开发力度的加大,深井及超深井的数量日益增多,固井技术措施及水泥浆
体系一直是关注的重点。结合深井固井防气窜、压力敏感及窄安全密度窗口、盐膏层固井、小尺寸井
浆混配而成,不仅能增加孔隙压力,还具有微膨胀的特
同井深处的压力略高于地层压力,具体体现在施工过
性。
程中根据各类型流体在井筒内的位置和动压力的变化
2
压力敏感及窄安全密度窗口地区固井技术
深井及超深井地层条件复杂,在同一开次的井眼
条件下存在相对低压的易漏层,在固井作业注水泥过
不断调整井口压力,最终实现对地层的压稳和防漏。
塔深1井钻井液技术

处 理 剂 的 选 择
热滚 200
滚
16
高温高
170
不同聚合物对抗高温钻井液性能影响
配方及条件 热滚前 1#+0.3% PMNK 1#+0.3% KPAM 1#+0.3%80A51 FA1#+0.3% FA-367 1#+0.3% PHP 1#+0.3% DRISCAL 热滚后 热滚前 热滚后 热滚前 热滚后 热滚前 热滚后 热滚前 热滚后 热滚前 热滚后 AV mPa.s 52.5 34 55 33 47 37.5 65 35 38 45 40 28.5 PV mPa.s 40 23 22 22 30 25 50 26 21 28 30 20 YP Pa 12.5 11 33 11 17 12.5 15 9 17 17 109 8.5 GEL Pa 6/14 4/15 9/21 3/13 11/18 5/15 5/16 3/10 4/9 7/21 4.5/10 4/10 24/1.0 21/1.5 滤纸破 24/2.0 18/2.0 17/2.0 HTHP/Cake ml/mm PH 9 9 9 9 9 9 9 9 9 9 9 9
中石化西北分公司
塔深1井钻井指标
完钻井深(m) 完钻井深(m) 原始设计 加深设计 实钻指标 8000 8408 8408 钻井周期(d) 钻井周期(d) 344 39 462 纯钻时间(h) 纯钻时间(h) 3591 348 3230.08 平均钻速(m/h) 平均钻速(m/h) 2.23 1.15 2.59
塔深1井
钻井液技术简介
中国石油化工股份有限公司 西北分公司
汇报内容
一、塔深1井概况 二、国内外超深井钻井液技术状况 二、 三、塔深1井钻井液技术 三、 四、认识与建议
轮东1井超深井钻井液技术

故_ , 】 因此 为确保 四开钻井顺利 , 眼畅通 , 高钻井 ] 井 提
液 的防塌 、 防卡 、 防漏 、 抗高温等综合 能力是该 井钻井 液技术的重点 。
l 技 术 难 点
1 抗温 能力 。该 井 设 计井 深 达 76 0m 时 , ) 5 预
轮 东 1井超 深 井钻 井液 技术
吕志强 王 书琪 尹达 于 松 法 刘 毅 李磊
(. 里 木 油 田分 公 司建 设 有 限 责 任 公 司 , 疆 库 尔勒 ;2塔 里 木 油 f分 公 司钻 井 技 术 办 公 室 , 疆 库 尔 勒 ) 1塔 新 . 1 新
摘要 轮 东 1井 是 目前 中国 石 油天 然 气 集 团公 司 在 陆 上 钻 的第 一风 险预 探 井 , 钻 井 深 为 760I。该 井 四 完 2 n
开奥 陶系地层为 主要 目的层 , 中奥陶 系的 良里塔格 其
组、 一问房组 、 山组鹰 1 、 4 地层均 预计有 良 鹰 段 鹰 段 好油气 显示 。该 井 段 地 层情 况 复 杂 , 层 压 力 系数 地 低、 埋藏深 、 厚度大 , 极易发生漏 、 、 塌 溢等井下 复杂事
约为 9 在 室温测 其热滚 前后 的性能 , 果见 表 1 , 结 。
荧 光 润 滑 剂 MHR 8 D+ 1 0 s 一0 1 0 超 细 碳 酸 钙 -6 . P8 + . Y 一+ 4 0 无 荧 光 防 塌 剂 wF 一6 + 1 0 超 细 碳 酸 钙 X 1 . T 66 .
2 防塌 。根 据 邻井 资 料及 实钻 情况 , ) 在进 入 鹰 山组地 层后 , 壁垮 塌 、 块 现 象非 常 严重 , 1 井 掉 一 3内
连续油管作业技术在超深井中的应用

连续油管作业技术在超深井中的应用随着石油钻探技术的不断发展,石油工业对于超深井的需求越来越大。
而在超深井中,作业难度和风险也随之增加。
为了解决这一问题,连续油管作业技术应运而生。
这种新型作业方式不仅可以提高作业效率,降低风险,还可以适应超深井的作业环境。
本文将介绍连续油管作业技术在超深井中的应用。
一、连续油管作业技术的原理及特点连续油管作业技术是一种新型的钻井作业方式,其主要原理是利用连续油管上下输送工具和材料,实现在井内作业的连续进行。
相较于传统的批量油管作业,连续油管作业技术有以下几点特点:1. 连续性:连续油管作业技术可以实现在井内的连续作业,大大提高了作业效率。
由于作业过程中无需频繁的上下油管,可以减少作业中断,降低了作业风险。
2. 自动化:连续油管作业技术采用了自动化控制系统,可以实现对作业过程的智能监控和控制。
操作人员只需在控制室进行监控和指挥,大大降低了对作业人员的专业要求和操作风险。
3. 适应性强:连续油管作业技术可以适应不同井深、不同井径和不同作业环境,具有较强的适应性。
1. 提高作业效率超深井的钻井作业通常需要较长时间,传统的油管作业方式会导致作业效率低下。
而采用连续油管作业技术,可以实现在井内的连续作业,大大提高了作业效率。
作业人员可以通过控制系统实时监测井内情况,随时调整作业进度,避免了频繁上下油管导致的作业中断,整个作业过程更加流畅高效。
2. 降低作业风险3. 适应超深井的作业环境超深井的作业环境具有较高的温度、压力和硫化氢含量,对作业设备和材料提出了较高的要求。
传统的油管作业方式在超深井中存在着很多困难和挑战。
而连续油管作业技术具有较强的适应性,可以适应不同井深、不同井径和不同作业环境,能够有效应对超深井的作业需求。
目前,连续油管作业技术在超深井中的应用已经取得了一定的成绩,但同时也存在一些问题需要解决。
连续油管作业技术需要较高的投入成本,包括设备采购和技术人员培训等。
元坝103-1H井超深井钻井配套技术

3102
775~3102
8.16
13 YB273-1H 井 2960
2960
702~2918
10.27
14 YB10-1H 井 3362
3294
497~3283.48
15.53
15 YB103-1H 井 3102
3099
706~1443.23
13.05
2.2.2 元坝103-1H井二开钻头选型技术
泥浆钻机械钻速 /m·h-1
表1 元坝区块2013-2015年完钻井二开施工情况
二开设
序
二开完钻井 空气钻井段 空气钻机械钻速
井号
计井深
号
深/m
/(m-m)
/m·h-1
/m
1 YB1-1H 井
3505
3316
502~3316
15.01
2 YB27-3H 井 3072
3146
708.50~3146
11.30
3
YB29-1 井
3515
8
T1655B 百施特
所钻层位 上沙溪庙组 上沙溪庙组
井段/(m-m) 进尺/m 2506.02~2507.50 1.48 2507.50~2513.09 5.59
机械钻速/ m·h-1
0.99
0.56
备注
等新钻头到 井期间,第 三次入井 钻头泥包
9 MS1951 百施特 上沙溪庙组
2513.09~3099 585.91
1.66
2.3 三开、四开“NEW-DRILL+孕镶/PDC钻头”复合钻井技术
钻速分别达到3.07m/h、1.66m/h,平均机械钻速2.34m/h,是其他井泥浆钻机械钻速的7.55倍,
西北油田超深短半径小井眼套管开窗侧钻技术

1.3 轨迹控制难度大短半径定向井,使用螺杆度数大,不能通过调整定向进尺和复合进尺比例来调整井眼曲率,只能通过更换螺杆度数进行调整,加大轨迹控制难度[2]。
1.4 定向钻进存在托压现象定向钻进时,由于井眼曲率高,造成钻具摩阻增大,托压现象经常出现,严重影响钻进效率。
深井小井眼,循环排量低,钻井液携岩效果差,加剧了托压的出现。
1.5 井下高温、高压环境仪器易发生故障工区内地温梯度大部分在2.0 ℃/100 m 左右,施工井循环温度普遍在130~150 ℃,部分井温度超过160 ℃,井下仪器长时间处于高温、高压环境下,加之井底高震动,仪器故障率高,严重影响生产时效。
2 超深短半径小井眼套管开窗技术措施2.1 制定合理开窗技术措施,保证开窗成功率2.1.1 校核井深,避开套管节箍,确定斜向器下入深度仔细查阅老井套管数据,导斜器座封位置要避开接箍、扶正器、射孔井段,上窗口位置尽量在套管节箍以下3 m ,开窗点固井质量要好。
开窗前,将钻井液性能调整到位,尤其是悬浮、携带铁屑的能力,确保开窗时铁屑能正常返出。
2.1.2 校核仪器精度,测量陀螺角差,确保窗口方位与设计一致测量斜向器角差,根据设计开窗方位以及测量角差,确定陀螺定位方位,确保斜向器座封方位准确。
将斜向器下到预定位置后,反循环洗井,仪器座键三次以上,数据一致确定座键成功,投球进行斜向器坐封作业。
导斜器丢手后,上提钻具时注意悬重变0 引言西北油田老区经过较长时间的开发生产,受套管变形或损坏、井下落物事故不易处理,以及井下水锥或气锥等多种原因的影响,陆续有部分油水井已不能维持正常生产,产量逐年下降,严重威胁到油田的正常生产。
套管开窗侧钻技术能够利用老井井眼对油藏进行再开发挖潜,并充分利用老井原有的一些采输设备,使原井的生产潜力得以充分发挥,从而延长老井使用寿命,提高原油产量,同时还可利用老井的井眼大幅度降低施工成本,缩短施工周期,提高综合经济效益。
套管开窗侧钻主要分为两种:段铣开窗侧钻和斜向器开窗侧钻,在实际施工过程中一般选用更为高效的斜向器开窗侧钻[1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、深井超深井钻井技术发展现状
世界上完成7口特深井:前苏联SG-3井12869m及SG-1井过9000m、美国瑟 复兰奇1-9井9034m、巴登1号井9159m、罗杰斯1号井9583m、Emma Lou2 井9029 m、德国HTB井9101m,其中美国占4口。
国外超深井钻井技术发展主要集中在钻机、钻头、井下工具、钻井泥浆等 方面:
超深井钻机功率大、性能好、自动化程度高、配套设备性能可靠,从而在装
备上为快速打好深井提供了物质上的准备。
钻头质量好、品种全、选型合理,可获得钻头耗用数少、钻井进尺多、钻井 速度快的好效果。
钻井液具有良好的热稳定性、润滑性和剪切稀释特性、固相含量低、高压失 水量低、可抗各种可溶性盐类和酸性气的污染。
运用井下动力钻具提高钻速、井身结构设计灵活、高强度钻杆等工具配套齐
深井超深井钻井完井技术
1
提纲
一、深井超深井钻井技术发展现状 二、深井超深井井身结构 三、深井超深井提速钻井技术 四、深井超深井井斜控制技术 五、深井超深井压力控制技术 六、深井超深井钻井复杂事故预防技术 七、深井超深井固井技术
2
一按国际通用概念:井深超过4500m或15000ft的井为深井; 井深超过6000m或 20000ft的井为超深井;井深超过9000m或30000ft的井为特深井。
9
一、深井超深井钻井技术发展现状
复杂地质条件新区第一口深探井钻井情
地区
井号
库车 坳陷
南喀1 东秋5 克参1
塔西南坳 柯深1 陷 英科1
井深(M)
设计
6000 6400 6000
实际
5314 5314 6150
6800 6500
全,使得国外超深井钻井速度快、事故少、成本低、效益好。
5
一、深井超深井钻井技术发展现状
据统计美国钻一口7000m的超深井仅需7~10个月。其中处理井下复杂情 况所耗费的时间占完井周期的5%~15%。复杂地质条件下所钻成的深 约7500m的初探井,其完井周期最短的不到1年,最长的不超过2年。
前苏联拥有适用高纬度地区的先进超深井钻井技术,其中涡轮及电动钻 具钻深井方面处于世界领先地位,电磁波MWD、井眼轨迹控制及纠斜 技术先进。
从4500m深井到12000m特深井的钻井实践,人类约经历了46年时间,其中从
6000m到12000m特深井实践约经历了35年,从9000m特深井到12000m特深井
实践约经历了12年。
3
一、深井超深井钻井技术发展现状
2、国外深井超深井钻井概况
世界上钻深井、超深井的国家有80多个,其中,美国、前苏联、德国的超 深井钻井技术装备和综合技术水平处于国际领先地位。 美国是世界上钻超深井历史最长、工作量最大、技术水平最高的国家,世 界上大多数超深井集中在美国。 世界上第一口超深井、特深井分别于1949年、1972年由美国完成,井深分 别为6254.8m、9159m。 1984年,前苏联钻成世界上第一口深超万米的特深井(12260 m),1991 年该井第二次测钻至井深12869 m,目前仍保持着世界最深钻井记录。
在深井钻井工艺技术方面,发展了优选参数钻井和近平衡钻井技术;钻井
液体系由细分散发展到粗分散,开发了三磺和聚合物等钻井液体系;钻井
液化学处理剂和水泥外加品种增多,逐步形成系列。但是,在处理深井井
下复杂情况和事故方面,特别是井喷着火使我们付出了沉重代价。
8
一、深井超深井钻井技术发展现状
第三阶段(1986~现在): 1986年3月揭开了塔里木大规模勘探的序幕,紧接着在90年代前期川东气 区的勘探开发也进入高潮,使我国深井超深井钻井工作进入规模应用的 阶段。 在这个阶段中,深井超深井数量进一步增加,11年共完成深井超深井678 口,其中超深井33口。 90年代以来陆上深井超深井钻井技术有了明显的进步。但是,复杂地质 条件下的深探井,特别是新区或新层的第一口深探井,钻井工作还存在 许多问题。 下表是塔里木盆地各复杂地质条件新区第一口深探井的钻井情况。
7
一、深井超深井钻井技术发展现状
第二阶段(1976~1985年):
1976年4月30日,我国第一口超深井女基井(井深6011M)在四川完成,标 志着我国钻井工作由打深井进一步发展到打超深井。
从1976年开始,我国每年都打深井,并且数量逐步增加,由1976年完成3口 上升到1985年完成29口。
在这个阶段中,除完成170口深井外,还完成了10口超深井,其中包括井深 超过7000M的2口超深井(四川关基井,7175M;新疆固2井,7002M),这 是我国深井超深井钻井的初步发展阶段。
欧洲北海是世界上深井超深井集中地区,平均井深超过5000m,属高温 高压深井,目前北海地区测量井深8000m左右的大位移井钻井周期一般 只有90d左右。
德国1990年完成的KTB大陆科探井井深9101m,在钻井应用了高新技术, 包括VDS垂直钻井系统、顶驱、铝合金钻杆、金刚石绳索取心、无固相 抗高温钻井液、耐高温低转速大扭矩螺杆马达、变速涡轮钻具等。
从4500m深井到6000m超深井的钻井实践,人类约经历了11年时间。
从6000m超深井7500m超深井实践,人类约经历了10年时间。
从4500m深井到9000m特深井的钻井实践,人类约经历了34年,其中从 6000m超深井到9000m特深井实践约经历了23年时间,从7500m超深井到 9000m特深井实践约经历了13年。
6
一、深井超深井钻井技术发展现状
3、国内深井超深井钻井概况
我国超深井钻井主要集中在塔里木盆地、准噶尔盆地、四川盆地及柴达木 盆地等地区。超深井钻井技术起步较晚,我国陆上深井超深井钻井大致可 分为三个发展阶段。 第一阶段(1966~1975年): 1966年7月28日,我国第一口深井大庆松基6井(井深4719M)完成,标志 着我国钻井工作由打浅井和中深井发展到打深井的阶段。 在这个阶段中只打了5口深井,这5口深井是在十分艰苦的条件下,依靠我 们自己的力量完成的。继松基6井之后,又分别在大港、胜利和江汉油田打 成了超过5000M的深井,初步积累了钻深井的经验。