高考物理经典题型解题思路辅导第5讲电磁感应与电路
专题05 能量观点和动量观点在电磁学中的应用 【讲】-2023年高考物理二轮热点题型归纳(解析)

专题05能量观点和动量观点在电磁学中的应用【要点提炼】1.电磁学中的功能关系(1)电场力做功与电势能的关系:W 电=-ΔE p 电。
推广:仅电场力做功,电势能和动能之和守恒;仅电场力和重力及系统内弹力做功,电势能和机械能之和守恒。
(2)洛伦兹力不做功。
(3)电磁感应中的功能关系其他形式的能量――→克服安培力做功电能――→电流做功焦耳热或其他形式的能量2.电路中的电功和焦耳热(1)电功:W 电=UIt ;焦耳热:Q =I 2Rt 。
(2)纯电阻电路:W 电=Q =UIt =I 2Rt =U 2Rt ,U =IR 。
(3)非纯电阻电路:W 电=Q +E 其他,U >IR 。
(4)求电功或电热时用有效值。
(5)闭合电路中的能量关系电源总功率任意电路:P 总=EI =P 出+P 内纯电阻电路:P 总=I 2(R +r )=E 2R +r电源内部消耗的功率P 内=I 2r =P 总-P 出电源的输出功率任意电路:P 出=UI =P 总-P 内纯电阻电路:P 出=I 2R =E 2R(R +r )2P 出与外电阻R 的关系电源的效率任意电路:η=P出P总×100%=UE×100%纯电阻电路:η=RR+r×100%由P出与外电阻R的关系可知:①当R=r时,电源的输出功率最大为P m=E24r。
②当R>r时,随着R的增大输出功率越来越小。
③当R<r时,随着R的增大输出功率越来越大。
④当P出<P m时,每个输出功率对应两个外电阻R1和R2,且R1R2=r2。
3.动量观点在电磁感应中的应用(1)动量定理在电磁感应中的应用导体在磁场对感应电流的安培力作用下做非匀变速直线运动时,在某过程中由动量定理有:BL I1Δt1+BL I2Δt2+BL I3Δt3+…=m v-m v0通过导体横截面的电荷量q=I1Δt1+I2Δt2+I3Δt3+…得BLq=m v-m v0,在题目涉及通过电路横截面的电荷量q时,可考虑用此表达式。
专题五 电路与电磁感应 (2)——2023届高考物理大单元二轮复习讲重难

【例 1】答案:D 解析:A. 外壳不能使用金属材料,若使用金属材料外壳也会发生电磁感应,形成回路,消 耗能量,故 A 错误; B. 通过楞次定律结合右手螺旋法则,知电流由 d 流出,相当于电源正极, d 点电势高于 c 点,故 B 错误; C. 在送电线圈电压不变的情况下,增加送电线圈匝数不改变送电线圈的电流和周围的磁场, 不可以提高受电线圈的电压,故 C 错误; D. 根据电磁感应原理可知,接收线圈中交变电流的频率与发射线圈中交变电流的频率相同, 故 D 正确。
(1)解决电磁感应图象问题的一般步骤 ①明确图象的种类,即是 B t 图象还是 t 图象或者是 E t 图象、 I t 图象等。 ②分析电磁感应的具体过程。 ③用右手定则或楞次定律确定方向对应关系。 ④结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等写出函数关系式.平张号 ⑤根据函数关系式,进行数学分析,如分析斜率的变化、截距等。 ⑥应用图象信息画图象、判断图象或讨论各物理量的变化。
(2) B t I t 如图 1,规定垂直纸面向里为磁场正方向,顺时针为电流正方向,根据 B t 图象画出 I t 图象,如图 2。
为方便记忆,我们设定:伸出右手,让大拇指指向磁场正方向,环绕四指,如果四指 环绕方向为线圈中电流正方向,则称为“B、I 二者满足右手”;若环绕方向为线圈中电流负 方向,则称为“B、I 二者不满足右手”。
专题五 电路与电磁感应 (2)
第十讲 电磁感应及应用
——2023届高考大单元二轮复习讲重难
一、核心思路
二、重点知识
1.“三定则、一定律”的应用 (1)安培定则:判断运动电荷、电流产生的磁场方向。 (2)左手定则:判断磁场对运动电荷、电流的作用力的方向。 (3)右手定则:判断部分导体切割磁感线产生感应电流的方向。 (4)楞次定律:判断闭合电路磁通量发生变化产生的感应电流的方向。 2.求感应电动势的两种方法 (1) E n ,用来计算感应电动势的平均值。
高考物理易错题解题方法大全(5):电磁感应

高考物理易错题解题方法大全(5)电磁感应例61、在图11-1中,CDEF为闭合线圈,AB为电阻丝。
当滑动变阻器的滑动头向下滑动时,线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,电源的哪一端是正极?【错解分析】错解:当变阻器的滑动头在最上端时,电阻丝AB因被短路而无电流通过。
由此可知,滑动头下移时,流过AB中的电流是增加的。
当线圈CDEF中的电流在G处产生的磁感强度的方向是“·”时,由楞次定律可知AB中逐渐增加的电流在G处产生的磁感强度的方向是“×”,再由右手定则可知,AB中的电流方向是从A流向B,从而判定电源的上端为正极。
楞次定律中“感生电流的磁场总是要阻碍引起感生电流的磁通量的变化”,所述的“磁通量”是指穿过线圈内部磁感线的条数,因此判断感应电流方向的位置一般应该选在线圈的内部。
【正确解答】当线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,它在线圈内部产生磁感强度方向应是“×”,AB中增强的电流在线圈内部产生的磁感强度方向是“·”,所以,AB 中电流的方向是由B流向A,故电源的下端为正极。
【小结】同学们往往认为力学中有确定研究对象的问题,忽略了电学中也有选择研究对象的问题。
学习中应该注意这些研究方法上的共同点。
练习61、如图所示电路中,当电键S断开瞬间( )(A)流经R2的电流方向向右,流经L的电流方向向左(B)流经R2的电流方向向左,流经L的电流方向向右(C)流经R2和L的电流方向都向右(D)流经R2和L的电流方向都向左例62、长为a宽为b的矩形线圈,在磁感强度为B的匀强磁场中绕垂直于磁场的OO′轴以恒定的角速度ω旋转,设t= 0时,线圈平面与磁场方向平行,则此时的磁通量和磁通量的变化率分别是 [ ]【错解分析】t=0时,线圈平面与磁场平行、磁通量为零,对应的磁通量的变化率也为零,选A。
磁通量Φ=BS⊥BS(S⊥是线圈垂直磁场的面积),磁通量的变化ΔΦ=Φ2-Φ1,两者的物理意义截然不同,不能理解为磁通量为零,磁通量的变化率也为零。
高考物理备考如何应对电磁感应题型

高考物理备考如何应对电磁感应题型电磁感应是高考物理考试中的一个重要考点,也是考察学生对电磁学原理和应用的理解和掌握程度的题型之一。
为了应对这一题型,学生需要掌握相关的知识点,并且能够灵活运用这些知识解决问题。
本文将介绍一些备考电磁感应题型的有效方法。
一、掌握基础概念和基本原理在备考电磁感应题型时,首先需要掌握电磁感应的基础概念和基本原理。
例如,了解法拉第电磁感应定律和楞次定律的含义和应用场景。
同时,还需要了解电磁感应与电磁场的关系,以及电磁感应在生活中的应用等。
二、熟悉常见题型的解题思路在备考过程中,熟悉常见电磁感应题型的解题思路可以帮助学生更好地应对考试。
常见的电磁感应题型包括导体在磁场中运动的感应电动势计算、电磁感应实验现象的解释以及互感器和变压器的原理等。
通过针对每种类型的题目,总结出解题思路和解题方法,并多进行相关练习,可以提高解题的速度和准确性。
三、强化数学工具的应用能力在解决电磁感应题目时,常常会涉及到一些数学工具的应用,如矢量、积分、微分等。
因此,在备考过程中,需要加强对这些数学工具的理解和应用能力。
学生可以通过增加数学训练的时间,并结合物理知识进行综合练习,以提高数学工具的应用能力。
四、注重题目中的关键信息在解析电磁感应题目时,需要注意题目中的关键信息。
有些问题可能通过寻找关键信息来简化解题过程。
因此,学生应当养成仔细阅读题目和剖析题目的习惯,找出与解题相关的信息,并将其合理应用。
五、总结思考经验,培养问题解决思维在备考过程中,学生应该总结思考经验,培养问题解决思维。
对于遇到的电磁感应问题,可以思考类似的解答问题思路和方法,并从中总结出经验。
通过将不同类型的问题进行比较和联系,培养出解决问题的思维方式和方法,以应对更加复杂的题目。
六、进行模拟测试和真题练习在备考阶段,学生需要进行大量的模拟测试和真题练习。
通过做题训练,不仅可以熟悉各种类型的电磁感应问题,还可以提高解题速度和答题准确性。
高考物理如何有效备考电磁感应题型的计算题

高考物理如何有效备考电磁感应题型的计算题电磁感应是高考物理中的重要内容之一,在物理考试中经常会涉及到与电磁感应相关的计算题。
为了提高备考效率和成绩,我们可以采取一些有效的方法来备考电磁感应题型的计算题。
本文将从以下几个方面来探讨如何有效备考高考物理中的电磁感应计算题。
一、了解电磁感应的基本原理在备考电磁感应计算题之前,我们需要对电磁感应的基本原理有一定的了解。
电磁感应的基本原理是法拉第电磁感应定律,即磁场变化时产生感应电动势。
此外,还要掌握电磁感应中的一些重要公式,例如感应电动势公式、楞次定律等。
通过对电磁感应基本原理的掌握,可以更好地理解和解答计算题。
二、熟悉常见的电磁感应计算题类型在备考电磁感应计算题时,我们需要熟悉一些常见的计算题类型。
例如,计算电磁感应中回路中的电流、电阻等参数;计算感应电动势大小;计算线圈中的磁通量等。
针对不同的题型,我们可以采取相应的解题方法和策略,提高解题的准确性和速度。
三、掌握解题的基本步骤解决电磁感应计算题,我们可以采用以下的基本解题步骤:1. 阅读题目,理解题意,标注已知量和未知量。
2. 利用已知量和相应的公式,进行计算。
注意单位的转换和计算过程的准确性。
3. 检查计算结果是否符合物理规律,如符号是否正确、数量级是否合理等。
4. 作出答案和解题思路的清晰表述,确保答案的准确性和完整性。
通过掌握解题的基本步骤,可以更加有序地进行解题过程,提高解题的效率和准确性。
四、积累并熟练运用解题技巧在备考电磁感应计算题时,我们还可以积累并熟练运用一些解题技巧。
例如,对于复杂的电磁感应题目,可以采用分步计算、逐步推导的方法,将复杂问题简化为简单易解的子问题。
此外,还可以利用对称性、磁通量守恒等原理,简化计算过程和提高解题速度。
五、大量进行习题训练和模拟考试提高解答电磁感应计算题的能力,最重要的方法就是进行大量的习题训练和模拟考试。
通过不断的练习和模拟,可以熟悉各种不同类型的题目,熟练掌握解题方法和技巧。
2025年高考物理总复习专项讲义法拉第电磁感应定律

2025年高考物理总复习专项讲义电磁感应法拉第电磁感应定律1. 高考真题考点分布常考考点真题举例法拉第电磁感应定律的表述和表达式2024·广东·高考真题导体棒转动切割磁感线产生的动生电动势2024·浙江·高考真题计算导轨切割磁感线电路中产生的热量2024·海南·高考真题求导体棒运动过程中通过其截面的电量2024·贵州·高考真题2. 命题规律及备考策略【命题规律】通过对近年来高考物理电磁感应命题趋势的分析,我们可以看出高考对这一部分知识的考查不仅局限于基础知识的记忆和理解,更倾向于考查考生的综合应用能力和解决实际问题的能力。
因此,考生在备考过程中应该全面准备,注重知识的整合和应用,以更好地应对高考的挑战【备考策略】针对电磁感应的复习,考生应该全面掌握相关知识点,注重基础知识的巩固和理解,同时通过大量的练习来提高解决综合问题的能力。
【命题预测】高考物理命题会随着教育改革和科技进步而不断更新。
例如,新课标中对动量部分的调整可能影响电磁感应部分的命题方向。
一、磁通量1.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积。
(2)公式:Φ=BS(B⊥S);单位:韦伯(Wb)。
(3)矢标性:磁通量是标量,但有正负。
2.磁通量的变化量:ΔΦ=Φ2-Φ1。
3.磁通量的变化率:磁通量的变化量与所用时间的比值,即ΔΦΔt,与线圈的匝数无关;表示磁通量变化的快慢。
二、电磁感应现象1.电磁感应现象当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生的现象。
2.产生感应电流的条件(1)闭合导体回路;(2)磁通量发生变化。
三、感应电流的方向判断1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(2)适用范围:一切电磁感应现象。
“四步法”判断感应电流方向楞次定律的推论内容例证阻碍原磁通量变化——“增反减同”阻碍相对运动——“来拒去留”使回路面积有扩大或缩小的趋势——“增缩减扩”阻碍原电流的变化——“增反减同”使闭合线圈远离或靠近磁体——“增离减靠”当开关S闭合时,左环向左摆动、右环向右摆动,远离通电线圈2.右手定则(1)内容:如图所示,伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。
高中物理-电磁感应-经典必考知识点总结与经典习题讲解与练习题
∆Φ . ∆t
③ 求解某一位置(或某一时刻)的感应电动势,计算瞬时电流、电功率及某段时间内的电功、电热 等问题,应选用 E=BLvsinθ 。 5、感应电动势的两种求解方法 . (1)用公式 E = n
E=n
∆B ∆Φ 是普遍适用的公式,当 ΔΦ 仅由磁场的变化引起时,该式可表示为 E = n S ;若 ∆t ∆t
三、感应电流的方向
1、楞次定律 . (1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。 ① 凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。 ② 凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。 (2)楞次定律的因果关系: 闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场的出现是感应电流存 在的结果,简要地说,只有当闭合电路中的磁通量发生变化时,才会有感应电流的磁场出现。
-2-
(5)右手定则与楞次定律的联系和区别 . ① 联系:右手定则可以看作是楞次定律在导体运动情况下的特殊运用,用右手定则和楞次定律判断 感应电流的方向,结果是一致的。 ② 区别:右手定则只适用于导体切割磁感线的情况(产生的是“动生电流” ) ,不适合导体不运动, 磁场或者面积变化的情况,即当产生“感生电流时,不能用右手定则进行判断感应电流的 方向。也就是说,楞次定律的适用范围更广,但是在导体切割磁感线的情况下用右手定则 更容易判断。 3、 “三定则” . 比较项目 基本现象 作用 右 手 定 则 部分导体切割磁感线 判断磁场 B、速度 v、感 应电流 I 方向关系 v (因) 图例 × (果) ○ B F (果) 左 手 定 则 磁场对运动电荷、 电流的作用力 判断磁场 B、电流 I、磁场力 F 方向 安 培 定 则 运动电荷、电流产生磁场 电流与其产生的磁场间的 方向关系
2024年高考物理二轮复习专题四电路与电磁感应专题突破5动量观点在电磁感应中的应用
外力做的功=棒1的动能+棒2
点
的增加量+焦耳热
的动能+焦耳热
2. 方法技巧
解决此类问题时通常将两棒视为一个整体,于是相互作用的安培力是系
统的内力,这个变力将不影响整体的动量守恒。因此解题的突破口是巧
妙选择系统,运用动量守恒定律(动量定理)和功能关系求解。
例2 (2023·连云港调研)如图所示,两根平行的光滑金属导轨放在水
点
减小的加速运动,最后两棒
以相同的速度做匀速直线运
动
动量观 将两棒视在恒力F和安培力的
共同作用下做加速度减小的加
速运动,导体棒2受安培力的
作用做加速度增大的加速运
动,最后两棒以相同的加速度
做匀加速直线运动
将两棒视为整体,系统受外
力,系统动量不守恒
能量观 棒1动能的减少量=棒2动能
g取10m/s2,导轨足够长。(取sin37°=0.6,cos37°=0.8)
(1) 运动过程中a、b哪端电势高?并计算恒力F的大小。
解:(1) b端,5N
(2) 由图中信息计算0~1s内,通过电阻R的电荷量q和金属棒滑过的
位移x。
解:(2) 0.755C,0.755m
总结提炼
当导体棒或线圈切割磁感线做变速运动时,可将运动过程分成很多微
解:(1) 0~t1时间内,根据运动学公式得d=
a ,解得a=1m/s2,对重物及金属棒整体进
行分析,根据牛顿第二定律得Mg=(M+m)
a,解得M=0.1kg。
(2) 金属棒刚进入磁场时,电阻的热功率P。
解:(2) t1时刻,金属棒速度为v1=at1=
2m/s,金属棒刚进入磁场产生的电动势为E1=
新高考备战2024年高考物理抢分秘籍13电磁感应中的电路和图像问题学生届
秘籍13电磁感应中的电路和图像问题一、电磁感应中电路知识的关系图二、电磁感应中的图像问题电磁感应中图像问题的解题思路:(1)明确图像的种类,即是B-t图还是Φ-t图,或者E-t图、I-t图等;对切割磁感线产生感应电动势和感应电流的情况,还常涉及E-x图像和i-x图像;(2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向的对应关系;(4)结合法拉第电磁感应定律、闭合电路欧姆定律、牛顿运动定律等知识写出相应的函数关系式;(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等;(6)画图像或判断图像.【题型一】电磁感应中的电路问题A.开始时电阻电功率为B.开始时ab所受合力为C.该过程克服安培力做功A.圆形金属线框中感应电流沿逆时针方向B.A点与B点间的电压为C.0~2s内通过定值电阻的电荷量为D.0~4s内圆形金属线框中产生的焦耳热为图2所示,右侧存在着方向垂直于斜面向下的恒定磁场B 1=1T,一长为L =1m,电阻r =1Ω的金属棒ab 与导轨垂直放置,t =0至t =1s,金属棒ab 恰好能静止在右侧的导轨上,之后金属棒ab 开始沿导轨下滑,经过一段时间后匀速下滑,已知导轨光滑,取g =10m/s 2,不计导轨电阻与其他阻力,sin37°=0.6,cos37°=0.8。
求:(1)t =0至t =1s 内流过电阻的电流和金属棒ab 的质量;(2)金属棒ab 匀速时的速度大小。
A.在t 时刻线圈的加速度大小为22n B v g mrB.0~t 时间内通过线圈的电荷量为2mgt mv RnB C.0~t 时间内线圈下落高度为2()mr gt v B D.线圈下落过程中,通过线圈的磁通量始终为零则当磁场的GH连线和磁场的PQ连线分别扫上金属杆时( )A.金属杆的速度之比为2:3B.金属杆的加速度之比为4:3C.安培力对金属杆做功的瞬时功率之比为8:9D.电阻的热功率之比为16:93.(2024·湖南岳阳·一模)如图所示,两根足够长光滑平行金属导轨固定在倾角θ=37°的绝缘斜面上,底部接有一阻值R=2Ω的定值电阻,轨道上端开口,间距L=1m,整个装置处于磁感应强度B=2T的匀强磁场中,磁场方向垂直斜面向上。
高考物理备考指南如何系统复习电磁感应
高考物理备考指南如何系统复习电磁感应电磁感应是高考物理中的重要考点之一,它不仅在知识点上有一定的难度,还需要学生具备一定的理解和分析问题的能力。
为了帮助考生系统复习电磁感应,本文将从知识点整理、题型解析以及复习方法等方面进行探讨。
一、知识点整理1. 法拉第电磁感应定律:当导体受到磁通量的改变时,产生感应电动势。
2. 感应电动势的计算:在直导线中,感应电动势的大小和方向可以由法拉第电磁感应定律来计算。
在闭合线路中,可以利用电磁感应产生的电动势驱动电流。
3. 感应电流和感应磁场:当导体中的电流变化时,会产生感应磁场,根据楞次定律,磁场的方向会使感应电流的磁场方向发生变化。
4. 动生电动势和感应电动势的区别:动生电动势是由于导体在磁场中的运动产生的,而感应电动势是由于磁场的变化引起的。
二、题型解析1. 计算题:考生需要掌握利用法拉第电磁感应定律计算感应电动势的方法。
这类题目常常会涉及到变化的磁通量、导体的速度以及导体的长度等变量的计算,需要考生熟练掌握公式的运用和计算方法。
2. 理论题:这类题目常常会涉及到电磁感应的原理和应用,要求考生对知识点进行深入的理解和分析。
考生需要掌握电磁感应的基本原理及其在实际生活中的应用,例如电磁感应的产生原理、电磁感应在发电机中的应用等。
三、复习方法1. 系统学习:首先,考生需要阅读教材相关章节,系统学习电磁感应的基本原理和计算方法。
理解相关概念和公式,弄清楚电磁感应的产生原理和作用机制。
2. 做题巩固:在掌握了基本知识后,考生需要做大量的相关题目,巩固所学知识。
可以从简单到难,由基础到提高,逐步提升对电磁感应的理解和运用能力。
同时,通过做题可以发现自己的不足和薄弱环节,有针对性地进行强化练习。
3. 梳理思路:复习电磁感应时,考生需要将知识点进行整理和梳理,形成自己的复习思路。
可以制作思维导图、总结提纲,将知识点分类整理,便于复习和回顾。
4. 实践应用:通过实际生活中的例子,将电磁感应的原理和应用进行联系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五讲 电磁感应与电路思想方法提炼电磁感应是电磁学的核心内容,也是高中物理综合性最强的内容之一,高考每年必考。
题型有选择、填空和计算等,难度在中档左右,也经常会以压轴题出现。
在知识上,它既与电路的分析计算密切相关,又与力学中力的平衡、动量定理、功能关系等知识有机结合;方法能力上,它既可考查学生形象思维和抽象思维能力、分析推理和综合能力,又可考查学生运用数知识(如函数数值讨论、图像法等)的能力。
高考的热点问题和复习对策:1.运用楞次定律判断感应电流(电动势)方向,运用法拉第电磁感应定律,计算感应电动势大小.注重在理解的基础上掌握灵活运用的技巧.2.矩形线圈穿过有界磁场区域和滑轨类问题的分析计算。
要培养良好的分析习惯,运用动力学知识,逐步分析整个动态过程,找出关键条件,运用运动定律特别是功能关系解题。
3.实际应用问题,如日光灯原理、磁悬浮原理、电磁阻尼等复习时应多注意。
此部分涉及的主要内容有:1.电磁感应现象.(1)产生条件:回路中的磁通量发生变化.(2)感应电流与感应电动势:在电磁感应现象中产生的是感应电动势,若回路是闭合的,则有感应电流产生;若回路不闭合,则只有电动势,而无电流.(3)在闭合回路中,产生感应电动势的部分是电源,其余部分则为外电路.2.法拉第电磁感应定律:E=n ,E=BLvsin θ, 注意瞬时值和平均值的计算方法不同.3.楞次定律三种表述:(1)感应电流的磁场总是阻碍磁通量的变化(涉及到:原磁场方向、磁通量增减、感应电流的磁场方向和感应电流方向等四方面).右手定则是其中一种特例.(2)感应电流引起的运动总是阻碍相对运动.(3)自感电动势的方向总是阻碍原电流变化.4.相关链接(1)受力分析、合力方向与速度变化,牛顿定律、动量定理、动量守恒定律、匀速圆周运动、功和能的关系等力学知识.(2)欧姆定律、电流方向与电势高低、电功、电功率、焦耳定律等电路知识.(3)能的转化与守恒定律.感悟 · 渗透 · 应用【例1】三个闭合矩形线框Ⅰ、Ⅱ、Ⅲ处在同一竖直平面内,在线框的正上方有一条固定的长直导线,导线中通有自左向右的恒定电流,如图所示,若三个闭合线框分别做如下运动:Ⅰ沿垂直长直导线向下运动,Ⅱ沿平行长直导线方向平动,Ⅲ绕其竖直中心轴OO ′转动.(1)在这三个线框运动的过程中,哪些线框中有感应电流产生?方向如何?(2)线框Ⅲ转到图示位置的瞬间,是否有感应电流产生?【解析】此题旨在考查感应电流产生的条件.根据直线电流周围磁场的特点,判断三个线框运动过程中,穿过它们的磁通量是否发生变化.t∆∆Φ(1)长直导线通有自左向右的恒定电流时,导线周围空间磁场的强弱分布不变,但离导线越远,磁场越弱,磁感线越稀;离导线距离相同的地方,磁场强弱相同.线框Ⅰ沿垂直于导线方向向下运动,穿过它的磁通量减小,有感应电流产生,电流产生的磁场方向垂直纸面向里,根据楞次定律,感应电流的磁场方向也应垂直纸面向里,再由右手螺旋定则可判断感应电流为顺时针方向;线框Ⅱ沿平行导线方向运动,与直导线距离不变,穿过线框Ⅱ的磁通量不变,因此线框Ⅱ中无感应电流产生;线框Ⅲ绕OO ′轴转动过程中,穿过它的磁通量不断变化,在转动过程中线框Ⅲ中有感应电流产生,其方向是周期性改变的.(2)线框Ⅲ转到图示位置的瞬间,线框中无感应电流,由于长直导线下方的磁场方向与纸面垂直,在该位置线框Ⅲ的两竖直边运动方向与磁场方向平行,不切割磁感线,所以无感应电流;从磁通量变化的角度考虑,图示位置是线框Ⅲ中磁通量从增加到最大之后开始减小的转折点,此位置感应电流的方向要发生变化,故此时其大小必为0.【解题回顾】对瞬时电流是否存在应看回路中磁通量是否变化,或看回路中是否有一段导体做切割磁感线运动,要想知道线框在磁场中运动时磁通量怎样变化,必须知道空间的磁场强弱、方向分布的情况,对常见磁体及电流产生的磁场要相当熟悉.【例2】如图所示,在倾角为θ的光滑的斜面上,存在着两个磁感应强度相等的匀强磁场,方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L ,一个质量为m ,边长也为L 的正方形线框(设电阻为R)以速度v 进入磁场时,恰好做匀速直线运动.若当a b 边到达gg ′与ff ′中间位置时,线框又恰好做匀速运动,则:(1)当a b 边刚越过ff ′时,线框加速度的值为多少?(2)求线框开始进入磁场到a b 边到达gg ′与ff ′中点的过程中产生的热量是多少?【解析】此题旨在考查电磁感应与能量之间的关系.线框刚越过ff ′时,两条边都在切割磁感线,其电路相当于两节相同电池的串联,并且这两条边还同时受到安培力的阻碍作用.(1)a b 边刚越过ee ′即做匀速直线运动,表明线框此时所受的合力为0,即在a b 边刚越过ff ′时,a b 、cd 边都切割磁感线产生感应电动势,但线框的运动速度不能突变,则此时回路中的总感应电动势为E ′=2BLv ,设此时线框的加速度为a ,则2BE ′L/R-mgsin θ=m a ,a =4B 2L 2v/(Rm)-gsin θ=3gsin θ,方向沿斜面向上.(2)设线框再做匀速运动时的速度为v ′,则mgsin θ=(2B 2L 2v ′/R)×2,即v ′=v/4,从线框越过ee ′到线框再做匀速运动过程中,设产生的热量为Q ,则由能量守恒定律得:【解题回顾】电磁感应过程往往涉及多种能量形式的转化,适时选用能量守恒关系常会使求解很方便,特别是处理变加速直线运动或曲线运动问题. 【例3】如图所示,d a 、cb 为相距L 的平行导轨(电阻可以 忽略不计).a 、b 间接有一个固定 电阻,阻值为R.长直细金属杆MN 可以按任意角架在水平导轨上,并以速度v 匀速滑动(平移),v 的方向和d a 平行. 杆MN 有电阻,每米长的电阻值为R.整个空间充满匀强磁场,磁感应强度的大小为B ,方向垂直纸面(dabc 平面)向里(1)求固定电阻R 上消耗的电功率为最大时θ角的值(2)求杆MN 上消耗的电功率为最大时θ角的值.2223215sin 23'2121sin 23mv mgL mv mv L mg Q +=-+⋅=θθ【解析】如图所示,杆滑动时切割磁感线而产生感应电动势E=BLv ,与θ角无关.以r 表示两导轨间那段杆的电阻,回路中的电流为:(1)电阻R 上消耗的电功率为:由于E 和R 均与θ无关,所以r 值最小时,P R 值达最大.当杆与导轨垂直时两轨道间的杆长最短,r 的值最小,所以P R 最大时的θ值为θ=π/2.(2)杆上消耗的电功率为:P r = 要求P r 最大,即要求取最大值.由于 显然,r=R 时, 有极大值R ,r=R 即要求两导轨间的杆长为1m , 所以有以下两种情况:①如果L ≤1m ,则θ满足下式时r=R1×sin θ=L 所以θ=arcsinL②如果L >1m ,则两导轨间那段杆长总是大于1m ,即总有r >R在r >R 的条件下,上式随r 的减小而单调减小,r 取最小值时, 取最小值,取最大值,所以,Pr 取最大值时θ值为 【例4】如图所示,光滑的平行导轨P 、Q 相距 L=1m ,处在同一水平面中,导轨左端接有如图所示的电路,其中水平放置的平行板电容器C 两极板间距离d=10mm ,定值电阻R 1=R 3=8Ω,R 2=2Ω,导轨电阻不计. 磁感应强度B=0.4T 的匀强磁场竖直向下穿过导轨面.当金属棒a b 沿导轨向右匀速运动(开关S 断开)时,电容器两极板之间质量m=1×10-14kg 、带电量Q=-1×10-15C 的微粒恰好静止不动;当S 闭合时,微粒以加速度a =7m/s 2向下做匀加速运动,取g=10m/s 2,求:(1)金属棒a b 运动的速度多大?电阻多大?(2)S 闭合后,使金属棒a b 做匀速运动的外力的功率多大?【解析】(1)带电微粒在电容器两极板间静止时,受向上的电场力和向下的重力作用而平衡,则得到:mg=求得电容器两极板间的电压由于微粒带负电,可知上极板电势高.由于S 断开,R 1上无电流,R 2、R 3串联部分两端总电压等于U 1,电路中的感应电流,即通过R 2、R 3的电流为:由闭合电路欧姆定律,a b 切割磁感线运动产生的感应电动势为E=U 1+Ir ①其中r 为a b 金属棒的电阻当闭合S 后,带电微粒向下做匀加速运动,根据牛顿第二定律,有:mg-U 2q/d=m a求得S 闭合后电容器两极板间的电压:这时电路中的感应电流为I 2=U 2/R 2=0.3/2A=0.15A 根据闭合电路欧姆定律有 ②将已知量代入①②求得E=1.2V ,r=2Ω又因E=BLv∴v=E/(BL)=1.2/(0.4×1)m/s=3m/s即金属棒a b 做匀速运动的速度为3m/s ,电阻r=2Ω2)(r R r +2πθ=)(231312r R R R R R I E +++=(2)S闭合后,通过a b的电流I2=0.15A,a b所受安培力F2=BI2L=0.4×1×0.15N=0.06N a b以速度v=3m/s做匀速运动时,所受外力必与安培力F2大小相等、方向相反,即F=0.06N,方向向右(与v 同向),可见外力F的功率为:P=Fv=0.06×3W=0.18W【例5】已知某一区域的地下埋有一根与地面平行的直线电缆,电缆中通有变化的电流,在其周围有变化的磁场,因此,可以通过在地面上测量闭合试探小线圈中的感应电动势来探测电缆的确切位置、走向和深度.当线圈平面平行地面时,a、c在两处测得试探线圈感应电动势为0,b、d两处测得试探线圈感应电动势不为0;当线圈平面与地面成45°夹角时,在b、d两处测得试探线圈感应电动势为0;经测量发现,a、b、c、d恰好位于边长为1m的正方形的四个顶角上,如图所示,据此可以判定地下电缆在两点连线的正下方,离地表面的深度为 m.【解析】当线圈平面平行地面时,a、c在两处测得试探线圈感应电动势为0,b、d两处测得试探线圈感应电动势不为0;可以判断出地下电缆在a、c两点连线的正下方;如图所示a′c′表示电缆,当线圈平面与地面成45°夹角时,在b、d两处测得试探线圈感应电动势为0;可判断出O′b垂直试探线圈平面,则作出:Rt△OO′b,其中∠ObO′=45°那么OO′=Ob= /2=0.71(m).【解题回顾】本题是一道电磁感应现象的实际应用的题目,将试探线圈产生感应电动势的条件应用在数学中,当线圈平面与地面成45°夹角时,在b、d两处测得试探线圈感应电动势为0,即电缆与在b、d两处时的线圈平面平行,然后作出立体几何的图形,便可用数学方法处理物理问题.【例6】在如图所示的水平导轨上(摩擦、电阻忽略不计),有竖直向下的匀强磁场,磁感强度B,导轨左端的间距为L1=4L0,右端间距为L2=L0。