中考圆选择题专题训练
中考数学专题测试卷——圆

中考数学专题测试卷——圆一.选择题(共12小题)1.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠BOD 2.如图,AB是⊙O的直线,C是⊙O上一点(A、B除外),∠AOD=130°,则∠C 的度数是()A.50°B.60°C.25°D.30°3.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.84.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于()A.B.C.2D.5.如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm6.如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°7.如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=2,则阴影部分的面积是()A.B.C.πD.2π8.如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10B.8C.4D.49.如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤5 10.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是()A.10B.20C.10πD.20π11.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3B.4C.6D.812.如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是()A.2B.3C.4D.5二.填空题(共6小题)13.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是cm.14.如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是.15.如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部分的面积是.16.如图,P是⊙O外一点,PA、PB分别和⊙O切于A、B,C是弧AB上任意一点,过C作⊙O的切线分别交PA、PB于D、E,若△PDE的周长为12,则PA长为.17.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=.18.如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.三.解答题(共8小题)19.如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)20.如图,在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧上一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=6cm,求图中阴影部分的面积.21.如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.(1)求证:PC是⊙O的切线.(2)求tan∠CAB的值.22.如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O半径的长.23.如图,在⊙O中,DE是⊙O的直径,AB是⊙O的弦,AB的中点C在直径DE上.已知AB=8cm,CD=2cm(1)求⊙O的面积;(2)连接AE,过圆心O向AE作垂线,垂足为F,求OF的长.24.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.25.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.26.如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.中考数学专题测试卷——圆参考答案一.选择题(共12小题)1.B;2.C;3.C;4.D;5.C;6.A;7.B;8.D;9.A;10.A;11.C;12.D;二.填空题(共6小题)13.10;14.70°;15.;16.6;17.44°;18.70°;三.解答题(共8小题)19.【解答】解:(1)∵AC切⊙O于点A,∠BAC=90°,∵∠C=40°,∴∠B=50°;(2)连接OD,∵∠B=50°,∴∠AOD=2∠B=100°,∴的长为=π.20.【解答】解:(1)连接OB,∵BC⊥OA,∴BE=CE,=,又∵∠ADB=30°,∴∠AOC=∠AOB=2∠ADB,∴∠AOC=60°;(2)∵BC=6,∴CE=BC=3,在Rt△OCE中,OC==2,∴OE===,∵=,∴∠BOC=2∠AOC=120°,∴S阴影=S扇形OBC﹣S△OBC=4π﹣3(cm2).21.【解答】解:(1)如图,连接OC、BC∵⊙O的半径为3,PB=2∴OC=OB=3,OP=OB+PB=5∵PC=4∴OC2+PC2=OP2∴△OCP是直角三角形,∴OC⊥PC∴PC是⊙O的切线.(2)∵AB是直径∴∠ACB=90°∴∠ACO+∠OCB=90°∵OC⊥PC∴∠BCP+∠OCB=90°∴∠BCP=∠ACO∵OA=OC∴∠A=∠ACO∴∠A=∠BCP在△PBC和△PCA中:∠BCP=∠A,∠P=∠P∴△PBC∽△PCA,∴∴tan∠CAB=22.【解答】解:(1)连接OA,∵AC是⊙O的切线,OA是⊙O的半径,∴OA⊥AC,∴∠OAC=90°,∵,∠ADE=25°,∴∠AOE=2∠ADE=50°,∴∠C=90°﹣∠AOE=90°﹣50°=40°;(2)∵AB=AC,∴∠B=∠C,∵,∴∠AOC=2∠B,∴∠AOC=2∠C,∵∠OAC=90°,∴∠AOC+∠C=90°,∴3∠C=90°,∴∠C=30°,∴OA=OC,设⊙O的半径为r,∵CE=2,∴r=,解得:r=2,∴⊙O的半径为2.23.【解答】解:(1)连接OA,如图1所示∵C为AB的中点,AB=8cm,∴AC=4cm 又∵CD=2cm设⊙O的半径为r,则(r﹣2)2+42=r2解得:r=5∴S=πr2=π×25=25π(2)OC=OD﹣CD=5﹣2=3,EC=EO+OC=5+3=8,∴EA===4∴EF===2∴OF===24.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tanB=,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.25.【解答】(1)证明:连接OC.∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线.(2)解:设⊙O的半径为r.在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,∵tan∠E==,∴=,∴CD=BC=6,在Rt△ABC中,AC===6.26.【解答】解:(1)如图,连接OD,∵BC是⊙O的直径,∴∠BAC=90°,∵AD 平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半径,∴PD是⊙O 的切线;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP,(3)∵BC是⊙O的直径,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC==13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BC=CD=BC=,∵△ABD∽△DCP ,∴,∴,∴CP=16.9cm.第11页(共11页)。
中考数学《圆的综合》专题训练(含有答案)

中考数学《圆的综合》专题训练(含有答案)1.如图,:AB 是O 的直径:BC 是O 弦,OD CB ⊥于点E ,交BC 于点D .(1)请写出三个不同类型的正确结论(2)连结CD ,设BCD α∠= ABC β∠= 试找出α与β之间的一种关系式并给予证明.2.如图,,在ABC 中 AB AC = 以AB 为直径的O 交BC 于点D 交CA 的延长线于点E .(1)求证点D 为线段BC 的中点.(2)若63BC = 3AE = 求O 的半径及阴影部分的面积.3.如图,AB 为O 的直径 点C 在O 上 延长BC 至点D 使DC CB =.延长DA 与O 的另一个交点为E 连结AC CE ,.(1)求证D E ∠=∠(2)若42AB BC AC =-=, 求CE 的长.4.请仅用无刻度的直尺完成下列作图 不写作法 保留作图痕迹(1)如图1, ABC 与ADE 是圆内接三角形 AB AD = AE AC = 画出圆的一条直径.(2)如图2 , AB CD 是圆的两条弦 AB CD =且不相互平行 画出圆的一条直径. 5.如图,AB 是O 的直径 点D 在AB 的延长线上 点C 在O 上 ,30CA CD CDA =∠=︒.(1)求证CD 是O 的切线(2)若O 的半径为6 求点A 到CD 所在直线的距离.6.如图, 点C 在以AB 为直径的O 上 过C 作O 的切线交AB 的延长线于E AD CE ⊥于D 连接AC .(1)求证ACD ABC ∠=∠(2)若3tan 4CAD ∠= 8AD = 求O 直径AB 的长.7.如图, 已知以Rt ABC 的直角边AC 为直径作O 交斜边AB 于点E 连接EO 并延长交BC 的延长线于点D 连接AD 点F 为BC 的中点 连接EF .(1)求证EF 是O 的切线(2)若O 的半径为6 8CD = 求AB 的长.8.如图, AB 是半圆O 的直径 D 为半圆O 上的点(不与A B 重合) 连接AD 点C 为BD 的中点 过点C 作CF AD ⊥ 交AD 的延长线于点F 连接BF AC 交于点E .(1)求证FC 是半圆O 的切线(2)若3AF = 23AC = 求半圆O 的半径及AE 的长.9.如图, AB 为O 的直径 C 为BA 延长线上一点 CD 是O 的切线 D 为切点 OF AD ⊥于点E 交CD 于点F .(1)求证ADC AOF ∠=∠ (2)若53OC OB = 24BD = 求EF 的长. 10.如图,所示 AB 是O 的直径 点D 在AB 上 点C 在O 上 AD AC =CD 的延长线交O 于点E .(1)在CD 的延长线上取一点F 使BF BC = 求证BF 是O 的切线 (2)若2AB = 2CE 求图中阴影部分的面积.11.如图, ABC 内接于O AB 为O 的直径 D 为BA 延长线上一点 连接CD 过O 作OF BC ∥交AC 于点E 交CD 于点F ACD AOF ∠=∠.(1)求证CD 为圆O 的切线 (2)若1sin 4D =10BC = 求EF 的长. 12.如图, 四边形ABCD 是O 的内接四边形 AD CD = 70BAC ∠=︒ 50∠=°ACB .(1)求ABD ∠的度数 (2)求BAD ∠的度数.13.如图, 四边形ABCD 是O 的内接四边形 且对角线BD 为O 的直径 过点A 作AE CD ⊥ 与CD 的延长线交于点E 且DA 平分BDE ∠.(1)求证AE 是O 的切线(2)若O 的半径为5 6CD = 求DA 的长.14.如图, 在正方形ABCD 中有一点P 连接AP BP 旋转APB △到CEB 的位置.(1)若正方形的边长是8 4BP =.求阴影部分面积 (2)若4BP = 7AP = 135APB ∠=︒ 求PC 的长.15.如图, AB 是O 的直径 OD 垂直于弦AC 于点E 且交O 于点D F 是BA 延长线上一点 若CDB BFD ∠=∠.(1)求证 FD 是O 的一条切线(2)若15AB = 9BC = 求DF 的长. 16.如图,O 是ABC ∆的外接圆 AE 切O 于点A AE 与直径BD 的延长线相交于点E .(1)如图,① 若70C ∠=︒ 求E ∠的大小 (2)如图,① 若AE AB = 求E ∠的大小.17.已知 如图, 直线MN 交O 于A B 两点 AC 是直径 AD 平分CAM ∠交O 于D 过D 作DE MN ⊥于E .(1)求证DE 是O 的切线(2)若8cm DE = 4cm AE = 求O 的半径.18.已知四边形ABCD 内接于O C 是DBA 的中点 FC AC ⊥于C 与O 及AD 的延长线分别交于点,E F 且DE BC =.(1)求证~CBA FDC(2)如果9,4AC AB == 求tan ACB ∠的值.参考答案与解析1.(1)见解析(2)关系式为2=90αβ+︒ 证明见解析【分析】(1)AB 是O 的直径 BC 是弦 OD BC ⊥于E 本题满足垂径定理. (2)连接,CD DB 根据四边形ACDB 为圆内接四边形 可以得到290αβ+=︒. 【解析】(1)解不同类型的正确结论有 ①BE CE = ①BD CD = ①90BED ∠=︒ ①BOD A ∠=∠ ①AC OD ∥ ①AC BC ⊥ ①222OE BE OB += ①ABC S BC OE =⋅△ ①BOD 是等腰三角形 ①BOE BAC △∽△等等. (2)如图, 连接,CD DBα与β之间的关系式为290αβ+=︒证明AB 为圆O 的直径90A ABC ∴∠+∠=︒①又四边形ACDB 为圆内接四边形180A CDB ∠∠∴+=︒①∴①-①得90CDB ABC ∠∠-=︒①18021802CDB BCD α∠=︒-∠=︒- 即180290αβ︒--=︒ ①2=90αβ+︒.【点评】本题考查了圆的一些基本性质 且有一定的开放性 垂径定理 圆内接四边形的性质掌握圆的相关知识. 2.(1)见解析 (2)半径为3 39π324S =阴【分析】(1)连结AD 可得90ADB ∠=︒ 已知AB AC = 根据等腰三角形三线合一的性质即可得证点D 为线段BC 的中点(2)根据已知条件可证ABC DEC ∽△△ 得到ED ECAB BC= 22BD AB EC =⋅ 且EDC △是等腰三角形 进而得到ED DC BD == 设AB x = 则(()22333x x =+ 解方程即可求得O 的半径连接OE 可证AOE △是等边三角形 再根据AOEAOE S S S =-阴扇形即可求出阴影部分的面积【解析】(1)连结AD①AB 为O 的直径 ①90ADB ∠=︒ ①AB AC = ①BD CD =即点D 为线段BC 的中点. (2)①B E ∠=∠ C C ∠=∠ ①ABC DEC ∽△△ ①ED ECAB BC= ①AB AC = ①B C ∠=∠ ①C E ∠=∠ ①ED DC BD == ①22BD AB EC =⋅ 设AB x = 则 (()22333x x =+解得19x =-(舍去) 26x = ①O 的半径为3 连接OE ①60AOE =︒∠ ①AOE △是等边三角形 ①AE 33①AOEAOE S S S=-阴扇形260313333602π⨯⨯=-⨯ 39π324=【点评】本题主要考查等腰三角形的性质 相似三角形的判定和性质 不规则图形面积的计算 熟练掌握相关知识点是解题的关键. 3.(1)见解析 (2)CE 的长为17【分析】(1)由AB 为O 的直径得90ACB ∠=︒ 通过证明()ACD ACB ≌SAS 得到D B ∠=∠ 又由B E ∠=∠ 从而得到D E ∠=∠(2)设BC x = 则2AC x =- 在Rt ABC 中 由勾股定理可得222AC BC AB += 即()22224x x -+= 解一元二次方程得到BC 的长 由(1)知D E ∠=∠ 从而得到CD CE = 又由DC CB = 得到17CE CB ==【解析】(1)证明AB 为O 的直径90ACB ∴∠=︒180ACD ACB ∠+∠=︒90ACD ∴∠=︒在ACD 和ACB △中AC AC ACD ACB DC BC =⎧⎪∠=∠⎨⎪=⎩()ACD ACB ∴≌SASD B ∴∠=∠ BE ∠=∠D E ∴∠=∠(2)解设BC x =2BC AC -=∴2AC x =-在Rt ABC 中 由勾股定理可得222AC BC AB += 即()22224x x -+=解得117x = 217x = 17BC ∴=由(1)得D E ∠=∠ CD CE ∴= DC CB =17CE CB ∴==∴ CE 的长为17【点评】本题主要考查了圆周角定理 三角形全等的判定与性质 等腰三角形的性质 勾股定理解直角三角形 熟练掌握圆周角定理 三角形全等的判定与性质 等腰三角形的性质是解题的关键. 4.(1)见解析 (2)见解析【分析】(1)设BC DE 交于点G 连接AG 交圆于点F 即可作答(2)连接BC AD 交于点F 延长BA DC 两线交于点E 作直线EF 交圆于点M N 即可作答.【解析】(1)如图, 设BC DE 交于点G 连接AG 并延长 交圆于点F线段AF 即为所求证明如图, BC AE 交于点Q DE AC 交于点P 连接DB 交AF 于点H①AB AD = AE AC = ①C E ∠=∠ ADE ABC =∠∠ ①DAE BAC ∠=∠①DAE BAC ≌ ①BC DE = ①DAE BAC ∠=∠ ①BAE DAC ∠=∠①AB AD = ADE ABC =∠∠ ①DAP BAQ ≌ ①AQ AP = ①AE AC = ①QE PC =①QGE PGC ∠=∠ C E ∠=∠ ①QGE PGC ≌ ①QG PG =①AG AG = AQ AP = ①QAG PAG ≌ ①QAG PAG ∠=∠ ①BAE DAC ∠=∠ ①BAG DAG ∠=∠ ①AH AH = AB AD = ①BAH DAH ≌①BH DH = 90AHB AHD ∠=∠=° ①AF 垂直平分弦DB ①AF 是圆的直径(2)如图, 连接BC AD 交于点F 延长BA DC 两线交于点E 作直线EF 交圆于点M N线段MN 即为所求. 证明方法同(1).【点评】本题主要考查了垂径定理 圆周角定理以及全等三角形的判定与性质等知识 掌握圆周角定理以及垂径定理是解答本题的关键. 5.(1)见解析 (2)9【分析】(1)已知点C 在O 上 先连接OC 由已知CA CD = 30CDA ∠=︒ 得30CAO ∠=︒ 30ACO ∠=︒ 所以得到60COD ∠=︒ 根据三角形内角和定理得90DCO ∠=︒ 即能判断直线CD 与O 的位置关系.(2)要求点A 到CD 所在直线的距离 先作AE CD ⊥ 垂足为E 由30CDA ∠=︒ 得12AE AD = 在Rt OCD △中 半径6OD = 所以212OD OC == 18AD OA OD =+= 从而求出AE .【解析】(1)①ACD 是等腰三角形 30D ∠=︒①30CAD CDA ∠=∠=︒.连接OC①AO CO =①AOC 是等腰三角形①30CAO ACO ∠=∠=︒①60COD ∠=︒在COD △中 又①30CDO ∠=︒①90DCO ∠=︒①CD 是O 的切线 即直线CD 与O 相切.(2)过点A 作AE CD ⊥ 垂足为E .在Rt OCD △中 ①30CDO ∠=︒①212OD OC ==61218AD AO OD =+=+=在Rt ADE △中①30EDA ∠=︒①点A 到CD 边的距离为92AD AE ==. 【点评】此题考查的知识点是切线的判定与性质 解题的关键是运用直角三角形的性质及30°角所对直角边的性质.6.(1)见解析 (2)252AB =.【分析】(1)连接OC 由DE 为O 的切线 得到OC DE ⊥ 再由AD CE ⊥ 得到AD OC ∥ 得到OCA CAD ∠=∠ 根据OA OC = 利用等边对等角得到OCA CAB ∠=∠ 等量代换得到CAD CAB ∠=∠ 由AB 为O 的直径 可知90ACB ∠=︒ 最后根据等角的余角相等可得结论 (2)在Rt CAD △中 利用锐角三角函数定义求出CD 的长 根据勾股定理求出AD 的长 由(1)易证ADC ACB 得到AD AC AC AB= 即可求出AB 的长. 【解析】(1)解连接OC由题意可知DE 与O 的相切于COC DE ∴⊥AD CE ⊥AD OC ∴∥OCA CAD ∴∠=∠OA OC =OCA CAB ∴∠=∠CAD CAB ∴∠=∠ AB 为O 的直径90ACB ∴∠=︒90CAD ACD CAB ABC ∴∠+∠=∠+∠=︒ACD ABC ∴∠=∠(2)在Rt CAD △中3tan 4CDCAD AD ∠== 8AD =364CD AD ∴==22226810AC CD AD ∴+=+=由(1)可知CAD CAB ∠=∠90D ACB ∠=∠=︒ADC ACB ∴ADACAC AB ∴=81010AB∴= 252AB ∴=【点评】此题考查了切线的性质 以及解直角三角形 熟练掌握切线的判定与性质是解本题的关键. 7.(1)证明见解析 (2)125AB =【分析】(1)连接FO 可根据三角形中位线的性质可判断OF AB ∥ 然后根据直径所对的圆周角是直角 可得CE AE ⊥ 进而知OF CE ⊥ 然后根据垂径定理可得FEC FCE ∠=∠OEC OCE ∠=∠ 再通过Rt ABC 可知90OEC FEC ∠+∠=︒ 因此可证EF 为O 的切线(2)根据题意可先在Rt OCD △中求出OD 然后在Rt EFD 中求出FC 最终在Rt ABC 中求解AB 即可.【解析】(1)证连接FO 则由题意OF 为Rt ABC 的中位线①OF AB ∥①AC 是O 的直径①CE AE ⊥①OF AB ∥①OF CE ⊥①由垂径定理知 OF 所在直线垂直平分CE①FC FE = OE OC =①FEC FCE ∠=∠ OEC OCE ∠=∠①90ACB ∠=︒即90OCE FCE ∠+∠=︒①90OEC FEC ∠+∠=︒即90FEO ∠=︒①EF 是O 的切线(2)解①O 的半径为6 8CD = 90ACB ∠=︒①OCD 为直角三角形 6OC OE == 8CD = ①2210OD OC CD += 10616ED OD OE =+=+=由(1)知 EFD △为直角三角形 且FC FE =①设FC FE x == 则8FD FC CD x =+=+①由勾股定理 222EF ED FD +=即()222168x x +=+ 解得12x =即12FC FE ==①点F 为BC 的中点①224BC FC ==①212AC OC ==①在Rt ABC 中 22125AB BC AC +①125AB =【点评】本题考查切线的证明 圆的基本性质 以及勾股定理解三角形等 掌握切线的证明方法 熟练运用圆中的基本性质是解题关键.8.(1)见解析(2)半径为2 123AE =【分析】(1)根据点C 为弧BD 的中点 得出FAC CAB ∠∠= 然后得出FAC ACO ∠∠= 根据平行线的性质得出CF OC ⊥ 进而即可求解(2)连接BC 设OC 与BF 相交于点P 证明AFC ACB ∽ 得出4AB = 证明BOP BAF ∽得出1322OP AF == 进而证明ECP EAF ∽ 根据相似三角形的性质列出比例式 进而即可求解. 【解析】(1)证明连接OC 如图,点C 为弧BD 的中点∴CD CB =FAC CAB ∠∠∴=又OA OC =CAB ACO ∠∠∴=FAC ACO ∠∠∴=∴OC AF ∥又CF AD ⊥CF OC ∴⊥FC ∴是半圆O 的切线.(2)解连接BC 如图,AB 是半圆O 的直径90ACB ∠∴=︒90AFC ACB ∠∠∴==︒又FAC CAB ∠∠=AFC ACB ∴∽ ∴AFACAC AB = 23234AB ∴=∴半圆O 的半径为2.设OC 与BF 相交于点POC AF ∥BOP BAF ∴∽ ∴12OPOB AF AB == ∴1322OP AF == ∴12PC OC OP =-=OC AF ∥ECP EAF ∴∽ ∴EC PCAE AF = 即123AC AEAE -= 2316AE-=∴123AE = 【点评】本题考查了切线的性质与判定 相似三角形的性质与判定 掌握切线的判定以及相似三角形的性质与判定是解题的关键.9.(1)见解析(2)3【分析】(1)连接DO 根据CD 是O 的切线 OF AD ⊥ 证明ADC DOF ∠∠= 利用等腰三角形三线合一性质 证明ADC AOF ∠∠=.(2) 利用平行线分线段成比例定理 计算OE 证明CFO CDB △∽△ 计算OF两线段作差即可求解.【解析】(1)如图, 连接DO CD 是O 的切线OD DF ∴⊥90ADC ADO ∠∠∴+=︒OF AD ⊥ OA OD =90DOF ADO ∠∠∴+=︒ DOF AOF ∠∠=ADC DOF ∠∠∴=ADC AOF ∠∠∴=.(2)如图, 连接DO CD 是O 的切线OD DF ∴⊥90CDO ∠∴=︒53OC OB =设5(0)CO k k => 则3DO OB AO k ===4CD k ∴=538CB CO OB k k k ∴=+=+= AB 是O 的直径 24BD =AD DB ∴⊥OF AD ⊥∴OF BD ∥ ∴AO AE OB ED = CFO CDB △∽△ ∴OF CO BD CB= AE ED ∴=5524538OF k k k ==+ ∴1122OE BD == 15OF = 3EF OF OE ∴=-=.【点评】本题考查了切线的性质 等腰三角形的三线合一性质 平行线分线段成比例定理 相似三角形的性质与判定 熟练掌握切线的性质 相似三角形的性质与判定是解题的关键.10.(1)证明过程见解析 (2)142π-【分析】(1)AB 是O 的直径 AC AD = BF BC = 可求出90FBD ∠=︒ AB BF ⊥ 由此即可求证(2)如图,所示(见解析)连接,CO EO 可得1OC OE == 可证222CO O CE += 90COE ∠=︒ 根据扇形面积的计算方法即可求解.【解析】(1)证明①AB 是O 的直径①90ACB ∠=︒①90ACD BCD ∠+∠=︒①AC AD =①ACD ADC ∠=∠①ADC BDF ∠=∠①ACD BDF ∠=∠①BC BF =①BCD F ∠=∠①90BDF F ∠+∠=︒①180()90FBD FDB F ∠=︒-∠+∠=︒①AB BF ⊥ 且OB 是O 的半径①BF 是O 的切线.(2)解如图,所示 连接,CO EO①2AB =①1OC OE == ①2CE ①222CO EO += 2222CE == ①222CO O CE +=①90COE ∠=︒ ①29011111360242ππS ⨯=-⨯⨯=-阴影 ①图中阴影部分的面积为142π-. 【点评】本题主要考查圆的基础知识 掌握圆的切线的证明方法 扇形面积的计算方法是解题的关键.11.(1)见解析(2)3【分析】(1)连接CO 根据OF BC ∥可得B AOF ∠=∠ 根据直径所对的圆周角为直角可得90B CAB ∠+∠=︒ 再根据AO CO =得出CAB ACO ∠=∠ 最后证明90ACD ACO ∠+∠=︒即可 (2)根据中位线定理得出152OE BC == 证明DBC DOF ∽ 根据相似三角形对应边成比例 即可求解.【解析】(1)证明连接CO①OF BC ∥①B AOF ∠=∠①AB 为O 的直径①90ACB ∠=︒ 则90B CAB ∠+∠=︒①90AOF CAB ∠+∠=︒①AO CO =①CAB ACO ∠=∠①ACD AOF ∠=∠①90ACD ACO ∠+∠=︒ 即OC CD ⊥①CD 为圆O 的切线(2)①AB 为O 的直径①点O 为AB 中点①OF BC ∥①OE 为ABC 中位线 ①152OE BC == ①1sin 4D = OC CD ⊥ ①4OD OC = 则5BD OD OB OC =+=①OF BC ∥①DBC DOF ∽ ①OF OF BC BD = 即4510OC OF OC = 解得8OF =①853EF OF OE =-=-=.【点评】本题主要考查了切线的判定和性质 圆周角定理 相似三角形的判定和性质以及解直角三角形 解题的关键是掌握切线的判定和性质以及相似三角形的判定和性质.12.(1)30︒(2)100︒【分析】(1)根据三角形内角和定理可得60ABC ∠=︒ 再由AD CD = 可得ABD CBD ∠=∠ 即可求解(2)根据圆周角定理可得30ABD ACD ∠∠==︒ 从而得到80BCD ∠=︒ 再由圆内接四边形的性质 即可求解.【解析】(1)解①70,50BAC ACB ∠=︒∠=︒①18060ABC BAC ACB ∠=︒-∠-∠=︒①AD CD = ①1302ABD CBD ABC ∠=∠=∠=︒ (2)解由圆周角定理得30ABD ACD ∠∠==︒①80BCD ACB ACD ∠=∠+∠=︒①四边形ABCD 是O 的内接四边形①180100BAD BCD ∠=︒-∠=︒.【点评】本题主要考查了圆内接四边形的性质 圆周角定理等知识 熟练掌握圆内接四边形的性质 圆周角定理是解题的关键.13.(1)见解析(2)AD 的长是25【分析】(1)连接OA 根据已知条件证明OA AE ⊥即可解决问题(2)作OF CD ⊥ 则四边形OAEF 是矩形 且132DF CD ==由此可求得DE 的长 在Rt OFD △中 勾股定理求出OF 即AE 的长 在Rt AED △中利用勾股定理求DA . 【解析】(1)证明如图, 连接OA①AE CD ⊥①90DAE ADE ∠+∠=︒.①DA 平分BDE ∠①ADE ADO ∠=∠又①OA OD =①OAD ADO ∠=∠①90DAE OAD ∠+∠=︒①OA AE ⊥①AE 是O 的切线(2)解过点O 作OF CD ⊥于F .①90OAE AEF OFE ∠︒=∠=∠=①四边形OAEF 是矩形①5EF OA AE OF ===,.①OF CD ⊥ ①132DF FC CD ===①532DE EF DF =-=-=在Rt OFD △中 2222534OF OD DF --=①4AE OF ==在Rt AED △中 22224225AD AE DE ++=①AD 的长是25【点评】本题考查了切线的判定与性质 垂径定理 圆周角定理 勾股定理 解决本题的关键是掌握切线的判定与性质.14.(1)12π(2)9【分析】(1) 根据题意 CEB APB ABC PBE S S S S S =+--阴影扇形扇形 根据公式计算即可.(2) 连接PE 根据题意 45,135,90PEB CEP PEC ∠=︒∠=︒∠=︒ 根据勾股定理计算即可.【解析】(1)如图, ①正方形ABCD 旋转APB △到CEB 的位置①APB CEB ≌ 90ABC PBE ∠=∠=︒ =CEB APB S S ①CEB APB ABC PBE S S S S S =+--阴影扇形扇形①ABC PBE S S S =-阴影扇形扇形①48BP AB ==, ①9064901612360360S πππ︒⨯⨯︒⨯⨯=-=︒︒阴影. (2)连接PE根据题意 45,135PEB APB CEP ∠=︒∠=∠=︒ AP CE =①90PEC ∠=︒①4BP = 7AP =①2227,4432CE PE ==+=①222273281PC CE PE =+=+=解得9PC =.【点评】本题考查了正方形的性质 旋转的性质 阴影面积的计算 扇形面积公式 勾股定理 熟练掌握旋转的性质 阴影面积的计算 扇形面积公式 勾股定理是解题的关键.15.(1)证明见解析(2)10DF =【分析】(1)因为CDB CAB ∠=∠ CDB BFD ∠=∠ 所以CAB BFD ∠=∠ 即可得出FD ①AC 可得得出OD FD ⊥ 进而得出结论(2)利用勾股定理先求解AC 再利用垂径定理得出AE 的长 可得OE 的长 证明AEO FDO ∽ 再利用相似三角形的判定与性质得出DF 的长.【解析】(1)①CDB CAB ∠=∠ CDB BFD ∠=∠①CAB BFD ∠=∠①FD AC ∥①OD 垂直于弦AC 于点E①OD FD ⊥①FD 是O 的一条切线(2)①AB 为O 的直径①90ACB ∠=︒①15AB = 9BC = ①2215912AC -= 7.5AO OB OD ===①DO AC ⊥①6AE CE == ①227.56 4.5OE -①AC FD ∥①AEO FDO ∽ ①AE EO FD DO = ①4.567.5FD= 解得10DF =.经检验符合题意.【点评】本题主要考查了相似三角形的判定与性质 垂径定理 圆周角定理 切线的判定 以及平行线的判定 掌握相似三角形的判定与性质 垂径定理 圆周角定理以及平行线的判定是解题的关键.16.(1)50︒(2)30︒【分析】(1)连接OA 先由切线的性质得OAE ∠的度数 求出2142AOB C ∠=∠=︒ 进而得AOE ∠ 则可求出答案(2)连接OA 根据等腰三角形的性质及切线的性质列方程求解即可.【解析】(1)连接OA .如图,①AE 切O 于点AOA AE ∴⊥90OAE ∴∠=︒70C ∠=︒2270140AOB C ∴∠=∠=⨯︒=︒又180AOB AOE ∠+∠=︒40AOE ∴∠=︒90AOE E ∠+∠=︒904050E ∴∠=︒-︒=︒.(2)连接OA 如图,①设E x ∠=.AB AE =ABE E x ∴∠=∠=OA OB =OAB ABO x ∴∠=∠=2AOE ABO BAO x ∴∠=∠+∠=. AE 是O 的切线OA AE ∴⊥ 即90OAE ∠=︒在OAE ∆中 90AOE E ∠+∠=︒即290x x +=︒解得30x =︒30E ∴∠=︒.【点评】本题主要考查了切线的性质 等腰三角形的性质 圆周角的性质 三角形内角和的性质 用方程思想解决几何问题 关键是熟悉掌握这些性质.17.(1)见解析(2)10cm【分析】(1)连接OD 根据平行线的判定与性质可得90ODE DEM ∠=∠=︒ 又点D 在O 上 即可证得DE 是O 的切线(2)首先根据勾股定理可得AD 的长 再由ACD ADE ∽ 根据相似三角形的性质列出比例式 代入数据即可求得圆的半径.【解析】(1)证明如图,连接ODOA OD =OAD ODA ∠=∠∴ AD 平分CAM ∠OAD DAE ∴∠=∠ODA DAE ∴∠=∠DO MN ∴∥DE MN ⊥90ODE DEM ∴∠=∠=︒ 即OD DE ⊥ 又点D 在O 上 OD 为O 的半径DE ∴是O 的切线(2)解90AED ∠=︒ 8cm DE = 4cm AE =22228445AD DE AE ∴++如图,连接CDAC 是直径90ADC AED ∴∠=∠=︒CAD DAE ∠=∠ACD ADE ∴△∽△AD AC AE AD ∴= 4545=解得20AC =O ∴的半径为10cm .【点评】本题考查圆了切线的判定;等边对等角 平行线的判定与性质 圆周角定理 勾股定理 相似三角形的判定和性质等知识 在圆中学会正确添加辅助线是解决问题的关键.18.(1)见解析 (2)49【分析】(1)欲证~CBA FDC ,只要证明两个角对应相等就可以.可以转化为证明DE BC =就可以 (2)由~CBA FDC 可得814CF = ACB F ∠=∠ 进而即可得到答案. 【解析】(1)证明①四边形ABCD 内接于O①CBA CDF ∠=∠.①DE BC =①BCA DCE ∠=∠.①~CBA FDC(2)解①C 是DBA 的中点①9CD AC ==①~CBA FDC 4AB = ①AB AC CD CF = 即499CF= ①814CF = ①~CBA FDC ①94tan tan 8194AC ACB F CF ∠=∠===.【点评】本题考查的是圆的综合题;涉及弧、弦的关系;等腰三角形的性质;相似三角形的判定与性质;锐角三角函数;掌握相似三角形的判定和性质是解答此题的关键.。
中考数学专题练——专题11 圆(试题精选,含答案)

专题十一圆一、单选题1.(2019·高新模拟)如图,O为圆心,是直径,是半圆上的点,是上的点.若,则的大小为()A. B. C. D.2.(2020·南通模拟)如图,点A,B,C,D都在⊙O上,BD为直径,若∠A=65°,则∠DBC的值是( )A. 65°B. 25°C. 35°D. 15°3.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是( )A. B. 2 C. 6 D. 84.(2020九上·奉化期末)如图,在菱形ABCD中,已知AB=4,∠B=60°,以AC为直径的⊙O与菱形ABCD 相交,则图中阴影部分的面积为( )A. B. C. D.5.(2019九上·温州月考)如图,△ABC内接于⊙O中,AB=AC,=60°,则∠B=( )A. 30°B. 45°C. 60°D. 75°6.(2020九上·中山期末)如图,AD是半圆的直径,点C是弧BD的中点,∠ADC=55°,则∠BAD等于()A. 50°B. 55°C. 65°D. 70°7.(2020九上·海曙期末)平面直角坐标系中,⊙P的圆心坐标为(-4,-5),半径为5,那么⊙P与y轴的位置关系是()A. 相交B. 相离C. 相切D. 以上都不是8.(2019九上·驻马店期末)如图,直径AB为3的半圆,绕A点逆时针旋转60°,此时点B到了点B′处,则图中阴影部分的面积是()A. 3πB.C. 6πD. 24π9.(2020九上·北仑期末)下列四个结论,不正确的是()①过三点可以作一个圆;②圆内接四边形对角相等③平分弦的直径垂直于弦;④相等的圆周角所对的弧也相等A. ②③B. ①③④C. ①②④D. ①②③④10.(2020九上·诸暨期末)如图,是圆内接四边形的一条对角线,点关于的对称点在边上,连接.若,则的度数为()A. 106°B. 116°C. 126°D. 136°11.(2019九上·武汉月考)如图,O的半径为1,弦AB=1,点P为优弧AB上一动点,AC⊥AP交直线PB 于点C,则△ABC的最大面积是()A. B. C. D.12.如图,在⊙O中,点C在优弧AB上,将弧BC沿BC折叠后刚好经过AB的中点D. 若⊙O的半径为,AB=8,则BC的长是()A. B. C. D.13.(2019九上·如皋期末)如图,▱ABCD中,,,,是边AB上的两点,半径为2的过点A,半径为1的过点、E、F分别是边CD,和上的动点则的最小值等于A. B. 6 C. D. 914.(2019·武汉模拟)点G为△ABC的重心(△ABC三条中线的交点),以点G为圆心作⊙G与边AB,AC相切,与边BC相交于点H,K,若AB=4,BC=6,则HK的长为()A. B. C. D.15.(2019·武汉模拟)如图,⊙O内切于正方形ABCD,边AD,CD分别与⊙O切于点E,F,点M、N 分别在线段DE,DF上,且MN与⊙O相切,若△MBN的面积为8,则⊙O的半径为()A. B. 2 C. D. 216.(2020·长兴模拟)如图,AB为☉O的直径,P为弦BC上的点,∠ABC=30°,过点P作PD⊥OP交☉O 于点D,过点D作DE∥AB交AB的延长线于点E.若点C恰好是的中点,BE=6,则PC的长是()A. -8B. -3C. 2D. 12-17.(2019九上·宜兴月考)在平面直角坐标系中,直线经过点A(-3,0),点B(0,),点P的坐标为(1,0),与轴相切于点O,若将⊙P沿轴向左平移,平移后得到(点P的对应点为点P′),当⊙P′与直线相交时,横坐标为整数的点P′共有()A. 1个B. 2个C. 3个D. 4个18.(2019·海州模拟)如图,菱形ABCD的边AB=5,面积为20,∠BAD<90°,⊙O与边AB、AD都相切,AO=2,则⊙O的半径长等于()A. B. C. D.19.(2019·高台模拟)如图,AB与⊙O相切于点C,OA=OB,⊙O的直径为6cm,AB=6 cm,则阴影部分的面积为()A. B. C. D.20.(2019九下·深圳月考)如图,△ABC内接于圆O,∠BOC=120°,AD为圆O的直径.AD交BC于P 点且PB=1,PC=2,则AC的长为( )A. B. C. 3 D. 2二、填空题21.(2019·嘉定模拟)如图,的半径长为5cm,内接于,圆心O在的内部,如果,cm,那么的面积为________cm22.(2019九上·黄石期末)如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=25°.求∠P的度数________.23.(2020九上·东台期末)如图,⊙O是△ABC的外接圆,已知∠ABO=40°,则∠ACB的大小为________.24.(2019·台江模拟)如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是________.25.(2019九上·道里期末)如图,已知,在中,,,,是ABC的内切圆,则这个圆的半径是________.26.(2020九上·北仑期末)如图,四边形ABCD中,∠BAD=∠BCD=90°,∠B=45°,DE⊥AC于E交AB 于F,若BC=2CD,AE=2,则线段BF=________。
2021中考数学复习圆的综合题专项训练3(精选30道选择题 附答案详解)

2021中考数学复习圆的综合题专项训练3(精选30道选择题附答案详解)1.如图,PA,PB是⊙O的切线,A,B为切点,AC为⊙O的直径,弦BD⊥AC下列结论:①∠P+∠D=180°;②∠COB=∠DAB;③∠DBA=∠ABP;④∠DBO=∠ABP.其中正确的只有()A.①③B.②④C.②③D.①④2.如图,在△ABC中AC=BC,∠ACB=90°,以BC为直径作⊙O,连接OA,交⊙O 于点D,过D点作⊙O的切线交AC于点E,连接B、D并延长交AC于点F,则下列结论错误的是()A.△ADE∽△ACO B.△AOC∽△BFCC.△DEF∽△DOC D.CD2=DF•DB3.若小唐同学掷出的铅球在场地上砸出一个直径约为10 cm、深约为2 cm的小坑,则该铅球的直径约为()A.10cm B.14.5cm C.19.5cm D.20cm4.已知ABCD是一个以AD为直径的圆内接四边形,分别延长AB和DC,它们相交于P,若∠APD=60°,AB=5,PC=4,则⊙O的面积为()A.25πB.16πC.15πD.13π5.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B,点M和点N分别是l1和l2上的动点,MN沿l1和l2平移,若⊙O的半径为1,∠1=60°,下列结论错误的是()A.MN=433B.若MN与⊙O相切,则AM=3C.l1和l2的距离为2 D.若∠MON=90°,则MN与⊙O相切6.已知AC⊥BC于C,BC=a,CA=b,AB=c,下列图形中⊙O与△ABC的某两条边或三边所在的直线相切,则⊙O的半径为aba b+的是()A.B.C.D.7.如图,在等腰Rt∆ABC中,42AC BC==,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.224π+B.2πC.422+D.4π8.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足13 CFFD=,连接AF并延长交⊙O于点E,连接AD,DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=5;④S△DEF=45,其中正确的是()A.①②③B.①②④C.②③④D.①②③④9.如图,MN是半径为2的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.点P是直径MN上一动点,则P A+PB的最小值为()A .42B .2C .4D .2210.如图,MN 是⊙O 的直径,∠AMN=40°,点B 为弧AN 的中点,点P 是直径MN 上的一个动点,如果PA+PB 的最小值为3,那么⊙O 的直径等于( )A .2B .3C .4D .511.Rt ABC 中,90C ∠=,以BC 为直径的O 交AB 于E ,OD BC ⊥交O 于D ,DE 交BC 于F ,点P 为CB 延长线上的一点,PE 延长交AC 于G ,PE PF =.小华得出3个结论:①GE GC =;②AG GE =;③//OG BE .其中正确的是( )A .①②B .①③C .②③D .①②③ 12.如图,O 的弦CD 交弦AB 于P ,4AP =,3PB =,2CP =,那么PD 的长为( )A .8B .6C .4D .313.如图,直线l 与半径为3的O 相切于点A ,P 是O 上的一个动点(不与点A 重合),过点P 作PB l ⊥,垂足为B ,连结PA ,设PA m =,PB n =,则m n -的最大值是( )A.3B.2C.32D.1214.如图,已知AB、CD分别是半圆O的直径和弦,AD和BC相交于点E,若∠AEC=α,则S△ABE:S△CDE等于()A.1:sinαB.1:cosαC.1:sin2αD.1:cos2α15.如图,在△ABC中,AB=AC,D是△ABC的内心,O是AB边上一点,⊙O经过B、D两点,若BC=4,tan∠ABD=,则⊙O的半径是()A.B.C.D.16.如图,直角梯形ABCD中,∠BAD=∠CDA=90°,AB=6,CD=26,过A,B,D三点的☉O分别交BC,CD于点E,M,且CE=2,下列结论:①DM=CM;②弧AB=弧EM;③☉O的直径为210;④AE=30.其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④17.已知AD是O的直径,AD'BC,AB、AC分别与圆相交于E、F,那么下列等式中一定成立的是()C.AE⋅AB=AF⋅AC D.AE⋅AF=AO⋅AD18.如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM 的长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5 D.4<OM<5 19.如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC 相交于点E,F,则下列结论:①AD⊥BD;②CB平分∠ABD;③BD=2OF;④△CEF≌△BED,其中一定成立的是()A.②④B.①③④C.①②③D.①②③④20.等腰直角△ABC中,∠C=90°,AC=BC=4,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为()A.22B.252-C.4 D.222-21.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3,给出下列结论:①△ADF∽△AED;②CD=8;③tan∠E=;④S△ADE=6,其中正确的有个数是()A.1个B.2个C.3个D.4个22.如图,已知AB为⊙O的直径,C为⊙O上一点,CD⊥AB于D,AD=9,BD=4,以C为圆心,CD为半径的圆与⊙O相交于P,Q两点,弦PQ交CD于E,则PE•EQ 的值是()A.24 B.9 C.36 D.2723.如图,点A,B分别在x轴、y轴上(OA>OB),以AB为直径的圆经过原点O,C是AOB的中点,连结AC,BC.下列结论:①AC=BC;②若OA=4,OB=2,则△ABC 的面积等于5;③若OA﹣OB=4,则点C的坐标是(2,﹣2).其中正确的结论有()A.3个B.2个C.1个D.0个24.已知O的半径为2,点P是O内一点,且3OP ,过P作互相垂直的两条弦AC、BD,则四边形ABCD面积的最大值为()A.4 B.5 C.6 D.725.如图,⊙O与正方形ABCD的两边AB、AD相切,且DE与⊙O 相切于点E,若⊙O的半径为5,且AB=11,则DE的长度为( )A.5 B.6 C10D.11 226.如图,在等腰Rt△ABC中,AC=BC=2,点P在以斜边AB为直径的半圆上,M 为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.πB.22πC.2 D.227.如图,在平面直角坐标系中,A(0,3)、B(3,0),以点B为圆心、2为半径的⊙B 上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为()A.1 B.32﹣1 C.2D.22﹣128.如图,在平面直角坐标系中,A(0,3)、B(3,0),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为()A.1 B.2﹣1 C2D 32﹣129.在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是()A.(03B.30)C.(0,2)D.(2,0)30.等腰ABC中,AB AC=,O是腰AB上一点(不同于A、B),以OB为半径,作圆交边BC于D,E是边AC上一点,连接DE,①若AB是O的直径,且DE是,则AB是O的直径.上述命题中,正切线;③若DE是O的切线,且DE AC确的命题是()A.①②③B.①②C.①③D.②③第II卷(非选择题)请点击修改第II卷的文字说明参考答案1.C【解析】【分析】①中,根据切线的性质可知∠P+∠AOB=180°,又根据圆周角定理,得∠D=∠AOB,所以可判断它错误;②中,根据垂径定理以及圆周角定理即可判断正确;③中,根据垂径定理和弦切角定理得∠ABP=∠D,所以可知正确;④中,根据③中的推导过程,可知它错误.【详解】①∠OAP=∠OBP=90°,则∠P+∠AOB=180°,又因为∠D=∠AOB,错误;②根据垂径定理以及圆周角定理即可判断正确;③根据垂径定理,得弧AD=弧AB,则∠ADB=∠ABD,再根据弦切角定理,得∠ABP=∠D,正确;④根据③中的推导过程,显然错误.故选C.【点睛】此题综合运用了垂径定理、弦切角定理以及圆周角定理.2.B【解析】【分析】根据相似三角形的判定定理,对各选项的三角形进行分析证明,然后利用排除法求解.【详解】解:A、∵DE是⊙O的切线,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∵∠DAE=∠CAO,∴△ADE∽△ACO;故本选项正确;B、假设△AOC∽△BFC,则有∠OAC=∠FBC,∵∠ACB=90°,以BC为直径作⊙O,∴AC是⊙O的切线,∴∠ACD=∠FBC,∵∠ODC=∠OAC+∠ACD=2∠OAC,∠COD=2∠FBC, ∴∠ODC=∠COD,∴OC=CD,又∵OD=OC,∴OC=CD=OD,即△OCD是等边三角形,∠AOC=60°,∴①,而在△ABC中,AC=BC,BC=2OC,∴AC=2OC②,∴假设与题目条件相矛盾,故假设不成立,所以△AOC与△BFC不相似;故本选项错误;C、∵∠ACB=90°,∴∠CBD+∠BFC=90°,∴BC是⊙O的直径,∴∠CBD+∠BCD=90°,∴∠BCD=∠BFC,∵DE是⊙O的切线,AC是⊙O的切线,∴∠CDE=∠CED=∠CBD,又∵∠AED=∠CDE+∠CED=2∠CBD,∠COD=2∠CBD,∴∠AED=∠COD,在△DEF∽△DOC中,BCD BFC AED COD ∠=∠⎧⎨∠=∠⎩, ∴△DEF ∽△DOC ,故本选项正确;D 、∵BC 为⊙O 的直径,∴∠CDB=90°,∴CD ⊥BF ,∵∠ACB=90°,∴CD 2=DF•DB ,故本选项正确.故选B .【点睛】本题主要考查了相似三角形的判定,圆周角定理以及切线的性质,本题利用反证法,先假设成立,再推出矛盾,从而推翻假设,掌握相关定理是解题关键.3.B【解析】试题解析:设铅球的半径为x ,根据题意可得()2221022x x ⎛⎫-+= ⎪⎝⎭ ,解得294x = ,则直径为29292214.542x =⨯==cm ,故本题应选B. 4.D【解析】【分析】 连接AC ,由圆周角定理可得出∠ACD=90°,再由圆内接四边形的性质及三角形内角和定理可求出∠PAC=30°,由直角三角形的性质可求出AP 、AC 的长,由相似三角形的判定定理及性质可得出CD 的长,再根据勾股定理接可求出AD 的长,进而求出该圆的面积.【详解】连接AC ,∵AD是⊙O的直径,∴∠ACD=90°,∵∠APD=60°,∴∠PAC=30°,∴AP=2PC=2×4=8,∵AB=5,∴PB=8-5=3,∵四边形ABCD是以AD为直径的圆内接四边形,∴∠BAD+∠BCD=180°,∵∠BCD+∠PCB=180°,∴∠BAD=∠PCB,∠APD=∠APD,∴△PCB∽△PAD,∴PC PBAP PD=,即438PD=,PD=6,∴CD=PD-PC=6-4=2,∴AC=22228443AP PC-=-=在Rt△ACD中,2222(43)2213AC CD+=+=.∴OA=1213∴⊙O的面积=π×132=13π.故选D.【点睛】本题考查的是相似三角形的判定与性质、圆内接四边形的性质、勾股定理,解答此题的关键是作出辅助线,构造出直角三角形求解.5.B【解析】试题分析:解:有题意分析得出:角12AB MN =,AB=2,故A 正确若MN 与⊙O 1AM=,AM = 故B 正确;C 中,正确;D 适用倒推法,亦正确。
中考数学真题精选之圆的专题训练(3)

中考数学真题精选之圆的专题训练(3)一.选择题(共14小题)1.如图,等圆⊙O 1和⊙O 2相交于A ,B 两点,⊙O 1经过⊙O 2的圆心O 2,若O 1O 2=2,则图中阴影部分的面积为( )A .2πB .43πC .πD .23π 2.如图,在△ABC 中,∠ABC =90°,∠ACB =30°,AB =4,点O 为BC 的中点,以O 为圆心,OB 长为半径作半圆,交AC 于点D ,则图中阴影部分的面积是( )A .5√3−√33πB .5√3−4πC .5√3−2πD .10√3−2π3.如图,在四边形ABCD 中,AB ∥CD ,AD ⊥AB ,以D 为圆心,AD 为半径的弧恰好与BC 相切,切点为E ,若AB CD =13,则sin C 的值是( ) A .23 B .√53 C .34 D .√744.如图,在3×3的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中的圆弧为格点△ABC 外接圆的一部分,小正方形边长为1,图中阴影部分的面积为( )A .52π−74B .52π−72C .54π−74D .54π−72 5.如图,已知点C 为圆锥母线SB 的中点,AB 为底面圆的直径,SB =6,AB =4,一只蚂蚁沿着圆锥的侧面从A 点爬到C 点,则蚂蚁爬行的最短路程为( )A .5B .3√3C .3√2D .6√36.如图,⊙O 是△ABC 的外接圆,弦BD 交AC 于点E ,AE =DE ,BC =CE ,过点O 作OF⊥AC于点F,延长FO交BE于点G,若DE=3,EG=2,则AB的长为()A.4√3B.7C.8D.4√5 7.(2022•宜昌)如图,四边形ABCD内接于⊙O,连接OB,OD,BD,若∠C=110°,则∠OBD=()A.15°B.20°C.25°D.30°8.工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC ⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为()A.10cm B.15cm C.20cm D.24cm9.如图,⊙O是等边△ABC的外接圆,点D是弧AC上一动点(不与A,C重合),下列结论:①∠ADB=∠BDC;②DA=DC;③当DB最长时,DB=2DC;④DA+DC=DB,其中一定正确的结论有()A.1个B.2个C.3个D.4个10.一个扇形的弧长是10πcm,其圆心角是150°,此扇形的面积为()A.30πcm2B.60πcm2C.120πcm2D.180πcm211.如图,CD是圆O的弦,直径AB⊥CD,垂足为E,若AB=12,BE=3,则四边形ACBD 的面积为()A.36√3B.24√3C.18√3D.72√312.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD是⊙O的直径,若AD=3,则BC=()A.2√3B.3√3C.3D.413.如图,⊙O是Rt△ABC的外接圆,OE⊥AB交⊙O于点E,垂足为点D,AE,CB的延长线交于点F.若OD=3,AB=8,则FC的长是()A.10B.8C.6D.414.如图,A、B是⊙O上的两点,∠AOB=60°,OF⊥AB交⊙O于点F,则∠BAF等于()A.20°B.22.5°C.15°D.12.5°二.填空题(共4小题)15.如图,在△ABC中,∠ACB=70°,△ABC的内切圆⊙O与AB,BC分别相切于点D,E,连接DE,AO的延长线交DE于点F,则∠AFD=.16.已知⊙O的直径AB长为2,弦AC长为√2,那么弦AC所对的圆周角的度数等于.17.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,⊙O为Rt△ABC的内切圆,则图中阴影部分的面积为(结果保留π).18.“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以边长为2厘米的等边三角形ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”,该“莱洛三角形”的面积为平方厘米.(圆周率用π表示)三.解答题(共4小题)19.如图,△ABC是等腰直角三角形,∠ACB=90°,点O为AB的中点,连接CO交⊙O 于点E,⊙O与AC相切于点D.(1)求证:BC是⊙O的切线;(2)延长CO交⊙O于点G,连接AG交⊙O于点F,若AC=4√2,求FG的长.20.如图,△ABC中,以AB为直径的⊙O交BC于点D,DE是⊙O的切线,且DE⊥AC,垂足为E,延长CA交⊙O于点F.(1)求证:AB=AC;(2)若AE=3,DE=6,求AF的长.21.如图CD是⊙O直径,A是⊙O上异于C,D的一点,点B是DC延长线上一点,连AB、AC、AD,且∠BAC=∠ADB.(1)求证:直线AB是⊙O的切线;(2)若BC=2OC,求tan∠ADB的值;(3)在(2)的条件下,作∠CAD的平分线AP交⊙O于P,交CD于E,连PC、PD,若AB=2√6,求AE•AP的值.22.如图,P A、PB是⊙O的切线,A、B是切点,AC是⊙O的直径,连接OP,交⊙O于点D,交AB于点E.(1)求证:BC∥OP;(2)若E恰好是OD的中点,且四边形OAPB的面积是16√3,求阴影部分的面积;(3)若sin∠BAC=13,且AD=2√3,求切线P A的长.。
中考专题训练之圆的题(选择填空解答题)

圆的题专题训练 1、(2010年,23题,8分)如图,在RT△ABC中∠ABC=90°,斜边AC的垂直平分线交BC与D点,交AC与E点,连接BE (1)若BE是△DEC的外接圆的切线,求∠C的大小? (2)当AB=1,BC=2时,求△DEC外接圆的半径?
2、(2010年,选择题第9题,3分)如图,点A、B、P在⊙O上的动点,要是△ABP为等腰三角形,则所有符合条件的点P有 ( ) A 1个 B 2个 C 3个 D 4个 3、(2010年,填空题第14题,3分)如图是一条水铺设的直径为2米的通水管道横截面,其水面宽1.6米,则这条管道中此时最深为 米。
4、(2011年,23题,8分)如图,在△ABC中,060B,⊙O是△ ABC外接圆,过点A 作的切线,交CO的延长线于P点,CP交⊙O于D (1) 求证:AP=AC (2) 若AC=3,求PC的长
5、(2011年,选择题第7题,3分)同一平面内的两个圆,他们的半径分别为2和3 ,圆心距为d,当51d时,两圆的位置关系是( ) A、外离 B、相交 C、内切或外切 D、内含 6、(2012年,第23题,8分)如图,PAPB、分别与⊙O相切于点AB、,点M在PB上,且//OMAP,MNAP,垂足为N. (1)求证:=OMAN; (2)若⊙O的半径=3R,=9PA,求OM的长. 7、(2012年,选择题第9题,3分)如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为( ) A.3 B.4 C.32 D.24
8、(2013年,第23题,8分)如图,直线L与⊙O相切于点D.过圆心O作EF∥L交⊙O于E、F两点,点A是⊙O上一点,连接AE、AF.并分别延长交直线L于 B、C两点. (1) 求证:∠ABC+∠ACB=90°; (2) 当⊙O的半径R=5,BD=12时,求tan∠ABC的值.
lFOE
DBC
2020年中考数学专题《圆的综合》针对训练卷(附解析)
2020年中考数学专题《圆的综合》针对训练卷时间:100分钟满分:100分一.选择题(每题3分,共30分)1.下列说法正确的有()①相等的圆心角所对的弧相等;②长度相等的两条弧是等弧;③三角形的外心到三角形各顶点的距离相等;④三点可以确定一个圆.A.4个B.3个C.2个D.1个2.已知AB是半径为5的圆的一条弦,则AB的长不可能是()A.4B.8C.10D.123.已知,在△ABC中,∠A=30°,∠B=135°,CD⊥AB,且CD=1.若以点A为圆心,为半径作⊙A,以点B为圆心,1为半径作⊙B,则⊙A与⊙B的位置关系是()A.内切B.外切C.相交D.外离4.如图,在⊙O中,点A、B、C在圆上,∠AOB=100°,则∠C=()A.45°B.50°C.55°D.60°5.如图,扇形纸扇完全打开后,扇形ABC的面积为240πcm2,∠BAC=150°,BD=2AD,则BD的长度为()A.16cm B.18cm C.20cm D.24cm6.如图,△ABC是⊙O的内接三角形,半径OE⊥AB,垂足为点F,连结弦AE,已知OE=1,则下面的结论:①AE2+BC2=4 ②sin∠ACB=③cos∠B=,其中正确的是()A.①②B.①③C.②③D.②7.边长为2的正六边形的面积为()A.6B.6C.6D.8.如图,BC是⊙O的直径,点A、D在⊙O上,若∠ADC=48°,则∠ACB的度数为()A.42°B.48°C.90°D.52°9.如图,把半径为2的⊙O沿弦AB,AC折叠,使和都经过圆心O,则阴影部分的面积为()A.B.C.2D.410.如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=2,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是()A.B.C.πD.2π二.填空题(每题3分,共30分)11.⊙O1,⊙O2交于A,B两点,O1,O2在AB的两侧,AC为⊙O1的直径,延长BC为⊙O2,交于点D、E为弧BC上一点,延长EB与⊙O2交于点F,M,N分别为CD,EF的中点,AC=2CE,求∠AMN=.12.如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=75°,则∠DAO+∠DC O的大小是.13.在平面直角坐标系中,点O为坐标原点,A、B、C三点的坐标为(,0)、(3,0)、(0,5),点D在第一象限,且∠ADB=60°,则线段CD的长的最小值为.14.如图,AB是半圆O的直径,四边形ABCD内接于圆O,连接BD,AD=BD,则∠BCD =度.15.Rt△ABC中,∠C=90°,⊙O是△ABC的内切圆,切点为D,E,F,若AC=6,BC =8,则⊙O的半径为.16.如图,AB是⊙O的直径,AB=4,C为弧AB中点,点P是⊙O上一个动点,取弦AP的中点D,则CD的最大值为.17.正△ABC的边长为4,⊙A的半径为2,D是⊙A上动点,E为CD中点,则BE的最大值为.18.如图,在⊙O中,AB是⊙O的弦,CD是⊙O的直径,CD⊥AB于点M,若AB=CM=4,则⊙O的半径为.19.如图,在平面直角坐标系xOy中,已知⊙A经过点E、B、0、C,点C在y轴上,点E 在x轴上,点A的坐标为(﹣2,1),则sin∠OBC的值是.20.已知A,B,C三点在⊙O上,且AB是⊙O内接正三角形的边长,AC是⊙O内接正方形的边长,则∠BAC的度数为.三.解答题(每题8分,共40分)21.已知AB是⊙O的直径,C,D是⊙O上AB同侧两点,∠BAC=26°.(Ⅰ)如图1,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图2,过点C作⊙O的切线,交AB的延长线于点E,若OD∥EC,求∠ACD的大小.22.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.以BC为直径的⊙O交AC于D,E是AB的中点,连接ED并延长交BC的延长线于点F.(1)求证:DE是⊙O的切线;(2)求DB的长.23.如图,AB是⊙O的直径,P是BA延长线上一点,过点P作⊙O的切线,切点为D,连接BD,过点B作射线PD的垂线,垂足为C.(1)求证:BD平分∠ABC;(2)如果AB=6,sin∠CBD=,求PD的长.24.如图,已知⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)判断AG与⊙O的位置关系,并说明理由.(2)若BA=8,∠B=37°,求直径BC的长(结果精确到0.01).25.如图,在△ABC中,AB=BC,∠ABC=90°,D是AB上一动点,连接CD,以CD为直径的⊙M交AC于点E,连接BM并延长交AC于点F,交⊙M于点G,连接BE.(1)求证:点B在⊙M上.(2)当点D移动到使CD⊥BE时,求BC:BD的值.(3)当点D到移动到使=30°时,求证:AE2+CF2=EF2.参考答案一.选择题1.解:①在同圆或等圆中相等的圆心角所对的弧相等;故不符合题意;②在同圆或等圆中长度相等的两条弧是等弧;故不符合题意;③三角形的外心到三角形各顶点的距离相等;故符合题意;④不在同一条直线上的三点可以确定一个圆,故不符合题意;故选:D.2.解:因为圆中最长的弦为直径,所以弦长L≤10.故选:D.3.解:在30°的直角三角形ACD中,因为CD=1,则AC=2,AD=,在等腰直角三角形BCD中,求得BD=CD=1,则AB=﹣1,因为⊙A的半径﹣⊙B的半径=﹣1=AB,所以两圆内切.故选:A.4.解:∵,∴∠C=∠AOB,∵∠AOB=100°,∴∠C=50°.故选:B.5.解:设AB=rcm,∵扇形ABC的面积为240πcm2,∠BAC=150°,∴=240π,解得:r=24,即AB=24cm,∵BD=2AD,BD+AD=AB,∴BD=16cm,故选:A.6.解:连接AO,延长AO交⊙O于M,连接BM、CM、EM.∵AM 是直径,∴∠AEM =90°,∴AE 2+EM 2=AM 2,∴AE 2+EM 2=4,显然无法判定BC =EM ,故①错误,∵∠ACB =∠AMB ,∴sin ∠ACB =sin ∠AMB ==,故②正确,∵∠ABC =∠AMC ,∴cos ∠ABC =cos ∠AMC ==, 显然无法判断CM =AE ,故③错误,故选:D .7.解:如图,连接OB ,OC ,过点O 作OH ⊥BC 于H , ∵六边形ABCDEF 是正六边形,∴∠BOC =×360°=60°,∵OB =0C ,∴△OBC 是等边三角形,∴BC =OB =OC =2,∴它的半径为2,边长为2;∵在Rt △OBH 中,OH =OB •sin60°=2×, ∴边心距是:;∴S 正六边形ABCDEF =6S △OBC =6××2×=6. 故选:A .8.解:∵BC是⊙O的直径,∴∠BAC=90°,∵∠B=∠ADC=48°,∴∠ACB=90°﹣∠B=42°;故选:A.9.解:作OD⊥AC于D,连接AO、BO、CO,∵OD=AO==1,AD=AC=,∴∠OAD=30°,∴∠AOC=2∠AOD=120°,同理∠AOB=120°,∴∠BOC=120°,∴阴影部分的面积=2S△AOC=2××2×1=2,故选:C.10.解:∵△ABC是等腰直角三角形,∴∠BAC=45°,AB=AC=2,∵△ABC绕点A按顺时针方向旋转45°后得到△AB′C,∴∠BAB′=∠CAC′=45°,∴点B′、C、A共线,∴线段BC在上述旋转过程中所扫过部分(阴影部分)的面积=S扇形BAB′+S△AB′C﹣S扇形CAC′﹣S△ABC=S扇形BAB′﹣S扇形CAC′=﹣=π.故选:A.二.填空题(共10小题)11.解:如图,连接AD,AF.AE.∵AC是直径,∴∠AEC=90°,∵AC=2EC,∴∠CAE=30°,∵∠ACD=∠AEF,∠ADC=∠AFE,∴△ACD∽△AEF,∴=,∵CM=MD,EN=NF,∴=,∴∠ACM=∠AEN,∴△ACM∽△AEN,∴∠CAM=∠EAN,∴∠MAN=∠CAE=30°,故答案为30°.12.解:由AO=BO=CO可知:O是三角形ABC的外心,∴∠ABC是圆周角,∠AOC是圆心角,∴∠AOC=2∠ABC=150°,又∠D=75°,所以∠DAO+∠DCO=360°﹣150°﹣75°=135°.故答案为:135°.13.解:作圆,使∠ADB=60°,设圆心为P,连结P A、PB、PC,PE⊥AB于E,如图所示:∵A(,0)、B(3,0),∴E(2,0)又∠ADB=60°,∴∠APB=120°,∴PE=1,P A=2PE=2,∴P(2,1),∵C(0,5),∴PC==2,又∵PD=P A=2,∴只有点D在线段PC上时,CD最短(点D在别的位置时构成△CDP)∴CD最小值为:2﹣2.故答案为:2﹣2.14.解:∵AB是半圆O的直径,AD=BD,∴∠ADB=90°,∠DAB=45°,∵四边形ABCD内接于圆O,∴∠BCD=180°﹣45°=135°,故答案为:135.15.解:设⊙O的半径为r,Rt△ABC中,∠C=90°,∴AB==10,∵⊙O是△ABC的内切圆,切点为D,E,F,∴OD⊥BC,OE⊥AC,BD=BF,AE=AF,易得四边形ODCE为正方形,∴CD=CE=OE=r,∴BF+BD=8﹣r,AF=AE=6﹣r,∴8﹣r+6﹣r=10,解得r=2,即⊙O的半径为2.故答案为2.16.解:如图,连接OD,OC,∵AD=DP,∴OD⊥P A,∴∠ADO=90°,∴点D的运动轨迹为以AO为直径的⊙K,连接CK,当点D在CK的延长线上时,CD的值最大,∵C为弧AB中点,∴OC⊥AB,在Rt△OCK中,∵∠COA=90°,OC=2,OK=AO=,∴CK==,∵DK=OA=,∴CD=+,∴CD的最大值为+,故答案为:+.17.解:连接AD,∵⊙A的半径是2,∴⊙A与AC边交于AC的中点F,∵E为CD中点,E点的运动轨迹是以F为圆心FE为半径的圆,∴当点B,E,F三点共线,此时BE与圆A相切时,BE的值最大,∵AF=2,AB=4,∴BF=2,∵E为CD中点,F是AC的中点,∴EF=AD=1,∴BE=2+1;故答案为2+1.18.解:连接OA,如图所示:∵CD是⊙O的直径,CD⊥AB,∴AM=AB=2,∠OMA=90°,设OC=OA=x,则OM=4﹣x,根据勾股定理得:AM2+OM2=OA2,即22+(4﹣x)2=x2,解得:x=2.5;故答案为:2.5.19.解:过A作AM⊥x轴于M,AN⊥y轴于N,连接EC,∵∠COE=90°,∴EC是⊙A的直径,即EC过O,∵A(﹣2,1),∴OM=2,ON=1,∵AM⊥x轴,x轴⊥y轴,∴AM∥OC,同理AN∥OE,∴N为OC中点,M为OE中点,∴OE=2AN=4,OC=2AM=2,由勾股定理得:EC==2,∵∠OBC=∠OEC,∴sin∠OBC=sin∠OE C===.故答案为.20.解:①如图1所示:∵AB是⊙O内接正三角形的边长,AC是⊙O内接正方形的边长,∴∠AOB=120°,∠AOC=90°,∴∠BCO=360°﹣120°﹣90°=150°,∴∠BAC=∠BOC=75°;②如图2所示,同①得出∠BAC=15°,故答案为:75°或15°.三.解答题(共5小题)21.解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=26°,∴∠ABC=64°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=∠AOD=×90°=45°,∵OA=OC,∴∠OAC=∠OCA=26°,∴∠OCD=∠OCA+∠ACD=71°,∵OD=OC,∴∠ODC=∠OCD=71°;(Ⅱ)如图2,连接OC,∵∠BAC=26°,∴∠EOC=2∠A=52°,∵CE是⊙O的切线,∴∠OCE=90°,∴∠E=38°,∵OD∥CE,∴∠AOD=∠E=38°,∴∠ACD=AOD=19°.22.(1)证明:连接BD,DO,∵BC是⊙O的直径,∴∠ADB=90°.∴∠CDB=90°,又∵E为AB的中点,∴DE=EB=EA,∴∠EDB=∠EBD.∵OD=OB,∴∠ODB=∠OBD.∵∠ABC=90°,∴∠EDB+∠OBD=90°.即OD⊥DE.∴DE是⊙O的切线.(2)解:在Rt△ABC中,AB=8,BC=6,∴AC===10,∵,∴.23.解:(1)证明:连接OD,如图1,∵PD是⊙O的切线,∴OD⊥PC,∵BC⊥PC,∴OD∥BC,∴∠ODB=∠CBD,∵OB=OD,∴∠ODB=∠OBD,∴∠CBD=∠OBD,即BD平分∠ABC;(2)连接AD,∵AB是⊙O的直径,∴∠AD B=90°,∵sin∠CBD=sin∠ABD==,AB=6,∴AD=2,∴BD=4,∵sin∠CBD==,∴CD=,∴BC=,∵OD∥BC,∴△PDO∽△PCB,∴,∴=,∴PD=.24.解:(1)AG与⊙O相切,证明:如图连接OA,∵OA=OB,GA=GE,∴∠ABO=∠BAO,∠GEA=∠GAE.∵EF⊥BC,∴∠BFE=90°.∴∠ABO+∠BEF=90°.又∵∠BEF=∠GEA,∴∠GAE=∠BEF.∴∠BAO+∠GAE=90°.∴OA⊥AG,即AG与⊙O相切.(2)∵BC为直径,∴∠BAC=90°,在Rt△BAC中,∠BAC=90°.∵BA=8,∠B=37°,∴B C=≈10.02.25.(1)证明:∵CD为⊙M的直径,∴CM=DM=CD∵∠ABC=90°,∴BM=CM=DM=CD,∴点B在⊙M上.(2)解:连接DE.∵CD为⊙M的直径,CD⊥BE∴∠DEC=90°,=,∴∠DEA=90°,BD=DE,∵AB=BC,∠ABC=90°,∴∠A=∠ACB=45°,∴∠ADE=180°﹣∠A﹣∠AED=45°,∴∠ADE=∠A=45°,∴AE=DE,∴AE=DE=DB,∴AD==BD,∴AB=AD+BD=(+1)BD,∴BC=AB=(+1)BD,∴BC:BD=+1.(3)证明:连接EM.∵∠EMB=2∠ECB,由(2)知∠ECB=45°,∴∠EMB=90°,∴∠EMF=90°,∴EM2+MF2=EF2,∵弧CG等于30°,∴∠CMG=30°,∴∠DME=60°,∵DM=EM,∴△DME是等边三角形,∴DE=EM∠CDE=60°,由(2)知AE=DE,∴AE=ME,∵∠AEC=90°∠CDE=60°,∴∠DCE=30°,∴∠DCE=∠CMG=30°,∴CF=MF,∵EM2+MF2=EF2,∴AE2+CF2=EF2.。
中考数学复习《对称图形——圆》专项测试卷(带答案)
中考数学复习《对称图形——圆》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________知识点扫描考点一 正多边形与圆的概念及性质1.定义:各边 、各角也 的多边形叫做正多边形2.定义:一般地,用量角器把一个圆n (n ≥3)等分,依次连接各等分点所得的多边形是这个圆的内接正多边形.正多边形的外接圆的 叫做正多边形的中心,外接圆的 叫做正多边形的半径.3.正十二边形的每一个外角为 °,每一个内角是 °,该图形绕其中心至少旋转 °和本身重合.4.半径为r 圆内接正方形的边长为 ,面积为 .考点二。
弧长和扇形面积1.如果弧长为l ,圆心角为n°,圆的半径为r ,那么弧长的计算公式为:l =nπr 180. 2.由组成圆心角的两条半径和圆心角所对弧围成的图形叫做扇形.若扇形的圆心角为n°,所在圆半径为r ,弧长为l ,面积为S ,则S =nπr 2360,或S =12lr. 考点三 圆柱和圆锥1.圆柱的侧面展开图是矩形,这个矩形的长等于圆柱的__________________,宽是圆柱的_____________,如果圆柱的底面半径是r ,则S 圆柱侧=cl =2πrl.2.圆锥的侧面展开图是_______,这个扇形的______等于圆锥的底面周长c ,______等于圆锥的母线长l.若圆锥的底面半径为r ,这个扇形的圆心角为α,则α=r l ·360°,S 圆锥侧=12cl =πrl. 考点四 阴影部分面积的求法1.规则图形:按规则图形的面积公式去求.2.不规则图形:采用“转化”的数学思想方法.把不规则图形的面积采用“割补法”、“等积变形法”、“平移法”、“旋转法”等转化为规则图形的面积.《对称图形——圆》专题强化提优训练(三)一.选择题(共30分)1.一个适当大的正六边形,它的一个顶点与一个边长为定值的小正六边形ABCDEF 的中心O 重合,且与边AB 、CD 相交于G 、H (如图).图中阴影部分的面积记为S ,三条线段GB 、BC 、CH 的长度之和记为l ,在大正六边形绕点O 旋转过程中,下列说法正确的是( )A .S 变化,l 不变B .S 不变,l 变化C .S 变化,l 变化D .S 与l 均不变第1题图 第2题图 第3题图 第4题图 第5题图2.如图,在Rt △ABC 中,∠C =90°,AC =BC ,点O 在AB 上,经过点A 的⊙O 与BC 相切于点D ,交AB 于点E ,若CD =,则图中阴影部分面积为( )A .8﹣πB .4﹣2πC .8﹣2πD .4﹣π3.如图,半圆O 的直径AB =8,将半圆O 绕点B 顺时针旋转45°得到半圆O ′,与AB 交于点P ,则图中阴影部分的面积为( )A .4π+8B .4π﹣8C .8πD .8π+84.如图,在△ABC 中,AB =AC ,AB =8,BC =12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是()A.64π-127 B.16π-32 C.16π-247 D.16π-1275.如图,在正方形ABCD中,AC和BD交于点O,过点O的直线EF交AB于点E(E不与A,B重合),交CD于点F.以点O为圆心,OC为半径的圆交直线EF于点M,N.若AB=1,则图中阴影部分的面积为()A.﹣B.﹣C.﹣D.﹣6.如图是一张圆心为O,半径为4cm的圆形纸片,沿弦AC所在直线折叠,使得经过点O,将纸片⊙O 展平后,作半径OB⊥OA,则图中阴影部分的面积等于()A.(4π﹣4)cm2 B.πcm2 C.(﹣8)cm2 D.(π﹣8)cm2第6题图第7题图第8题图第9题图第10题图7.如图,在△ABC中,∠ACB=90°,AC=BC,AB=4cm,CD是中线,点E、F同时从点D出发,以相同的速度分别沿DC、DB方向移动,当点E到达点C时,运动停止,直线AE分别与CF、BC相交于G、H,则在点E、F移动过程中,点G移动路线的长度为()A.2 B.πC.2πD.2 2π8.如图,在扇形OAB中,OC⊥AB于点D,AB=8,将△ODB绕点O点逆时针旋转60°,则线段DB扫过的图形面积为()A.B.2πC.D.9.如图,已知正方形ABCD的边长为20,以A为圆心,AD长为半径作,点E在上,∠DEC=135°,则△DEC的面积为()A.20 B.40 C.20D.2010.如图,在半径为4的扇形OAB中,∠AOB=90°,点C是AB上一动点,点D是OC的中点,连结AD并延长交OB于点E,则图中阴影部分面积的最小值为( B )A.4π﹣4 B.4π﹣C.2π﹣4 D.2π﹣二.填空题(30分)11.如图,将半径为2,圆心角为90°的扇形BAC绕点A逆时针旋转60°,点B、C的对应点分别为D、E,点D在上,则阴影部分的面积为.12.如图,从一块直径为4的圆形铁皮上剪出一个圆心角为90 的扇形CAB,且点C,A,B都在O上,将此扇形围成一个圆锥,则该圆锥底面圆的半径是________.13.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r,扇形的半径为R,扇形的圆心角等于90°,则r与R之间的关系是_______.14.如图,在每个小正方形的边长均为1的网格图中,一段圆弧经过格点A,B,C,格点A,D的连线交圆弧于点E,则弧AE的长为.15.如图矩形ABCD中,以A为圆心,AB的长为半径画圆,交CD于点E,再以D为圆心,DA的长为半径画圆,恰好经过点E.已知AB=2,AD=2,则图中阴影部分的面积为.16.如图,有一张四边形纸片ABCD,已知AB=,AD=2,∠B=80°,∠C=∠D=90°,小明和小丽各做了如图操作,请你选择他俩当中的一人所剪出的扇形,求出它的弧长等于.17.如图,在正方形ABCD中,对角线AC、BD相交于O,AB=4,以点B为圆心,AB长为半径画弧;再以B为圆心,BO长为半径画弧,分别交AB、BC于点E、F、则图中阴影部分的面积为.(结果保留π)第17题图第18题图第19题图第20题图18.如图,水平地面上有一面积为30πcm2的扇形AOB,半径OA=6cm,且OA与地面垂直在没有滑动的情况下,将扇形向右滚动至OB与地面垂直为止,则O点移动的距离为.19.如图四边形ABCD是正方形曲线DA1B1C1D1A2…是由一段段90°的弧组成的.其中:的圆心为点A半径为AD;的圆心为点B半径为;的圆心为点C半径为CB1;的圆心为点D半径为DC1;……的圆心依次按点A B C D循环.若正方形ACD的边长为1 则的长为______________20.如图点C点D点E分别是以AB AC BC为直径的半圆弧的一个三等分点再分别以AD DC CE BE为直径向外侧作4个半圆若图中阴影部分的面积为则AB的长为_____________. 三.解答题(90分)21.(8分)如图在平面直角坐标系中已知△ABC的三个顶点的坐标分别为A(﹣1 1)B(﹣4 0)C(﹣2 2).将△ABC绕原点O顺时针旋转90°后得到△A1B1C1.(1)请写出A1、B1、C1三点的坐标:A1B1C1;(2)求点B旋转到点B1的弧长.22.(9分)如图在单位长度为1的正方形网格中建立一直角坐标系一条圆弧经过网格点A、B、C请在网格图中进行下列操作(以下结果保留根号):(1)利用网格找出该圆弧所在圆的圆心D点的位置写出D点的坐标为;(2)连接AD、CD若扇形DAC是一个圆锥的侧面展开图则该圆锥底面半径为;(3)连接BC将线段BC绕点D旋转一周求线段BC扫过的面积.23.(8分)如图在△ABC中AB=AC以AB为直径作⊙O AC与⊙O交于点D BC与⊙O交于点E过点C作CF∥AB且CF=CD连接BF.(1)求证:BF是⊙O的切线;(2)若∠BAC=45°AD=4 求图中阴影部分的面积.24.(8分)如图 AB是⊙O的直径∠BAC=90°四边形EBOC是平行四边形 EB交⊙O于点D 连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30° EB=4 求图中阴影部分的面积(结果保留根号和π)25.(8分)如图菱形OABC的顶点A的坐标为(2 0) ∠COA=60°.将菱形OABC绕坐标原点O逆时针旋转120°得到菱形ODEF.(1)直接写出点F的坐标;(2)求线段OB的长及图中阴影部分的面积.26.(12分)如图 AB=16 O为AB中点点C在线段OB上(不与点O B重合)将OC绕点O逆时针旋转270°后得到扇形COD AP BQ分别切优弧于点P Q 且点P Q在AB异侧连接OP. (1)求证:AP=BQ;(2)当BQ=43时求扇形COQ的面积及的长(结果保留π);(3)若△APO的外心在扇形COD的内部请直接写出OC的取值范围.27.(12分)如图已知AB是⊙O的直径点C D在⊙O上∠D=60°且AB=6 过O点作OE ⊥AC垂足为E.(1)填空:∠CAB=度;(2)求OE的长;(3)若OE的延长线交⊙O于点F求弦AF AC和弧FC围成的图形(阴影部分)的面积S.28.(13分)如图有一个直径MN=4的半圆形纸片其圆心为点P从初始阶段Ⅰ位置开始在无滑动的情况下沿数轴向右翻滚至位置Ⅴ其中位置Ⅰ中的MN平行于数轴且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中的点N到数轴的距离为3 且半⊙P与数轴相切于点A.解答下列问题:(1)位置Ⅰ中的MN与数轴之间的距离为;位置Ⅱ中的半⊙P与数轴位置关系是;(2)求位置Ⅲ中的圆心P在数轴上表示的数;(3)纸片半⊙P从位置Ⅲ翻滚到位置Ⅳ时求点N所经过路径长及该纸片所扫过的图形的面积;(4)求OA的长.(结果保留π)29.(12分)如图在平面直角坐标系中四边形OABC是边长为2的正方形二次函数y=﹣x2+bx+c 的图象经过A、E两点且点E的坐标为(﹣0)以OC为直径作半圆圆心为D.(1)求二次函数的解析式;(2)求证:直线BE是⊙D的切线;(3)若直线BE与抛物线的对称轴交点为P M是线段CB上的一个动点(点M与点B C不重合)过点M作MN∥BE交x轴与点N连结PM PN设CM的长为t△PMN的面积为S求S与t的函数关系式并写出自变量t的取值范围.S是否存在着最大值?若存在求出最大值;若不存在请说明理由.教师样卷知识点扫描考点一正多边形与圆的概念及性质1.定义:各边相等、各角也相等的多边形叫做正多边形2.定义:一般地用量角器把一个圆n(n≥3)等分依次连接各等分点所得的多边形是这个圆的内接正多边形.正多边形的外接圆的圆心叫做正多边形的中心外接圆的半径叫做正多边形的半径.3.正十二边形的每一个外角为 30 ° 每一个内角是 150 ° 该图形绕其中心至少旋转 30 °和本身重合.4.半径为r 圆内接正方形的边长为2r 面积为 2r 2 . 考点二。
河南省中考一轮复习《第六章圆》训练(含答案)
第六章 圆第一节 圆的基本性质(时间:60分钟 分值:80分)评分标准:选择题和填空题每小题3分. 基础过关1. (兰州)如图,在⊙O 中,AB ︵=BC ︵,点D 在⊙O 上,∠CDB =25°,则∠AOB =( )A. 45°B. 50°C. 55°D. 60°第1题图 第2题图2. (张家界)如图,AB 是⊙O 的直径,BC 是⊙O 的弦,若∠OBC =60°,则∠BAC 的度数是( )A. 75°B. 60°C. 45°D. 30°3. (泸州)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB =8,AE =1,则弦CD 的长是( )A. 7B. 27C. 6D. 8第3题图 第4题图4. (安阳模拟)如图,C 、D 是以AB 为直径的⊙O 上的两个点,CB ︵=BD ︵,∠CAB =24°,则∠ABD 的度数为( )A. 24°B. 60°C. 66°D. 76°5. (青岛)如图,AB 是⊙O 的直径,点C ,D ,E 在⊙O 上,若∠AED =20°,则∠BCD 的度数为( )A. 100°B. 110°C. 115°D. 120°第5题图 第6题图6. (乐山)如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB =CD =0.25米,BD =1.5米,且AB 、CD 与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是( )A. 2米B. 2.5米C. 2.4米D. 2.1米7. (宜昌)如图,四边形ABCD 内接于⊙O ,AC 平分∠BAD ,则下列结论正确的是( )A. AB =ADB. BC =CDC. AB ︵=AD ︵D. ∠BCA =∠DCA第7题图第8题图8. (广州)如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD ,垂足为E ,连接CO ,AD ,∠BAD =20°,则下列说法中正确的是( )AD =2OB B. CE =EO A. ∠OCE =40° D. ∠BOC =2∠BAD C. 9. (西宁)如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP =2,BP =6,∠APC =30°,则CD 的长为( )A. 15B. 2 5C. 215D. 8第9题图 第10题图10. (南阳模拟)如图,AB 是半圆O 的直径,半径OC ⊥AB 于点O ,点D 是BC ︵的中点,连接CD 、AC 、AD 、OD.下列四个结论:①AC ∥OD ;②CE =OE ;③△ODE ∽△ADO ;④∠ADC =∠BOD.其中正确结论的序号是( )A. ①④B. ①②④C. ②③D. ①②③④11. (北京)如图,AB 为⊙O 的直径,C 、D 为⊙O 上的点,AD ︵=CD ︵.若∠CAB =40°,则∠CAD =________.第11题图第12题图12. 如图,四边形ABCD 内接于⊙O ,AB 是直径,点C 为BD ︵的中点,若∠A =40°,则∠B =________.13. (黄冈)如图,⊙O 是△ABC 的外接圆,∠AOB =70°,AB =AC ,则∠ABC =________.第13题图 第14题图14. (南京)如图,四边形ABCD 是菱形,⊙O 经过点A 、C 、D ,与BC 相交于点E ,连接AC 、AE ,若∠D =78°,则∠EAC =________°.15. (8分)(郑州模拟)如图,在⊙O 中,AC 与BD 是圆的直径,BE ⊥AC ,CF ⊥BD ,垂足分别为E ,F.(1)四边形ABCD 是什么特殊的四边形?请判断并说明理由; (2)求证:BE =CF.第15题图满分冲关1. (福建)如图,AB 是⊙O 的直径,C 、D 是⊙O 上位于AB 异侧的两点,下列四个角中,一定与∠ACD 互余的角是( )A. ∠ADCB. ∠ABDC . ∠BAC D. ∠BAD第1题图 第2题图 2. (广安)如图, AB 是⊙O 的直径,且经过弦CD 的中点H ,已知cos∠CDB =45,BD =5,则OH 的长度为 ( )A. 23B. 56C. 1D. 763. (安徽)已知⊙O 的直径CD =10 cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB =8 cm ,则AC 的长为 ( )A. 25 cmB. 4 5 cmC. 2 5 cm 或4 5 cmD. 2 3 cm 或4 3 cm4. 如图,点D(0,3),O(0,0),C(4,0)在⊙A 上,BD 是⊙A 的一条弦,则sin ∠OBD =( )A. 12B. 34C. 45D.35第4题图 第5题图 第7题图 5. (鹤壁模拟)如图,点C 是⊙O 上一点,⊙O 的半径为22,D 、E 分别是弦AC 、BC 上一动点,且OD =OE = 2.则AB 的最大值为( )A. 2 6B. 2 3C. 2 2D. 42 6. (襄阳)在半径为1的⊙O 中,弦AB ,AC 的长分别为1和2,则∠BAC 的度数为________. 7. (成都)如图,△ABC 内接于⊙O ,AH ⊥BC 于点H ,若AC =24,AH =18,⊙O 的半径OC =13,则AB =________.8. (9分)如图,四边形ABCD 内接于⊙O ,AC 平分∠BAD ,延长DC 交AB 的延长线于点E .(1)若∠ADC =86°,求∠CBE 的度数; (2)若AC =EC ,求证:AD =BE .第8题图第二节点、直线与圆的位置关系(时间:90分钟分值:120分)评分标准:选择题和填空题每小题3分.基础过关1. (长春)如图,点A,B,C在⊙O上,∠ABC=29°,过点C作⊙O的切线交OA的延长线于点D,则∠D的大小为()A. 29°B. 32°C. 42°D. 58°第1题图第2题图2. (广州)如图,⊙O是△ABC的内切圆,则点O是△ABC的()A. 三条边的垂直平分线的交点B. 三条角平分线的交点C. 三条中线的交点D. 三条高的交点3. 已知等腰三角形的腰长为6 cm,底边长为4 cm,以等腰三角形的顶角的顶点为圆心,以5 cm为半径画圆,那么该圆与底边的位置关系是()A. 相离B. 相切C. 相交D. 不能确定4. (泰安)如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线与边AD所在直线垂直于点M,若∠ABC=55°,则∠ACD等于()A. 20°B. 35°C. 40°D. 55°第4题图第5题图5. 如图,在平面直角坐标系中,⊙P与x轴相切,与y轴相交于A(0,2),B(0,8),则圆心P的坐标是()A. (5,3)B. (5,4)C. (3,5)D. (4,5)6. (日照)如图,AB是⊙O的直径,P A切⊙O于点A,连接PO并延长交⊙O于点C,连接AC,AB=10,∠P=30°,则AC的长度是()A. 5 3B. 5 2C. 5D. 52第6题图 第7题图7. (连云港)如图,线段AB 与⊙O 相切于点B ,线段AO 与⊙O 相交于点C ,AB =12,AC =8,则⊙O 的半径长为________.8. (大庆)在△ABC 中,∠C 为直角,AB =2,则这个三角形的外接圆半径为________.9. (8分)(周口模拟)如图,点A 、B 、C 分别是⊙O 上的点,∠B =60°,AC =3,CD 是⊙O 的直径,P 是CD 延长线上的一点,且AP =AC .(1)求证:AP 是⊙O 的切线; (2)求PD 的长.第9题图 10. (8分)(宿迁)如图,AB 与⊙O 相切于点B ,BC 为⊙O 的弦,OC ⊥OA ,OA 与BC 相交于点P .(1)求证:AP =AB ;(2)若OB =4,AB =3,求线段BP 的长.第10题图11. (10分)如图,AB 是半圆O 的直径,D 是半圆O 上一点,连接OD ,BD ,∠ABD =30°, 过A 点作半圆O 的切线交OD 的延长线于点G ,点E 是BD ︵上的一个动点,连接AD 、DE 、BE .(1)求证:△ADG ≌△BOD ; (2)填空:①当∠DBE 的度数为________时,四边形DOBE 是菱形; ②连接OE ,当∠DBE 的度数为________时,OE ⊥OD .第11题图满分冲关1. (宁波)如图,在Rt △ABC 中,∠A =90°,BC =22.以BC 的中点O 为圆心的圆分别与AB ,AC 相切于D ,E 两点,则DE ︵的长为( )A. π4B. π2C. πD. 2π第1题图第2题图2. 如图,在△ABC 中,AB =10,AC =8,BC =6,以边AB 的中点O 为圆心,作半圆与AC相切,点P ,Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )A. 6B. 213+1C. 9D.3233. 如图,⊙O 的弦AB ∥CD ,过点D 的切线交AB 的延长线于点E ,CB ∥DE 交AD 于点F ,DO 及其延长线分别交CB 、AB 于点G 、H .下列结论不一定正确的是( )A. DH 垂直平分CBB. DF =AFC. ∠C =∠ADCD. △DCG ≌△HBG第3题图 第4题图 第5题图4. 如图,P A、PB是⊙O的切线,A、B是切点,已知∠P=60°,OA=3,那么AB的长为________.5. 如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE. 若AE=6,OA=5,则线段DC的长为________.6. (8分)(天水)如图所示,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.第6题图7. (8分)(贵港)如图,在菱形ABCD中,点P在对角线AC上,且PD=P A,⊙O是△P AD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=22,求⊙O的半径.第7题图8. (9分)(常德)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.(1)求证:BC是∠ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.第8题图9. (10分)(邵阳)如图所示,直线DP和圆O相切于点C,交直径AE的延长线于点P,过点C作AE的垂线,交AE于点F,交圆O于点B,作平行四边形ABCD,连接BE,DO,CO.(1)求证:DA=DC;(2)求∠P及∠AEB的大小.第9题图10. (10分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D作⊙O的切线交BC于点E,连接OE.(1)证明:OE∥AD;(2)填空:①当∠BAC=________°时,四边形ODEB是正方形.②当∠BAC=_________°时,AD=3DE.第10题图11. (10分)(周口模拟)如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=2时,求出四边形ACDE的面积.第11题图第三节 与圆有关的计算(时间:60分钟 分值:80分)评分标准:选择题和填空题每小题3分.基础过关1. (包头)120°的圆心角对的弧长是6π,则此弧所在圆的半径是( ) A. 3 B. 4 C. 9 D. 182. (株洲)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是( ) A. 正三角形 B. 正方形 C. 正五边形 D. 正六边形3. 如图,将等边△ABC 的边AC 逐渐变成以B 为圆心,BA 为半径的AC ︵,长度不变,AB 、BC 的长度也不变,则∠ABC 的度数大小由60°变为( )第3题图A. (60π)°B. (90π)°C. (120π)°D. (180π)°4. (青岛)如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120˚,AB 长为25 cm ,贴纸部分的宽BD 为15cm ,若纸扇两面贴纸,则贴纸的面积为( )第4题图A. 175π cm 2B. 350π cm 2C.8003π cm 2 D. 150π cm 25. (淄博)如图,半圆的直径BC 恰与等腰直角三角形ABC 的一条直角边完全重合.若BC =4,则图中阴影部分的面积是( )A. 2+πB. 2+2πC. 4+πD. 2+4π第5题图 第6题图6. (湘潭)如图,在半径为4的⊙O 中,CD 是直径,AB 是弦,且CD ⊥AB ,垂足为点E ,∠AOB =90°,则阴影部分的面积是( )A. 4π-4B. 2π-4C. 4πD. 2π7. (南宁)如图,⊙O 是△ABC 的外接圆,BC =2,∠BAC =30°,则劣弧BC ︵的长等于( ) A. 2π3 B. π323π3D.3π3C.第7题图 第8题图8. (兰州)如图,正方形ABCD 内接于半径为2的⊙O ,则图中阴影部分的面积为( ) A. π+1 B. π+2 C. π-1 D. π-29. (丽水)如图,点C 是以AB 为直径的半圆O 的三等分点,AC =2,则图中阴影部分的面积是( )A. 4π3- 3B. 4π3-23 C.2π3- 3 D. 2π3-32第9题图第10题图 10.. (山西)如图是某商品的标志图案.AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若AC =10 cm ,∠BAC =36°,则图中阴影部分的面积为( )A. 5π cm 2B. 10π cm 2C. 15π cm 2D. 20π cm 2 11. (信阳模拟)若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(如图,接缝忽略不计),则这个圆锥的底面半径是________.第11题图 第12题图12. (安徽)如图,已知等边△ABC 的边长为6,以AB 为直径的⊙O 与边AC ,BC 分别交于D ,DE ︵的长为______.E 两点,则劣弧13. (日照)如图,四边形ABCD 中,AB =CD ,AD ∥BC ,以点B 为圆心,BA 为半径的圆弧与BC 交于点E ,四边形AECD 是平行四边形,AB =6,则扇形(图中阴影部分)的面积是________.第13题图 第14题图14. (平顶山模拟)如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于点E ,交AC 于点F ,点P 是⊙A 上一点,且∠EPF =45°,则图中阴影部分的面积为________.15. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB =4,∠BED =120°,则图中阴影部分的面积之和是________.第15题图 第 16题图16. (大庆)如图,在矩形ABCD 中,AB =5,BC =103,一圆弧过点B 和点C ,且与AD 相切,则图中阴影部分面积为________.满分冲关1. 如图,在△ABC 中,AB =5,AC =3,BC =4,将△ABC 绕点A 逆时针旋转30°后得B 经过的路径为BD ︵,则图中阴影部分的面积为( ) 到△ADE ,点A.2512π B. 43π C. 34π D. 512π第1题图 第2题图2. (沈阳)正六边形ABCDEF 内接于⊙O ,正六边形的周长是12,则⊙O 的半径是( ) A. 3 B. 2 C. 2 2 D. 23∠ACB =90°,AB =4 2.以A 3. 如图,在等腰直角三角形ABC 中,为圆心,AC 长为半径作弧,交AB 于点D ,则图中阴影部分的面积是______.(结果保留π)第3题图 第4题图4. (贵港)如图,在扇形OAB 中,C 是OA 的中点,CD ⊥OA ,CD 与AB ︵交于点D ,以O 为圆心,OC 的长为半径作CE ︵交OB 于点E .若OA =4,∠AOB =120°,则图中阴影部分的面积为________.(结果保留π) 5. (许昌模拟)如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =2,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF ,点C 恰好在EF ︵上,则图中阴影部分的面积为________.第7题图第5题图第6题图6. (台州)如图,把一个菱形绕着它的对角线的交点旋转90°,旋转前后的两个菱形构成一个“星形”(阴影部分).若菱形的一个内角为60°,边长为2,则该“星形”的面积是________.7. (商丘模拟)如图,菱形OABC的顶点A的坐标为(2,0),∠COA=60°,将菱形OABC绕坐标原点O逆时针旋转120°得到菱形ODEF,则图中阴影部分的面积为________.8. (11分)(赤峰)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.(1)求证:AM是⊙O的切线;(2)若DC=2,求图中阴影部分的面积(结果保留π和根号).第8题图第六章圆第一节圆的基本性质基础过关1. B2. D3. B4. C5. B6. B7. B8. D9. C10. A11. 25°12. 70°13. 35°14. 2715. (1)解:四边形ABCD是矩形,理由如下:∵AC与BD是圆的直径,∴∠ABC=∠ADC=90°,∠BAD=∠BCD=90°,∴四边形ABCD是矩形;(2)证明:∵BE⊥AC,CF⊥BD,∴∠BEO =∠CFO =90°, 在△BOE 和△COF 中, ⎩⎪⎨⎪⎧∠BEO =∠CFO ∠BOE =∠COF ,OB =OC∴△BOE ≌△COF (AAS ). ∴BE =CF . 满分冲关1. D2. D3. C4. D5. A6. 15°或105°7. 3928. (1)解:∵四边形ABCD 内接于⊙O , ∴∠ADC +∠ABC =180°, 又∵∠ADC =86°, ∴∠ABC =94°,∴∠CBE =180°-94°=86°; (2)证明:∵AC =EC , ∴∠E =∠CAE , ∵AC 平分∠BAD , ∴∠DAC =∠CAB , ∴∠DAC =∠E ,∵四边形ABCD 内接于⊙O , ∴∠ADC +∠ABC =180°, 又∵∠CBE +∠ABC =180°, ∴∠ADC =∠CBE , 在△ADC 和△EBC 中, ⎩⎪⎨⎪⎧∠ADC =∠EBC ∠DAC =∠E AC =EC, ∴△ADC ≌△EBC (AAS ), ∴AD =BE .第二节 点、直线与圆的位置关系基础过关1. B2. B3. A4. A5. D6. A7. 58. 19. (1)证明:如解图,连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠ACP=∠CAO=30°,∴∠AOP=60°,∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=90°,∴OA⊥AP,∴AP是⊙O的切线;第9题解图(2)解:如解图,连接AD.∵CD是⊙O的直径,∴∠CAD=90°,∴AD=AC·tan30°=3×33=3,∵∠ADC=∠B=60°,∴∠P AD=∠ADC-∠P=60°-30°=30°,∴∠P=∠P AD,∴PD=AD= 3.10. (1)证明:∵AB与⊙O相切,∴∠OBA=90°,∴∠OBC+∠CBA=90°,∵OC⊥OA,∴∠AOC=90°,∴∠OCP+∠OPC=90°,∵OC=OB,∴∠OCB=∠OBC,∵∠OBC=∠OCB,∠OPC=∠APB,∴AP =AB ;(2)解:如解图,过点A 作AF ⊥BC 于点F , 在Rt △ABO 中,OB =4,AB =3, ∴OA =5,∵AP =AB =3,∴OP =2, 在Rt △COP 中,OC =4,OP =2, ∴CP =25, ∵AF ⊥BC , ∴∠AFP =90°, ∵∠OPC =∠APB , ∴△OPC ∽△FP A , ∴CP AP =OP PF ,∴253=2PF , ∴PF =355,∵AP =AB , ∴BP =2PF =655.第10题解图11. (1)证明:∵AB 是半圆O 的直径,∠ABD =30°,OD =OB , ∴∠BAD =60°, ∠BDO =∠ABD =30°, ∵OA =OD ,∴△AOD 是等边三角形,∴AO =AD =OD =BO ,∠AOD =60°, ∵AG 是半圆O 的切线, ∴∠OAG =90°,∴∠G =∠BDO ,∠GAD =∠DBO , ∴△ADG ≌△BOD (AAS ); (2)① 30°;② 45°.【解法提示】①∵四边形DOBE 是菱形, ∴∠DBE =∠ABD =30°; ②如解图,∵OD ⊥OE ,∴∠DOE =90°, ∵∠BOD =120°,∴∠BOE =30°, ∵OB =OE ,∴∠OBE =∠OEB =180°-30°2=75°,∵∠ABD =30°,∴∠DBE =75°-30°=45°.第11题解图满分冲关1. B2. C3. B4. 335. 46. (1)证明:如解图,连接OB ,∵E 是BD 的中点,∴OC ⊥BD ,BF ︵=DF ︵, ∴∠C +∠DBC =90°,又∵BF ︵=DF ︵,∴∠A =∠BOC , ∵∠DBC =∠A , ∴∠DBC =∠BOC , ∴∠BOC +∠C =90°,∴在△BOC 中,∠CBO =180°-(∠C +∠BOC )=90°,∴OB ⊥BC ,即BC 是⊙O 的切线.第6题解图(2)解:在Rt △OBC 中,OB =6,BC =8,∴OC =OB 2+BC 2=62+82=10,又∵S △OBC =12OB ·BC =12OC ·BE , ∴12×6×8=12×10×BE , ∴BE =245, ∴BD =2BE =485. 7. 证明:(1)如解图,连接OP 、OA ,OP 交AD 于点E ,∵PD =P A ,∴DP ︵=AP ︵,∴OP ⊥AD ,AE =DE ,∴∠EAP +∠OP A =90°,∵OP =OA ,∴∠OAP =∠OP A ,∴∠EAP +∠OAP =90°,∵四边形ABCD 为菱形,∴∠EAP =∠CAB ,∴∠CAB +∠OAP =90°,∴OA ⊥AB ,∵OA 是⊙O 的半径,∴直线AB 是⊙O 的切线.第7题解图(2)如解图,连接BD ,交AC 于点F ,∵四边形ABCD 为菱形,∴DB 与AC 互相垂直平分,∵AC =8,tan ∠BAC =22, ∴AF =4,tan ∠DAC =DF AF =22, ∴DF =22,∴AD =AF 2+DF 2=26,∴AE =6,在Rt △P AE 中,tan ∠P AE =PE AE =22, ∴PE =3,设⊙O 的半径为R ,则OE =R -3,OA =R ,在Rt △OAE 中,∵OA 2=OE 2+AE 2,∴R 2=(R -3)2+(6)2,∴R =332, 即⊙O 的半径为332. 8. (1)证明:∵BE ∥CO ,∴∠OCB =∠EBC ,∵OC =OB ,∴∠OCB =∠OBC ,∴∠OBC =∠EBC ,∴BC 是∠ABE 的平分线.(2)解:设AD =x ,则DO =x +6,∵CD 是⊙O 的切线,∴CD ⊥CO ,∴∠DCO =90°,在Rt △DCO 中,有DC 2+CO 2=DO 2,∴82+62=(x +6)2,解得x 1=-16(负值舍去),x 2=4,∴DO =10,∵CO ∥BE ,∴CE DC =BO DO ,∴CE 8=610, ∴CE =245. 9. (1)证明:∵在平行四边形ABCD 中,AD ∥BC ,CB ⊥AE ,∴AD ⊥AE ,∴∠DAO =90°,又∵直线DP 和圆O 相切于点C ,∴DC ⊥OC ,∴∠DCO =90°,在Rt △DAO 和Rt △DCO 中,DO =DO ,AO =CO ,∴Rt △DAO ≌Rt △DCO (HL ),∴DA =DC .(2)解:∵CB ⊥AE ,AE 是⊙O 的直径,∴CF =FB =12BC , 又∵四边形ABCD 是平行四边形,∴AD =BC ,∴CF =12AD , 又∵CF ∥DA ,∴△PCF ∽△PDA ,∴PC PD =CF DA =12,即PC =12PD ,DC =12PD . 由(1)知DA =DC ,∴DA =12PD , ∴在Rt △DAP 中,∠P =30°.∵DP ∥AB ,∴∠F AB =∠P =30°,又∵∠ABE =90°,∴∠AEB =90°-30°=60°.10. (1)证明:如解图,连接OD ,∵DE 是⊙O 的切线,∴OD ⊥DE ,∵在Rt △ODE 与Rt △OBE 中,⎩⎪⎨⎪⎧OD =OB OE =OE , ∴Rt △ODE ≌Rt △OBE (HL ),∴∠DOE =∠BOE =12∠DOB , ∵OA =OD ,∴∠A =12∠DOB , ∴∠BOE =∠A ,∴OE ∥AD ;第10题解图(2)① 45;② 30.【解法提示】①当四边形ODEB 是正方形时,BO =BE ,∴∠BOE =45°,∵OE ∥AD ,∴∠BAC =45°;②当∠BAC =30°时,AD =3DE ,理由:如解图,过点O 作OF ⊥AD 于点F ,由垂径定理可知,AF =DF =12AD ,∵∠BAC =30°,∴∠ODF =∠DOE =30°,∴OD =DF cos30°=33AD ,OD =DE tan30°=3DE ,∴AD =3DE . 11. (1)证明:∵F 为弦AC (非直径)的中点,∴AF =CF ,OD ⊥AC ,∵DE 切⊙O 于点D ,∴OD ⊥DE ,∴AC ∥DE .(2)解:如解图,连接CD,∵AC∥DE,OA=AE,∴F为OD的中点,即OF=FD,又∵AF=CF,∠AFO=∠CFD,∴△AFO≌△CFD(SAS),∴S△AFO=S△CFD.在Rt△ODE中,OD=OA=AE=2,∴OE=4,∴DE=OE2-OD2=42-22=23,∴S四边形ACDE=S△ODE=12×OD×DE=12×2×23=2 3.第11题解图第三节与圆有关的计算基础过关1. C2. A3. D4. B5. A6. D7. A8. D9. A10. B11. 312. π13. 6π14. 4-π15. 316. 753-100 3π满分冲关1. A2. B3. 8-2π4. 4π3+2 3 5.π4-12 6. 63-6 7. 4π-238. (1)证明:∵OB=OC,∠B=60°,∴△BOC为等边三角形,∴∠BOC=∠BCO=60°.∵OC平分∠BOA,∴∠BOC=∠COA,∴∠BCO=∠COA,∴OA∥BD.∵BD⊥MA,∴∠BDM=90°,∴∠OAM=90°,∴AM是⊙O的切线.(2)解:如解图,连接AC,第8题解图∵∠COA=60°,OA=OC,∴△AOC为等边三角形,∴∠OAC=60°.∵∠OAM=90°,∴∠CAD=30°,∵CD=2,∴AC=2CD=2×2=4.由勾股定理得,AD=23,S阴影=S四边形OADC-S扇形OAC=12×(4+2)×23-60×π×42360=63-8π3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考圆选择题专题训练
1、已知ED为⊙O的切线,切点为D,连接EO并延长交⊙O于的C,过点C作CF⊥DE,垂足
为点F,CF交⊙o于点G,已知⊙O的半径为1,则cos∠E的值等于线段( )
A.GC的长 B. DE的长 C.DF的长 D. FG的长
2、如图,已知△ABC的外接圆⊙O的直径为1,CD⊥AB于点D,则cos∠BCD的值等于线段
( )
A.CD的长 B. BC的长 C.AD的长 D. AC的长
3、如图,在⊙O中,直径AB为1,C为⊙O上一点,D为 BC⌒的中点,连接AC、AD、CD,
则sin∠CAD的值等于线段( )
A.AC的长 B. AD的长 C.CD的长 D. AO的长
4、如图,△ABC内接于⊙O,半径为5,BC=6,则tan∠A的值为( )
A.53 B. 43 C. 32 D. 34
5、如图,⊙O为半径为1的圆,半径OA在x轴上,AB是⊙O的切线,B点在第一象限,
∠AOB=α,则tanα为( )
A.AB的长 B. OA的长 C.OB的长 D. 1
6、如图,点E(0,3),O(0,0),C(5,0)在A上的一条弦。则tanOBE的值是( )
A.53 B. 43 C. 54 D. 34
7、如图,AB是半圆的直径,O是圆心,C是半圆外一点,CA,CB分别交半圆于点D,E,AB=1,
则cos∠C等于( )
A.DE的长 B. AC的长 C.BC的长 D. CE的长
8、如图,BC是半径为1的⊙O的弦,D为BC上的一点,M、N分别为BD、AD的中点,则
sin∠C的值等于()
A .A
D
B.
BC
C.
MN
D .A
C