《证明三》单元检测题B卷

合集下载

第12章《全等三角形》人教版八年级数学上册单元检测A+B+C卷(含答案)

第12章《全等三角形》人教版八年级数学上册单元检测A+B+C卷(含答案)

A.AAS
B.ASA
C.SAS
D.SSS
3.如图,在△ABC 与△DEF 中,给出以下六个条件:
(1)AB=DE;
(2)BC=EF;
(3)AC=DF;
(4)∠A=∠D;
(5)∠B=∠E;
(6)∠C=∠F.
以其中三个作为已知条件,不能判断△ABC 与△DEF 全等的是( )
A.(1)(5)(2) B.(1)(2)(3) C.(4)(6)(1) D.(2)(3)(4) 4.如图,已知 MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN 的是( )

∴△ABC≌△DBE(ASA), 故选:B. 3.解:A、正确,符合判定方法 SAS; B、正确,符合判定方法 SSS; C、正确,符合判定方法 AAS; D、不正确,不符合全等三角形的判定方法. 故选:D. 4.解:A、∠M=∠N,符合 ASA,能判定△ABM≌△CDN,故 A 选项不符合题意; B、根据条件 AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故 B 选项符合题意; C、AB=CD,符合 SAS,能判定△ABM≌△CDN,故 C 选项不符合题意; D、AM∥CN,得出∠MAB=∠NCD,符合 AAS,能判定△ABM≌△CDN,故 D 选项不 符合题意. 故选:B.
∴∠ABP=∠PBC=∠PCD﹣∠BPC=(x﹣40)°, ∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°, ∴∠CAF=100°, 在 Rt△PFA 和 Rt△PMA 中,
∴FG=EF ∵GC+CF>FG ∴BE+CF>EF 故选:A.
9.解:在△ABC 中,AD⊥BC,CE⊥AB, ∴∠AEH=∠ADB=90°; ∵∠EAH+∠AHE=90°,∠DHC+∠BCH=90°, ∵∠EHA=∠DHC(对顶角相等), ∴∠EAH=∠DCH(等量代换); ∵在△BCE 和△HAE 中

(典型题)初中数学八年级数学下册第一单元《三角形的证明》测试题(含答案解析)

(典型题)初中数学八年级数学下册第一单元《三角形的证明》测试题(含答案解析)

一、选择题1.如图,P 为ABC 的边BC 上一点,且2PC PB =,已知45ABC ∠=︒,60APC ∠=︒,则ACB ∠的度数为( )A .75︒B .80︒C .85︒D .88︒2.如图,点A 为MON ∠的角平分线上一点,过A 点作一条直线分别与MON ∠的边OM ON 、交于,B C 两点,点P 为BC 的中点,过P 作BC 的垂线交OA 的延长线于点D ,连接DB DC 、,若130MON ∠=︒,则BDC ∠=( )A .70︒B .60︒C .50︒D .40︒3.如图,在ABC 中,AB AC =,BD 平分ABC ∠,将BCD △连续翻折两次,C 点的对应点E 点落在边AB 上,B 点的对应点F 点恰好落在边AC 上,则下列结论正确的是( )A .18,2A AD BD ∠=︒=B .18,A AD BC BD ∠=︒=+ C .20,2A AD BD ∠=︒= D .20,A AD BC BD ∠=︒=+4.如图,30MON ∠=︒点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ,223A B A ,334A B A ,…均为等边三角形,若11OA =,则边67B B 的长为( )A .63B .123C .323D .643 5.等腰三角形的底边长为6,腰长为5,则此三角形的面积为( )A .18B .20C .12D .15 6.如图,在平面直角坐标系中,点A 1在x 轴的正半轴上,B 1在第一象限,且△OA 1B 1是等边三角形.在射线OB 1上取点B 2,B 3,…,分别以B 1B 2,B 2B 3,…为边作等边三角形△B 1A 2B 2,△B 2A 3B 3,…使得A 1,A 2,A 3,…在同一直线上,该直线交y 轴于点C .若OA 1=1,∠OA 1C =30°,则点B 9的横坐标是( )A .2552B .5112C .256D .51327.如图,D 在BC 边上,ABC ADE △△≌,50EAC ∠=︒,则ADE ∠的度数为( )A .50°B .55°C .60°D .65°8.如图,在ABC 中,AB AC =,以点C 为圆心,CB 长为半径 画弧,交AB 于点B 和点D ,再分别以点,B D 为圆心,大于12BD 长为半径画弧,两弧相交于点M ,作射线CM 交AB 于点E .若4,1AE BE ==,则EC 的长度是( )A .3B .5C .5D .7 9.如图,ABC 为等边三角形,BO 为中线,延长BA 至D ,使AD AO =,则DOB ∠的度数为( )A .105︒B .120︒C .135︒D .150︒ 10.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为( ) A .65° B .105° C .55°或105° D .65°或115° 11.如图,在ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论不正确的是( )A .AD 平分∠BACB .∠ADC =60° C .点D 在AB 的垂直平分线上D .:DAC ABC S S =1:2 12.如图,每个小正方形的边长都相等,A ,B ,C 是小正方形的顶点,则ABC ∠的度数为( )A .45︒B .50︒C .55︒D .60︒二、填空题13.如图,已知ABC ∆中,90,C AC BC ∠=︒=,点D 在BC 上,DE AB ⊥,点E 为垂足,且DC DE =,联结AD ,则ADB ∠的大小为___________.14.如图,在等边ABC 中,点D 在AC 边上,点E 在ABC 外部,若ACE ABD ∠=∠,CE BD =,连接AE ,DE ,则ADE 的形状是______.15.如图,在三角形ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,且AD =2CD ,AC =6,点E 是AB 上一点,连接DE ,则DE 的最小值为____.16.如图,在△ABC 中,∠ACB =90°,AC =6,AB =10,点O 是AB 边的中点,点P 是射线AC 上的一个动点,BQ ∥CA 交PO 的延长线于点Q ,OM ⊥PQ 交BC 边于点M .当CP =1时,BM 的长为_____.17.如图,D 是等边三角形ABC 外一点,3AD =,2CD =,则BD 的最大值是________________.18.已知:如图,在ABC 中,AB AC =,30C ∠=︒,AB AD ⊥,4cm AD =,则BC 的长为__________cm .19.如图,在ABC 中,90,,,ACB AC BC CE BE CE ∠=︒=⊥与AB 相交于点F ,且CD BE =,则ACD CBA DAF ∠∠∠、、之间的数量关系是_____________.20.如图,AD 平分BAC ∠,DE AC ⊥,垂足为E ,//BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠.则下列结论中:①AD 是ABC ∆的高;②ABC ∆是等边三角形;③ED FD =;④AB AE BF =+.其中正确的是______________(填写序号)三、解答题21.如图,等腰直角ACB △中,90ACB ∠=︒,E 为线段BC 上一动点(不含B 、C 端点),连接AE ,作AF AE ⊥且AF AE =.(1)如图1,过F 点作FG AC 交AC 于G 点,求证:≌AGF ECA ;(2)如图2,连接BF 交AC 于D 点,若3AD CD =,求证:E 点为BC 的中点. 22.在平面直角坐标系中,已知()30A -,,()0,3B ,点C 为x 轴正半轴上一动点,过点A 作AD BC ⊥交y 轴于点E .(1)如图①,若点C 的坐标为()2,0,试求点E 的坐标;(2)如图②,若点C 在x 正半轴上运动,且3OC <,其它条件不变,连接OD ,求证:OD 平分ADC ∠;(3)若点C 在x 轴正半轴上运动,当AD CD OC -=时,求OCD ∠的度数.23.已知,如图在等边ABC 中,点D 为AB 边上一点,点E 为BC 边上一点,连接DE 并延长DE 交AC 延长线于点,F DE FE =,过点E 作EG BC ⊥交AC 于点G .(1)求证:BD CF =;(2)当DF AB ⊥时,试判断以D E G 、、为顶点的三角形的形状,并说明理由; (3)当点D 在线段AB 上运动时,试探究AD 与CG 的数量关系,并证明你的结论. 24.如图1,将三角形纸片ABC ,沿AE 折叠,使点B 落在BC 上的F 点处;展开后,再沿BD 折叠,使点A 恰好仍落在BC 上的F 点处(如图2),连接DF .(1)求∠ABC的度数;(2)若△CDF为直角三角形,且∠CFD=90°,求∠C的度数;(3)若△CDF为等腰三角形,求∠C的度数.25.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(3)若Q以(2)中的速度从C点出发,同时P以原来的速度从B点出发,在△ABC的三边上逆时针运动,问:经过多少时间P、Q两点第一次相遇?在何处相遇?26.如图,∠BAC=∠DAE=90°,AB=AC,AD=AE,BE、CD交于F.(1)求证:BE=CD;(2)连接CE,若BE=CE,求证:从“①DE⊥AC”、“②DE∥AB”中选择一个填入(2)中,并完成证明【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据三角形内角和定理求出∠DCP=30°,求证PB=PD;再根据三角形外角性质求证BD=AD,再利用△BPD是等腰三角形,然后可得AD=DC,∠ACD=45°从而求出∠ACB的度数.【详解】解:过C作AP的垂线CD,垂足为点D.连接BD;∵△PCD中,∠APC=60°,∴∠DCP=30°,PC=2PD,∵PC=2PB,∴BP=PD,∴△BPD是等腰三角形,∠BDP=∠DBP=30°,∵∠ABP=45°,∴∠ABD=15°,∵∠BAP=∠APC-∠ABC=60°-45°=15°,∴∠ABD=∠BAD=15°,∴BD=AD,∵∠DBP=45°-15°=30°,∠DCP=30°,∴BD=DC,∴△BDC是等腰三角形,∵BD=AD,∴AD=DC,∵∠CDA=90°,∴∠ACD=45°,∴∠ACB=∠DCP+∠ACD=75°,故选A.【点睛】此题主要考查学生三角形内角和定理,等腰三角形的判定与性质,三角形外角的性质等知识点,综合性较强,有一定的拔高难度,属于难题.2.C解析:C【分析】过D作DE⊥OM于E,DF⊥ON于F,求出∠EDF,根据角平分线性质求出DE=DF,根据线段垂直平分线性质求出BD=CD,证Rt△DEB≌Rt△DFC,求出∠EDB=∠CDF,推出∠BDC=∠EDF,即可得出答案.【详解】解:如图:过D作DE⊥OM于E,DF⊥ON于F,则∠DEB=∠DFC=∠DFO=90°,∵∠MON=130°,∴∠EDF=360°-90°-90°-130°=50°,∵DE⊥OM,DF⊥ON,OD平分∠MON,∴DE=DF,∵P为BC中点,DP⊥BC,∴BD=CD,在Rt△DEB和Rt△DFC中,DB DC DE DF=⎧⎨=⎩,∴Rt△DEB≌Rt△DFC(HL),∴∠EDB=∠CDF,∴∠BDC=∠BDF+CDF=∠BDF+∠EDB=∠EDF=50°.故选:C.【点睛】本题考查了全等三角形的性质和判定,角平分线性质,线段垂直平分线性质的应用,能正确作出辅助线是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等,角平分线上的点到角的两边的距离相等.3.D解析:D【分析】设∠ABC=∠C=2x,根据折叠的性质得到∠BDE=∠BDC=∠FDE=60°BD=DF,BC=BE=EF,在△BDC中利用内角和定理列出方程,求出x值,可得∠A,再证明AF=EF,从而可得AD =BC+BD.【详解】解:∵AB=AC,BD平分∠ABC,设∠ABC=∠C=2x,则∠A=180°-4x,∴∠ABD=∠CBD=x,第一次折叠,可得:∠BED=∠C=2x,∠BDE=∠BDC,第二次折叠,可得:∠BDE=∠FDE,∠EFD=∠ABD=x,∠BED=∠FED=∠C=2x,∵∠BDE+∠BDC+∠FDE=180°,∴∠BDE=∠BDC=∠FDE=60°,∴x+2x+60°=180°,∴x=40°,即∠ABC=∠ACB=80°,∴∠A=20°,∴∠EFD=∠EDB=40°,∴∠AEF=∠EFD-∠A=20°,∴AF=EF=BE=BC,∴AD=AF+FD=BC+BD,故选D.【点睛】本题考查了翻折的性质,等腰三角形的判定和性质,三角形内角和,熟练掌握折叠的性质是解题的关键.4.C解析:C【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出B1B2B2B3,B3B4B n B n+1的长为 2,进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2=2,∴B1B2∵B3A3=2B2A3,∴A 3B 3=4B 1A 2=4,∴B 2B 3=23, ∵A 4B 4=8B 1A 2=8,∴B 3B 4=43,以此类推,B n B n+1的长为2n-13,∴B 6B 7的长为323,故选:C .【点睛】本题考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题的关键.5.C解析:C【分析】作底边上的高,根据等腰三角形三线合一和勾股定理求出高,再代入面积公式求解即可.【详解】解:如图,作底边BC 上的高AD ,则AB=5,BD=12×6=3, ∴AD=22AB BD -=2253-=4,∴三角形的面积为:12×6×4=12. 故选C .【点睛】本题考查了勾股定理和等腰三角形的性质,利用等腰三角形“三线合一”作出底边上的高,再根据勾股定理求出高的长度,作高构造直角三角形是解题的关键.6.B【分析】利用待定系数法求得两条直线的解析式,根据等边三角形的性质,点的坐标规律,即可求解.【详解】解:∵OA 1=1,∠OA 1C=30︒,∴∴点C 的坐标为(0,-,∵A 1、A 2、A 3所在直线过点A 1(1,0),C (0,3-,设直线A 1A 2的解析式为y kx =-∴0k =,∴k =∴直线A 1A 2的解析式为y x =, ∵△OA 1B 1为等边三角形,∴点B 1的坐标为(12,2),∵B 1、B 2、B 3所在直线过点O(0,0),B 1 (12,同理可求得直线O B 1的解析式为y =,∵△OA 1B 1和△B 1A 2B 2为等边三角形,∴∠B 1OA 1=∠B 2 B 1A 2=60︒,∴B 1A 2∥OA 1,∵B 1 (12,2),∴A 2x = 解得:52x =,∴点A 2的坐标为(52,2),同理点B 2的坐标为(32,点B 3的坐标为(72,点B 4的坐标为(152, ,总结规律: B 1的横坐标为12, B 2的横坐标为13122+=, B 3的横坐标为171222++=, B 4的横坐标为11512422+++=, ,∴B 9的横坐标为1511124816326422+++++++=, 故选:B【点睛】本题考查了待定系数法求一次函数的解析式,点的坐标规律,等边三角形的性质,解决本题的关键是寻找点的坐标规律.7.D解析:D【分析】由全等可得,AB=AD ,∠BAC=∠DAE ,可得∠BAD=EAC=50°,再根据等腰三角形性质求∠B 即可.【详解】解:∵ABC ADE △△≌,∴AB=AD ,∠BAC=∠DAE ,∠B=∠ADE ,∠BAD=∠BAC-∠DAC ,∠EAC=∠DAE-∠DAC ,∠BAD=∠EAC=50°,∵AB=AD ,∴∠B=180652BAD ︒-∠=︒, ∴∠ADE=∠B=65º,【点睛】本题考查了全等三角形的性质和等腰三角形的性质,解题关键是根据全等三角形得出等腰三角形和角的度数,依据等腰三角形的性质进行计算.8.A解析:A【分析】利用基本作图得到CE AB ⊥,再根据等腰三角形的性质得到5AC =,然后利用勾股定理计算即可;【详解】由做法得CE AB ⊥,则90AEC ∠=︒,145AC AB BE AE ==+=+=,在Rt △ACE 中,3CE ===; 故答案选A .【点睛】 本题主要考查了等腰三角形的性质,准确计算是解题的关键.9.B解析:B【分析】 由△ABC 为等边三角形,可求出∠BOA =90°,由△ADO 是等腰三角形求出∠ADO =∠AOD =30°,即可求出∠BOD 的度数.【详解】解:∵△ABC 为等边三角形,BO 为中线,∴∠BOA =90°,∠BAC =60°∴∠CAD =180°﹣∠BAC =180°﹣60°=120°,∵AD =AO ,∴∠ADO =∠AOD =30°,∴∠BOD =∠BOA +∠AOD =90°+30°=120°,故选:B .【点睛】本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.10.D解析:D【分析】分两种情况:等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角,分别进行求解即可.解:①如图1,当等腰三角形的顶角是钝角时,腰上的高在外部,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+25°=115°;②如图2,当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°−25°=65°.综上所述,顶角的度数为:65°或115°.故选D .【点睛】本题主要考查了等腰三角形的性质,注意此类题的两种情况.同时考查了:直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.11.D解析:D【分析】由作图可得:AD 平分,BAC ∠ 可判断A ,再求解1302DAC DAB BAC ∠=∠=∠=︒, 可得60,ADC ∠=︒ 可判断B ,再证明,DA DB = 可判断C ,过D 作DF AB ⊥于,F 再证明,DC DF = 再利用 ACD ACD ABC ACD ABD S S S S S =+ ,可判断,D 从而可得答案. 【详解】解:90,30,C B ∠=︒∠=︒903060,BAC ∴∠=︒-︒=︒由作图可得:AD 平分,BAC ∠ 故A 不符合题意;1302DAC DAB BAC ∴∠=∠=∠=︒, 903060,ADC ∴∠=︒-︒=︒ 故B 不符合题意;30,DAB B ∠=∠=︒,DA DB ∴=D ∴在AB 的垂直平分线上,故C 不符合题意;过D 作DF AB ⊥于,F90,C AD ∠=︒平分,BAC ∠,DC DF ∴=30B ∠=︒,2,AB AC ∴= 11,,22ACD ABD S AC CDS AB DF ∴== 121122ACDACD ABC ACD ABD AC CD SS S S S AC CD AB DF ∴==++ 1.233AC AC AC AC AB AC AC AC ====++ 故D 符合题意; 故选:.D【点睛】 本题考查的是三角形的内角和定理,角平分线的作图,角平分线的性质,线段垂直平分线的判定,等腰三角形的判定,掌握以上知识是解题的关键.12.A解析:A【分析】由勾股定理及其逆定理可得三角形ABC 是等腰直角三角形,从而得到∠ABC 的度数 .【详解】解:如图,连结AC ,由题意可得:2222221310,125,125,AB AC BC +==+==+=∴AC=BC ,222AB AC BC =+,∴△ABC 是等腰直角三角形,∴∠ABC=∠BAC=45°,故选A .本题考查勾股定理的应用,熟练掌握勾股定理及其逆定理、等腰直角三角形的性质是解题关键.二、填空题13.5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线然后利用外角性质求∠ADB 的度数即可【详解】解:∵∠C =90°DE ⊥AB ∴∠C=∠AED=90°在Rt∆ACD 和Rt∆AED 中∴Rt∆解析:5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线,然后利用外角性质求∠ADB 的度数即可.【详解】解:∵∠C =90°,DE ⊥AB∴∠C=∠AED=90°,在Rt∆ACD 和Rt∆AED 中DE DC AD AD =⎧⎨=⎩, ∴Rt∆ACD ≌Rt∆AED ,∴∠CAD=∠EAD ,∴AD 平分∠BAC ,∴∠CAD =12∠BAC , ∵∠C =90°,AC =BC ,∴∠B =∠CAB =45°,∴∠CAD =22.5°,∴∠ADB=∠CAD +∠C =112.5°.故答案为:112.5°.【点睛】本题考查了角平分线的判定方法以及三角形外角的性质,角平分线的判定方法是:到角的两边距离相等的点在这个角的平分线上.14.等边三角形【分析】由等边三角形的性质可以得出AB=AC ∠BAD=60°由条件证明△ABD ≌△ACE 就可以得出∠CAE=∠BAD=60°AD=AE 就可以得出△ADE 为等边三角形【详解】解:的形状是等边解析:等边三角形【分析】由等边三角形的性质可以得出AB=AC , ∠BAD=60°,由条件证明△ABD ≌△ACE 就可以得出∠CAE=∠BAD=60°,AD=AE ,就可以得出△ADE 为等边三角形.解:ADE 的形状是等边三角形,理由:∵ABC 为等边三角形,∴AB=AC , ∠BAD=60°,在∆ABD 和∆CAE 中 AB AC ACE ABD CE BD =⎧⎪∠=∠⎨⎪=⎩, ∴∆ABD ≌∆ACE ,∴∠CAE=∠BAD=60°,AD=AE ,∴∆ADE 为等边三角形,故答案为:等边三角形.【点睛】本题考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是灵活运用相关性质.15.2【分析】根据题意当时DE 的值最小根据已知条件求解即可;【详解】如图所示当时DE 的值最小如图所示∵BD 平分∠ABC ∠C =90°∴∵∴∴∴∵∴即整理得:∴又∵∴即整理得:解得:∴故答案是2【点睛】本题解析:2【分析】根据题意,当DE AB ⊥时,DE 的值最小,根据已知条件求解即可;【详解】如图所示,当DE AB ⊥时,DE 的值最小,如图所示,∵BD 平分∠ABC ,DE AB ⊥,∠C =90°,∴CD DE =,∵2AD CD =,∴2AD DE =,∴30A ∠=︒,∴30CBD ABD ∠=∠=︒,2AB CB =,∵6AC =,∴222AB AC BC =+,即22246CB CB =+,整理得:2336CB =, ∴23CB =,又∵2BD CD =,∴222BD CD BC =+,即22412CD CD =+,整理得:2312CD =,解得:2CD =,∴2DE =.故答案是2.【点睛】本题主要考查了角平分线的性质、直角三角形的性质和勾股定理,准确分析计算是解题的关键.16.5或1【分析】如图设BM=x 首先证明BQ=AP 分两种情形利用勾股定理构建方程求解即可【详解】解:如图设BM =x 在Rt △ABC 中AB =10AC =6∴BC ===8∵QB ∥AP ∴∠A =∠OBQ ∵O 是AB 的解析:5或1【分析】如图,设BM=x ,首先证明BQ=AP ,分两种情形,利用勾股定理,构建方程求解即可.【详解】解:如图,设BM =x ,在Rt △ABC 中,AB =10,AC =6,∴BC 22AB AC -22106-8,∵QB ∥AP ,∴∠A =∠OBQ ,∵O 是AB 的中点,∴OA =OB ,在△OAP 和△OBQ 中,A OBQ OA OBAOP BOQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OAP ≌△OBQ (ASA ),∴PA=BQ=6﹣1=5,OQ=OP,∵OM⊥PQ,∴MQ=MP,∴52+x2=12+(8﹣x)2,解得x=2.5.当点P在AC的延长线上时,同法可得72+x2=12+(8﹣x)2,解得x=1,综上所述,满足条件的BM的值为2.5或1.故答案为:2.5或1.【点睛】本题考查勾股定理,全等三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题.17.5【分析】将AD顺时针旋转60°得连结可得AD=DD′=AD′可证△ABD′≌△ACD(SAS)可得BD′=CD由BD′+DD′≥BD当BD′D三点在一线时BD最大BD最大=BD′+DD′=5【详解解析:5【分析】将AD顺时针旋转60°,得AD',连结BD',可得AD=DD′=AD′,可证△ABD′≌△ACD (SAS),可得BD′=CD,由BD′+DD′≥BD,当B、D′、D三点在一线时,BD最大,BD最大=BD′+DD′=5.【详解】解:∵将AD顺时针旋转60°,得AD',连结BD',则AD=DD′=AD′,∴△ADD′是等边三角形,又∵等边三角形ABC,∴∠BAC=∠D AD',∴∠BAD′+∠D′AC=∠CAD+∠D′AC=60°,∴AB=AC,AD′=AD,∴△ABD′≌△ACD(SAS),∴BD′=CD,∴BD′+DD′≥BD,当B、D′、D三点在一线时,BD最大,BD最大=BD′+DD′=CD+AD=2+3=5.故答案为:5..【点睛】本题考查三角形旋转变换,等边三角形判定与性质,掌握三角形旋转变换的性质,等边三角形判定与性质,用三角形三边关系确定B 、D′、D 共线是解题关键.18.【分析】已知AB=AC 根据等腰三角形的性质可得∠B 的度数再求出∠DAC 的度数然后根据30°角直角三角形的性质求得BD 的长再根据等角对等边可得到CD 的长即可求得BC 的长【详解】∵AB=AC ∠C=30°解析:12【分析】已知AB=AC ,根据等腰三角形的性质可得∠B 的度数,再求出∠DAC 的度数,然后根据30°角直角三角形的性质求得BD 的长,再根据等角对等边可得到CD 的长,即可求得BC 的长.【详解】∵AB=AC ,∠C=30°,∴∠B=∠C=30°,∴∠BAC=120°,∵AB ⊥AD ,AD=4,∴∠BAD=90°,BD=2AD=8,∴∠DAC=120°-90°=30°,∴∠DAC =∠C=30°,∴AD=CD=4,∴CB=DB+CD=12故答案为:12【点睛】本题考查了等腰三角形的判定与性质及30°角直角三角形的性质,熟练运用等腰三角形的性质及30°角直角三角形的性质是解决问题的关键.19.【分析】先利用同角的余角相等得到=再通过证得到即再利用三角形内角和得可得最后利用角的和差即可得到答案=【详解】证明:∵∴∴=又∵∴∴即∵∴即∴=故答案为:【点睛】本题考查了直角三角形的性质内角和定理 解析:=ACD CBA DAF ∠∠∠+【分析】先利用同角的余角相等得到ACD ∠=CBE ∠,再通过证ACD CBE ≌,得到==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠,再 利用三角形内角和得=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠可得=DAF EBF ∠∠,最后利用角的和差即可得到答案,ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠.【详解】证明:∵90ACB ∠=︒,CE BE ⊥∴+90ACD ECB ∠=︒∠,+90CBE ECB ∠=︒∠∴ACD ∠=CBE ∠又∵AC BC =,CD BE =∴ACD CBE ≌∴==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠∵=AFD EFB ∠∠∴=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠即=DAF EBF ∠∠∴ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠故答案为:=ACD CBA DAF ∠∠∠+.【点睛】 本题考查了直角三角形的性质、内角和定理以及全等三角形的判定和性质,能通过性质找到角与角之间的关系是解答此题的关键.20.①③④【分析】利用平行线的性质∠C=∠FBD 则可证明∠C=∠ABC 于是可根据等腰三角形的性质对①②进行判断;过D 点作DH ⊥AB 如图利用角平分线的性质得到DE=DHDH=DF 则可对③进行判断;证明△A解析:①③④【分析】利用平行线的性质∠C=∠FBD ,则可证明∠C=∠ABC ,于是可根据等腰三角形的性质对①②进行判断;过D 点作DH ⊥AB ,如图,利用角平分线的性质得到DE=DH ,DH=DF ,则可对③进行判断;证明△ADE ≌△ADH 得到AH=AE ,同理可得BH=BF ,则可对④进行判断.【详解】解:∵BC 恰好平分∠ABF ,∴∠ABC=∠FBD ,∵AC ∥BF ,∴∠C=∠FBD ,∴∠C=∠ABC ,∴△ABC 为等腰三角形,∵AD 平分∠BAC ,∴AD ⊥BC ,CD=BD ,∴AD 是ABC ∆的高;ABC ∆是等腰三角形;所以①正确;②错误;过D 点作DH ⊥AB 于H ,如图,∵AD 平分∠BAC ,DE ⊥AC ,DH ⊥AB ,∴DE=DH ,∵AC ∥BF ,DE ⊥AC ,∴DF ⊥BF ,∵BD 平分∠ABF ,DH ⊥AB ,∴DH=DF ,∴DE=DF ,所以③正确;在△ADE 和△ADH 中,AD AD DE DH =⎧⎨=⎩, ∴△ADE ≌△ADH (HL ),∴AH=AE ,同理可得BH=BF ,∴AB=AH+BH=AE+BF ,所以④正确.故答案为:①③④.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了平行线的性质和等腰三角形的性质.三、解答题21.(1)见解析;(2)见解析【分析】(1)由余角的性质可得F EAC ∠=∠,从而运用“角角边”证明即可;(2)作FM AC ⊥,同(1)证明过程可得FM AC BC ==,AM CE =,从而证明CD MD =,则可得M 为AC 的中点,最终可得E 点为BC 的中点.【详解】(1)∵AF AE ⊥,∴90FAG EAC ∠+∠=︒,∵FG AC ,∴90AGF ∠=︒,90FAG F ∠+∠=︒,∴F EAC ∠=∠,在AGF 与ECA △中,AGF C F EAC AF AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AGF ECA AAS ≌;(2)如图所示,作FM AC ⊥,由(1)可知AMF ECA △≌△,则FM AC BC ==,AM CE =,在DFM 和DBC △中,MDF CDB DMF DCB FM BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()DFM DBC AAS △≌△, ∴CD MD =,∵3AD CD =,∴AM CM =,∴CM CE =,∵AC BC =,∴BE CE =,即:E 点为BC 的中点.【点睛】本题考查全等三角形的判定与性质,以及等腰直角三角形的性质,掌握等腰直角三角形中常考的证明模型是解题关键.22.(1)点E 的坐标为(0,2);(2)见解析;(3)60OCD ∠=︒【分析】(1)先根据ASA 判定△AOE ≌△BOC ,得出OE=OC ,再根据点C 的坐标为(2,0),得到OC=2=OE ,进而得到点E 的坐标;(2)先过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,根据△AOE ≌△BOC ,得到S △AOE =S △BOC ,且AE=BC ,再根据OM ⊥AE ,ON ⊥BC ,得出OM=ON ,进而得到OD 平分∠ADC ;(3)在DA 上截取DP=DC ,连接OP ,根据SAS 判定△OPD ≌△OCD ,再根据三角形外角性质以及三角形内角和定理,求得∠PAO=30°,进而得到∠OCB=60°.【详解】解:(1)如图①,∵AD ⊥BC ,BO ⊥AO ,∴∠AOE=∠BDE=90︒,又∵∠AEO=∠BED ,∴∠OAE=∠OBC ,∵A (-3,0),B (0,3),∴OA=OB=3,在△AOE 和△BOC 中,90AOE BOC OA OB OAE OBC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△BOC(ASA),∴OE=OC ,又∵点C 的坐标为(2,0),∴OC=2=OE ,∴点E 的坐标为(0,2);(2)如图②,过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,∵△AOE ≌△BOC ,∴S △AOE =S △BOC ,且AE=BC ,∵OM ⊥AE ,ON ⊥BC ,∴OM=ON ,∴OD 平分∠ADC ;(3)如图所示,在DA 上截取DP=DC ,连接OP ,∵∠PDO=∠CDO ,OD=OD ,在△OPD 和△OCD 中,DP DC PDO CDO OD OD =⎧⎪∠=∠⎨⎪=⎩,∴△OPD ≌△OCD(SAS),∴OC=OP ,∠OPD=∠OCD ,∵AD-CD=OC ,∴AD-DP=OP ,即AP=OP ,∴∠PAO=∠POA ,∴∠OPD=∠PAO+∠POA=2∠PAO=∠OCB ,又∵∠PAO+∠OCD=90°,∴3∠PAO=90°,∴∠PAO=30°,∴∠OCB=60°.【点睛】本题主要考查了全等三角形的判定与性质,角平分线的判定定理以及等腰直角三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行求解.23.(1)证明见详解;(2)以D E G 、、为顶点的三角形的形状是等边三角形,证明见详解(3)AD =CG .证明见详解.【分析】(1)过点D 作DH ∥AC 交BC 于H ,则∠DHB=∠ACB ,由ABC 是等边三角形,可得AB=AC ,∠B=∠ACB=60°,可证△DEH ≌△FEC (AAS ),DH=FC 即可;(2)以D E G 、、为顶点的三角形的形状是等边三角形,连结DG ,由ED ⊥AB 于D ,可求∠DEB=90°-∠B=30°,由EG BC ⊥,∠ACB=60°,可得∠GED=90°-∠DEB=60°,∠EGC=90°-∠GCE=30°可证△BHD 为等边三角形,∠BDH=60°,再证∠F=∠EGC=30°,GE=EF=DE ,结合∠GED=60°即可;(3)AD =CG 由ABC ,△BHD 为等边三角形,可得AD=HC ,可证△DEH ≌△FEC (AAS ),可得HE=CE ,由EG BC ⊥,∠ACB=60°,可得∠EGC=90°-∠GCE=30°利用含30°直角三角形性质GC=2EC=CH=AD 即可.【详解】证明:(1)过点D作DH∥AC交BC于H,则∠DHB=∠ACB,∵ABC是等边三角形,所以AB=AC,∠B=∠ACB=60°,∴∠B=∠DHB=60°,∴DB=DH,∵作法DH∥AC,∴∠HBE=∠F,∠DHE=∠FCE,∵DE FE=,∴△DEH≌△FEC(AAS),∴DH=FC,∴BD=CF;、、为顶点的三角形的形状是等边三角形,(2)以D E G连结DG,∵ED⊥AB于D,∴∠B+∠DEB=90°,∠B=60°,∴∠DEB=90°-∠B=30°,⊥,∠ACB=60°,又∵EG BC∴∠DEB+∠GED=90°,∠EGC+∠GCE=90°,∴∠GED=90°-∠DEB=60°,∠EGC=90°-∠GCE=30°,由(1)知DH=BD,∠B=60°,∴△BHD为等边三角形,∴∠BDH=60°,∴∠HDE=90°-∠BDH=30°,∠F=∠HDE=30°,∴∠F=∠EGC=30°,∴GE=EF=DE,∴△DEG为等边三角形;(3)AD=CG.∵ABC,△BHD为等边三角形,∴AB=BC,DB=BH,∴AB-BD=BC-BH,∴AD=HC,∵作法DH∥AC,∴∠HBE=∠F,∠DHE=∠FCE,∵DE FE=,∴△DEH≌△FEC(AAS),∴HE=CE,⊥,∠ACB=60°,∵EG BC∴∠EGC+∠GCE=90°,∴∠EGC=90°-∠GCE=30°,∴GC=2EC=CH=AD,∴GC=AD.【点睛】本题考查等边三角形的判定与性质,平行线的性质,三角形全等的判定与性质,直角三角形性质,等腰三角形判定,掌握等边三角形的判定与性质,平行线的性质,三角形全等的判定与性质,直角三角形性质,等腰三角形判定是解题关键.24.(1)60°;(2)30°;(3)20°或40°.【分析】(1)由折叠的性质可知△ABF是等边三角形,即可得出结论;(2)根据折叠的性质及三角形内角和定理即可得出结论;(3)根据折叠的性质、三角形外角的性质及等腰三角形的性质表示出∠AFD,根据平角的定义表示出∠DFC,然后分三种情况讨论即可得出结论.【详解】解:(1)由折叠的性质可知:AB=AF,BA=BF,∴AB=BF=AF,∴△ABF是等边三角形,∴∠ABC=∠AFB=60°;(2)∵∠CFD=90°,∴∠BFD =90°.由折叠的性质可知:∠BAD =∠BFD ,∴∠BAC =∠BAD =90°,∴∠C =180°-∠BAC -∠ABC =180°-90°-60°=30°;(3)设∠C =x °.由折叠的性质可知,AD =DF ,∴∠FAD =∠AFD .∵∠AFB =∠FAD +∠C ,∴∠FAD =∠AFB -∠C =60°-x ,∴∠AFD =60°-x ,∴∠DFC =180°-∠AFB -∠AFD =180°-60°-(60°-x )=60°+x .∵△CDF 为等腰三角形,∴分三种情况讨论:①若CF =CD ,则∠CFD =∠CDF ,∴60°+x +60°+x +x =180°,解得:x =20°;②若DF =DC ,则∠DFC =∠C ,∴60°+x =x ,无解,∴此种情况不成立;③若DF =FC ,则∠FDC =∠C =x ,∴60°+x +x +x =180°,解得:x =40°.综上所述:∠C 的度数为20°或40°.【点睛】本题考查了等边三角形的判定与性质,等腰三角形的判定与性质,折叠的性质.分三种情况讨论是解答本题的关键.25.(1)全等,见解析;(2)Q 的运动速度为154cm /s ;(3)803s 在AB 边上,距离A 点6cm 处【分析】(1)由SAS 证明即可;(2)根据全等三角形的性质得出4BP PC cm ==,5CQ BD cm ==,则可得出答案; (3)由题意列出方程1532104x x =+⨯,解方程即可得解; 【详解】(1)∵1t s =,点Q 的运动速度与点P 的运动速度相等,∴313BP CQ cm ==⨯=,∵10AB cm =,点D 为AB 的中点,∴5BD cm =,又∵PC BC BP =-,8BC cm =,∴835PC cm =-=,∴PC BD =,又∵AB AC =,∴B C ∠=∠,在△BPD 和△CQP 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴()△△BPD CQP SAS ≅;(2)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP CQ ≠,∴若BPD CPQ ≅,且B C ∠=∠,则4BP PC cm ==,5CQ BD cm ==,∴点P 、点Q 的运动时间4()33BPt s ==, ∴515443Q CQ t υ=== cm /s ;(3)设经过x 秒后点P 与点Q 第一次相遇, 由题意可得:1532104x x =+⨯, 解得:803x =, 803803⨯=cm , △ABC 的周长为1010828cm ++=,运动三圈:28384cm ⨯=>80cm ,84804cm -=,1046cm -=,∴经过803后点P 与点Q 第一次相遇,在AB 边上,距离A 点6cm 处. 【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的性质,特别是利用方程的思想解决几何问题,培养学生综合解题的能力.26.(1)见解析;(2)见解析【分析】(1)根据“SAS”证明△BAE ≌△CAD ,然后根据全等三角形的性质解答即可;(2)根据线段垂直平分线的判定可知CA 垂直平分DE ,进而可证明结论成立.【详解】证明:(1)∵∠BAC =∠DAE =90°,∴∠DAE +∠DAB =∠BAC +∠DAB ,即∠BAE =∠CAD ,在△BAE 与△CAD 中,AD AE CAD BAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△BAE ≌△CAD (SAS ),∴BE =CD ;(2)∵BE =CD ,BE =CE ,∴CE =CD ,又∵AD =AE ,∴CA 垂直平分DE ,∴DE ⊥AC (可得①),又∵∠BAC =90°,∴DE//AB (可得②).【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.也考查了线段垂直平分线的判定、平行线的判定等知识.。

(必考题)初中数学八年级数学下册第一单元《三角形的证明》测试题(包含答案解析)(1)

(必考题)初中数学八年级数学下册第一单元《三角形的证明》测试题(包含答案解析)(1)

一、选择题1.如图的网格中,每个小正方形的边长为1,A ,B ,C 三点均在格点上,结论错误的是( )A .AB=25B .∠BAC=90°C .ABC S 10=D .点A 到直线BC 的距离是22.如图,在ABC 中,AB AC =,BD 平分ABC ∠,将BCD △连续翻折两次,C 点的对应点E 点落在边AB 上,B 点的对应点F 点恰好落在边AC 上,则下列结论正确的是( )A .18,2A AD BD ∠=︒=B .18,A AD BC BD ∠=︒=+ C .20,2A AD BD ∠=︒=D .20,A AD BC BD ∠=︒=+3.下列说法中,不正确的有( ) ①不在角的平分线上的点到这个角的两边的距离不相等;②三角形两内角的平分线的交点到各边的距离相等;③到三角形三边距离相等的点有1个④线段中垂线上的点到线段两端点的距离相等,⑤到三角形三个顶点距离相等的点有1个A .0个B .1个C .2个D .3个4.下列命题中真命题的个数( )(1)面积相等的两个三角形全等(2)无理数包含正无理数、零和负无理数(3)在直角三角形中,两条直角边长为n 2﹣1和2n ,则斜边长为n 2+1;(4)等腰三角形面积为12,底边上的高为4,则腰长为5.A .1个B .2个C .3个D .4个 5.如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠A =30°,BD =1,则AD 的长为( )A .3B .2C .3D .236.如图,ABC 中,D 、E 为线段BE 上两点,且AC DC =,BA BE =,若52DAE BAC ∠=∠,则DAE ∠的度数为( )A .40︒B .45︒C .50︒D .60︒ 7.下列四组线段中,可以构成直角三角形的是( ) A .1,2,3B .2,3,4C .4,5,6D .()5,12,130a a a a >8.如图,在ABC 中,90BAC ∠=︒,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于G ,交BE 于H .下列结论:①BE BCE S S =△A △;②2BAG ACF ∠=∠;③AFG AGF ∠=∠;④BH CH =.其中所有正确结论的序号是( )A .①③B .①②③C .②③④D .①②③④ 9.如图,ABC 中,BAC 60∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①DE DF =;②DE DF AD +=;③DM 平分ADF ∠;④2AB AC AE +=.其中正确的有( )A .①②B .①②③④C .①②④D .②④ 10.如图,在△ABC 中,AD 平分∠BAC ,过B 点作BE ⊥AD 于E ,过E 作EF //AC 交AB 于F ,则( )A .不确定B .AF=BFC .AF >BFD .AF <BF11.如图,在ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论不正确的是( )A .AD 平分∠BACB .∠ADC =60° C .点D 在AB 的垂直平分线上 D .:DAC ABC S S =1:212.如图,以△ABC 的边AB 、AC 为边向外作等边△ABD 与等边△ACE ,连接BE 交DC 于点F ,下列结论:①CD =BE ;②FA 平分∠DFE ;③∠BFC =120°;④AFE EFC S AF S FC∆∆=.其中正确的有( )A .4个B .3个C .2个D .1个二、填空题13.如图,在ABC 中,10,12,CA CB AB AB ===边上的中线8,CD AE =平分BAC ∠,P 是线段AE 上的一点,,PF AB PG BC ⊥⊥,若:1:2PF PG =,则PG =_________.14.如图所示,有n +1个边长为1的等边三角形,点A 、C 1、C 2、C 3、…、C n 都在同一条直线上,若记△B 1C 1D 1的面积为S 1,△B 2C 2D 2的面积为S 2,△B 3C 3D 3的面积为S 3,…,△B n C n D n 的面积为S n ,则(1)S 1=_____;(2)S n =_____.15.如图,某住宅小区在施工过程中留下了一块空地四边形ABCD ,经测量,3m AB =,4m BC =,12m CD =,13m DA =,90B ∠=︒.小区美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地需花_________元.16.如图,在ABC 中,6,,BC AD DC =分别平分,BAC ACB ∠∠,点E 为BC 上一点,若105ADC ︒∠=,则CD DE +的最小值为________.17.如图,在ABC 中,分别以点A 和点B 为圆心,大于12AB 为半径画弧,两弧相交于点M 、N ,作直线MN ,交BC 于点D ,ADC 的周长为15,7AB =,则ABC 的周长为______.18.如图所示,在ABC 中,AB AC =,BAD ∠=α,且AE AD =,则EDC ∠=______.19.已知:如图,在ABC 中,AB AC =,30C ∠=︒,AB AD ⊥,4cm AD =,则BC 的长为__________cm .20.如图,在ABC 中,AB AC =,38A ∠=︒,AB 的垂直平分线交AC 点E ,垂足为点D ,连接BE ,则EBC ∠的度数为________.三、解答题21.如图,已知E 、F 分别是ABC 的边AB 和AC 上的两个定点,在BC 上找一点M ,使EFM △的周长最小.(不写作法,保留作图痕迹)22.在ABC ∆中,AB AC =,点D 是直线BC 上一点(不与B ,C 重合),以AD 为一边在AD 的右侧作ADE ∆,使AD AE =,DAE BAC ∠=∠,连接CE .(1)如图1,当点D 在线段BC 上,如果90BAC ∠=︒,则BCE ∠=__度;(2)如图2,如果60BAC ∠=︒,求BCE ∠的度数是多少?(3)设BAC α∠=,BCE β∠=.①如图3,当点D 在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D 在直线BC 上移动,请直接写出α,β之样的数量关系,不用证明.23.(1)猜想:如图1,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E 试猜想DE 、BD 、CE 有怎样的数量关系,请直接写出;(2)探究:如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在ABC 中,AB AC =,D ,A 、E 三点都在直线m 上,并且有BDA AEC BAC α∠=∠=∠=(其中α为任意锐角或钝角)如果成立,请你给出证明;若不成立,请说明理由.(3)解决问题:如图3,F 是角平分线上的一点,且ABF 和ACF 均为等边三角形,D 、E 分别是直线m 上A 点左右两侧的动点D 、E 、A 互不重合,在运动过程中线段DE 的长度始终为n ,连接BD 、CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF 的形状,并说明理由.24.如图,网格中每个小正方形的边长均为1,点A ,B 都在格点上,点A 的坐标为(-1,4),点B 的坐标为(-3,2),请按要求回答下列问题:(1)请你在网格中建立合适的平面直角坐标系;(2)在y 轴左侧找一格点C ,使△ABC 是以AB 为腰的等腰直角三角形,则点C 的坐标为____,△ABC 的周长是 ;(3)在x 轴上是否存在点P ,使△ABP 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.25.如图,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,BE 、CD 交于F .(1)求证:BE =CD ;(2)连接CE ,若BE =CE ,求证:从“①DE ⊥AC”、“②DE ∥AB”中选择一个填入(2)中,并完成证明26.已知:如图,在ABC 中,,90AC BC ACB =∠=︒,D 是AB 延长线上一点,过点C 作CE CD ⊥,使CE CD =,连结,BE DE .(1)求证:AD BE =.(2)求DBE ∠的度数.(3)连结AE ,若ADE 是等腰三角形,1AB =,求DE .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据勾股定理以及其逆定理和三角形的面积公式逐项分析即可得到问题答案.【详解】解:22242025+=A 正确,不符合题意;∵AC 22125+=BC 2234255=+==,∴22252025AC AB BC +=+==,∴△ACB 是直角三角形,∴∠CAB=90°,故选项B 正确,不符合题意;S △ABC 111442421345222=⨯-⨯⨯-⨯⨯-⨯⨯=,故选项C 错误,符合题意; 点A 到直线BC 的距离2552AC AB BC ===,故选项D 正确,不符合题意; 故选:C .【点睛】本题考查了勾股定理以及逆定理的运用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么 222+=a b c .熟记勾股定理的内容是解题得关键.2.D解析:D【分析】设∠ABC=∠C=2x ,根据折叠的性质得到∠BDE=∠BDC=∠FDE=60°BD=DF ,BC=BE=EF ,在△BDC 中利用内角和定理列出方程,求出x 值,可得∠A ,再证明AF=EF ,从而可得AD =BC+BD .【详解】解:∵AB=AC ,BD 平分∠ABC ,设∠ABC=∠C=2x ,则∠A=180°-4x ,∴∠ABD=∠CBD=x ,第一次折叠,可得:∠BED=∠C=2x ,∠BDE=∠BDC ,第二次折叠,可得:∠BDE=∠FDE ,∠EFD=∠ABD=x ,∠BED=∠FED=∠C=2x ,∵∠BDE+∠BDC+∠FDE=180°,∴∠BDE=∠BDC=∠FDE=60°,∴x+2x+60°=180°,∴x=40°,即∠ABC=∠ACB=80°,∴∠A=20°,∴∠EFD=∠EDB=40°,∴∠AEF=∠EFD-∠A=20°,∴AF=EF=BE=BC ,∴AD=AF+FD=BC+BD ,故选D .【点睛】本题考查了翻折的性质,等腰三角形的判定和性质,三角形内角和,熟练掌握折叠的性质是解题的关键.3.C解析:C【分析】根据角平分线的性质和线段垂直平分线的性质逐一进行判断即可.【详解】①根据角平分线的判定可知①正确;②根据角平分线的性质可知②正确;③缺乏前提条件:在三角形内部,若不限制条件,到三角形三边距离相等的点有4个,故③错误;④根据垂直平分线的性质可知④正确;⑤缺乏前提条件:在平面内,若不在平面内到三角形三个顶点距离相等的点有无数个,故⑤错误,∴错误的有2个,故选:C .【点睛】本题主要考查角平分线的性质和判定及垂直平分线的性质,掌握角平分线的性质和垂直平分线的性质是解题的关键.4.B解析:B【分析】根据三角形全等的性质、无理数的定义、勾股定理进行判断即可;【详解】面积相等的三角形不一定全等,故(1)是假命题;零不是无理数,故(2)是假命题;()()222242214211n n n n n -+=++=+,故(3)是真命题; 根据题意可得,底边长为12246⨯÷=,则底边长的一半为623÷=,腰长为5=,故(4)是真命题;综上所述,真命题有2个;故答案选B .【点睛】本题主要考查了命题的真假判断,结合全等三角形的定义、无理数定义、勾股定理判断是解题的关键.5.C解析:C【分析】求出∠BCD=30°,根据含30°角的直角三角形的性质求出BC=2,求出AB=4,即可得出答案.【详解】解:∵△ABC 中,∠ACB=90°,∠A=30°,∴∠B=60°,∵CD是高,∴∠CDB=90°,∴∠BCD=30°,∵BD=1,∴BC=2BD=2,∵在△ACB中,∠ACB=90°,∠A=30°,∴AB=2BC=4,∴AD=AB-BD=4-1=3,故选:C.【点睛】本题考查了三角形的内角和定理,含30度角的直角三角形的性质的应用,解题的关键是得出BC=2BD和AB=2BC,难度适中.6.A解析:A【分析】根据等腰三角形的性质可得出∠BAE=∠BEA,∠ADC=∠DAC,然后分别用外角的知识表示出这个关系,进而结合5∠DAE=2∠BAC可得出∠DAE的值.【详解】解:∵AC=DC,BA=BE,∴∠DAE+∠EAC=∠ADE=∠B+∠BAD①,∠EAD+∠BAD=∠AED=∠C+∠EAC②,①+②可得:∠DAE+∠EAC+∠EAD+∠BAD=∠B+∠BAD+∠C+∠EAC,整理,得∠DAE+∠BAC=180°﹣∠DAE,又5∠DAE=2∠BAC,设∠DAE=2x,则∠BAC=5x,上式即为2x+5x=180°-2x,解得:x=20°,即∠DAE=40°.故选:A.【点睛】本题考查等腰三角形的性质及三角形的内角和定理,有一定的难度,解答本题需用到等腰三角形的两底角相等、三角形的内角和等于180°.7.D解析:D【分析】根据勾股定理逆定理判断即可;【详解】≠A不正确;≠B不正确;≠C不正确;=,故D正确;故答案选D.【点睛】本题主要考查了勾股定理逆定理,准确计算是解题的关键.8.B解析:B【分析】根据中线的性质即可判断①;根据三角形内角和定理求出∠BAD=∠ACB,再用角平分线的定义推出②;根据三角形内角和定理求出∠ABC=∠DAC,再用外角的性质可判断③;根据等腰三角形的判定判断④.【详解】解:∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积,故①正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠BAG=2∠ACF,故②正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故③正确;根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;故选:B.【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.9.C解析:C【分析】①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD,DF=12AD,从而可证明②正确;③若DM平分∠EDF,则∠EDM=60°,从而得到∠ABC为等边三角形,条件不足,不能确定,故③错误;④连接BD、DC,然后证明△EBD≌△DFC,从而得到BE=FC,从而可证明④.【详解】解:如图所示:连接BD、DC.①∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴ED=DF.∴①正确.②∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠FAD=30°.∵DE⊥AB,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12AD.同理:DF=12 AD.∴DE+DF=AD.∴②正确.③由题意可知:∠EDA=∠ADF=60°.假设MD平分∠EDF,则∠ADM=30°.则∠EDM=60°,又∵∠E=∠BMD=90°,∴∠EBM=120°.∴∠ABC=60°.∵∠ABC是否等于60°不知道,∴不能判定MD平分∠EDF,故③错误.④∵DM 是BC 的垂直平分线,∴DB=DC .在Rt △BED 和Rt △CFD 中DE DF BD DC ⎧⎨⎩==, ∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE-BE+AF+FC又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④正确.故选:C .【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,掌握本题的辅助线的作法是解题的关键.10.B解析:B【分析】根据角平分线的定义和两直线平行,内错角相等的性质得到FAE FEA ∠=∠,即可得到AF=EF ,再根据BE ⊥AD ,得到90AEB =︒∠,再根据等角的余角相等得到ABE BEF ∠=∠,根据等边对等角的性质得到BF=EF ,即可得解;【详解】∵AD 平分∠BAC ,EF //AC ,∴FAE FEA ∠=∠,∴AF=EF ,∵BE ⊥AD ,∴90FAE ABE ∠+=︒,90AEF BEF ∠+∠=︒, ∴ABE BEF ∠=∠, ∴BF=EF ,∴AF=BF ;故答案选B .【点睛】本题主要考查了平行线的性质、三角形的角平分线,准确分析证明是解题的关键. 11.D解析:D【分析】由作图可得:AD 平分,BAC ∠ 可判断A ,再求解1302DAC DAB BAC ∠=∠=∠=︒, 可得60,ADC ∠=︒ 可判断B ,再证明,DA DB = 可判断C ,过D 作DF AB ⊥于,F 再证明,DC DF = 再利用ACD ACD ABC ACD ABD S S SS S =+ ,可判断,D 从而可得答案. 【详解】解:90,30,C B ∠=︒∠=︒903060,BAC ∴∠=︒-︒=︒由作图可得:AD 平分,BAC ∠ 故A 不符合题意;1302DAC DAB BAC ∴∠=∠=∠=︒, 903060,ADC ∴∠=︒-︒=︒ 故B 不符合题意;30,DAB B ∠=∠=︒,DA DB ∴=D ∴在AB 的垂直平分线上,故C 不符合题意;过D 作DF AB ⊥于,F90,C AD ∠=︒平分,BAC ∠,DC DF ∴=30B ∠=︒,2,AB AC ∴=11,,22ACD ABD S AC CD S AB DF ∴== 121122ACDACD ABC ACD ABD AC CD SS S S S AC CD AB DF ∴==++ 1.233AC AC AC AC AB AC AC AC ====++ 故D 符合题意; 故选:.D【点睛】 本题考查的是三角形的内角和定理,角平分线的作图,角平分线的性质,线段垂直平分线的判定,等腰三角形的判定,掌握以上知识是解题的关键.12.A解析:A【分析】过点A 作AM ⊥CD 于M ,AN ⊥BE 于N ,过点C 作CH ⊥BE 于H ,证明△ADC ≌△ABE ,可判断①,再证明AM =AN ,结合AM ⊥CD 于M ,AN ⊥BE 于N ,可判断②,证明∠ACF +∠BEC +∠ACE =120°,结合三角形的外角的性质可判断③,证明∠FAN =∠FCH =30°, 利用含30的直角三角形的性质与勾股定理可得: 33,,22AN AF HC FC == 再利用三角形的面积公式可判断④.【详解】解:过点A 作AM ⊥CD 于M ,AN ⊥BE 于N ,过点C 作CH ⊥BE 于H ,∵△ABD ,△ACE 都是等边三角形,∴AD =AB ,AE =AC ,∠DAB =∠EAC =60°,∴∠DAC =∠BAE .在△ADC 和△ABE 中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△ABE (SAS ),∴CD =BE ,∠AEB =∠ACD ,故①正确∵△ADC ≌△ABE ,∴AM =AN .∵AM ⊥CD 于M ,AN ⊥BE 于N ,∴AF 平分∠DFE ,故②正确.∵∠AEB =∠ACD ,∴∠AEC +∠ACE =120°=∠AEB +∠BEC +∠ACE ,∴∠ACF +∠BEC +∠ACE =120°,∴∠BFC =∠ACF +∠BEC +∠ACE =120°,故③正确,∴∠DFE =120°, ∴∠DFA =∠EFA =60°=∠CFE .∵AN ⊥BE ,CH ⊥EF ,∴∠FAN =∠FCH =30°,∴22222,3,2,3,AF FN AN AF FN FN FC FH HC FC FH FH ==-===-=∴,,22AN AF HC FC ==∴12.12AEF EFC EF AN AF S AN AF S CH FC EF CH ⨯⨯====⨯⨯故④正确. 故选:A .【点睛】本题考查的是全等三角形的判定与性质,等边三角形的性质,角平分线的判定与性质,勾股定理的应用,掌握以上知识是解题的关键.二、填空题13.【分析】连接PBPC 过P 作PH ⊥AC 垂足为H 设PF=x 求出CD 的长从而算出△ABC 的面积再根据S △ABC=S △ABP+S △ACP+S △BCP=求出x 值可得结果【详解】解:连接PBPC 过P 作PH ⊥AC解析:167【分析】连接PB ,PC ,过P 作PH ⊥AC ,垂足为H ,设PF=x ,求出CD 的长,从而算出△ABC 的面积,再根据S △ABC =S △ABP +S △ACP +S △BCP =21x ,求出x 值,可得结果.【详解】解:连接PB ,PC ,过P 作PH ⊥AC ,垂足为H ,∵AP 平分∠BAC ,∴PF=PH ,设PF=x ,则PH=x ,PG=2x ,∵CA=CB=10,CD 是AB 中线,AB=12,∴AD=BD=6,则=8,∴S △ABC =12AB CD ⨯⨯=48, 又S △ABC =S △ABP +S △ACP +S △BCP =()12AB PF AC PH BC PG ⨯⋅+⋅+⋅ =()11210202x x x ⨯++ =21x=48解得:x=167, 即PG=167, 故答案为:167.【点睛】本题考查了等腰三角形三线合一的性质,角平分线的性质,勾股定理,三角形的面积,解题的关键是利用△ABC 的面积列出方程.14.【分析】首先求出S1S2S3…探究规律后即可解决问题【详解】解:如图过点B 作BE ⊥AC1于点E ∵△ABC1是等边三角形AB=AC1=BC1=1∴AE=∴∴由题意可知=…所以∵∴故答案为:【点睛】本题 解析:38 34(1)n n + 【分析】首先求出S 1,S 2,S 3,…,探究规律后即可解决问题.【详解】解:如图,过点B 作BE ⊥AC 1于点E ,∵△ABC1是等边三角形,AB=AC1=BC1=1∴AE=12, ∴22221312BE AB AE ⎛⎫=-=-= ⎪⎝⎭∴1113312AC B S ∆=⨯=由题意可知,11111111122B C D AC B AC B S S S S ∆∆∆====133248⨯=, 222211121233B C D AC B AC B S S S S ∆∆∆===, 333321131344B C D AC B AC B S S S S ∆∆∆===, …,所以111n AC B n S S n ∆=+, ∵111331224AC B S ∆=⨯⨯=, ∴3n n S =. 故答案为:3,3n 【点睛】本题考查了等边三角形的性质,三角形的面积等知识,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题,属于中考常考题型.15.3600【分析】连接AC 根据勾股定理的性质计算得AC ;根据勾股定理的逆定理推导得计算得从而得四边形面积;结合草坪每平方米100元通过计算即可得到答案【详解】如图连接AC ∵∴∵∴∴∴∴四边形面积为:∵解析:3600【分析】连接AC ,根据勾股定理的性质,计算得AC 、ABC S ;根据勾股定理的逆定理,推导得90ACD ∠=︒,计算得ACD S,从而得四边形ABCD 面积;结合草坪每平方米100元,通过计算即可得到答案.【详解】如图,连接AC∵3m AB =,4m BC =,90B ∠=︒∴225AC AB BC m =+=,2162ABC S AB BC m =⨯=△ ∵12m CD =,13m DA =∴22222512169DA AC CD =+=+=∴90ACD ∠=︒∴21302ACD S AC CD m =⨯=△ ∴四边形ABCD 面积为:236ABC ACD S S m +=△△∵草坪每平方米100元∴铺满这块空地需花:361003600⨯=元,故答案为:3600.【点睛】本题考查了勾股定理及其逆定理的知识;解题的关键是熟练掌握勾股定理和勾股定理逆定理,从而完成求解.16.3【分析】如图过作于连接先说明平分当时可得可得所以当三点共线时此时最短再求解结合从而可得答案【详解】解:如图过作于连接分别平分平分当时则所以当三点共线时此时最短分别平分即的最小值是故答案为:【点睛】 解析:3【分析】如图,过D 作DP AB ⊥于,P 连接,BD 先说明BD 平分,ABC ∠ 当DE BC ⊥时,可得,DP DE = 可得,CD DE CD DP +=+ 所以当,,C D P 三点共线时,,CD DP CP += 此时最短,再求解30ABC ∠=︒,结合,CP AB ⊥ 从而可得答案. 【详解】解:如图,过D 作DP AB ⊥于,P 连接,BD,AD DC 分别平分,BAC ACB ∠∠,BD ∴平分,ABC ∠当DE BC ⊥时,则,DP DE =,CD DE CD DP ∴+=+所以当,,C D P 三点共线时,,CD DP CP += 此时最短,105ADC ∠=︒,18010575DAC DCA ∴∠+∠=︒-︒=︒,,AD DC 分别平分,BAC ACB ∠∠,()2150,BAC BCA DAC DCA ∴∠+∠=∠+∠=︒18015030ABC ∴∠=︒-︒=︒,,CP AB ⊥116322CP BC ∴==⨯=, 即CD DE +的最小值是3,故答案为:3.【点睛】本题考查的是三角形的内角和定理,三角形的角平分线的性质,含30的直角三角形的性质,垂线段最短,掌握以上知识是解题的关键.17.22【分析】根据题意可得MN 为AB 的垂直平分线故即可求解【详解】解:根据题意可得MN 为AB 的垂直平分线∴∴的周长为故答案为:22【点睛】本题考查尺规作图-线段垂直平分线线段垂直平分线的性质得到MN 为 解析:22【分析】根据题意可得MN 为AB 的垂直平分线,故AD BD =,即可求解.【详解】解:根据题意可得MN 为AB 的垂直平分线,∴AD BD =,∴ABC 的周长为22AC AB BC AC CD BD AB AC CD AD AB ++=+++=+++=,故答案为:22.【点睛】 本题考查尺规作图-线段垂直平分线、线段垂直平分线的性质,得到MN 为AB 的垂直平分线是解题的关键.18.【分析】根据等边对等角和三角形的外角性质列出等式整理即可得出结论【详解】解:根据题意:在△ABC 中AB=AC ∴∠B=∠C ∵AE=AD ∴∠ADE=∠AED ∴∠B+∠α-∠EDC=∠C+∠EDC 化简可得 解析:12α 【分析】根据等边对等角,和三角形的外角性质列出等式整理即可得出结论.【详解】解:根据题意:在△ABC 中,AB=AC ,∴∠B=∠C,∵AE=AD,∴∠ADE=∠AED,∴∠B+∠α-∠EDC=∠C+∠EDC,化简可得:∠α=2∠EDC,∴∠EDC=12α,故答案为:12 .【点睛】本题考查了等腰三角形的性质,三角形外角定理,关键是熟悉三角形的一个外角等于与它不相邻的两个内角的和的知识点.19.【分析】已知AB=AC根据等腰三角形的性质可得∠B的度数再求出∠DAC 的度数然后根据30°角直角三角形的性质求得BD的长再根据等角对等边可得到CD的长即可求得BC的长【详解】∵AB=AC∠C=30°解析:12【分析】已知AB=AC,根据等腰三角形的性质可得∠B的度数,再求出∠DAC的度数,然后根据30°角直角三角形的性质求得BD的长,再根据等角对等边可得到CD的长,即可求得BC的长.【详解】∵AB=AC,∠C=30°,∴∠B=∠C=30°,∴∠BAC=120°,∵AB⊥AD,AD=4,∴∠BAD=90°,BD=2AD=8,∴∠DAC=120°-90°=30°,∴∠DAC =∠C=30°,∴AD=CD=4,∴CB=DB+CD=12故答案为:12【点睛】本题考查了等腰三角形的判定与性质及30°角直角三角形的性质,熟练运用等腰三角形的性质及30°角直角三角形的性质是解决问题的关键.20.33°【分析】先根据等腰三角形的性质求出再根据垂直平分线的性质求解即可;【详解】∵在中∴∵的垂直平分线交点垂足为点∴AE=BE∴∴;故答案是【点睛】本题主要考查了等腰三角形的判定与性质垂直平分线的性解析:33°【分析】先根据等腰三角形的性质求出71ABC C ∠=∠=︒,再根据垂直平分线的性质求解即可;【详解】∵在ABC 中,AB AC =,38A ∠=︒,∴71ABC C ∠=∠=︒,∵AB 的垂直平分线交AC 点E ,垂足为点D ,∴AE=BE ,∴38A ABE ∠=∠=︒,∴713833EBC ∠=︒-︒=︒;故答案是33︒.【点睛】本题主要考查了等腰三角形的判定与性质、垂直平分线的性质,准确计算是解题的关键.三、解答题21.画图见解析【分析】先作E 点关于直线BC 的对称点1,E 则1,ME ME = 再连接1,FE 交BC 于,M 从而可得到EFM △的周长最短.【详解】解:如图,EFM △是所求作的周长最小的三角形,【点睛】本题考查的轴对称的性质,过直线外一点作已知直线的垂线,线段的垂直平分线的性质,掌握利用轴对称的性质求解两条线段的和的最小值是解题的关键.22.(1)90;(2)120°;(3)①180αβ+=︒;见解析;②180αβ+=︒或αβ=【分析】(1)由等腰直角三角形的性质可得∠ABC =∠ACB =45°,由“SAS ”可证△BAD ≌△CAE ,可得∠ABC =∠ACE =45°,可求∠BCE 的度数;(2)由条件可得△ABC 为等边三角形,由“SAS ”可证△ABD ≌△ACE 得出∠ABD =∠ACE =60°,则可得出结论;(3)①由“SAS ”可证△ABD ≌△ACE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论;②分两种情况画出图形,由“SAS ”可证△ABD ≌△ACE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论.【详解】解:(1)∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∵∠DAE =∠BAC ,∴∠BAD =∠CAE ,且AB =AC ,AD =AE ,∴△BAD ≌△CAE (SAS )∴∠ABC =∠ACE =45°,∴∠BCE =∠ACB +∠ACE =90°,故答案为:90;(2)∵∠BAC =60°,AB =AC ,∴△ABC 为等边三角形,∴∠ABD =∠ACB =60°,∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,∵∠BAD =∠CAE ,且AB =AC ,AD =AE ,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE =60°,∴∠BCE =∠ACE +∠ACB =60°+60°=120°,故答案为:120.(3)①α+β=180°,理由:∵∠BAC =∠DAE ,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC .即∠BAD =∠CAE .在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴∠B =∠ACE .∴∠B +∠ACB =∠ACE +∠ACB .∵∠ACE +∠ACB =β,∴∠B +∠ACB =β,∵α+∠B +∠ACB =180°,∴α+β=180°.②如图1:当点D 在射线BC 上时,α+β=180°,连接CE ,∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE ,在△ABC 中,∠BAC +∠B +∠ACB =180°,∴∠BAC +∠ACE +∠ACB =∠BAC +∠BCE =180°,即:∠BCE +∠BAC =180°,∴α+β=180°,如图2:当点D 在射线BC 的反向延长线上时,α=β.连接BE ,∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,且AB =AC ,AD =AE ,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE ,∴∠ABD =∠ACE =∠ACB +∠BCE ,∴∠ABD +∠ABC =∠ACE +∠ABC =∠ACB +∠BCE +∠ABC =180°,∵∠BAC =180°﹣∠ABC ﹣∠ACB ,∴∠BAC =∠BCE .∴α=β;综上所述:点D 在直线BC 上移动,α+β=180°或α=β.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,三角形的内角和定理,证明△ABD ≌△ACE 是解本题的关键.23.(1)DE BD CE =+;(2)成立,见解析;(3)等边三角形,见解析【分析】(1)根据垂直的定义得到90BAD CAE ∠+∠=︒,根据等角的余角相等得到ABD CAE ∠=∠,再证明()ADB CEA AAS ≌△△,根据全等三角形的性质即可得解; (2)根据条件证明()BAD ACE AAS ≌即可得解;(3)根据等边三角形的判定证明即可;【详解】解:(1)DE BD CE =+,理由:∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒,∵BD m ⊥,CE m ⊥,∴90ADB CEA ∠=∠=︒,∴90BAD ABD ∠+∠=︒,∴ABD CAE ∠=∠,在ADB △和CEA 中,90ADB CEA ABD CAE AB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()ADB CEA AAS ≌△△, ∴BD AE =,AD CE =,∴DE AD AE BD CE =+=+,故答案为DE BD CE =+;(2)结论DE BD CE =+成立;理由如下:∵BAD CAE 180BAC ∠∠∠+=︒-,BAD ABD 180ADB ∠∠∠+=︒-,90BAD ABD ∠+∠=︒,∴ABD CAE ∠=∠, 在BAD 和ACE 中,ABD CAE ADB CEA AB AC α∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴()BAD ACE AAS ≌,∴BD AE =,AD CE =,∴DE DA AE BD CE =+=+;(3)DFE △为等边三角形,理由:由(2)得,BAD ACE ≌△△,∴BD AE =,ABD CAE ∠=∠,∴ABD FBA CAE FAC ∠+∠=∠+,即FBD FAE ∠=∠,在FBD 和FAE 中,FB FA FBD FAE BD AE =⎧⎪∠=∠⎨⎪=⎩,∴()FBD FAE SAS ≌,∴FD FE =,BFD AFE ∠=∠,∴60DFE DFA AFE DFA BFD ∠=∠+∠=∠+∠=︒, ∴DFE 为等边三角形.【点睛】 本题主要考查了三角形综合,结合三角形全等证明、等边三角形的判定是解题的关键. 24.(1)图见解析;(2)(-1,0),442+;(3)P 7(,0)3-. 【分析】(1)根据AB 坐标可知,A 点向右1个单位,向下4个单位即是原点(0,0),由此即可建立平面直角坐标系;(2)由网格的特点易得点,再根据勾股定理可求AB 边长为22,进而即可得出答案, (3)作点B 关于x 轴的对称点B ′,连接AB ′,交x 轴于点P ,则点P 即所求,再利用一次函数与直线交点求法求出交点P .【详解】解:(1)平面直角坐标系如图所示;(2)如图,当在y 轴左侧点C (-1,0)时,△ABC 为等腰直角三角形,此时222222AB BC ==+=故△ABC 的周长为42222442BC AB BC ++=+=+故填:(-1,0),442+;(3)如图,作点(3,2)B -关于x 轴的对称点(3,2)B '--,连接AB ′,交x 轴于点P ,则点P 即所求,设直线AB ′的解析式为y =kx +b ,将A (−1,4),B ′(−3,−2)代入得423k b k b=-+⎧⎨-=-+⎩, 解得37k b =⎧⎨=⎩, ∴直线AB ′的解析式为y =3x +7. 将y =0代入得,73x =-, ∴0()7,3P -.【点睛】本题考查了一次函数应用,勾股定理,轴对称与线段最小值等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.25.(1)见解析;(2)见解析【分析】(1)根据“SAS”证明△BAE ≌△CAD ,然后根据全等三角形的性质解答即可;(2)根据线段垂直平分线的判定可知CA 垂直平分DE ,进而可证明结论成立.【详解】证明:(1)∵∠BAC =∠DAE =90°,∴∠DAE +∠DAB =∠BAC +∠DAB ,即∠BAE =∠CAD ,在△BAE 与△CAD 中, AD AE CAD BAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△BAE ≌△CAD (SAS ),∴BE =CD ;(2)∵BE =CD ,BE =CE ,∴CE =CD ,又∵AD =AE ,∴CA 垂直平分DE ,∴DE ⊥AC (可得①),又∵∠BAC =90°,∴DE//AB (可得②).【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.也考查了线段垂直平分线的判定、平行线的判定等知识.26.(1)见解析;(2)90°;(35【分析】(1)用SAS 证明△ACD ≌△BCE ,即可得到结论;(2)根据全等三角形的性质得到∠EBC=∠BAC=45°,可得∠DBE ;(3)分DA=DE ,DA=AE ,DE=AE ,三种情况根据等腰三角形的性质求解.【详解】解:(1)∵CE ⊥CD ,∴∠DCE=90°=∠ACB ,∴∠ACB+∠BCD=∠DCE+∠BCD ,即∠ACD=∠ECB ,∴在△ACD 和△BCE 中,AC BC ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴AD=BE ;(2)由(1)可知:△ACD ≌△BCE ,∴∠EBC=∠BAC=45°,∴∠DBE=180°-∠EBC-∠ABC=90°;(3)∵△ADE 是等腰三角形,若DA=DE ,则∠DAE=∠DEA ,∵∠DAC=∠DEC ,∴∠CAE=∠CEA ,∴AC=EC ,∵AC≠EC ,∴DA≠DE ;若DA=AE ,∵∠EBA=90°,∴AE>BE,∵△ACD≌△BCE,∴AD=BE,∴AE≠AD;若DE=AE,∵EB⊥AD,AE=DE,∴B是AD中点,∴AD=2AB=2BD=1,∵△ACD≌△BCE,∴BE=AD=2,由(2)可知:∠DBE=90°,∴DE=225+=;BE DB综上:DE的值为5.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,解题的关键是注意分类讨论,灵活运用等腰三角形的性质.。

北师大版八下数学《三角形的证明》单元测试1(含答案)

北师大版八下数学《三角形的证明》单元测试1(含答案)

第一章三角形的证明单元测试一、填空题1.一个等腰三角形有一角是70°,则其余两角分别为_________.2.一个等腰三角形的两边长为5和8,则此三角形的周长为_________.3.如图1,△ABC中,∠C=90°,AM平分∠CAB,CM=20 cm,则点M到AB 的距离是_________.图1 图24.如图2,等边△ABC中,F是AB中点,EF⊥AC于E,若△ABC的边长为10,则AE=_________,AE∶EC=_________.5.如图3,△ABC中,DE垂直平分BC,垂足为E,交AB于D,若AB=10 cm,AC=6 cm,则△ACD的周长为_________.图3 图46.如图4,∠C=90°,∠ABC=75°,∠CDB=30°,若BC=3 cm,则AD=___ cm.7.如图5,B在AC上,D在CE上,AD=BD=BC,∠ACE=25°,∠ADE=_________.图5图68.等腰直角三角形一条边长是1 cm ,那么它斜边上的高是_________ cm. 9.如图6,在∠AOB 的两边OA 、OB 上分别取OQ =OP ,OT =OS ,PT 和QS 相交于点C ,则图中共有_________对全等三角形.10.等腰三角形两腰上的高相等,这个命题的逆命题是________________,这个逆命题是_________命题.11.三角形三边分别为a 、b 、c ,且a 2-bc =a (b -c ),则这个三角形(按边分类)一定是_________三角形.二、选择题12.等边三角形的高为23,则它的边长为( ) A.4B.3C.2D.513.等腰三角形的顶角是n °,那么它的一腰上的高与底边的夹角等于( )A.290 nB.90-2nC.2n D.90°-n °14.下列由线段a 、b 、c 组成的三角形,不是直角三角形的是( ) A.a =3,b =4,c =5 B.a =1,b =34,c =35 C.a =9,b =12,c =15D.a =3,b =2,c =515.直角三角形的三边长为连续自然数,则它的面积为( ) A.6B.7.5C.10D.1216.△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,最小边BC =4 cm ,最长边AB 的长是( )A.5 cmB.6 cmC.5 cmD.8 cm17.如图7,△ABC 中,AB =AC ,BC =BD ,AD =DE =EB ,则∠A 的度数为( )图7A.55°B.45°C.36°D.30°18.等腰△ABC 中,AC =2BC ,周长为60,则BC 的长为( ) A.15B.12C.15或12D.以上都不正确19.直角三角形两直角边分别是5 cm 、12 cm ,其斜边上的高是( ) A.13 cmB.1330cmC.1360cmD.9 cm20.直角三角形中,以直角边为边长的两个正方形的面积分别为30和20,则以斜边为边长的正方形的面积为( )A.25B.50C.100D.6021.等腰三角形的底边为a ,顶角是底角的4倍,则腰上的高是( ) A.23a B.33 a C.63a D.21a 22.若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形一定是( )A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形23.等腰三角形ABC 中,∠A =120°,BC 中点为D ,过D 作DE ⊥AB 于E ,AE =4cm,则AD等于()A.8 cmB.7 cmC.6 cmD.4 cm24.下列说法中,正确的是()A.两边及一对角对应相等的两个三角形全等B.有一边对应相等的两个等腰三角形全等C.两边及其中一边上的中线对应相等的两个三角形全等D.两边及其中一边上的高对应相等的两个三角形全等25.如图8,AB⊥CD,△ABD、△BCE都是等腰三角形,如果CD=8,BE=3,那么AC长为()图8A.8B.5C.3D.3426.将两个全等的有一个角为30°的直角三角形拼成下图9,其中两条长直角边在同一直线上,则图中等腰三角形的个数是()图9A.4B.3C.2D.127.下列定理中逆定理不存在的是()A.角平分线上的点到这个角的两边距离相等B.在一个三角形中,如果两边相等,那么它们所对的角也相等C.同位角相等,两直线平行D.全等三角形的对应角相等*28.已知一个直角三角形的周长是4+26,斜边上中线长为2,则这个三角形的面积为( )A.5B.2C.45D.1三、解答题29.已知:如图10,AB =AC ,DE ∥AC ,求证:△DBE 是等腰三角形.图1030.已知:如图11,在Rt △ABC 中,∠C =90°,∠BAD =21∠BAC ,过点D 作DE ⊥AB ,DE 恰好是∠ADB 的平分线,求证:CD =21DB .图1131.已知三角形的三边分别是n 2+n ,n +21和n 2+n +21(n >0),求证:这个三角形是直角三角形.32.如图12,△ABC 中,AB =AC ,∠1=∠2,求证:AD 平分∠BA C.图1233.如图13,以等腰直角三角形ABC的斜边AB与边面内作等边△ABD,连结DC,以DC当边作等边△DCE,B、E在C、D的同侧,若AB=2,求BE的长.图13*34.①在△ABC中,AB=AC,AB的垂直平分线交AC于N,交BC的延长线于M,∠A=30°,求∠NMB的大小.②如果将①中的∠A的度数改为70°,其余条件不变,再求∠NMB的大小.③你感到存在什么样的规律性?试证明.(请同学们自己画图)④将①中的∠A改为钝角,对这个问题规律性的认识是否需要加以修改?参考答案一、1.55°,55°或70°,40° 2.18或21 3.20 cm 4.251∶3 5.16 cm 6.6 7.75° 8.22或219.4 10.如果一个三角形两边上的高相等,那么这个三角形是等腰三角形 真 11.等腰二、12.A 13.C 14.D 15.A 16.D 17.B 18.B 19.C 20.B 21.D 22.D 23.A 24.C 25.D 26.B 27.D 28.B三、29.略 30.略 31.略 32.略 33.134.①15° ②35° ③AB 的垂直平分线与底边BC 所夹的锐角等于∠A 的一半 ④不需要修改。

人教版八年级数学 上册 第十二章 全等三角形 单元综合与测试 B卷(含答案)

人教版八年级数学 上册 第十二章 全等三角形 单元综合与测试 B卷(含答案)

第十二章 全等三角形 单元复习与检测题 B 卷(含答案)一、选择题1、下列条件不能判定两个直角三角形全等的是( ) A .两条直角边对应相等 B .斜边和一锐角对应相等 C .斜边和一直角边对应相等D .两个锐角对应相等2、如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .23、如图,在△ABC 和△DEF 中,已有条件AB=DE ,还需要添加两个条件才能使△ABC ≌△DEF ,不能添加的一组条件是( )A .∠B=∠E ,BC=EFB .∠A=∠D ,BC=EFC .∠A=∠D ,∠B=∠ED .BC=EF ,AC=DF4、如图,P 是∠AOB 平分线上一点,CD ⊥OP 于P ,并分别交OA 、OB 于C D ,则CD_____点P 到∠AOB 两边距离之和.( )A .小于B .大于C .等于 D.不能确定5、如图.射线OC 平分∠AOB ,点P 在OC 上,且PM ⊥OA 于M .PN ⊥OB 于N ,当PM =2cm 时,则PN 是( )A .1cmB .2cmC .4cmD .不确定6、如图,直线a ,b ,c 表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .两处C .三处D .四处7、要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD =BC ,再定出BF 的垂线DE ,使A ,C ,E 在一条直线上(如图所示),可以说明△EDC ≌△ABC ,得ED =AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( )A .边角边B .角边角C .边边边D .边边角8、已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是( )A .两条边长分别为4,5,它们的夹角为βB .两个角是β,它们的夹边为4C .三条边长分别是4,5,5D .两条边长是5,一个角是β9、如图,在ABC 中,AC BC =,过点B 作射线BF ,在射线BF 上取一点E ,连接AE ,使得CBF CAE ∠=∠,过点C 作射线BF 的垂线,垂足为点D ,若2DE =,4AE =,则BD 的长度为( )A .7B .6C .4D .210、如图,方格纸中△DEF 的三个顶点分别在小正方形的顶点上,像这样的三个顶点都在格点上的三角形叫格点三角形,则图中与△DEF 全等的格点三角形最多有A .8个B .7个C .6个D .4个二、填空题11、如图,如果△ABC ≌△DEF ,△DEF 周长是32cm ,DE=9cm ,EF=13cm ,∠E=∠B ,则AC=______cm .12、如图,小明用直尺和圆规作一个角等于已知角,则说明A O B AOB '''∠=∠的依据是______.13、已知△ABC ≌△DEF ,△ABC 的周长为12,则△DEF 的周长为______14、如图,D 为Rt △ABC 中斜边BC 上的一点,且BD=AB ,过D 作BC 的垂线,交AC 于E ,若AE=12cm ,则DE 的长为__cm .15、已知AD 是△ABC 的角平分线,DE ⊥AB 于E ,且DE =3cm ,则点D 到AC 的距离为_____.16、在四边形ABCD 中,∠BAD+∠BCD=180°, AC 平分∠BAD ,过点C 作CE ⊥AD ,垂足为E , CD=4,AE=10,则四边形ABCD 的周长是____________________.17、在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E 是BC 的中点,DE 平分∠ADC ,如图.大家一起热烈地讨论交流,小英第一个得出如下结论:(1)AE 平分∠DAB ;(2)△EBA ≌△DCE ;(3)AB+CD=AD ;(4)AE ⊥DE ;(5)AB ∥CD .其中正确的结论是_____.(将你认为正确结论的序号都填上)18、如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__.三、解答题19、已知△ABC≌△DFE,∠A=100°,∠B=50°,DF=12cm,求∠E的度数及AB的长.20、如图,点A,B,D,E在同一直线上,AB=ED,AC∥EF,∠C=∠F.求证:AC=EF.21、如图,∠C=∠CAM=90°,AC=8,BC=4,P,Q两点分别在线段AC和射线AM上运动,且PQ=A B.若△ABC和△PQA全等,求AP的长度.22、如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出图中相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.23、如图,在ABC∆中,D是BC边上的一点,AB DB=,BE平分ABC∠,交AC边于点E,连接DE.(1)求证:ABE DBE ∆≅∆;(2)若100A ∠=︒,50C ∠=︒,求AEB ∠的度数.24、如图,△ABC 为等腰三角形,AB=AC ,∠D=∠E ,∠BAD=∠CAE . (1)写出一对全等的三角形:△ ≌△ ; (2)证明(1)中的结论; (3)求证:点G 为BC 的中点.25、已知AB=AC ,D ,E 是BC 边上的点,将△ABD 绕点A 旋转,得到△ACD',连接D'E(1)如图1,当∠BAC=120°,∠DAE=60°时,求证DE=D'E ,(2)如图2,当DE=D'E 时,∠DAE 与∠BAC 有怎样的数量关系?请写出,并说明理由.参考答案:一、1、D 2、B 3、B 4、B 5、B 6、D 7、B 8、D 9、B 10、A 二、 11、10 12、SSS 13、12 14、12 15、 3cm 16、 2817、(1)(3)(4)(5). 18、13三、解答题19、∠E=30°,AB=12cm . 【分析】根据全等三角形性质得出∠D=∠A=100°,∠F=∠B=50°,利用三角形内角和定理即可求出∠E 的度数,再根据DF=AB ,即可求出AB 的长.【详解】∵△ABC ≌△DFE ,∴∠D=∠A=100°,∠F=∠B=50°,DF=AB ∴∠E=180°-100°-50°=30°,∵DF=12cm , ∴AB=12cm .【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应边、对应角相等是解题的关键. 20、证明见解析. 【解析】试题分析:根据全等三角形的片对于性质,再由原子条件即可证明△ABC ≌△EDF (AAS ),推出AC=EF 即可.试题解析:证明:∵AC ∥EF , ∴∠A=∠E . 在△ABC 和△DEF 中, {∠A =∠E∠C =∠F AB =ED , ∴△ABC ≌△EDF . ∴AC=EF .考点:全等三角形的判定与性质. 21、4或8 【解析】试题分析:分△ABC ≌△PQA 和△ABC ≌△QPA 两种情况求AP 的长. 试题解析:当△ABC ≌△PQA 时,AP =CA =8; 当△ABC ≌△QPA 时,AP =CB =4.22、(1)见解析;(2)MN=2.1cm ;HG= 2.2cm . 【分析】(1)根据△EFG ≌△NMH ,∠F 与∠M 是对应角可得到两个三角形中对应相等的三边和三角;(2)根据(1)中的对等关系即可得MN 和HG 的长度.【详解】(1)∵△EFG ≌△NMH ,∠F 与∠M 是对应角,∴EF=NM ,EG=NH ,FG=MH ,∠F=∠M ,∠E=∠N ,∠EGF=∠NHM , ∴FH=GM ,∠EGM=∠NHF ; (2)∵EF=NM ,EF=2.1cm , ∴MN=2.1cm ;∵FG=MH ,FH+HG=FG ,FH=1.1cm ,HM=3.3cm , ∴HG=FG-FH=HM-FH=3.3-1.1=2.2cm .23、(1)见解析;(2)65︒ 【分析】(1)由角平分线定义得出ABE DBE ∠∠=,由SAS 证明ABE DBE ∆≅∆即可; (2)由三角形内角和定理得出30ABC ∠=︒,由角平分线定义得出1152ABE DBE ABC ∠∠∠︒===,在ABE ∆中,由三角形内角和定理即可得出答案.【详解】(1)证明:BE 平分ABC ∠,∴ABE DBE ∠∠=,在ABE ∆和DBE ∆中,AB DB ABE DBE BE BE =⎧⎪∠=∠⎨⎪=⎩,∴()ABE DBE SAS ∆≅∆;(2)100A ∠=︒,50C ∠=︒,∴30ABC ∠=︒,BE平分ABC∠,∴1152ABE DBE ABC∠∠∠︒===,在ABE∆中,1801801001565AEB A ABE∠=︒∠∠=︒︒︒=︒----.【点睛】本题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平分线定义,证明三角形全等是解题的关键.24、(1)△ABE≌△ACD.(2)详见解析.(3)详见解析.【分析】(1)结论:△ABE≌△ACD.(2)根据AAS即可证明;(3)只要证明FB=FC,可得AF垂直平分线段BC即可解决问题;【详解】(1)解:结论:△ABE≌△ACD.(2)证明:∵∠BAD=∠CAE,∴∠BAE=∠CAD,在△ABE和△ACD中,{E DBAE CADAB AC∠=∠∠=∠=,∴△ABE≌△ACD.故答案为ABE,ACD.(3)证明:∵AB=AC,∴∠ABC=∠ACB,∵△ABE≌△ACD,∴∠ABE=∠ACD,∴∠FBC=∠FCB,∴BF=CF,∵AB=AC,∴AF垂直平分线段BC,∴BG=GC,∴点G为BC的中点.【点睛】本题考查了全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题.25、(1)详见解析;(2)∠DAE=12∠BAC,理由详见解析.【分析】(1)根据旋转的性质和全等三角形的判定定理SAS证得△DAE≌△D′AE,则由“全等三角形的对应边相等”的性质证得结论;(2)∠DAE=12∠BAC.根据旋转的性质和全等三角形的判定定理SSS证得△DAE≌△D′AE,则由“全等三角形的对应角相等”的性质推知∠DAE=12∠BAC.【详解】(1)证明:如图,∵△ABD旋转得到△ACD',∴∠DAD'=∠BAC=120°,AD=AD'.∵∠DAE=60°,∴∠EAD'=∠DAD'-∠DAE=120°-60°=60°. ∴∠DAE=∠D'AE,又∵AE=AE,AD=AD',∴△DAE≌△D'AE(SAS).∴DE=D'E.(2)解:∠DAE=12∠BAC.理由:如图,∵△ABD旋转得到△ACD', ∴∠DAD'=∠BAC,AD=AD'. ∵DE=D'E,AE=AE,∴△DAE≌△D'AE(SSS).∴∠DAE=D'AE=12∠DAD'.∴∠DAE=12∠BAC.【点睛】本题考查的知识点是全等三角形的判定与性质及旋转的性质以及等腰三角形的性质,解题的关键是熟练的掌握全等三角形的判定与性质及旋转的性质以及等腰三角形的性质.。

(典型题)初中数学八年级数学下册第一单元《三角形的证明》测试题(有答案解析)

(典型题)初中数学八年级数学下册第一单元《三角形的证明》测试题(有答案解析)

一、选择题1.如图的网格中,每个小正方形的边长为1,A ,B ,C 三点均在格点上,结论错误的是( )A .AB=25B .∠BAC=90°C .ABC S 10=D .点A 到直线BC 的距离是22.如图,在ABC 中,AB AC =,BD 平分ABC ∠,将BCD △连续翻折两次,C 点的对应点E 点落在边AB 上,B 点的对应点F 点恰好落在边AC 上,则下列结论正确的是( )A .18,2A AD BD ∠=︒=B .18,A AD BC BD ∠=︒=+ C .20,2A AD BD ∠=︒= D .20,A AD BC BD ∠=︒=+ 3.如图,在ABC 中,AB =AC =6,且15ABC S =△,AD ,BE 是ABC 的两条高线,P 是AD 上一动点,则PC PE +的最小值是( )A .4B .5C .6D .84.如图,已知△ABC 中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合)两边PE 、PF 分别交AB 、AC 于点E 、F ,给出以下四个结论:①AE =CF ;②△EPF 是等腰直角三角形;③S 四边形AEPF =12S △ABC ;④BE +CF =EF .上述结论始终正确的个数是( )A .1个B .2个C .3个D .4个5.如图,在ABC ∆中,AB AC =,120BAC ∠=︒,AD 是ABC ∆的中线,且6AD =,AE 是BAD ∠的角平分线,//DF AB 交AE 的延长线于点F ,则DF 的长为( )A .3B .4C .5D .6 6.如图,CD 是ABC 的角平分线,2,7,4B A AC BC ∠=∠==,则BD 的长为( )A .2B .3C .23D .327.如图,△ABC 中,DC =2BD =2,连接AD ,∠ADC =60°.E 为AD 上一点,若△BDE 和△BEC 都是等腰三角形,且AD =31+,则∠ACB =( )A .60°B .70°C .55°D .75°8.如图,在ABD ∆中,AD AB =,90DAB ︒∠=,在ACE ∆中,AC AE =,90EAC ︒∠=,CD ,BE 相交于点F ,有下列四个结论: ①BDC BEC ∠=∠;②FA 平分DFE ∠;③DC BE ⊥;④DC BE =.其中,正确的结论有( )A .①②③④B .①③④C .②③D .②③④ 9.在下列命题中,真命题是( )A .同位角相等B .到线段距离相等的点在线段垂直平分线上C .三角形的外角和是360°D .角平分线上的点到角的两边相等10.下列四组线段中,可以构成直角三角形的是( )A .1,2,3B .2,3,4C .4,5,6D .()5,12,130a a a a >11.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm 12.等腰三角形一腰的垂直平分线与另一腰所在直线的夹角是40°,则这一等腰三角形的底角为( )A .65°B .25°C .50°D .65°或25°二、填空题13.如图,OA ,OB 分别是线段MC 、MD 的垂直平分线,MD =5cm ,MC =7cm ,CD =10cm ,一只小蚂蚁从点M 出发,爬到OA 边上任意一点E ,再爬到OB 边上任意一点F ,然后爬回M 点,则小蚂蚁爬行的最短路径的长度为_____.14.如图,已知△ABC 的周长是18,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =1,△ABC 的面积是_____.15.已知C ,D 两点在线段AB 的垂直平分线上,且∠ACB =50°,∠ADB =86°,则∠CAD 的度数是_____.16.如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90∘,AB = AC =8,O 为AC 中点,点D 在直线BC 上运动,连接OE ,则在点D 运动过程中,线段OE 的最小值是 _____ .17.如图,∠MON =33°,点P 在∠MON 的边ON 上,以点P 为圆心,PO 为半径画弧,角OM 于点A ,连接AP ,则∠APN =____.18.如图,在ABC 中,6,,BC AD DC =分别平分,BAC ACB ∠∠,点E 为BC 上一点,若105ADC ︒∠=,则CD DE +的最小值为________.19.如图,在等腰直角三角形ABC 中,90,A AC AB ∠=︒=.BD 为ABC ∠的平分线,交AC 于点D ,若BCD △的面积为2,则ABD △的面积为____________.20.如图,在ABC 中,AB AC =,38A ∠=︒,AB 的垂直平分线交AC 点E ,垂足为点D ,连接BE ,则EBC ∠的度数为________.三、解答题21.如图,等腰直角ACB △中,90ACB ∠=︒,E 为线段BC 上一动点(不含B 、C 端点),连接AE ,作AF AE ⊥且AF AE =.(1)如图1,过F 点作FG AC 交AC 于G 点,求证:≌AGF ECA ;(2)如图2,连接BF 交AC 于D 点,若3AD CD =,求证:E 点为BC 的中点. 22.如图,在ABC ∆中,80ABC ACB ∠=∠=︒,D 是AB 上一点,且AD BC =,//DE BC 且DE AC =.连接AE ,CE ,CD .(1)求AED ∠的度数;(2)证明:ACE ∆是等边三角形;(3)求ECD ∠的度数.23.如图,已知:AD 是∠BAC 的平分线,AB =BD ,过点B 作BE ⊥AC ,与AD 交于点F . (1)求证:AC ∥BD ;(2)若AE =2,AB =3,BF =355,求△ABF 中AB 边上的高.24.如图,在△ABC 中,AC=BC ,∠ACB=90°,延长CA 至点D ,延长CB 至点E ,使AD=BE ,连接AE ,BD ,交点为O .(1)求证:OB=OA ;(2)连接OC ,若AC=OC ,则∠D 的度数是 度.25.在△DEF 中,DE =DF ,点B 在EF 边上,且∠EBD =60°,C 是射线BD 上的一个动点(不与点B 重合,且BC≠BE ),在射线BE 上截取BA =BC ,连接AC .(1)当点C 在线段BD 上时,①若点C 与点D 重合,请根据题意补全图1,并直接写出线段AE 与BF 的数量关系为 ;②如图2,若点C 不与点D 重合,请证明AE =BF +CD ;(2)当点C 在线段BD 的延长线上时,用等式表示线段AE ,BF ,CD 之间的数量关系(直接写出结果,不需要证明).26.如图,在等腰ABC 和等腰ADE 中,AB AC =,AD AE =,BAC DAE ∠=∠且C E D 、、三点共线,作AM CD ⊥于M ,求证:BD DM CM +=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据勾股定理以及其逆定理和三角形的面积公式逐项分析即可得到问题答案.【详解】解:=A 正确,不符合题意;∵AC=BC 5===,∴22252025AC AB BC +=+==,∴△ACB 是直角三角形,∴∠CAB=90°,故选项B 正确,不符合题意;S △ABC 111442421345222=⨯-⨯⨯-⨯⨯-⨯⨯=,故选项C 错误,符合题意; 点A 到直线BC 的距离2552AC AB BC ===,故选项D 正确,不符合题意; 故选:C .【点睛】本题考查了勾股定理以及逆定理的运用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么 222+=a b c .熟记勾股定理的内容是解题得关键.2.D解析:D【分析】设∠ABC=∠C=2x ,根据折叠的性质得到∠BDE=∠BDC=∠FDE=60°BD=DF ,BC=BE=EF ,在△BDC 中利用内角和定理列出方程,求出x 值,可得∠A ,再证明AF=EF ,从而可得AD =BC+BD .【详解】解:∵AB=AC ,BD 平分∠ABC ,设∠ABC=∠C=2x ,则∠A=180°-4x ,∴∠ABD=∠CBD=x ,第一次折叠,可得:∠BED=∠C=2x ,∠BDE=∠BDC ,第二次折叠,可得:∠BDE=∠FDE ,∠EFD=∠ABD=x ,∠BED=∠FED=∠C=2x ,∵∠BDE+∠BDC+∠FDE=180°,∴∠BDE=∠BDC=∠FDE=60°,∴x+2x+60°=180°,∴x=40°,即∠ABC=∠ACB=80°,∴∠A=20°,∴∠EFD=∠EDB=40°,∴∠AEF=∠EFD-∠A=20°,∴AF=EF=BE=BC ,∴AD=AF+FD=BC+BD ,故选D .【点睛】本题考查了翻折的性质,等腰三角形的判定和性质,三角形内角和,熟练掌握折叠的性质是解题的关键.3.B解析:B【分析】连接PB ,根据等腰三角形的性质和垂直平分线的性质计算即可;【详解】连接PB ,∵AB AC =,BD CD =,∴AD 是等腰△ABC 底边BC 边的中垂线,∴PB PC =,∴PC PE PB PE +=+,又PB PE BE +≥,∴B ,P ,E 三点共线时,PB PE +最小,即等于BE 的长,又∵△1152ABC S AC BE ==,6AC =, ∴5BE =;故答案选B .【点睛】本题主要考查了等腰三角形的性质、垂直平分线的性质,结合轴对称的性质计算是解题的关键. 4.C解析:C【分析】连接AP 根据等腰直角三角形的性质得出∠B =∠C =∠BAP =∠CAP =45°,AP =PC =PB ,∠APC =∠EPF =90°,求出∠APE =∠CPF ,证△APE ≌△CPF ,推出AE =CF ,EP =PF ,推出S APE =S △CPF ,求出S 四边形AEPF =S △APC=12S △ABC ,求出BE +CF =AE +AF >EF ,即可得出答案. 【详解】解:连接AP ,∵△ABC 中,AB =AC ,∠BAC =90°,P 是BC 中点,∴∠B =∠C =∠BAP =∠CAP =45°,AP =PC =PB ,∠APC =∠EPF =90°,∴∠EPF ﹣∠APF =∠APC ﹣∠APF ,∴∠APE =∠CPF ,在△APE 和△CPF 中45EAP C AP CP APE CPF ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩, ∴△APE ≌△CPF (ASA ),∴AE =CF ,EP =PF ,∴△EPF 是等腰直角三角形,∴①正确;②正确;∵△APE ≌△CPF∴S △APE =S △CPF ,∴S 四边形AEPF =S △AEP +S △APF =S △CPF +S △APF =S △APC =12S △ABC ,∴③正确; ∵AB =AC ,AE =CF ,∴AF =BE ,∴BE +CF =AE +AF >EF ,∴④错误;即正确的有3个,故选:C .【点睛】本题考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形三条边的关系,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键. 5.D解析:D【分析】根据等腰三角形三线合一的性质可得AD ⊥BC ,∠BAD=∠CAD ,求出∠DAE=∠EAB=30°,根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F ,根据等角对等边求出AD=DF ,即可求解.【详解】∵AB= AC ,AD 是△ABC 的中线,∴AD ⊥BC ,∠BAD=∠CAD=12∠BAC=12×120°= 60°, ∵AE 是∠BAD 的角平分线, ∴∠DAE=∠EAB=12∠BAD=12⨯60°= 30°, ∵DF// AB∴∠F=∠BAE= 30°,∴∠DAE=∠F= 30°,∴AD= DF=6;故答案为:D.【点睛】本题考查的是直角三角形的性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质是解题的关键. 6.B解析:B【分析】延长CB 至点F ,使CF=CA ,连接DF ,证明△FCD ≌△ACD ,得到∠F=∠A ,结合已知得到线段的关系,从而计算BD .【详解】解:延长CB 至点F ,使CF=CA ,连接DF ,∵CD 是△ABC 的角平分线,∴∠ACD=∠FCD ,在△FCD 和△ACD 中,CF CA FCD ACD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴△FCD ≌△ACD (SAS ),∴∠F=∠A ,∴∠ABC=2∠A 且∠ABC=∠F+∠FDB ,∴∠F=∠FDB ,∴BF=BD ,∴CF=BC+BF=BC+BD ,∴AC=BD+BC ,∴BD=AC-BC=7-4=3,故选B .【点睛】本题考查了全等三角形的判定和性质,解题的关键是合理作出辅助线,构造全等三角形. 7.D解析:D【分析】根据等腰三角形的性质求解即可;【详解】∵60EDC ∠=︒,∴60EBD BED ∠+∠=︒,∵△BDE 是等腰三角形,∴30EBD BED ∠=∠=︒,1BD DE ==,∵△BEC 是等腰三角形,∴30EBD ECD ∠=∠=︒,∵60EDC ∠=︒,∴90DEC ∠=︒,在Rt △DEC 中,∵30ECD ∠=︒,1DE =, ∴3tan 30DEEC ==︒又∵AD 31, ∴3AE AD DE EC =-==,∴△AEC 为等腰三角形,又∵90DEC AEC ∠=∠=︒,∴45ECA EAC ∠=∠=︒,∴453075ACB ACE ECD ∠=∠+∠=︒+︒=︒;故答案选D .【点睛】本题主要考查了等腰三角形的性质应用,准确计算是解题的关键.8.D解析:D【分析】由△ABD 和△ACE 都是等腰直角三角形得出AB=AD ,AE=AC ,∠BAD=∠CAE=90°,再进一步得出∠DAC=∠BAE 证得△ABE ≌△ADC ,可以判断①③④;作AP ⊥CD 于P ,AQ ⊥BE 于Q ,利用面积相等证得AP= AQ ,再利用角平分线的判定定理即可判断②.【详解】∵△ABD 和△ACE 都是等腰直角三角形,∴AB=AD ,AE=AC ,∠BDA=∠ECA=45︒,又∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC ,即:∠DAC=∠BAE ,在△ABE 和△ADC 中,AB AD BAE DAC AE AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADC (SAS ),∴BE=DC ,故④正确;∠ADF=∠ABF ,∴∠BDC=45︒-∠ADF ,∠BEC=45︒-∠AEF ,而∠ADF=∠ABF ≠∠AEF ,∴∠BDC ≠∠BEC ,故①错误;∵∠ADF+∠FDB+∠DBA=90°,∴∠FDB+∠DBA+∠ABF=90°,∴∠DFB=90°,∴CD ⊥BE ,故③正确;作AP ⊥CD 于P ,AQ ⊥BE 于Q ,∵△ABE ≌△ADC ,∴ABE ADC S S =,∵BE=DC ,∴AP= AQ ,∵AP ⊥CD ,AQ ⊥BE ,∴FA 平分∠DFE ,故②正确;综上,②③④正确;故选:D .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,角平分线的判定,熟练掌握全等三角形的判定与性质是解本题的关键.9.C解析:C【分析】直接利用同位角的定义及线段垂直平分线的判定、多边形的外角和、角平分线的性质等知识分别判断得出答案.【详解】解:A.同位角相等,错误,是假命题;B.不是到线段距离相等的点在线段垂直平分线上,而是到线段两端点距离相等的点在这条线段的垂直平分线上,是假命题;C.三角形的外角和是360°,是真命题;D.角平分线上的点到角的两边的距离相等,不是角平分线上的点到角的两边相等,是假命题.故选:C .【点睛】本题主要考查了命题与定理,正确掌握相关定义是解题关键.10.D解析:D【分析】根据勾股定理逆定理判断即可;【详解】≠A 不正确;≠B 不正确;≠C 不正确;=,故D 正确;故答案选D .【点睛】本题主要考查了勾股定理逆定理,准确计算是解题的关键.11.D解析:D【分析】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,根据等腰三角形的性质得出AN BC ⊥,BN CN =,根据60EBC E ∠=∠=,得出EBM △是等边三角形,进而得到6EB EM BM cm ===,通过//DF BC ,证明EFD △是等边三角形,进而得到2EF FD ED cm ===,所以求出4DM cm =,根据直角三角形的性质得到MN 的长度,从而得出BN 的长度,最后求出BC 的长度.【详解】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,如图,AB AC =,AD 平分BAC ∠,∴AN BC ⊥,BN CN =,∴90ANB ANC ∠=∠=,60EBC E ∠=∠=,∴EBM △是等边三角形,6BE cm =,∴6EB EM BM cm ===,//DF BC ,∴60EFD EBM ∠=∠=,∴EFD △是等边三角形,2DE cm =,∴2EF FD ED cm ===,∴4DM cm =,EBM △是等边三角形,∴60EMB ∠=,∴30NDM ∠=,∴2NM cm =,∴4BN BM NM cm =-=,∴28BC BN cm ==.故选:D .【点睛】本题考查了等腰三角形的性质和等边三角形的性质,直角三角形中30角所对的直角边是斜边长的一半,求出MN 的长度是解决问题的关键.12.D解析:D【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【详解】解:①当为锐角等腰三角形时,如图:∵∠ADE =40°,∠AED =90°,∴∠A =50°,∴∠B=∠C=180502︒-︒ =65°; ②当为钝角等腰三角形时,如图:∵∠ADE =40°,∠AED =90°,∴∠BAC =∠ADE+∠AED =40°+90°=130°,∴∠B=∠C=1801302︒-︒ =25°. 故选:D .【点睛】本题考查了等腰三角形的性质、三角形内角和定理以及三角形外角性质,分类讨论是正确解答本题的关键. 二、填空题13.10cm 【分析】根据轴对称的性质和线段的垂直平分线的性质即可得到结论【详解】解:设CD 与OA 的交点为E 与OB 的交点为F ∵OAOB 分别是线段MCMD 的垂直平分线∴ME =CEMF =DF ∴小蚂蚁爬行的路径解析:10cm【分析】根据轴对称的性质和线段的垂直平分线的性质即可得到结论.【详解】解:设CD 与OA 的交点为E ,与OB 的交点为F ,∵OA 、OB 分别是线段MC 、MD 的垂直平分线,∴ME =CE ,MF =DF ,∴小蚂蚁爬行的路径最短=CE+EF+DF=CD =10cm ,故答案为:10cm.【点睛】本题考查了轴对称的性质-最短路径的问题,线段的垂直平分线的性质,解题的关键是熟练掌握知识点.14.9【分析】过点O作OE⊥AB于EOF⊥AC与F连接OA根据角平分线的性质求出OEOF根据三角形面积公式计算得到答案【详解】解:过点O作OE⊥AB 于EOF⊥AC于F连接OA∵OB平分∠ABCOD⊥BC解析:9【分析】过点O作OE⊥AB于E,OF⊥AC与F,连接OA,根据角平分线的性质求出OE、OF,根据三角形面积公式计算,得到答案.【详解】解:过点O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB平分∠ABC,OD⊥BC,OE⊥AB,∴OE=OD=1,同理可知,OF=OD=1,∴△ABC的面积=△OAB的面积+△OAC的面积+△OBC的面积,=12×AB×OE+12×AC×OF+12×BC×OD,=12×18×1,=9,故答案为:9.【点睛】本题主要考查了角平分线的性质,准确计算是解题的关键.15.18°或112°【分析】分点C与点D在线段AB两侧点C与点D在线段AB同侧两种情况根据线段垂直平分线的性质等腰三角形的性质解答【详解】解:如图∵CD两点在线段AB的中垂线上∴CA=CBDA=DB∵C解析:18°或112°【分析】分点C与点D在线段AB两侧、点C与点D在线段AB同侧两种情况,根据线段垂直平分线的性质、等腰三角形的性质解答.【详解】解:如图,∵C 、D 两点在线段AB 的中垂线上,∴CA =CB ,DA =DB ,∵CD ⊥AB ,∴∠ACD =12∠ACB =12×50°=25°,∠ADC =12∠ADB =12×86°=43°, 当点C 与点D 在线段AB 两侧时,∠CAD =180°﹣∠ACD ﹣∠ADC =180°﹣25°﹣43°=112°, 当点C 与点D ′在线段AB 同侧时,∠CAD ′=∠AD ′C ﹣∠ACD ′=43°﹣25°=18°, 故答案为:18°或112°.【点睛】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.【分析】取的中点为点连接先证得得出根据点到直线的距离可知当时最小然后根据等腰直角三角形的性质求得时的的值即可求得线段的最小值【详解】解:取的中点为点连接即为中点在和中点在直线上运动当时最小是等腰直角 解析:22【分析】取AB 的中点为点Q ,连接DQ ,先证得AQD AOE ∆≅∆,得出 QD OE =,根据点到直线的距离可知当QD BC ⊥时,QD 最小,然后根据等腰直角三角形的性质求得QD BC ⊥时的 QD 的值,即可求得线段OE 的最小值.【详解】解:取AB 的中点为点Q ,连接DQ ,90BAC DAE ∠=∠=︒,BAC DAC DAE DAC ∴∠-∠=∠-∠,即BAD CAE ∠=∠,8AB AC ==,O 为AC 中点,4AQ AO ∴==,在ΔAQD 和AOE ∆中,AQ AO QAD OAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()AQD AOE SAS ∴∆≅∆,QD OE ∴=,点D 在直线BC 上运动,∴当QD BC ⊥时,QD 最小,ABC ∆是等腰直角三角形,45B ∴∠=︒,QD BC ⊥,QBD ∴∆是等腰直角三角形, 22QD QB∴=, 142QB AB ==, 22QD ∴=,∴线段OE 的最小值是为22.故答案为:22.【点睛】本题考查了等腰直角三角形的性质、三角形全等的判定和性质、垂线段最短等知识,解题的关键是学会添加辅助线构建全等三角形,学会利用垂线段最短解决最值问题. 17.66°【分析】根据等腰三角形的性质可知∠MON=∠PAO 再用外角的性质求解即可【详解】解:由作图可知PO=PA ∴∠MON=∠PAO=33°∠APN=∠MON+∠PAO=66°故答案为:66°【点睛】 解析:66°【分析】根据等腰三角形的性质可知∠MON=∠PAO ,再用外角的性质求解即可.【详解】解:由作图可知,PO=PA ,∴∠MON=∠PAO=33°,∠APN =∠MON+∠PAO=66°,故答案为:66°.【点睛】本题考查了等腰三角形的性质和外角的性质,解题关键是通过作图得到等腰三角形,依据等腰三角形的性质熟练计算.18.3【分析】如图过作于连接先说明平分当时可得可得所以当三点共线时此时最短再求解结合从而可得答案【详解】解:如图过作于连接分别平分平分当时则所以当三点共线时此时最短分别平分即的最小值是故答案为:【点睛】 解析:3【分析】如图,过D 作DP AB ⊥于,P 连接,BD 先说明BD 平分,ABC ∠ 当DE BC ⊥时,可得,DP DE = 可得,CD DE CD DP +=+ 所以当,,C D P 三点共线时,,CD DP CP += 此时最短,再求解30ABC ∠=︒,结合,CP AB ⊥ 从而可得答案. 【详解】解:如图,过D 作DP AB ⊥于,P 连接,BD,AD DC 分别平分,BAC ACB ∠∠,BD ∴平分,ABC ∠当DE BC ⊥时,则,DP DE =,CD DE CD DP ∴+=+所以当,,C D P 三点共线时,,CD DP CP += 此时最短,105ADC ∠=︒,18010575DAC DCA ∴∠+∠=︒-︒=︒,,AD DC 分别平分,BAC ACB ∠∠,()2150,BAC BCA DAC DCA ∴∠+∠=∠+∠=︒18015030ABC ∴∠=︒-︒=︒,,CP AB ⊥116322CP BC ∴==⨯=, 即CD DE +的最小值是3,故答案为:3.【点睛】本题考查的是三角形的内角和定理,三角形的角平分线的性质,含30的直角三角形的性质,垂线段最短,掌握以上知识是解题的关键.19.【分析】由等腰直角三角形的性质得到然后利用三角形的面积公式即可求出答案【详解】解:作DE ⊥BC 垂足为E 如图:∵为的平分线∴∵∴△ABC 是等腰直角三角形∴∵的面积为2∴∴∴∴的面积为:;故答案为:【点 解析:2【分析】由等腰直角三角形的性质,得到2BCAB ,然后利用三角形的面积公式,即可求出答案.【详解】解:作DE ⊥BC ,垂足为E ,如图:∵BD 为ABC ∠的平分线,∴AD DE =,∵90,A AC AB ∠=︒=,∴△ABC 是等腰直角三角形, ∴2BC AB ,∵BCD △的面积为2, ∴122BC DE •=, ∴1222DE •=, ∴122AB DE •= ∴ABD △的面积为:122AB DE •= 2【点睛】本题考查了角平分线的性质,等腰直角三角形的性质,以及三角形的面积公式,解题的关键是熟练掌握角平分线的性质定理和等腰直角三角形的性质,正确得到2BC AB . 20.33°【分析】先根据等腰三角形的性质求出再根据垂直平分线的性质求解即可;【详解】∵在中∴∵的垂直平分线交点垂足为点∴AE=BE ∴∴;故答案是【点睛】本题主要考查了等腰三角形的判定与性质垂直平分线的性解析:33°【分析】先根据等腰三角形的性质求出71ABC C ∠=∠=︒,再根据垂直平分线的性质求解即可;【详解】∵在ABC 中,AB AC =,38A ∠=︒,∴71ABC C ∠=∠=︒,∵AB 的垂直平分线交AC 点E ,垂足为点D ,∴AE=BE ,∴38A ABE ∠=∠=︒,∴713833EBC ∠=︒-︒=︒;故答案是33︒.【点睛】本题主要考查了等腰三角形的判定与性质、垂直平分线的性质,准确计算是解题的关键.三、解答题21.(1)见解析;(2)见解析【分析】(1)由余角的性质可得F EAC ∠=∠,从而运用“角角边”证明即可;(2)作FM AC ⊥,同(1)证明过程可得FM AC BC ==,AM CE =,从而证明CD MD =,则可得M 为AC 的中点,最终可得E 点为BC 的中点.【详解】(1)∵AF AE ⊥,∴90FAG EAC ∠+∠=︒,∵FG AC ,∴90AGF ∠=︒,90FAG F ∠+∠=︒,∴F EAC ∠=∠,在AGF 与ECA △中,AGF C F EAC AF AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AGF ECA AAS ≌;(2)如图所示,作FM AC ⊥,由(1)可知AMF ECA △≌△,则FM AC BC ==,AM CE =,在DFM 和DBC △中,MDF CDB DMF DCB FM BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()DFM DBC AAS △≌△, ∴CD MD =,∵3AD CD =,∴AM CM =,∴CM CE =,∵AC BC =,∴BE CE =,即:E 点为BC 的中点.【点睛】本题考查全等三角形的判定与性质,以及等腰直角三角形的性质,掌握等腰直角三角形中常考的证明模型是解题关键.22.(1)20AED ∠=︒;(2)见解析;(3)70ECD ∠=︒.【分析】(1)根据三角形内角和定理可得∠BAC=20°,根据平行线得性质可得∠ADE=∠ABC ,利用SAS 可证明△ABC ≌△EAD ,根据全等三角形得性质可得∠AED=∠BAC=20°;(2)根据全等三角形得性质可得AE=AB ,由等角对等边可得AB=AC ,即可证明AE=AC ,根据等腰三角形得性质可得∠ADE=∠EAD=80°,可得∠CAE=60°,即可证明△ACE 是等边三角形;(3)由(2)可知∠AEC=60°,即可得出∠DEC 的度数,根据等腰三角形得性质即可得答案.【详解】(1)∵80ABC ACB ∠=∠=︒,∴∠BAC=180°-2∠ACB=20°,∵//DE BC ,∴ADE ABC =∠∠,ABC ACB ∴∠=∠,ADE ACB ∴∠=∠∴在ABC ∆和EAD ∆中BC AD ADE ACB AC DE =⎧⎪∠=∠⎨⎪=⎩,ABC EAD ∴∆≅∆,20AED BAC ∴∠=∠=︒.(2)由(1)知:ABC EAD ∆≅∆,AE AB ∴=,80EAD ABC ∠=∠=︒∵80ABC ACB ∠=∠=︒∴AB AC =,AE AC ∴=,∵∠BAC=20°,802060CAE ∴∠=︒-︒=︒,ACE ∴∆是等边三角形.(3)ACE ∆是等边三角形,60CEA ∴∠=︒,∵∠AED=20°,602040CED ∴∠=︒-︒=︒,ED AC EC ==,EDC ∴∆为等腰三角形,18040702ECD ︒-︒∴∠==︒. 【点睛】本题考查全等三角形的判定与性质、平行线的性质及等边三角形的判定与性质,熟练掌握相关性质及定理是解题关键.23.(1)见解析;(2)△ABF 中AB【分析】(1)根据角平分线的定义、等腰三角形的性质得到∠CAD =∠BDA ,根据平行线的判定定理证明即可;(2)作FG ⊥AB 于G ,根据勾股定理求出BE ,进而求出FE ,根据角平分线的性质定理解答即可.【详解】(1)证明:∵AD 是∠BAC 的平分线,∴∠CAD =∠BAD ,∵AB =BD ,∴∠BDA =∠BAD ,∴∠CAD =∠BDA ,∴AC ∥BD ;(2)解:作FG ⊥AB 于G ,在Rt △ABE 中,AE =2,AB =3,∴BE 2222325ABAE =-=-=,∴FE =BE ﹣BF 3255555=-=, ∵AD 是∠BAC 的平分线,BE ⊥AC ,FG ⊥AB ,∴FG =FE 255=,即△ABF 中AB 边上的高为255.【点睛】本题考查的是角平分线的性质、等腰三角形的性质,勾股定理,掌握角的平分线上的点到角的两边的距离相等是解题的关键.24.(1)见解析;(2)22.5【分析】(1)根据全等三角形的判定和性质得出△ABD ≌△BAE ,进而得出OB=OA ;(2)根据全等三角形的判定和性质以及三角形内角和解答.【详解】证明:(1)∵AC=BC ,∠ACB=90°,∴∠ABC=∠BAC=45°.∴∠EBA=∠DAB=135°.在△ABD 与△BAE 中,135BE AD EBA DAB AB AB =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABD ≌△BAE (SAS ),∴∠DBA=∠EAB ,∴OB=OA ;(2)由(1)得:OB=OA ,在△OBC 与△OAC 中,OB OA OC OC BC AC =⎧⎪=⎨⎪=⎩,∴△OBC ≌△OAC (SSS ),∴∠OCB=∠OCA=12∠ACB=12×90°=45°, ∵AC=BC ,AC=OC ,∴OC=BC , ∴∠CBO=∠COB 1801804567.522OCB ︒︒︒︒-∠-===, 在Rt △BCD 中,∠D=180°-90°-∠CBO=22.5°.故答案为:22.5.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,关键是根据全等三角形的判定和性质解答.25.(1)①AE =BF ;②见解析;(2)AE =BF ﹣CD 或AE =CD ﹣BF【分析】(1)①如图1,根据已知条件得到△ABC 是等边三角形,由等边三角形的性质得到AD =AB =BC ,∠DAB =∠ABC =60°,由邻补角的性质得到∠EAD =∠FBD =120°,推出△ADE ≌△BDF ,根据全等三角形的性质即可得到结论;②证明:在BE 上截取BG =BD ,连接DG ,得到△GBD 是等边三角形.同理,△ABC 也是等边三角形.求得AG =CD ,通过△DGE ≌△DBF ,得到GE =BF ,根据线段的和差即可得到结论;(2)如图3,连接DG ,由(1)知,GE =BF ,AG =CD ,根据线段的和差和等量代换即可得到结论;如图4,连接DG ,由(1)知,GE =BF ,AG =CD ,根据线段的和差和等量代换即可得到结论.【详解】解:(1)①如图1,∵BA =BC ,∠EBD =60°,∴△ABC 是等边三角形,∴AD =AB =BC ,∠DAB =∠ABC =60°,∴∠EAD =∠FBD =120°,∵DE =DF ,∴∠E =∠F ,在△AEC 与△BCF 中,E F EAD FBD AD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BDF (AAS ),∴AE =BF ;故答案为:AE =BF ;②证明:在BE上截取BG=BD,连接DG,∵∠EBD=60°,BG=BD,∴△GBD是等边三角形.同理,△ABC也是等边三角形.∴AG=CD,∵DE=DF,∴∠E=∠F.又∵∠DGB=∠DBG=60°,∴∠DGE=∠DBF=120°,在△DGE与△DBF中,E FEGD FBDDG BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DGE≌△DBF(AAS),∴GE=BF,∴AE=BF+CD;(2)如图3,在BE上截取BG=BD,连接DG,由(1)知,GE=BF,AG=CD,∴AE=EG﹣AG;∴AE=BF﹣CD,如图4,在BE上截取BG=BD,连接DG,由(1)知,GE=BF,AG=CD,∴AE=AG﹣EG;∴AE=CD﹣BF,故AE=BF﹣CD或AE=CD﹣BF.【点睛】本题考查等腰三角形的性质、等边三角形的判定与性质、全等三角形的判定与性质,解答的关键是熟练掌握相关知识的运用,利用截长补短的方法做辅助线构造全等三角形和等边三角形,运用类比的方法解决问题.26.见解析【分析】由“SAS”可证△AEC ≌△ADB ,可得BD=CE ,由等腰三角形的性质可得DM=EM ,可得结论.【详解】证明:BAC DAE ∠=∠CAE BAD ∴∠=∠在△AEC 和△ADB 中AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴△AEC ≌△ADBBD CE ∴=在等腰ADE 中,AM DE ⊥DM EM ∴=BD DM CE EM CM ∴+=+=.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,掌握全等三角形的判定定理是本题的关键.。

(必考题)初中数学八年级数学下册第一单元《三角形的证明》测试卷(答案解析)(2)

一、选择题1.如图,在Rt ABC △中,90,ACB AC BC ∠=︒≠.点P 是直角边所在直线上一点,若PAB △为等腰三角形,则符合条件的点P 的个数最多为( )A .3个B .6个C .7个D .8个2.已知点P 是ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫ABC 的费马点(Fermat point ).已经证明:在三个内角均小于120︒的ABC 中,当120APBAPC BPC 时,P 就是ABC 的费马点.若点P 是腰长为6的等腰直角三角形DEF 的费马点,则PD PE PF ++=( ) A .6 B .33+C .63D .9 3.如图,平面直角坐标系中,O 是坐标原点,点A (3,2),点P (m ,0),若△POA 是等腰三角形,则m 可取的值最多有( )A .2个B .3个C .4个D .5个4.已知等腰三角形的两边长分别为a ,b ,且a ,b 满足3a -+|b ﹣4|=0,则此等腰三角形的周长为( )A .7B .10C .11D .10或11 5.如图,在ABC ∆中,AB AC =,120BAC ∠=︒,AD 是ABC ∆的中线,且6AD =,AE 是BAD ∠的角平分线,//DF AB 交AE 的延长线于点F ,则DF 的长为( )A .3B .4C .5D .66.如图,在Rt ABC △中,CA CB =,D 为斜边AB 的中点,Rt EDF ∠在ABC 内绕点D 转动,分别交边AC ,BC 于点E ,F (点E 不与点A ,C 重合),下列说法正确的是( )①45DEF ︒∠=;②222BF AE EF ;③2CD EF CD <≤A .①②B .①③C .②③D .①②③ 7.下列命题中真命题的个数( )(1)面积相等的两个三角形全等(2)无理数包含正无理数、零和负无理数(3)在直角三角形中,两条直角边长为n 2﹣1和2n ,则斜边长为n 2+1;(4)等腰三角形面积为12,底边上的高为4,则腰长为5.A .1个B .2个C .3个D .4个8.已知直角三角形纸片的两条直角边长分别为m 和()n m n <,过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则( )A .2220n mn m --=B .2220m mn n +-=C .2220m mn n --=D .2220m mn n -+= 9.如图,ACB △和DCE 均为等腰直角三角形,且90ACB DCE ∠=∠=︒,点A 、D 、E 在同一条直线上,CM 平分DCE ∠,连接BE .以下结论:①AD CE =;②CM AE ⊥;③2AE BE CM =+;④//CM BE ,正确的有( )A .1个B .2个C .3个D .4个10.如图,点B 是线段AC 上任意一点(点B 与点A ,C 不重合),分别以AB 、BC 为边在直线AC 的同侧作等边三角形ABD 和等边三角形BCE ,AE 与BD 相交于点G 、CD 与BE 相交于点F ,AE 与CD 相交于点H ,连HB ,则下列结论:①AE CD =;②120AHC ∠=︒;③HB 平分AHC ∠;④CH EH BH =+.其中正确的结论有( )A .4个B .3个C .2个D .1个11.如图,ABC ∆中,AB AC =,3BC =,6ABC S ∆=,AD BC ⊥于点D ,EF 是AB 的垂直平分线,交AB 于点E ,交AC 于点F ,在EF 上确定一点P ,使PB PD +最小,则这个最小值为( )A .3.5B .4C .4.5D .5 12.如图,ABC 是等边三角形,BD 是中线,延长BC 至E ,使CE CD =,则下列结论错误..的是( )A .30CED ∠=︒B .120∠=︒BDEC .DE BD = D .DE AB =二、填空题13.如图,在ABC 中,DE 是AC 的垂直平分线,3cm AE =,ABD △的周长为13cm ,则ABC 的周长为___________.14.如图,在ABC 中,AB AC =,AD 是BAC ∠的角平分线,交BC 于点N ,60EBC BED ∠=∠=︒,若6BE =,2DE =,则BC =__________.15.如图,已知△ABC 的周长是18,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =1,△ABC 的面积是_____.16.如图,∠MON =33°,点P 在∠MON 的边ON 上,以点P 为圆心,PO 为半径画弧,角OM 于点A ,连接AP ,则∠APN =____.17.已知:在ABC 中,90ACB ∠=︒,42AC BC ==,点D 在AB 上,连接CD ,若5CD =,则AD 的长为________.18.如图,已知:30MON ︒∠=,点1A 、2A 、3A ⋯在射线ON 上,点1B 、2B 、3B ⋯在射线OM 上,112A B A ∆、223A B A ∆、334A B A ∆⋯均为等边三角形,若11OA =,则9910A B A ∆的边长为________.19.如图,在ABC 中,DE 是AC 的垂直平分线,2AE =,ABD △的周长为10,则ABC 的周长为__________.20.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D ,下列结论:①1902BOC A ∠=+∠︒:②点O 到ABC 各边的距离相等;③EF BE CF =+:④1()2AD AB AC BC =+-;⑤设OD m =,AE AF n +=,则AEF S mn =△;其中正确的结论是______.三、解答题21.如图,四边形ABCD 中,,AB AD AC BD =、是对角线,12∠=∠.(1)求证:ABC ADC △≌△;(2)判断BCD △的形状并说明.22.如图,在△ABE 中,AB=AE ,AD=AC ,∠BAD=∠EAC ,BC 、DE 交于点O . 求证:(1)△ABC ≌△AED ;(2)OB=OE .23.用圆规、直尺作图,不写作法,但要保留作图痕迹,并写出结论.如图,现要在ABC 内建一中心医院,使医院到,A B 两个居民小区的距离相等,并且到公路AB 和AC 的距离也相等,请确定这个中心医院的位置.24.如图,在ABC ∆中,AD 是BC 边上的高线,AD 的垂直平分线分别交AB ,AC 于点E ,F .(1)若∠DAC=30°,求∠FDC 的度数;(2)试判断∠B 与∠AED 的数量关系并说明理由.25.已知:任意一个三角形的三条角平分线都交于一点.如图,在ABC 中,BD 、CD 分别平分ABC ∠、ACB ∠,过点D 作直线分别交AB 、AC 于点E 、F ,若AE AF =,解答下列问题:(1)证明:DE DF =;(2)若60A ∠=︒,8AB =,7BC =,5AC =,求EF 的长.26.如图,在ABC 中,AB AC =,100BAC ∠=︒,AD 是BC 边上的中线,且BD BE =,CD 的垂直平分线FM 交AC 于点F ,交BC 于点M .(1)求ADE ∠的度数;(2)ADF 是什么三角形?说明理由.(3)若将题目中“100BAC ∠=︒”改为“∠BAC =120°”,且FM =4,其他条件不变,求AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分为三种情况:①BP =AB ,②AP =AB ,③AP =BP ,再求出答案即可.【详解】解:作BC 、AC 所在直线,然后分别以B 、A 点为圆心,以AB 为半径作圆分别交BC 、AC 所在直线于6点,再作AB 的垂直平分线与BC 所在直线交于2点,总共符合条件的点P 的个数最多有8个,故选:B .【点睛】本题考查了等腰三角形的判定,线段垂直平分线的性质.能求出符合的所有情况是解此题的关键.2.B解析:B【分析】根据题意首先画出图形,过点D 作DM EF ⊥于点M ,在BDE ∆内部过E 、F 分别作30MEP MFP ∠=∠=︒,则120EPF FPD EPD ∠=∠=∠=︒,点P 就是费马点,求出PE ,PF ,DP 的长即可解决问题.【详解】解:如图:过点D 作DM EF ⊥于点M ,在BDE ∆内部过E 、F 分别作30MEP MFP ∠=∠=︒,则120EPF FPD EPD ∠=∠=∠=︒,点P 就是费马点,在等腰Rt DEF △中,6DE DF ==DM EF ⊥,223EF DE ∴==3EM DM ∴=∵∠PEM =30°,∠PME =90°,∴EP =2PM ,则()2222PM EM PM +=,解得:1PM =,则2PE =, 故31DP =-,同法可得2PF =,则312233PD PE PF ++=-++=+.故选:B .【点睛】此题主要考查了等腰三角形的性质,正确画出图形进而求出PE 的长是解题关键. 3.C解析:C【分析】分两种情况分析:①以点OP 为底,②OP 为腰,讨论点P 的个数,再求出m 的值即可.【详解】解:由点P (m ,0)知点P 在x 轴上,分两种情况:当OP 为底时,以A 点为圆心OA 为半径画圆,交x 轴于点P ,以OA=AP 为腰,点P 的坐标为m=2×3=6,当OP 为腰时,以O 为圆心,OA 长为半径,画圆交x 轴于两点P ,点P 在y 轴左侧或右侧,OP=OA=222313+=,∴m=13±,点P 在y 轴右侧,以OA 为底,作AO 的垂直平分线交x 轴与P ,过A 作AB ⊥x 轴,OP=AP=()2223m +-,则m=()2223m +-,解得m=136,综上,共有4个点P ,即m 有4个值,故选择:C.【点睛】本题考察等腰三角形的性质,解题时分两种情况进行讨论,注意以点A 、O 为顶角顶点时应以点为圆心画弧线,避免有遗漏.4.D解析:D【分析】先根据非负数的性质列式求出a、b的值,再分4是腰长与底边两种情况讨论求解.【详解】解:根据题意得,a-3=0,b-4=0,解得a=3,b=4,①4是腰长时,三角形的三边分别为4、4、3,∵4+4>3,∴能组成三角形,4+4+3=11,②4是底边时,三角形的三边分别为3、3、4,能组成三角形,周长=3+3+4=10,所以,三角形的周长为11或10.故选:D.【点睛】本题考查了等腰三角形的性质,绝对值非负数,偶次方非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出a、b的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.5.D解析:D【分析】根据等腰三角形三线合一的性质可得AD⊥BC,∠BAD=∠CAD,求出∠DAE=∠EAB=30°,根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,根据等角对等边求出AD=DF,即可求解.【详解】∵AB= AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=12∠BAC=12×120°= 60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=12∠BAD=1260°= 30°,∵DF// AB∴∠F=∠BAE= 30°,∴∠DAE=∠F= 30°,∴AD= DF=6;故答案为:D.【点睛】本题考查的是直角三角形的性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质是解题的关键.6.A解析:A【分析】①证明∠A=∠DCB ,AD=CD ,∠ADE=∠CDF ,根据ASA 证明△ADE CDF ≅∆得ED=FD ,从而可判断①;②运用SAS 证明△EDC FDB ≅∆,得到CE BF =,再由222CE CF EF +=即可判断②;③当DE AC ⊥时,DE最短,从而可得2CD DE CD ≤<,整理后代换即可判断③. 【详解】解:①∵,90CA CB ACB =∠=︒,∴△ABC 是等腰直角三角形∴∠45A B =∠=︒∵点D 是AB 的中点,∴,DA DB DC CD AB ==⊥,∠45DCB DCA =∠=︒∵∠EDF ADC =∠∴∠EDF EDC ADC EDC -∠=∠-∠∴∠ADE CDF =∠在△ADE 和△CDF 中A DCB AD CDADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE CDF ≅∆∴,DE DF AE CF ==∴△DEF 是等腰直角三角形∴∠45DEF =︒,故①正确;②∵∠90EDF CDB ︒=∠=∴∠EDF CDF CDB CDF -∠=∠-∠∴∠EDC FDB =∠在△EDC 与△FDB 中DE DF EDC FDB DC DB =⎧⎪∠=∠⎨⎪=⎩∴△EDC FDB ≅∆∴CE BF =∵222CE CF EF +=∴222BF AE EF ,故②正确; ③∵△DEF 是等腰直角三角形,∴EF =∵当DE AC ⊥时,DE ==最短,∴2DE CD ≤< ∴CD ≤<即CD EF ≤<,故③错误;∴综上,正确的是①②,故选:A .【点睛】 此题考查了全等三角形的判定与性质以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.7.B解析:B【分析】根据三角形全等的性质、无理数的定义、勾股定理进行判断即可;【详解】面积相等的三角形不一定全等,故(1)是假命题;零不是无理数,故(2)是假命题;()()222242214211n n n n n -+=++=+,故(3)是真命题; 根据题意可得,底边长为12246⨯÷=,则底边长的一半为623÷=,腰长为5=,故(4)是真命题;综上所述,真命题有2个;故答案选B .【点睛】本题主要考查了命题的真假判断,结合全等三角形的定义、无理数定义、勾股定理判断是解题的关键.8.B解析:B【分析】根据等腰三角形的性质和勾股定理可得m 2+m 2=(n−m )2,整理即可求解【详解】 解:如图,ABD 是等腰三角形,ACD 是等腰直角三角形,∴AD=BD=n-m ,根据勾股定理得:m 2+m 2=(n−m )2,∴2m 2=n 2−2mn +m 2,m 2+2mn−n 2=0.故选:B .【点睛】本题主要考查等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.9.C解析:C【分析】由“SAS ”可证ACD BCE ≅∆∆,可得AD BE =,ADC BEC ∠∠=,可判断①,由等腰直角三角形的性质可得45CDE CED ∠=∠=︒.CM AE ⊥,可判断②,由全等三角形的性质可求90AEB CME ,可判断④,由线段和差关系可判断③,即可求解. 【详解】解:ACB ∆和DCE ∆均为等腰直角三角形,CA CB ∴=,CD CE =,90ACB DCE ∠=∠=︒,∵∠ACD+∠DCB=90°,∠DCB+∠BCE=90°,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,AD BE ∴=,ADC BEC ∠∠=,故①错误,DCE ∆为等腰直角三角形,CM 平分DCE ∠,45CDE CED ∴∠=∠=︒,CM AE ⊥,故②正确,点A ,D ,E 在同一直线上,135ADC .135BEC ∴∠=︒.90AEB BEC CED ∴∠=∠-∠=︒,90AEB CME ,//CM BE ∴,故④正确,CD CE =,CM DE ⊥,DM ME ∴=.90DCE ∠=︒,1=2DM ME CM DE ∴==. 2AE AD DE BE CM ∴=+=+.故③正确,故选择:C .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明ACD BCE ≅∆∆是本题的关键.10.A解析:A【分析】利用等边三角形,ABD BCE 的性质,证明 ,ABE DBC ≌ 从而可判断①,由,ABE DBC ≌可得,EAB CDB ∠=∠ 再利用三角形的内角和定理可判断②,如图,过B 作BM AE ⊥交AE 于,M 过B 作BN DC ⊥交DC 于,N 利用全等三角形的对于高相等证明,BM BN = 从而可判断③,如图,在CH 上截取,HK HE = 连接,EK 证明EHK 为等边三角形,再证明,EHB EKC ≌ 可得,HB KC = 从而可判断④.【详解】解:,ABD BCE 为等边三角形, ,60,60BA BD ABD BC BE CE CBE ∴=∠=︒==∠=︒,,,ABD DBE CBE DBE ∴∠+∠=∠+∠ 即,ABE DBC ∠=∠(),ABE DBC SAS ∴≌,AE DC ∴= 故①符合题意;,ABE DBC ≌,EAB CDB ∴∠=∠,DGH AGB ∠=∠180,180,DHG CDB DGH ABD EAB AGB ∠=︒-∠-∠∠=︒-∠-∠60DHG ABD ∴∠=∠=︒,120AHC ∴∠=︒,故②符合题意;如图,过B 作BM AE ⊥交AE 于,M 过B 作BN DC ⊥交DC 于,N,ABE DBC ≌,AE DC 为对应边,,BM BN ∴=HB ∴平分,AHC ∠ 故③符合题意;如图,在CH 上截取,HK HE = 连接,EK60,EHK AHD ∠=∠=︒EHK ∴为等边三角形,,60,EK EH HEK ∴=∠=︒60,60,HEK HEB FEK BEC FEK KEC ∠=︒=∠+∠∠=︒=∠+∠,HEB KEC ∴∠=∠,BE CE =(),EHB EKC SAS ∴≌,HB KC ∴=.CH CK HK BH EH ∴=+=+ 故④符合题意;综上:①②③④都符合题意,故选:.A【点睛】本题考查的是三角形的内角和定理的应用,全等三角形的判定与性质,等边三角形的判定与性质,角平分线的判定,掌握以上知识是解题的关键.11.B解析:B【分析】根据三角形的面积公式得到AD=4,由EF 垂直平分AB ,得到点A ,B 关于直线EF 对称,于是得到AD=PB+PD 的最小值,即可得到结论.【详解】解:∵AB=AC ,BC=3,S △ABC =6,AD ⊥BC 于点D ,∴AD=4,∵EF 垂直平分AB ,∴点A,B关于直线EF对称,∴EF与AD的交点P即为所求,如图,连接PB,此时PA=PB,PB+PD=PA+PD=AD,AD=PB+PD的最小值,即PB+PD的最小值为4,故选:B.【点睛】本题考查了轴对称-最短路线问题,线段的垂直平分线的性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.12.D解析:D【分析】因为△ABC是等边三角形,又BD是AC上的中线,所以有∠ADB=∠CDB=90°,且∠ABD =∠CBD=30°,∠ACB=∠CDE+∠DEC=60°,又CD=CE,可得∠CDE=∠CED=30°,所以就有∠CBD=∠DEC,即DE=BD,∠BDE=∠CDB+∠CDE=120°.由此得出答案解决问题.【详解】解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵BD是AC上的中线,∴∠ADB=∠CDB=90°,∠ABD=∠CBD=30°,∵∠ACB=∠CDE+∠DEC=60°,又CD=CE,∴∠CDE=∠CED=30°,∴∠CBD=∠DEC,∴DE=BD,∠BDE=∠CDB+∠CDE=120°,故ABC均正确.故选:D.【点睛】此题考查等边三角形的性质,等腰三角形的性质等知识,注意三线合一这一性质的理解与运用.二、填空题13.【分析】由已知条件利用线段的垂直平分线的性质得到AD=CDAC=2AE结合周长进行线段的等量代换可得答案【详解】解:∵DE是AC的垂直平分线∴AD=CDAC=2AE=6cm又∵ABD的周长=AB+B解析:19cm【分析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD,AC=2AE,结合周长,进行线段的等量代换可得答案.【详解】AE ,解:∵DE是AC的垂直平分线,3cm∴AD=CD,AC=2AE=6cm,又∵ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴ABC的周长=AB+BC+AC=13+6=19cm.故答案为:19cm.【点睛】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.14.8【分析】作出辅助线后根据等腰三角形的性质得出BE=6DE=2进而得出△BEM为等边三角形△EFD为等边三角形从而得出BN的长进而求出答案【详解】如图所示:延长ED交BC于M延长AD交BC于N∵AB解析:8【分析】作出辅助线后根据等腰三角形的性质得出BE=6, DE=2,进而得出△BEM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案【详解】如图所示:延长ED交BC于M,延长AD交BC于N ,∵ AB=AC,AF平分∠BAC,∴AN⊥BC,BN=CN;∵∠EBC=∠E=60°,∴△BEM为等边三角形,∴△EFD为等边三角形,∵BE=6,DE=2,∴DM=4,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∠NDM=30°,∴NM=2,∴ BN=4,∴BC=2BN=8,故答案为:8.【点睛】此题主要考查了等腰三角形的性质和等边三角形的性质,能求出MN的长是解决问题的关键;15.9【分析】过点O作OE⊥AB于EOF⊥AC与F连接OA根据角平分线的性质求出OEOF根据三角形面积公式计算得到答案【详解】解:过点O作OE⊥AB 于EOF⊥AC于F连接OA∵OB平分∠ABCOD⊥BC解析:9【分析】过点O作OE⊥AB于E,OF⊥AC与F,连接OA,根据角平分线的性质求出OE、OF,根据三角形面积公式计算,得到答案.【详解】解:过点O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB平分∠ABC,OD⊥BC,OE⊥AB,∴OE=OD=1,同理可知,OF=OD=1,∴△ABC的面积=△OAB的面积+△OAC的面积+△OBC的面积,=12×AB×OE+12×AC×OF+12×BC×OD,=12×18×1,=9,故答案为:9.【点睛】本题主要考查了角平分线的性质,准确计算是解题的关键.16.66°【分析】根据等腰三角形的性质可知∠MON=∠PAO再用外角的性质求解即可【详解】解:由作图可知PO=PA∴∠MON=∠PAO=33°∠APN=∠MON+∠PAO=66°故答案为:66°【点睛】解析:66°【分析】根据等腰三角形的性质可知∠MON=∠PAO,再用外角的性质求解即可.【详解】解:由作图可知,PO=PA,∴∠MON=∠PAO=33°,∠APN=∠MON+∠PAO=66°,故答案为:66°.【点睛】本题考查了等腰三角形的性质和外角的性质,解题关键是通过作图得到等腰三角形,依据等腰三角形的性质熟练计算.17.1或7【分析】证明△ACD≌△BCE(SAS)推出∠DBE=90°根据勾股定理即可解决问题【详解】解:在△ABC中∠ACB=90°AC=BC=4∴AB8①如图1中当点D在线段AB上时绕点C逆时针旋转解析:1或7【分析】证明△ACD≌△BCE(SAS),推出∠DBE=90°,根据勾股定理即可解决问题.【详解】解:在△ABC中,∠ACB=90°,AC=BC=42,∴AB22=+=8,AC BC①如图1中,当点D在线段AB上时,绕点C逆时针旋转90°到CE,连接BE,DE,则∠DCE=90°,∴∠ACD=∠BCE,∵CA =CB ,CD =CE ,∴△ACD ≌△BCE (SAS ),∴AD =BE ,∠CAD =∠CBE ,∵CA =CB ,∠ACB =90°,∴∠A =∠CBA =45°,∴∠CBE =∠A =45°,∴∠ABE =90°,∵CD =5,∴DE =52,∵BE 2+BD 2=DE 2, ∴AD 2+(8﹣AD )2=(52)2,解得:AD =1或7;②如图2,当点D 在线段AB 的延长线上时,∵5CD =,42AC BC ==∴CD <BC图2这种情况不符合条件③如图3,当点D 在线段AB 的延长线上时,∵5CD =,42AC BC ==∴CD <BC图3这种情况不符合条件综上所述,AD 的长为1或7;故答案为:1或7.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质和判定,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.18.【分析】利用等边三角形的性质得到∠B1A1A2=60°A1B1=A1A2则可计算出∠A1B1O=30°所以A1B1=A1A2=OA1利用同样的方法得到A2B2=A2A3=OA2=2OA1A3B3=A解析:256【分析】利用等边三角形的性质得到∠B 1A 1A 2=60°,A 1B 1=A 1A 2,则可计算出∠A 1B 1O=30°,所以A 1B 1=A 1A 2=OA 1,利用同样的方法得到A 2B 2=A 2A 3=OA 2=2OA 1,A 3B 3=A 3A 4=22•OA 1,A 4B 4=A 4A 5=23•OA 1,利用此规律得到A n B n =A n A n+1=2n-1•OA 1.【详解】解:∵△A 1B 1A 2为等边三角形,∴∠B 1A 1A 2=60°,A 1B 1=A 1A 2,∵∠MON=30°,∴∠A 1B 1O=30°,∴A 1B 1=OA 1=1,∴A 1B 1=A 1A 2=OA 1=1,同理可得A 2B 2=A 2A 3=OA 2=2OA 1=2,∴A 3B 3=A 3A 4=OA 3=2OA 2=22•OA 1=22,A 4B 4=A 4A 5=OA 4=2OA 3=23•OA 1=23,…,∴A n B n =A n A n+1=2n-1•OA 1=2n-1.则△A 9B 9A 10的边长为28=256.故答案为:256.【点睛】本题考查了规律型:图形的变化类,等边三角形的性质以及等腰三角形的性质,解决本题的关键是根据图形的变化寻找规律.19.14【分析】由线段的垂直平分线的性质可得从而可得答案【详解】解:是的垂直平分线的周长故答案为:【点睛】本题考查的是线段的垂直平分线的性质掌握线段的垂直平分线的性质是解题的关键解析:14【分析】由线段的垂直平分线的性质可得2,AC AE AD DC ==,从而可得答案.【详解】 解: DE 是AC 的垂直平分线.2AE =,24,,AC AE AD DC ∴===10,AB BD AD ++=ABC ∴的周长AB BC AC AB BD AD AC =++=+++10414.=+=故答案为:14.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线的性质是解题的关键. 20.①②③④【分析】由∠ABC 和∠ACB 的平分线相交于点O 可得结合三角形的内角和定理可得再次利用内角和定理可判断①如图1过点O 作OM ⊥AB 于M 作ON ⊥BC 于N 结合利用角平分线的性质可判断②利用平行线的性 解析:①②③④【分析】由∠ABC 和∠ACB 的平分线相交于点O ,可得11,,22OBC ABC OCB ACB ∠=∠∠=∠结合三角形的内角和定理可得190,2OBC OCB A ∠+∠=︒-∠再次利用内角和定理可判断①,如图1,过点O 作OM ⊥AB 于M ,作ON ⊥BC 于N ,结合,OD AC ⊥ 利用角平分线的性质可判断②,利用平行线的性质与角平分线的定义证明,BE OE CF OF ==可判断③,如图2,过点O 作OM ⊥AB 于M ,作ON ⊥BC 于N ,连接OA ,证明,BNO BMO ≌ 可得,BN BM = 同理可得:,,AM AD CD CN == 从而可判断④,如图2,由1122AEF AOE AOF S S S AE OM AF OD =+=+,结合,,OM OD m AE AF n ==+= 从而可判断⑤.【详解】解:∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,11,,22OBC ABC OCB ACB ∴∠=∠∠=∠ 180,ABC ACB A ∠+∠=︒-∠∴()()11118090,222OBC OCB ABC ACB A A ∠+∠=∠+∠=︒-∠=︒-∠ ∴()111801809090,22BOC OBC OCB A A ⎛⎫∠=︒-∠+∠=︒-︒-∠=︒+∠ ⎪⎝⎭故①符合题意;如图1,过点O 作OM ⊥AB 于M ,作ON ⊥BC 于N ,∵OB 平分∠ABC ,OC 平分∠ACB ,,,OM ON ON OD ∴==,OM ON OD ∴== 故②符合题意;∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC=∠OBE ,∠OCB=∠OCF ,∵//EF BC ,∴∠OBC=∠EOB ,∠OCB=∠FOC ,∴∠EOB=∠OBE ,∠FOC=∠OCF ,∴BE=OE ,CF=OF ,∴EF=OE+OF=BE+CF , 故③符合题意;如图2,过点O 作OM ⊥AB 于M ,作ON ⊥BC 于N ,连接OA ,90,BNO BMO ∴∠=∠=︒ OB 平分,ABC ∠,MBO NBO ∴∠=∠,BO BO =(),BNO BMO AAS ∴≌,BN BM ∴=同理可得:,,AM AD CD CN ==()()1122AB AC BC AM BM AD CD BN CN ∴+-=+++-- ()112,22AM AD AD AD =+=⨯= 故④符合题意, 如图2,由②得:ON=OD=OM=m , ∴1122AEF AOE AOF S S S AE OM AF OD =+=+ ()1,2m AE AF =+ AE AF n +=,1,2AEF S mn ∴= 故⑤不符合题意. 故答案为:①②③④.【点睛】本题考查的是角平分线的定义与性质,平行线的性质,三角形的内角和定理的应用,全等三角形的判定与性质,等腰三角形的判定,掌握以上知识是解题的关键.三、解答题21.(1)证明见解析;(2)△BCD 是等腰三角形,理由见解析.【分析】(1)根据SAS 证明△ABC ≌△ADC 即可;(2)根据全等三角形的性质和等腰三角形的判定解答即可.【详解】证明:(1)在△ABC 与△ADC 中,12AB AD AC AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△ADC (SAS );(2)∵△ABC ≌△ADC ,∴BC =DC ,∴△BCD 是等腰三角形.【点睛】本题考查线全等三角形的判定和性质,等腰三角形的判定.判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .再运用全等三角形的性质可得相应的结论. 22.(1)见解析;(2)见解析【分析】(1)利用SAS 定理证明△ABC ≌△AED ;(2)利用△BAC ≌△EAD 全等的性质,得到角与边的关系,进一步证明即可.【详解】证明:(1)∵∠BAD=∠EAC ,∴∠BAD+∠DAC=∠EAC+∠DAC ,即∠BAC=∠EAD ,在△BAC 和△EAD 中,AB AE BAC EAD AC AD ⎧⎪∠∠⎨⎪⎩=== , ∴△BAC 和≌△EAD ;(2)∵△BAC ≌△EAD ,∴∠ABC=∠AED ,∵AB=AE ,∴∠ABE=∠AEB ,∴∠OBE=∠OEB ,∴OB=OE .【点睛】题考查的是全等三角形的判定和性质、等腰三角形的性质和判定,掌握全等三角形的判定定理和等腰三角形的性质定理是解题的关键.23.见解析【分析】根据线段垂直平分线性质作出AB的垂直平分线,根据角平分线性质作出∠BAC的角平分线,即可得出答案.【详解】解:作AB的垂直平分线EF,作∠BAC的角平分线AM,两线交于P,则P为这个中心医院的位置.【点睛】本题考查了线段垂直平分线性质,角平分线性质的应用,主要考查学生的理解能力和动手操作能力.24.(1)∠FDC=60°(2)∠AED=2∠B,理由见解析【分析】(1)根据垂直平分线及高线的性质即可求解.(2)根据高的定义和、线段垂直平分线的性质和等腰三角形的性质可得EF//BC,∠AED=2∠AEF,再根据平行线的性质得∠AEF=∠B,故可得∠AED=2∠B.【详解】解:(1)∵AD是BC边上的高线,EF是AD的垂直平分线,∠DAC=30°∴AF=FD,∠ADC=90°∴∠FDA=30°,∴∠FDC=90°-30°=60°.(2)∵AD是BC边上的高线,EF是AD的垂直平分线,∴EF//BC,EA=ED,∴∠AED=2∠AEF,∴∠AEF=∠B,∴∠AED=2∠B.【点睛】本题考查了垂直平分线及高线的性质,平行线的判定及性质,解题的关键是熟练掌握垂直平分线、高线、平行线性质.25.(1)见解析;(2)4【分析】(1)连接AD由AE AF=可得AEF是等腰三角形,由三条角平分线交于一点可证AD ∠即可;平分BAC(2)在BC 上取点M N 、,使得BE BM CF CN ==,,设2EF x =,则DE DF x ==,易证AEF 为等边三角形,可得2AE AF EF x ===,60AEF ∠=︒,可证BED ≌BMD (SAS )可得DM DE =,82BM BE x ==-,BED BMD ∠=∠60DMN AEF ∠=∠=︒,再证NCD ≌FCD (SAS )可得,52DN DF CN CF x ===-,可证DMN 为等边三角形,由BC BM MN NC =++构造方程解之即可.【详解】(1)证明:连接AD ,AE AF =,∴AEF 是等腰三角形,BD 、CD 分别平分ABC ∠、ACB ∠,∴AD 平分BAC ∠,∴DE DF =;(2)解:在BC 上取点M N 、,使得BE BM CF CN ==,,设2EF x =,则DE DF x ==,60A AE AF ∠=︒=, ,∴AEF 为等边三角形,∴2AE AF EF x ===,60AEF ∠=︒,在BED 和BMD 中,BE BM EBD MBD BD BD =⎧⎪∠=∠⎨⎪=⎩,∴BED ≌BMD (SAS ),∴DM DE =,82BM BE x ==-,BED BMD ∠=∠,60DMN AEF ∴∠=∠=︒,在CND △和CFD △中,CN CFBM NCD FCD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴NCD ≌FCD (SAS ),∴ ,52DN DF CN CF x ===-,又DE DF =,∴DM DN DE x ===,又60DMN ∠=︒,∴DMN 为等边三角形,∴MN DM x ==,∴(82)(52)7BC BM MN NC x x x =++=-++-=,即2x =,∴24EF x ==.【点睛】本题考查等腰三角形性质,角平分线性质,等边三角形判定与性质,三角形全等判定与性质,利用BC BM MN NC =++构造方程是解题关键.26.(1)∠ADE =20°;(2)△ADF 是等腰三角形,证明见解析;(3)AB=16.【分析】(1)根据等腰三角形的性质和三角形内角和定理求出∠B 和∠C ,求出∠BDE ,即可求出答案;(2)根据垂直平分线的性质定理和等边对等角可求得∠FDC ,再根据三线合一和直角三角形两锐角互余可求得∠DAF 和∠ADF 得出它们相等即可得出△ADF 为等腰三角形;(3)可求得∠C=30°根据30°角所对直角边是斜边的一般可得FC ,可证明△ADF 为等边三角形即可求得AF ,从而求得AC ,继而求得AB .【详解】解:(1)∵在△ABC 中,AB=AC ,∠BAC=100°,∴∠B=∠C=12×(180°-∠BAC )=40°, ∵BD=BE ,∴∠BDE=∠BED=12×(180°-∠B )=70°, ∵在△ABC 中,AB=AC ,AD 是BC 边上的中线,∴AD ⊥BC ,∴∠ADB=90°,∴∠ADE=∠ADB-∠BDE=20°;(2)△ADF 是等腰三角形,理由是:∵CD 的垂直平分线MF 交AC 于F ,交BC 于M ,∴DF=CF ,∵∠C=40°,∴∠FDC=∠C=40°,∵AD ⊥BC ,∴∠ADC=90°,∴∠DAF=90°-∠C=50°,∴∠ADF=50°,∴∠DAF=∠ADF ,∴AF=DF ,∴△ADF是等腰三角形;(3)∵∠BAC=120°,AB=AC,∴∠B=∠C=1×(180°-∠BAC)=30°,2又∵AD是BC边上的中线,∴AD⊥BC,∴∠DAC=90°-∠C=60°,∵CD的垂直平分线MF,∴∠FMC=90°,DF=FC,∴∠FDC=∠C=30°,∴∠ADF=∠ADC-∠FDC=60°,∠AFD=∠C+∠FDC=60°,∴△ADF为等边三角形,AF=DF=FC,∵MF=4,∴FC=2MF=8,∴AF= 8,∵AC=AF+CF=8+8=16,∵AB=AC,∴AB=16.【点睛】本题考查了线段垂直平分线性质,等边三角形的性质和判定,含30°角的直角三角形的性质,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.。

鲁教版七年级下册数学第10章三角形的有关证明单元检测(含答案)

第10章三角形的有关证明一、选择题1.下列判断不正确的是()A. 形状相同的图形是全等图形B. 能够完全重合的两个三角形全等C. 全等图形的形状和大小都相同D. 全等三角形的对应角相等2.已知某等腰三角形两边长长分别为1,2,则周长为()A. 3B. 4C. 5D. 4或53.如图所示,八年级某同学书上的图形(三角形)不小心被墨迹污染了一部分,但他很快就根据所学知识,画出一个与书上完全一样的三角形,那么这两个三角形全等的依据是()A. SSSB. SASC. ASAD. AAS4.如图,∠C=∠D,DE=EC,则以下说法错误的是()A.AD=BCB.OA=ACC.∠OAD=∠OBCD.△OAD≌△OBC5.如图,在△ABC中,已知∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E 不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①四边形CEDF有可能成为正方形;②△DFE是等腰直角三角形;③四边形CEDF的面积是定值;④点C 到线段EF的最大距离为.其中正确的结论是()A. ①④B. ②③C. ①②④D. ①②③④6.如图,在四边形ABCD中,∠A=58°,∠C=100°,连接BD,E是AD上一点,连接BE,∠EBD=36°.若点A,C分别在线段BE,BD的中垂线上,则∠ADC的度数为()A. 75°B. 65°C. 63°D. 61°7.如图,在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为()A.3B.4C.5D.68.下列说法:①全等三角形的形状相同,大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长,面积分别相等;⑤所有的等边三角形都是全等三角形.其中正确的说法有()A. 5个B. 4个C. 3个D. 1个9.已知:在△ABC中,∠A=60°,如要判定△ABC是等边三角形,还需添加一个条件.现有下面三种说法:①如果添加条件“AB=AC”,那么△ABC是等边三角形;②如果添加条件“∠B=∠C”,那么△ABC是等边三角形;③如果添加条件“边AB、BC上的高相等”,那么△ABC是等边三角形.上述说法中,正确的有()A.3个B.2个C.1个D.0个10.如图,在3×3网格中,已知点A,B是网格顶点(也称格点),若点C也是图中的格点,且使得△ABC 为等腰三角形,则满足条件的点C的个数为()A. 3B. 4C. 5D. 611.已知△ABC与△DEF全等,BC=EF=4cm,△ABC的面积是12cm2,则EF边上的高是()A.3cmB.4cmC.6cmD.无法确定12.如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个直接到达A和B的点C,连接AC 并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的距离.我们可以证明出△ABC≌△DEC,进而得出AB=DE,那么判定△ABC和△DEC全等的依据是()A.SSSB.SASC.ASAD.AAS二、填空题(共10题;共20分)13.如图已知OA=a,P是射线ON上一动点,∠AON=60°,当OP=________时,△AOP为等边三角形.14.如图,某同学把三角形玻璃打碎三块,现在他要去配一块完全一样的,你帮他想一想,带________片去,应用的原理是________(用字母表示).15.如图,以Rt△ABC的斜边AB为一边在△ABC同侧作正方形ABEF.点O为AE与BF的交点,连接CO.若CA=2,CO=,那么CB的长为________.16.如图5,△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为14cm,则△ABC的周长为________cm。

(必考题)初中数学八年级数学下册第一单元《三角形的证明》测试(含答案解析)

一、选择题1.如图,在等腰△ABC 中,5AB AC ==,6BC =,O 是△ABC 外一点,O 到三边的垂线段分别为OD ,OE ,OF ,且::1:4:4OD OE OF =,则AO 的长度为( )A .5B .6C .407D .80172.如图,在ABC 中,BO 平分ABC ∠,CO 平分ACB ∠,EF 经过点O 且//EF BC ,若7AB =,8AC =,9BC =,则AEF 的周长是( )A .15B .16C .17D .243.如图,在四边形ABCD 中,点E 在边AD 上,∠BCE =∠ACD ,∠BAC =∠D =40°,AB =DE ,AC =AE ,则∠B 的度数为( )A .100°B .110°C .120°D .130°4.如图,在ABC ∆中,AB AC =,120BAC ∠=︒,AD 是ABC ∆的中线,且6AD =,AE 是BAD ∠的角平分线,//DF AB 交AE 的延长线于点F ,则DF 的长为( )A .3B .4C .5D .6 5.如图,CD 是ABC 的角平分线,2,7,4B A AC BC ∠=∠==,则BD 的长为( )A .2B .3C .23D .32 6.等腰三角形的一个角为40︒,则其底角的度数为( ). A .40︒ B .70︒ C .40︒或70︒ D .50︒或70︒ 7.如图,在ABC 中,90C ∠=︒,以点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交BC 于点D ,若1CD =,4AB =,则ABD △的面积是( )A .2B .4C .6D .88.如图,在平面直角坐标系中,点A 的坐标为()1,0,以线段OA 为边在第四象限内作等边ABO ,点C 为x 轴正半轴上一动点(1OC >),设点C 的坐标为(),0x ,连结BC ,以线段BC 为边的第四象限内作等边CBD ,直线DA 交y 轴于点E ,点E 的坐标是( )A .()0,3B .0,2x ⎛⎫ ⎪⎝⎭C .()0,3D .30,x ⎛⎫ ⎪ ⎪⎝⎭ 9.如图,ABC 中,AB 的垂直平分线分别交AB 、BC 于点D 、E ,AC 的垂直平分线分别交AC 、BC 于点F 、G ,若100BAC ∠=︒,则EAG ∠的度数是( )A .10°B .20°C .30°D .40° 10.等腰三角形一腰的垂直平分线与另一腰所在直线的夹角是40°,则这一等腰三角形的底角为( )A .65°B .25°C .50°D .65°或25° 11.如图,ABC ∆中,AB AC =,3BC =,6ABC S ∆=,AD BC ⊥于点D ,EF 是AB 的垂直平分线,交AB 于点E ,交AC 于点F ,在EF 上确定一点P ,使PB PD +最小,则这个最小值为( )A .3.5B .4C .4.5D .512.如图,A ,B 两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C 也在格点上,且ABC 为等腰三角形,在图中所有符合条件的点C 的个数为( )A .7B .8C .9D .10二、填空题13.如图,在ABC 中,线段AB 的垂直平分线交AC 于点D ,连接BD ,若80C ∠=︒,40CBD ∠=︒,则A ∠的度数为_____°.14.如图,在平面直角坐标系xOy 中,点A 的坐标为(0,6),点B 为x 轴上一动点,以AB 为边在直线AB 的右侧作等边三角形ABC .若点P 为OA 的中点,连接PC ,则PC 的长的最小值为_____.15.如图,在ABC 中,,45,,AB AC BAC AD BE =∠=︒是ABC 的高,点Р是直线AD 上一动点,当PC PE +最小时,则BPC ∠为______度.16.如图,在ABC 中,90ACB ∠=︒,AD 是它的角平分线,若:3:2AB AC =,且2BD =,则点D 到直线AB 的距离为______.17.如图,50AOB ∠=︒,OC 平分AOB ∠,如果射线OA 上的点E 满足OCE △是等腰三角形,那么OEC ∠的度数为________.18.如图,ABC 中,,120AB AC A =∠=︒,若D 是BC 的中点,DE AB ⊥,垂足是E ,则:AE BE 的值等于________.19.在第1个△ABA 1中,∠B =30°,AB =A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,第1个三角形的以A 1为顶点的内角的度数为__________;第n 个三角形的以A n 为顶点的内角的度数为__________.20.如图,△ABC 中,∠ABC 与∠ACB 的平分线交于点D ,过点D 作EF ∥BC ,分别交AB 、AC 于点E 、F .那么下列结论:①BD=DC ;②△BED 和△CFD 都是等腰三角形;③点D 是EF 的中点;④△AEF 的周长等于AB 与AC 的和.其中正确的有______.(只填序号)三、解答题21.(1)猜想:如图1,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E 试猜想DE 、BD 、CE 有怎样的数量关系,请直接写出;(2)探究:如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在ABC 中,AB AC =,D ,A 、E 三点都在直线m 上,并且有BDA AEC BAC α∠=∠=∠=(其中α为任意锐角或钝角)如果成立,请你给出证明;若不成立,请说明理由.(3)解决问题:如图3,F 是角平分线上的一点,且ABF 和ACF 均为等边三角形,D 、E 分别是直线m 上A 点左右两侧的动点D 、E 、A 互不重合,在运动过程中线段DE 的长度始终为n ,连接BD 、CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF 的形状,并说明理由.22.已知A (3, 5),B (-1, 2),C (1, 1).(1)在所给的平面直角坐标系中作出△ABC ;(2)△ABC 是直角三角形吗?请说明理由.23.如图,在等边△ABC 的AC ,BC 上各取一点D ,E ,使AD =CE ,AE ,BD 相交于点M ,过点B 作直线AE 的垂线BH ,垂足为H .(1)求证:△ACE ≌△BAD ;(2)若BE =2EC =4.①求△ABC 的面积;②求MH 的长.24.如图,在四边形ABCD 中,90,A ABC BCD BDC ∠=∠=︒∠=∠,过点C 作CE BD ⊥,垂足为E .求证:AB CE =25.如图,已知AB =AC ,E 为AB 上一点,ED ∥AC ,BD =CD ,求证:ED =AE .26.如图,在等腰ABC 和等腰ADE 中,AB AC =,AD AE =,BAC DAE ∠=∠且C E D 、、三点共线,作AM CD ⊥于M ,求证:BD DM CM +=.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】连接OA,OB,OC ,由OD:OE:OF=1:4:4,设OD=x ,OE=4x ,OF=4x ,根据OE=OF ,得到AO 为∠BAC 的角平分线,再根据AB=AC ,得到AO ⊥BC ,根据三线合一及勾股定理求出AD=4,再根据ABC ABO ACO BCO S S S S =+-△△△△,得到方程求解即可.【详解】解:连接OA,OB,OC, 由OD:OE:OF=1:4:4,设OD=x,OE=4x,OF=4x ,∵OE=OF ,∴AO 为∠BAC 的角平分线,又∵AB=AC ,∴AO ⊥BC ,∴AD 为△ABC 的中线,∴A 、D 、O 三点共线,∴BD=3,在Rt △ABD 中, AD=222253AB BD -=-=4,∴ABC ABO ACO BCO S S S S =+-△△△△∴12=10x+10x−3x ,∴x=1217∴AO=4+1217=8017. 故选:D .【点睛】本题考查了角平分线的判定及性质,熟知等腰三角形的三线合一、角平分线的判定及三角形的面积公式是解题的关键.2.A解析:A【分析】先根据平行线的性质、角平分线的定义、等边对等角得到BE=OE,OF=CF,再进行线段的代换即可求出AEF的周长.【详解】解:∵EF∥BC,∴∠EOB=∠OBC,,∵BO平分ABC∴∠EBO=∠OBC,∴∠EOB=∠EBO,∴BE=OE,同理可得:OF=CF,∴AEF的周长为AE+AF+EF=AE+OE+OF+AF= AE+BE+CF+AF=AB+AC=7+8=15.故答案为:A【点睛】本题考查了等腰三角形的判定“等边对等角”,熟知平行线的性质,角平分线的定义和等腰三角形的判定定理是解题关键.3.B解析:B【分析】先ASA证明△BAC≌△EDC,再利用全等三角形的性质,等腰三角形的两底角相等即可求解.【详解】解:∵∠BCE=∠ACD,又∵∠BCE=∠BCA+∠ACE,∠ACD=∠DCE+∠ACE,∴∠BCA=∠DCE,∵∠BAC=∠D=40°,AB=DE,∴△BAC≌△EDC(ASA),∴AC=CD,∴∠CAE=∠D=40°,∵AC=AE,∴∠AEC=∠ACE=1(180°﹣∠CAE)=70°,2∵∠AEC=∠D+∠DCE,∴∠DCE=30°,∴∠ACB=30°,∴∠B=180°﹣∠ACB﹣∠BAC=110°.故选:B.【点睛】考查了全等三角形的判定与性质,等腰三角形的性质,关键是根据ASA证明△BAC≌△EDC.4.D解析:D【分析】根据等腰三角形三线合一的性质可得AD⊥BC,∠BAD=∠CAD,求出∠DAE=∠EAB=30°,根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,根据等角对等边求出AD=DF,即可求解.【详解】∵AB= AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=12∠BAC=12×120°= 60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=12∠BAD=1260°= 30°,∵DF// AB∴∠F=∠BAE= 30°,∴∠DAE=∠F= 30°,∴AD= DF=6;故答案为:D.【点睛】本题考查的是直角三角形的性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质是解题的关键.5.B解析:B【分析】延长CB至点F,使CF=CA,连接DF,证明△FCD≌△ACD,得到∠F=∠A,结合已知得到线段的关系,从而计算BD.【详解】解:延长CB至点F,使CF=CA,连接DF,∵CD是△ABC的角平分线,∴∠ACD=∠FCD,在△FCD和△ACD中,CF CA FCD ACD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴△FCD ≌△ACD (SAS ),∴∠F=∠A ,∴∠ABC=2∠A 且∠ABC=∠F+∠FDB ,∴∠F=∠FDB ,∴BF=BD ,∴CF=BC+BF=BC+BD ,∴AC=BD+BC ,∴BD=AC-BC=7-4=3,故选B .【点睛】本题考查了全等三角形的判定和性质,解题的关键是合理作出辅助线,构造全等三角形. 6.C解析:C【分析】结合题意,根据等腰三角形、三角形内角和的性质计算,即可得到答案.【详解】当40︒角为等腰三角形顶角时,其底角的度数为18040702;当40︒角为等腰三角形底角时,其底角的度数为40︒;故选:C .【点睛】 本题考查了等腰三角形、三角形内角和的性质;解题的关键是熟练掌握等腰三角形的性质,从而完成求解.7.A解析:A【分析】由作图可知AD 平分∠CAB ,点D 到AB 的距离就等于DC=1,根据公式可求面积.【详解】解:由作图可知AD 平分∠CAB ,点D 到AB 的距离就等于DC ,1CD =,4AB =,所以,ABD △的面积为:141=22⨯⨯, 故选:A .【点睛】 本题考查了角平分线的画法和性质,解题关键是知道AD 是角平分线,并根据角平分线的性质求出高.8.A解析:A【分析】由等边三角形的性质可得AO =OB =AB =1,BC =BD =CD ,∠OBA =∠CBD =60°,可证△OBC ≌△ABD ,可得∠BAD =∠BOC =60°,可求∠EAO =60°,即可求OE 点E 坐标.【详解】解:∵△AOB ,△BCD 是等边三角形,∴AO =OB =AB =1,BC =BD =CD ,∠OBA =∠CBD =60°,∴∠OBC =∠ABD ,且OB =AB ,BC =BD ,∴△OBC ≌△ABD (SAS ),∴∠BAD =∠BOC =60°,∴∠EAO =180°−∠OAB−∠BAD =60°,在Rt △AOE 中,AO =1,∠EAO =60°,∠OEA=30°,∴AE=2 AO=2,∴∴点E 坐标(0,故选A .【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,坐标与图形性质,灵活运用全等三角形的判定和性质是本题的关键.9.B解析:B【分析】根据三角形内角和定理求出∠C +∠B ,根据线段的垂直平分线的性质得到EA =EB ,根据等腰三角形的性质得到∠EAB =∠B ,同理,∠GAC =∠C ,计算即可.【详解】解:∵∠BAC =100°,∴∠C +∠B =180°−100°=80°,∵DE 是AB 的垂直平分线,∴EA =EB ,∴∠EAB =∠B ,同理:∠GAC =∠C ,∴∠EAB +∠GAC =∠C +∠B =80°,∴∠EAG =100°−80°=20°,故选B .【点睛】本题考查的是线段的垂直平分线的性质和等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.10.D解析:D【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【详解】解:①当为锐角等腰三角形时,如图:∵∠ADE =40°,∠AED =90°,∴∠A =50°,∴∠B=∠C=180502︒-︒ =65°; ②当为钝角等腰三角形时,如图:∵∠ADE =40°,∠AED =90°,∴∠BAC =∠ADE+∠AED =40°+90°=130°,∴∠B=∠C=1801302︒-︒ =25°. 故选:D .【点睛】本题考查了等腰三角形的性质、三角形内角和定理以及三角形外角性质,分类讨论是正确解答本题的关键. 11.B【分析】根据三角形的面积公式得到AD=4,由EF垂直平分AB,得到点A,B关于直线EF对称,于是得到AD=PB+PD的最小值,即可得到结论.【详解】解:∵AB=AC,BC=3,S△ABC=6,AD⊥BC于点D,∴AD=4,∵EF垂直平分AB,∴点A,B关于直线EF对称,∴EF与AD的交点P即为所求,如图,连接PB,此时PA=PB,PB+PD=PA+PD=AD,AD=PB+PD的最小值,即PB+PD的最小值为4,故选:B.【点睛】本题考查了轴对称-最短路线问题,线段的垂直平分线的性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.12.B解析:B【分析】分两种情况:①AB为等腰三角形的底边;②AB为等腰三角形的一条腰;画出图形,即可得出结论.【详解】解:如图所示:①AB为等腰三角形的底边,符合条件的点C的有5个;②AB为等腰三角形的一条腰,符合条件的点C的有3个.所以符合条件的点C共有8个.【点睛】此题考查了等腰三角形的判定,熟练掌握等腰三角形的判定是解题的关键,注意数形结合的解题思想.二、填空题13.30【分析】根据三角形的外角性质求出∠CDB根据线段垂直平分线的性质得到DA=DB根据等腰三角形的性质得到∠A=∠B根据三角形的外角性质计算得到答案【详解】解:∵∠C=80°∠CBD=40°∴∠CD解析:30【分析】根据三角形的外角性质求出∠CDB,根据线段垂直平分线的性质得到DA=DB,根据等腰三角形的性质得到∠A=∠B,根据三角形的外角性质计算,得到答案.【详解】解:∵∠C=80°,∠CBD=40°,∴∠CDB=180°-∠C-∠CBD=60°,∵线段AB的垂直平分线交AC于点D,∴DA=DB,∴∠A=∠DBA=12∠CDB=30°,故答案为:30.【点睛】本题考查的是线段的垂直平分线的性质、三角形的外角性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.【分析】以AP为边作等边三角形APE连接BE过点E作EF⊥AP于F由SAS 可证△ABE≌△ACP可得BE=PC则当BE有最小值时PC有最小值即可求解【详解】解:如图以AP为边作等边三角形APE连接B解析:9 2【分析】以AP为边作等边三角形APE,连接BE,过点E作EF⊥AP于F,由“SAS”可证△ABE≌△ACP,可得BE=PC,则当BE有最小值时,PC有最小值,即可求解.【详解】解:如图,以AP为边作等边三角形APE,连接BE,过点E作EF⊥AP于F,∵点A 的坐标为(0,6),∴OA =6,∵点P 为OA 的中点,∴AP =3,∵△AEP 是等边三角形,EF ⊥AP ,∴AF =PF =32,AE =AP ,∠EAP =∠BAC =60°, ∴∠BAE =∠CAP ,在△ABE 和△ACP 中, AE AP BAE CAP AB AC =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△ACP (SAS ),∴BE =PC ,∴当BE 有最小值时,PC 有最小值,即BE ⊥x 轴时,BE 有最小值,∴BE 的最小值为OF =OP +PF =3+32=92, ∴PC 的最小值为92, 故答案为92. 【点睛】 本题考查了轴对称−最短路线问题,全等三角形的判定和性质,等边三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.15.【分析】连接PC 只要证明PB=PC 即可推出PC+PE=PB+PE 可得PBE 共线时PC+PE 的值最小最小值为BE 的长度从而结合等腰三角形的性质求解【详解】解:如图连接PC ∵AB=ACAD ⊥BC ∴BD=解析:135【分析】连接PC ,只要证明PB=PC ,即可推出PC+PE=PB+PE ,可得P 、B 、E 共线时,PC+PE 的值最小,最小值为BE 的长度,从而结合等腰三角形的性质求解.【详解】解:如图,连接PC ,∵AB=AC ,AD ⊥BC ,∴BD=CD ,∴PB=PC ,∴PC+PE=PB+PE ,又∵BE ⊥AC∴P 、B 、E 共线时,PC+PE 的值最小为BE 的长,∵AB=AC ,∠BAC=45°,BE ⊥AC∴∠ABC=∠ACB=67.5°,∠ABE=45°∴∠PBC=∠PCB=67.5°-45°=22.5°∴∠BPC=180°-22.5°×2=135°故答案为:135.【点睛】本题考查轴对称-最短路线问题,等腰三角形的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.16.【分析】根据角平分线的性质利用面积比求出BD:DC=3:2代入求值即可【详解】解:∵平分∠BACDC ⊥ACDE ⊥AB ∴DC=DE ∵∴即点到直线的距离为故答案为:【点睛】本题考查了角平分线的性质解题关 解析:43【分析】根据角平分线的性质,利用面积比求出BD:DC=3:2,代入2BD =求值即可.【详解】解:∵AD 平分∠BAC ,DC ⊥AC ,DE ⊥AB ,∴DC=DE ,12ABD S AB DE =⨯⨯,12ACD S AC CD =⨯⨯,132122ABD ACD AB DE S SAC CD ⨯⨯==⨯⨯, 12ABD S DB AC =⨯⨯, 1212ABD ACD DB AC S S AC CD ⨯⨯=⨯⨯, 32BD CD =, ∵2BD =,∴43CD =, 43ED = 即点D 到直线AB 的距离为43, 故答案为:43. 【点睛】 本题考查了角平分线的性质,解题关键是利用面积公式,通过角平分线的性质得出面积比,再根据面积比求出边长比.17.或【分析】求出∠AOC 根据等腰得出三种情况OE=CEOC=OEOC=CE 根据等腰三角形性质和三角形内角和定理求出即可【详解】解:∵∠AOB=50°OC 平分∠AOB ∴∠AOC=25°①当E 在E1时OE解析:25︒,130︒或775︒.【分析】求出∠AOC ,根据等腰得出三种情况,OE=CE ,OC=OE ,OC=CE ,根据等腰三角形性质和三角形内角和定理求出即可.【详解】解:∵∠AOB=50°,OC 平分∠AOB ,∴∠AOC=25°,①当E 在E 1时,OE=CE ,∵∠AOC=∠OCE=25°,∴∠OEC=180°-25°-25°=130°;②当E 在E 2点时,OC=OE ,则∠OCE=∠OEC=12(180°-25°)=77.5°; ③当E 在E 3时,OC=CE ,则∠OEC=∠AOC=25°;故答案为:130°或77.5°或25°.【点睛】本题考查了角平分线定义,等腰三角形性质,三角形的内角和定理的应用,解题的关键是掌握所学的知识,运用分类讨论思想进行分析.18.【分析】已知AB=AC ∠BAC=120°根据等腰三角形性质及内角和定理可推出∠B=∠C=30°连接AD 可求得∠ADE=∠B=30°再由直角三角形性质即可求解【详解】解:如图连接AD ∵AB=AC ∠BA解析:1:3【分析】已知AB=AC ,∠BAC=120°,根据等腰三角形性质及内角和定理可推出∠B=∠C=30°,连接AD ,可求得∠ADE=∠B=30°,再由直角三角形性质即可求解.【详解】解:如图,连接AD ,∵AB=AC ,∠BAC=120°,D 是BC 的中点,∴∠B=∠C=30°,∠ADB=90°.∵DE ⊥AB ,∴∠BED=∠ADB =90°.∴∠B+∠BDE=∠ADE+∠BDE=90°.∴∠ADE=∠B=30°,设AE=x ,则AD=2x ,AB=2AD=4x ,∴EB=AB-AE=3x ,∴::31:3AE BE x x ==.故答案为:1:3.【点睛】本题考查了等腰三角形与直角三角形的性质,掌握等腰三角形与含30°角的直角三角形的性质并准确作出辅助线是解答本题的关键.19.75°【分析】先根据等腰三角形的性质求出∠BA1A 的度数再根据三角形外角及等腰三角形的性质分别求出∠CA2A1∠DA3A2及∠EA4A3的度数找出规律即可得出∠An 的度数【详解】解:∵在△ABA1中解析:75° 1752n ︒- . 【分析】先根据等腰三角形的性质求出∠BA 1A 的度数,再根据三角形外角及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出∠A n 的度数.【详解】解:∵在△ABA 1中,∠B =30°,AB =A 1B ,∴∠BA 1A =1802B ︒-∠=75°, ∵A 1A 2=A 1C ,∠BA 1A 是△A 1A 2C 的外角, ∴∠CA 2A 1=17522BA A ∠︒==37.5︒, 同理可得∠DA 3A 2=2752,∠EA 4A 3=3752︒, ,∴∠A n =1752n , 故答案为:75°;1752n . 【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,找出规律是解答此题的关键. 20.②④【分析】由平行线得到角相等由角平分线得角相等根据平行线的性质及等腰三角形的判定和性质逐一判断即得答案【详解】解:∵EF ∥BC ∴∠EDB=∠DBC ∠FDC=∠DCB ∵∠ABC 与∠ACB 的平分线交于 解析:②④【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质逐一判断即得答案.【详解】解:∵EF ∥BC ,∴∠EDB=∠DBC ,∠FDC=∠DCB ,∵∠ABC 与∠ACB 的平分线交于点D ,∴∠EBD=∠DBC ,∠FCD=∠DCB ,∴∠EDB =∠EBD ,∠FCD=∠FDC ,∴ED=EB ,FD=FC ,即△BED 和△CFD 都是等腰三角形;故②正确;∴△AEF 的周长为:AE+EF+AF=AE+ED+DF+AF=AB+AC ;故④正确;∵∠ABC 不一定等于∠ACB ,∴∠DBC 不一定等于∠DCB ,∴BD 与CD 不一定相等,故①错误.∵BE 与CF 无法判定相等,∴ED 与DF 无法判定相等,故③错误;综上,正确的有②④.故答案为:②④.【点睛】本题考查了等腰三角形的性质及角平分线的性质及平行线的性质;题目利用了两直线平行,内错角相等,及等角对等边来判定等腰三角形;等量代换的利用是解答本题的关键.三、解答题21.(1)DE BD CE =+;(2)成立,见解析;(3)等边三角形,见解析【分析】(1)根据垂直的定义得到90BAD CAE ∠+∠=︒,根据等角的余角相等得到ABD CAE ∠=∠,再证明()ADB CEA AAS ≌△△,根据全等三角形的性质即可得解; (2)根据条件证明()BAD ACE AAS ≌即可得解;(3)根据等边三角形的判定证明即可;【详解】解:(1)DE BD CE =+,理由:∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒,∵BD m ⊥,CE m ⊥,∴90ADB CEA ∠=∠=︒,∴90BAD ABD ∠+∠=︒,∴ABD CAE ∠=∠,在ADB △和CEA 中,90ADB CEA ABD CAE AB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()ADB CEA AAS ≌△△, ∴BD AE =,AD CE =,∴DE AD AE BD CE =+=+,故答案为DE BD CE =+;(2)结论DE BD CE =+成立;理由如下:∵BAD CAE 180BAC ∠∠∠+=︒-,BAD ABD 180ADB ∠∠∠+=︒-,90BAD ABD ∠+∠=︒,∴ABD CAE ∠=∠, 在BAD 和ACE 中,ABD CAE ADB CEA AB AC α∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴()BAD ACE AAS ≌, ∴BD AE =,AD CE =,∴DE DA AE BD CE =+=+;(3)DFE △为等边三角形,理由:由(2)得,BAD ACE ≌△△,∴BD AE =,ABD CAE ∠=∠,∴ABD FBA CAE FAC ∠+∠=∠+,即FBD FAE ∠=∠,在FBD 和FAE 中,FB FA FBD FAE BD AE =⎧⎪∠=∠⎨⎪=⎩,∴()FBD FAE SAS ≌,∴FD FE =,BFD AFE ∠=∠,∴60DFE DFA AFE DFA BFD ∠=∠+∠=∠+∠=︒, ∴DFE 为等边三角形.【点睛】 本题主要考查了三角形综合,结合三角形全等证明、等边三角形的判定是解题的关键. 22.(1)见解析;(2)是,理由见解析【分析】(1)在平面直角坐标系中描出A 、B 、C 三点,再顺次连接三点即可做出△ABC ; (2)利用网格特点,分别求出AB 2、AC 2、BC 2,再根据勾股定理的逆定理判断即可.【详解】(1)如图所示;(2)△ABC 是直角三角形,理由为:∵AB 2=42+32=25,AC 2=22+42=20,BC 2=12+22=5,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠C=90°.【点睛】本题考查平面直角坐标系、勾股定理及其逆定理,熟练掌握网格结构和平面直角坐标系,准确找出对应点的位置,会利用勾股定理的逆定理判断直角三角形是解答的关键. 23.(1)见解析;(2)①②7 【分析】(1)根据等边三角形的性质,直接运用SAS 证明即可;(2)①作AF ⊥BC 于F 点,利用“三线合一”的性质结合已知条件先求出AF 的长度,从而根据12·ABC S BC AF =即可求解; ②先在Rt △AFE 中求解出AE 的长度,再求出△ABE 的面积,结合等面积法即可求出BH 的长度,然后根据(1)的结论进一步证明∠BMH=60°,则在Rt △BMH 中即可求解MH 的长度.【详解】(1)∵△ABC 为等边三角形,∴AB=CA ,∠BAD=∠ACE=60°,在△BAD 和△ACE 中,AD CE BAD ACE AB CA =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△BAD (SAS );(2)如图所示,作AF ⊥BC 于F 点,①由“三线合一”知,∠BAF=30°,∵BC=BE+EC=4+2=6,∴AB=6,BF=3,由勾股定理可得:AF =,∴11622ABC S BC AF ==⨯⨯=△ ②由①可知,AF =,FE=1,∴根据勾股定理可得,AE=, ∵11422ABE SBE AF ==⨯⨯=△,∴27ABE S BH AE ===△,由(1)可得,∠ABD=∠CAE ,∴∠ABD+∠BAM=∠CAE+∠BAM=60°,即:∠BMH=∠ABD+∠BAM=60°,则在Rt △BHM 中,∠MBH=30°, ∴3BH MH =, ∴6773MH ==.【点睛】本题主要考查等边三角形的性质以及全等三角形的判定与性质综合运用,灵活运用全等三角形的性质以及等面积法求高是解题关键.24.证明见解析.【分析】用“角角边”证明△ABD ≌ECB 即可.【详解】证明:∵90A ABC ∠=∠=︒,∴∠ABD+∠ADB=90°,∠ABD+∠DBC=90°,∴∠ADB=∠DBC ,∵BCD BDC ∠=∠,∴BD=BC ,∵∠A=∠BEC=90°,∴△ABD ≌△ECB∴AB CE =.【点睛】本题考查了等腰三角形的判定和全等三角形的判定与性质,解题关键是找准全等三角形,依据等腰三角形的判定和同角的余角相等证明全等.25.见解析【分析】利用SSS 证△A DB ≌△ADC 可得∠D AB =∠DAC ,根据平行线性质得∠EDA =∠DAC ,再根据等量代换得到∠EAD=∠EDA ,从而得到ED=AE .【详解】证明:在△ADB 和△ADC 中,,,,AB AC DB DC AD AD =⎧⎪=⎨⎪=⎩∴△ADB ≌△ADC (SSS ).∴∠D AB =∠DAC .∵ED ∥AC ,∴∠EDA =∠DAC ,∴∠EAD=∠EDA∴E D=AE .【点睛】考核知识点:全等三角形判定,等边对等角的性质.判定三角形全等是关键. 26.见解析【分析】由“SAS”可证△AEC ≌△ADB ,可得BD=CE ,由等腰三角形的性质可得DM=EM ,可得结论.【详解】证明:BAC DAE ∠=∠CAE BAD ∴∠=∠在△AEC 和△ADB 中AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴△AEC ≌△ADBBD CE ∴=在等腰ADE 中,AM DE ⊥DM EM ∴=BD DM CE EM CM ∴+=+=.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,掌握全等三角形的判定定理是本题的关键.。

《三角形》单元测试题(含答案)

“三角形”知识要点梳理之迟辟智美创作三角形三边关系三角形三角形内角和定理角平分线三条重要线段中线高线全等图形的概念全等三角形的性质三角形全等三角形SSSSAS全等三角形的判定ASAAASHL(适用于RtΔ)全等三角形的应用利用全等三角形测距离作三角形一、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”暗示.2、极点是A、B、C的三角形,记作“ΔABC”,读作“三角形ABC”.3、组成三角形的三条线段叫做三角形的边,即边AB、BC、AC,有时也用a,b,c来暗示,极点A所对的边BC用a暗示,边AC、AB分别用b,c来暗示;4、∠A、∠B、∠C为ΔABC的三个内角.二、三角形中三边的关系1、三边关系:三角形任意两边之和年夜于第三边,任意两边之差小于第三边.用字母可暗示为a+b>c,a+c>b,b+c>a;a-b<c,a-c<b,b-c<a. 2、判断三条线段a,b,c能否组成三角形:(1)当a+b>c,a+c>b,b+c>a同时成立时,能组成三角形;(2)当两条较短线段之和年夜于最长线段时,则可以组成三角形.3、确定第三边(未知边)的取值范围时,它的取值范围为-<<+.年夜于两边的差而小于两边的和,即a b c a b三、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和即是1800.2、三角形按内角的年夜小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通经常使用“RtΔ”暗示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边.注:直角三角形的性质:直角三角形的两个锐角互余.(3)钝角三角形,即有一个内角是钝角的三角形.3、判定一个三角形的形状主要看三角形中最年夜角的度数.4、直角三角形的面积即是两直角边乘积的一半.5、任意一个三角形都具备六个元素,即三条边和三个内角.都具有三边关系和三内角之和为1800的性质.6、三角形内角和定理包括一个等式,它是我们列出有关角的方程的重要等量关系.四、三角形的三条重要线段1、三角形的三条重要线段是指三角形的角平分线、中线和高线.2、三角形的角平分线:(1)三角形的一个内角的平分线与这个角的对边相交,这个角的极点和交点之间的线段叫做三角形的角平分线.(2)任意三角形都有三条角平分线,而且它们相交于三角形内一点.3、三角形的中线:(1)在三角形中,连接一个极点与它对边中点的线段,叫做这个三角形的中线.(2)三角形有三条中线,它们相交于三角形内一点.4、三角形的高线:(1)从三角形的一个极点向它的对边所在的直线做垂线,和垂足之间的线段叫做三角形的高线,简称为三角形的高.(2)任意三角形都有三条高线,它们所在的直线相交于一点.五、全等图形1、两个能够重合的图形称为全等图形.2、全等图形的性质:全等图形的形状和年夜小都相同.3、全等图形的面积或周长均相等.4、判断两个图形是否全等时,形状相同与年夜小相等两者缺一不成.5、全等图形在平移、旋转、折叠过程中仍然全等.6、全等图形中的对应角和对应线段都分别相等.六、全等分割1、把一个图形分割成两个或几个全等图形叫做把一个图形全等分割.2、对一个图形全等分割:(1)首先要观察分析该图形,发现图形的构成特点;(2)其主要年夜胆检验考试,敢于入手,需要时可采纳计算、交流、讨论等方法完成.七、全等三角形1、能够重合的两个三角形是全等三角形,用符号“≌”连接,读作“全即是”.2、用“≌”连接的两个全等三角形,暗示对应极点的字母写在对应的位置上.3、全等三角形的性质:全等三角形的对应边、对应角相等.这是今后证明边、角相等的重要依据.4、两个全等三角形,准确判定对应边、对应角,即找准对应极点是关键.八、全等三角形的判定1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”.2、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”.3、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”.4、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”.5、注意以下内容(1)三角形全等的判定条件中必需是三个元素,而且一定有一组边对应相等.(2)三边对应相等,两边及夹角对应相等,一边及任意两角对应相等,这样的两个三角形全等.(3)两边及其中一边的对角对应相等不能判定两三角形全等.6、熟练运用以下内容(1)熟练运用三角形判定条件,是解决此类题的关键.(2)已知“SS”,可考虑A:第三边,即“SSS”;B:夹角,即“SAS”.(3)已知“SA”,可考虑A:另一角,即“AAS”或“ASA”;B:夹角的另一边,即“SAS”.(4)已知“AA”,可考虑A:任意一边,即“AAS”或“ASA”.7、三角形的稳定性:根据三角形全等的判定方法(SSS)可知,只要三角形三边的长度确定了,这个三角形的形状和年夜小就完全确定了,三角形的这个性质叫做三角形的稳定性.九、作三角形1、作图题的一般步伐:(1)已知,即将条件具体化;(2)求作,即具体叙述所作图形应满足的条件;(3)分析,即寻找作图方法的途径(通常是画出草图);(4)作法,即根据分析所得的作图方法,作出正式图形,并依次叙述作图过程;(5)证明,即验证所作图形的正确性(通常省略不写).2、熟练以下三种三角形的作法及依据.(1)已知三角形的两边及其夹角,作三角形.(2)已知三角形的两角及其夹边,作三角形.(3)已知三角形的三边,作三角形.十、利用三角形全等测距离1、利用三角形全等测距离,实际上是利用已有的全等三角形,或构造出全等三角形,运用全等三角形的性质(对应边相等),把较难丈量或无法丈量的距离转化成已知线段或较容易丈量的线段的长度,从而获得被测距离.2、运用全等三角形解决实际问题的步伐:(1)先明确实际问题应该用哪些几何知道解决;(2)根据实际问题笼统出几何图形;(3)结合图形和题意分析已知条件;(4)找到解决问题的途径.十一、直角三角形全等的条件1、在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”.2、“HL”是直角三角形特有的判定条件,对非直角三角形是不成立的;3、书写时要规范,即在三角形前面必需加上“Rt”字样.十二、分析-综合法1、我们在平时解几何题时,采纳的解题方法通常有两种,综合法与分析法.2、综合法:从问题的条件动身,通过分析条件,依据所学知识,逐步探索,直到得出问题的结论.3、分析法:从问题的结论动身,不竭寻找使结论成立的条件,直至已知条件.4、在具体解题中,通常是两种方法结合起来使用,既运用综合法,又运用分析法.“三角形”单位测试一、选择题1.如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB 交BC于D,DE⊥AB于E,且AB=6㎝,则△DEB的周长是()A.6㎝B.4㎝C.10㎝D.以上都分歧毛病(第1题) (第6题) (第7题) 2.一个多边形的内角和是720 ,则这个多边形的边数为()A.4 B.5 C.6 D.73.等腰三角形中的一个内角为50°,则另两个内角的度数分别是()A、65°,65°B、50°,80°C、50°,50° D.65°,65°或50°,80°4.以下各组数为边长的三角形中,能组成直角三角形的是()A.1,2,3B.2,3,4C.4,5,6D.5,12,13 5.△ABC中,①若AB=BC=CA,则△ABC是等边三角形;②一个底角为60°的等腰三角形是等边三角形;③顶角为60°的等腰三角形是等边三角形;④有两个角都是60°的三角形是等边三角形.上述结论中正确的有()A.1个B.2个C.3个D.4个6.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,其中正确的结论的个数是()A.1 B.2 C.3 D.47.如图,△ABC中,AB=AC,∠A=040,则B=()A、060B、070C、075D、0808.满足下列条件的ABC∆,不是直角三角形的是()A.︒∠65B B.5:4:3=A, ︒=∠25BA∠C:=:∠∠C .222c a b -=D .12=AC ,20=AB ,16=BC9.下列几组数,能作为直角三角形的三边的是A .5,12,23B .0.6,0.8,1C .20,30,50D .4, 5,610.如图,将Rt △ABC (∠ACB =90°,∠ABC =30°)沿直线AD 折叠,使点B 落在E 处,E 在AC 的延长线上,则∠AEB 的度数为( )A .30°B .40°C .60°D .55°(第10题) (第11题) (第13题)二、填空题11.如图,E 点为ΔABC 的边AC 中点,CN ∥AB ,过E 点作直线交AB 与M 点,交CN 于N 点,若MB =6cm ,CN =4cm ,则AB =________.12.一个十二边形的内角和是度,外角和是度.13.如图,∠ACD 是△ABC 的外角,∠ACD =80°,∠B =30°,则∠A =.14.若等腰三角形的一个内角为50°,则这个等腰三角形顶角的度数为. NC BAEM15.如图,在Rt△ABC中,∠ABC=90°,AB=BC=8,点M在BC上,且BM=2 N是AC上一动点,则BN+MN的最小值为___________.(第15题) (第16题)16.如图,△ABC的三个极点分别在格子的3个极点上,请你试着再在图中的格子的极点上找出一个点D,使得△DBC 与△ABC全等,这样的三角形有个.三、解答题17.今年第九号台风“苏拉”登岸浙江,A市接到台风警报时,台风中心位于A市正南方向85km的B处,正以14km/h 的速度沿BC方向移动.已知A市到BC的距离AD=40km,那么台风中心从B点移到D点经过多长时间?(计算结果精确到0.1小时)18.已知三角形的两边长分别为3和5,第三边长为c,化简.19.如图,△ABD≌△EBD, △DBE≌△DCE, B, E, C在一条直线上.(1)BD是∠ABE的平分线吗?为什么?(2)DE⊥BC,BE=EC吗?为什么?ADB CE20.已知:如图,AB=CD,DE⊥AC,BF⊥AC,DE=BF.求证:AE=CF.21.如图:AD是△ABC的高,E为AC上一点,BE交AD 于F,且有BF=AC,FD=CD.求证:BE⊥AC.22.如图,︒=AOB,OM是AOB∠90∠的平分线,将三角尺的直角极点P在射线OM上滑动,两直角边分别与OBOA,交于点C和D,证明:PDPC=.参考谜底1.A2.C3.D4.D5.D6.D7.B8.B9.B10.C 11.10cm12.18000,360°13.50°14.50°或80°15.1016.3 1718.由三边关系定理,得3+5>c,5-3<c,即8>c>2.==c-2-(4-c)=c-2-4+c=c-6.(15分)19.略20.略21.略22.略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档