【5年高考3年模拟】2014年高考物理真题分类汇编 专题10 电磁感应
专题23 法拉第电磁感应定律——历年高考物理真题精选之黄金30题(解析版)

历年高考物理真题精选之黄金30题专题23 法拉第电磁感应定律一、单选题1.(2020·浙江·高考真题)如图所示,固定在水平面上的半径为r 的金属圆环内存在方向竖直向上、磁感应强度大小为B 的匀强磁场。
长为l 的金属棒,一端与圆环接触良好,另一端固定在竖直导电转轴OO '上,随轴以角速度ω匀速转动。
在圆环的A 点和电刷间接有阻值为R 的电阻和电容为C 、板间距为d 的平行板电容器,有一带电微粒在电容器极板间处于静止状态。
已知重力加速度为g ,不计其它电阻和摩擦,下列说法正确的是( )A .棒产生的电动势为212Bl ω B .微粒的电荷量与质量之比为22gdBr ωC .电阻消耗的电功率为242B r RπωD .电容器所带的电荷量为2CBr ω【答案】 B 【解析】A .如图所示,金属棒绕OO '轴切割磁感线转动,棒产生的电动势21=22r E Br Br ωω=⋅A 错误;B .电容器两极板间电压等于电源电动势E ,带电微粒在两极板间处于静止状态,则Eq mg d =即22212q dg dg dg m E Br Br ωω===B 正确;C .电阻消耗的功率22424E B r P R R ω==C 错误;D .电容器所带的电荷量22CBr Q CE ω==D 错误。
故选B 。
2.(2015·全国全国·高考真题)如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿a ﹣b ﹣c ﹣aC .U bc =﹣12Bl 2ω,金属框中无电流D .U bc =12Bl 2ω,金属框中电流方向沿a ﹣c ﹣b ﹣a【答案】 C 【解析】因为当金属框绕轴转运时,穿过线圈abc 的磁通量始终为0,故线圈中无感应电流产生,选项BD 错误;但对于bc 与ac 边而言,由于bc 边切割磁感线,故bc 边会产生感应电动势,由右手定则可知,c 点的电势要大于b 点的电势,故U bc 是负值,且大小等于Bl×=Bl 2ω,故选项C 正确;对于导体ac 而言,由右手定则可知,c点的电势大于a 点的电势,故选项A 错误,所以选项C 是正确的.3.(2014·江苏·高考真题)如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中,在t ∆时间内,磁感应强度的方向不变,大小由B 均匀的增大到2B .在此过程中,线圈中产生的感应电动势为( )A .22Ba t ∆B .22nBa t ∆ C .2nBa t ∆D .22nBa t ∆【答案】 B 【解析】在此过程中,线圈中的磁通量改变量大小22222B B a Ba t ϕ-∆=⨯=∆,根据法拉第电磁感应定律22ϕ∆∆===∆∆∆B nBa E n n S t t t ,B 正确; B E nn S t t ϕ∆∆==∆∆,知道S 是有效面积,即有磁通量的线圈的面积.4. (2008·全国·高考真题)矩形导线框abcd 固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度B随时间变化的规律如图所示。
2025年高考物理总复习课件专题十电磁感应第1讲电磁感应现象、楞次定律

高考总复习·物理
核心素养
重要考点
物理观念
(1)理解电磁感应现象、磁通量、自感、涡流 等概念;(2)掌握右手定则、楞次定律、法拉 第电磁感应定律等重要规律
1.电磁感应现象、 磁通量
科学思维
科学探究 科学态度
与责任
综合应用楞次定律、法拉第电磁感应定律分 析问题的能力
通过实验探究影响感应电流方向的因素,习·物理
2.实验步骤 (1)按图连接电路,闭合开关,记录下G中流入电流方 向与灵敏电流计G中指针偏转方向的关系. (2)记下线圈绕向,将线圈和灵敏电流计构成通路. (3)把条形磁铁N极(或S极)向下插入线圈中,并从线圈 中拔出,每次记下电流计中指针偏转方向,然后根据步骤(1)的结论,判 定出感应电流方向,从而可确定感应电流的磁场方向. (4)记录实验现象.
了解电磁感应知识在生活、生产和科学技术 中的应用
2.法拉第电磁感 应定律
3.楞次定律的应 用
4.自感、涡流现 象的分析理解
高考总复习·物理
一、磁通量 1.概念:磁感应强度B与面积S的__乘__积____. 2.公式:Φ=____B_S___.适用条件:匀强磁场;S是__垂__直____磁场的有效面 积. 单位:韦伯(Wb),1 Wb=__1_T_·_m__2_. 3.意义:穿过某一面积的磁感线的___条__数___. 4.标矢性:磁通量是___标__量___,但有正、负.
高考总复习·物理
例1 (2023年广东二模)如图甲所示,驱动线圈通过开关S与电源连接,
发射线圈放在绝缘且内壁光滑的发射导管内.闭合开关S后,在0~t0内驱动 线圈的电流iab随时间t的变化如图乙所示.在这段时间内,下列说法正确的 是( B )
2023年高考物理电磁感应常用模型最新模拟题精练——单导体棒切割磁感线模型(解析版)

高考物理《电磁感应》常用模型最新模拟题精练专题15单导体棒切割磁感线模型一.选择题1.(2023年甘肃张掖一诊)如图所示,M N 和PQ 是电阻不计的平行金属导轨,其间距为L ,导轨弯曲部分光滑,平直部分粗糙,二者平滑连接。
右端接一个阻值为R 的定值电阻。
平直部分导轨左边区域有宽度为d 、方向竖直向上、磁感应强度大小为B 的匀强磁场。
质量为m 、电阻也为R 的金属棒从高度为h 处静止释放,到达磁场右边界处恰好停止。
己知金属棒与平直分导轨间的动摩擦因数为μ,金属棒与导轨间接触良好。
则金属棒穿过磁场区域的过程中()A.流过定值电阻的电流方向是N Q →B.通过金属棒的电荷量为2BdL RC.金属棒在磁场中运动的加速度不变D.金属棒产生的焦耳热为1()2mgh mgd μ-【参考答案】BD 【名师解析】金属棒下滑到最低端时速度向右,而且磁场竖直向上,根据右手定则可以知道流过定值电阻的电流方向为Q →N ,故A 错误;B .根据法拉第电磁感应定律,通过金属棒的电荷量为222E BLd q t t R t R Rφ∆=∆=∆=∆故B 正确;由于金属棒做切割磁感线运动,使得金属棒中有电流通过,根据安培定则可知,金属棒所受安培力水平向左,所以金属棒做运动,故有22222F BIL BL E BL BLv B L va m m m R m R mR===⋅=⋅=所以由于v 在不断的变小,所以加速度也在不断变小。
故C 错误;根据能量守恒可知mgh mgd Qμ=+由于电阻R 和金属棒的电阻值相等,所以有12R Q Q =所以产生的焦耳热1()2R Q mgh mgd μ=-,故D 正确。
故选BD 。
【点睛】注意金属棒在磁场中会由于安培力的作用而不断减速,导致产生的感应电流逐步变小。
2.(2022重庆高考)如图1所示,光滑的平行导电轨道水平固定在桌面上,轨道间连接一可变电阻,导体杆与轨道垂直并接触良好(不计杆和轨道的电阻),整个装置处在垂直于轨道平面向上的匀强磁场中。
2014届高考物理二轮复习检测与评估:专题十一 电磁感应规律的综合应用(含13年模拟)

专题十一 电磁感应规律的综合应用1. (2013·全国)纸面内两个半径均为R 的圆相切于O 点,两圆形区域内分别存在垂直纸面的匀强磁场,磁感应强度大小相等、方向相反,且不随时间变化.一长为2R 的导体杆OA 绕过O 点且垂直于纸面的轴顺时针匀速旋转,角速度为ω,t=0时,OA 恰好位于两圆的公切线上,如图所示.若选取从O 指向A 的电动势为正,下列描述导体杆中感应电动势随时间变化的图象可能正确的是()2. (2013·海南)如图所示,水平桌面上固定有一半径为R 的金属细圆环,环面水平,圆环每单位长度的电阻为r.空间有一匀强磁场,磁感应强度大小为B,方向竖直向下.一长度为2R 、电阻可忽略的导体棒置于圆环左侧并与环相切,切点为棒的中点.棒在拉力的作用下以恒定加速度a 从静止开始向右运动,运动过程中棒与圆环接触良好.下列说法中正确的是()A. 拉力的大小在运动过程中保持不变B.C.D.3. (多选)(2013·南通中学)如图所示,在水平桌面上放置两条相距l 的平行光滑导轨ab 与cd,阻值为R 的电阻与导轨的a 、c 端相连.质量为m 、边长为l 、电阻不计的正方形线框垂直于导轨并可在导轨上滑动.整个装置放于匀强磁场中,磁场的方向竖直向上,磁感应强度的大小为B.滑杆的中点系一根不可伸长的轻绳,绳绕过固定在桌边的光滑轻滑轮后,与一个质量也为m 的物块相连,绳处于拉直状态.现若从静止开始释放物块,用h 表示物块下落的高度(物块不会触地),g 表示重力加速度,其他电阻不计,则()A. 因通过正方形线框的磁通量始终不变,故电阻R 中没有感应电流B. 物体下落的加速度为0.5gC. 若h 足够大,物体下落的最大速度为22mgR B l D. 通过电阻R 的电荷量为BlhR4. (多选)(2013·扬州一模)如图所示,两根完全相同的光滑金属导轨POQ 固定在水平桌面上,导轨间的夹角为θ,导轨单位长度的电阻为r.导轨所在空间有垂直于桌面向下的匀强磁场.t=0时刻将一电阻不计的金属杆MN 在外力作用下以恒定速度v 从O 点开始向右滑动.在滑动过程中保持MN 垂直于两导轨间夹角的平分线,且与导轨接触良好,导轨和金属杆足够长.下列关于电路中电流大小I 、金属杆MN 间的电压U 、外力F 及电功率P 与时间t 的关系图象中正确的是( )5. (多选)(2013·四川)如图所示,边长为L 、不可形变的正方形导体框内有半径为r 的圆形区域,其磁感应强度B 随时间t 的变化关系为B=kt(常量k>0).回路中滑动变阻器R 的最大阻值为R 0,滑片P 位于滑动变阻器中央,定值电阻R 1=R 0、R 2=12R 0.闭合开关S,电压表的示数为U,不考虑虚线MN 右侧导体的感应电动势.则 ( )A. R 2两端的电压为7UB. 电容器的a 极板带正电C. 滑动变阻器R 的热功率为电阻R 2的5倍D. 正方形导体框中的感应电动势为kL 26. (2013·连云港一模)如图所示,空间存在着与圆台母线垂直向外的磁场,各处的磁感应强度大小均为B,圆台母线与竖直方向的夹角为θ.一个质量为m、半径为r 的匀质金属环位于圆台底部.环中通以恒定的电流I后圆环由静止向上运动,经过时间t后撤去该恒定电流并保持圆环闭合,圆环上升的最大高度为H.已知重力加速度为g,磁场的范围足够大.在圆环向上运动的过程中,下列说法中正确的是( )A. 在时间t内安培力对圆环做功为mgHB. 圆环先做匀加速运动后做匀减速运动C. 圆环运动的最大速度为2πcosBIrtm-gtD. 圆环先有扩张后有收缩的趋势7. (2013·宿迁、徐州三模)如图甲所示,有两根相互平行、间距为L的粗糙金属导轨,它们的电阻忽略不计,在MP之间接有阻值为R的定值电阻,导轨平面与水平面的夹角为θ.在efhg矩形区域内有垂直斜面向下、宽度为d的匀强磁场(磁场未画出),磁感应强度B随时间t变化的规律如图乙所示.在t=0时刻,一质量为m、电阻为r 的金属棒垂直于导轨放置,从ab位置由静止开始沿导轨下滑,t=t0时刻进入磁场,此后磁感应强度为B0并保持不变.棒从ab到ef的运动过程中,电阻R上的电流大小不变.求:(1) 0t0时间内流过电阻R的电流I大小和方向.(2) 金属棒与导轨间的动摩擦因数μ.(3) 金属棒从ab到ef的运动过程中,电阻R上产生的焦耳热Q.8. (2013·南京、盐城三模) 如图所示,虚线框内为某种电磁缓冲车的结构示意图,其主要部件为缓冲滑块 K和质量为m的缓冲车厢.在缓冲车的底板上,沿车的轴线固定着两个光滑水平绝缘导轨PQ、MN.缓冲车的底部安装电磁铁(图中未画出),能产生垂直于导轨平面的匀强磁场,磁场的磁感应强度为B.导轨内的缓冲滑块K 由高强度绝缘材料制成,滑块K上绕有闭合矩形线圈abcd,线圈的总电阻为R,匝数为n,ab边长为L.假设缓冲车以速度v0与障碍物C碰撞后,滑块K立即停下,此后线圈与轨道的磁场作用力使缓冲车厢减速运动,从而实现缓冲,一切摩擦阻力不计.(1) 求滑块K的线圈中最大感应电动势的大小.(2) 若缓冲车厢向前移动距离L后速度为零,则此过程线圈abcd中通过的电荷量和产生的焦耳热各是多少?(3) 若缓冲车以某一速度v'0(未知)与障碍物C碰撞后,滑块K立即停下,缓冲车厢所受的最大水平磁场力为Fm.缓冲车在滑块K停下后,其速度v随位移x的变化规律满足v=v'0-222n B LmR x.要使导轨右端不碰到障碍物,则缓冲车与障碍物C碰撞前,导轨右端与滑块K的cd边距离至少多大?专题十一 电磁感应规律的综合应用1. C2. D3. CD4. AD5. AC6. C7. (1) 0t 0时间内,回路中的电流由磁场变化产生,由法拉第电磁感应定律有回路中感应电动势E=ΔΔt Φ=00LdB t ,根据闭合电路欧姆定律I=ER r +=00Ld ()B R r t +,由楞次定律可得,流过电阻R 的电流方向是M →P.(2) 由题意,金属棒进入磁场后电阻上电流保持不变,则金属棒匀速运动, 所受安培力为F=B 0IL,则mgsin θ-μmgcos θ-B 0IL=0,得μ=tan θ-2200dcos ()B L mg R r t θ+.(3) 导体棒进入磁场中有E=B 0Lv=00LdB t , 导体棒在磁场中运动的时间t=dv =t 0,根据焦耳定律有Q=I 2R(t 0+t)=2220202R()B L d R r t +. 8. (1) 缓冲车以速度v 0碰撞障碍物后滑块K 静止,滑块相对磁场的速度大小为v 0,线圈中产生的感应电动势E 0=nBLv 0.(2)由法拉第电磁感应定律E=n ΔΔt,其中ΔΦ=BL2,由电流计算公式I=ER,I=qt,代入计算得q=n2 BL R,由功能关系得Q=12m20v.(3)当缓冲车的最大速度为v'0,碰撞后滑块K静止,滑块相对磁场的速度大小为v'0.线圈中产生的感应电动势E=nBLv'0,线圈中的电流I=E R,线圈ab边受到的安培力F=nBIL,依题意F=Fm ,解得v'0=m222F Rn B L,由题意知v=v'0-222n B LmR x,当v=0时,解得x=2m444F mRn B L.。
五年高考(2014-2018)三年模拟(2016-2018)物理试题分类汇编:专题20 电与磁综合计算题

五年高考(2014-2018)三年模拟(2016-2018)物理试题分类汇编:专题20 电与磁综合计算题1.【2014·安徽卷】(14分)如图所示,充电后的平行板电容器水平放置,电容为C ,极板间的距离为d ,上板正中有一小孔。
质量为m 、电荷量为+q 的小球从小孔正上方高h 处由静止开始下落,穿过小孔到达下极板处速度恰为零(空气阻力忽略不计,极板间电场可视为匀强电场,重力加速度为g )。
求:(1)小球到达小孔处的速度;(2)极板间电场强度的大小和电容器所带电荷量; (3)小球从开始下落运动到下极板处的时间。
【答案】(1)gh v 2=;(2)()qd d h mg E +=,()q d h m g C Q +=;(3)ghhdh t 2+=试题分析:(1)由 gh v 22=可得gh v 2=(2)在极板间带电小球受重力和电场力,有ma qE mg =-,ad v 202=-,可得()qdd h mg E +=由Ed U =、CU Q =可得()qd h m g CQ +=(3)由2121gt h =,20at v +=,21t t t += 综合可得:gh h d h t 2+=【考点定位】匀变速直线运动的规律、电容器的电容、匀强电场中电场强度与电势差的关系2.(20 分)【2014·全国大纲卷】如图,在第一象限存在匀强磁场,磁感应强度方向垂直于纸面(xy 平面)向外;在第四象限存在匀强电场,方向沿x 轴负向。
在y 轴正半轴上某点以与x 轴正向平行、大小为v 0的速度发射出一带正电荷的粒子,该粒子在(d ,0)点沿垂直于x 轴的方向进人电场。
不计重力。
若该粒子离开电场时速度方向与y 轴负方向的夹角为θ,求:(1)电场强度大小与磁感应强度大小的比值; (2)该粒子在电场中运动的时间。
【答案】 (1)B E =θv 20tan 21;(2)t =θv dtan 20由①②③④⑤式联立解得:B E=201tan 2v θ(2)由④⑤式联立解得:t =02tan dv θ【考点定位】本题主要考查了带电粒子在交替复合场中的运动问题,属于中档题。
2014年高考物理分类汇编(高考真题+模拟新题)热学(1)

H 单元 热学分子动理论10.【选修3-3】(2)(6分)题10图为一种减震垫,上面布满了圆柱状薄膜气泡,每个气泡内充满体积为V 0、压强为p 0的气体,当平板状物品平放在气泡上时,气泡被压缩,若气泡内气体可视为理想气体,其温度保持不变,当体积压缩到V 时气泡与物品接触面的面积为S ,求此时每个气泡内气体对接触面处薄膜的压力.题10图10.[答案] (2)V 0Vp 0S 本题第一问考查分子动理论、内能的相关知识,第二问考查理想气体状态方程和受力分析.[解析] (2)设压力为F ,压缩后每个气泡内的气体压强为p .由p 0V 0=pV 和F =pS得F =V 0Vp 0S 29.[2014·福建卷Ⅰ] (1)如图,横坐标v 表示分子速率,纵坐标f (v )表示各等间隔速率区间的分子数占总分子数的百分比.图中曲线能正确表示某一温度下气体分子麦克斯韦速率分布规律的是________.(填选项前的字母)A .曲线①B .曲线②C .曲线③D .曲线④29.[答案] (1)D[解析] (1)速率较大或较小的分子占少数,接近平均速率的分子占多数,分子速率不可能为0,也不可能为无穷大,因此只有曲线④符合要求.13.[2014·北京卷] 下列说法中正确的是( )A .物体温度降低,其分子热运动的平均动能增大B.物体温度升高,其分子热运动的平均动能增大C.物体温度降低,其内能一定增大D.物体温度不变,其内能一定不变13.B 本题考查分子动理论、内能相关知识.温度是分子平均动能的宏观标志.物体温度降低,其分子热运动的平均动能减小,反之,其分子热运动的平均动能增大,A错,B 对;改变内能的两种方式是做功和热传递,由ΔU=W+Q知,温度降低,分子平均动能减小,但是做功情况不确定,故内能不确定,C、D错.1.(2014·云南文登二模)分子动理论较好地解释了物质的宏观热学性质.据此可判断下列说法中正确的是( )A.布朗运动是指液体分子的无规则运动B.分子间的相互作用力随着分子间距离的增大,一定先减小后增大C.一定质量的气体温度不变时,体积减小,压强增大,说明每秒撞击单位面积器壁的分子数增多D.气体从外界吸收热量,气体的内能一定增大1.C [解析] 布朗运动是悬浮颗粒的无规则运动,选项A错误;分子间的相互作用力随着分子间距离的增大,一定先减小后增大再减小,选项B错误;一定质量的气体温度不变时,单个分子撞击器壁的平均作用力一定,体积减小,单位体积分子的个数增多,每秒撞击单位面积器壁的分子数增多,选项C正确;气体从外界吸收热量,做功情况不明,气体的内能变化无法确定,选项D错误.3.(2014·北京朝阳区模拟)给一定质量的温度为0 ℃的水加热,在水的温度由0 ℃上升到4 ℃的过程中,水的体积随着温度的升高反而减小,我们称之为“反常膨胀”.某研究小组通过查阅资料知道:水分子之间存在着一种结合力,这种结合力可以形成多分子结构,在这种结构中,水分子之间也存在着相互作用的势能.在水反常膨胀的过程中,体积减小是由于水分子之间的结构发生了变化,但所有水分子间的总势能是增大的.关于这个问题,下列说法中正确的是( )A.水分子的平均动能减小,吸收的热量一部分用于分子间的结合力做正功B.水分子的平均动能减小,吸收的热量一部分用于克服分子间的结合力做功C.水分子的平均动能增大,吸收的热量一部分用于分子间的结合力做正功D.水分子的平均动能增大,吸收的热量一部分用于克服分子间的结合力做功3.D [解析] 温度升高,水分子的平均动能增大,体积减小,分子间的结合力做负功,水分子间的总势能增大,选项D正确.5.(2014·上海嘉定区一模)图X252中能正确地反映分子间的作用力f和分子势能E p随分子间的距离r变化的图像是( )图X2525.B [解析] 分子间的作用力f=0的位置对应分子势能E p最小的位置,能正确反映分子间的作用力f和分子势能E p随分子间的距离r变化的图像是图B.固体、液体、气体的性质33.[物理——选修3-3][2014·新课标全国卷Ⅰ] (1)一定量的理想气体从状态a开始,经历三个过程ab、bc、ca回到原状态.其p-T图像如图所示.下列判断正确的是________.A.过程ab中气体一定吸热B.过程bc中气体既不吸热也不放热C.过程ca中外界对气体所做的功等于气体所放的热D.a、b和c三个状态中,状态a分子的平均动能最小E.b和c两个状态中,容器壁单位面积单位时间内受到气体分子撞击的次数不同33.(1)ADE [解析] 本题考查了气体性质.因为pV T =C ,从图中可以看出,a →b 过程p T 不变,则体积V 不变,因此a →b 过程外力做功W =0,气体温度升高,则ΔU >0,根据热力学第一定律ΔU =Q +W 可知Q >0,即气体吸收热量,A 正确;b →c 过程气体温度不变,ΔU =0,但气体压强减小,由pV T =C 知V 增大,气体对外做功,W <0,由ΔU =Q +W 可知Q >0,即气体吸收热量,B 错误;c →a 过程气体压强不变,温度降低,则ΔU <0,由pV T =C 知V 减小,外界对气做功,W >0,由ΔU =W +Q 可知W <Q ,C 错误;状态a 温度最低,而温度是分子平均动能的标志,D 正确;b →c 过程体积增大了,容器内分子数密度减小,温度不变,分子平均速率不变,因此容器壁单位面积单位时间受到分子撞击的次数减少了,E 正确.17.、[2014·广东卷] 用密封性好、充满气体的塑料袋包裹易碎品,如图10所示,充气袋四周被挤压时,假设袋内气体与外界无热交换,则袋内气体( )A .体积减小,内能增大B .体积减小,压强减小C .对外界做负功,内能增大D .对外界做正功,压强减小17.AC [解析] 充气袋被挤压时,气体体积减小,外界对气体做功,由于袋内气体与外界无热交换,故由热力学第一定律知,气体内能增加,故选项C 正确,选项D 错误;体积减小,内能增加,由理想气体状态方程可知压强变大,故选项A 正确,选项B 错误.16.[2014·全国卷] 对于一定量的稀薄气体,下列说法正确的是( )A .压强变大时,分子热运动必然变得剧烈C.压强变大时,分子间的平均距离必然变小16.BD [解析] 本题考查气体性质.压强变大,温度不一定升高,分子热运动不一定变得剧烈,A错误;压强不变,温度也有可能升高,分子热运动可能变得剧烈,B正确;压强变大,体积不一定减小,分子间的距离不一定变小,C错误;压强变小,体积可能减小,分子间的距离可能变小,D正确.6.(2014·洛阳名校联考)图X253甲是晶体物质微粒在平面上的排列情况,图中三条等长线AB、AC、AD上物质微粒的数目不同,由此得出晶体具有________的性质.如图乙所示,液体表面层分子比较稀疏,分子间的距离大于分子平衡时的距离r0,因此表面层分子间作用力的合力表现为________.甲乙图X2536.各向异性引力[解析] 沿不同方向物质微粒的数目不同,使得晶体具有各向异性.当分子间的距离等于分子间的平衡距离时,分子间的引力等于斥力,合力为0;当分子间的距离大于分子间的平衡距离时,引力和斥力都减小,但斥力减小得快,合力表现为引力.3. (2014·福州质检)如图X261所示,U形气缸固定在水平地面上,用重力不计的活塞封闭着一定质量的气体,已知气缸不漏气,活塞移动过程无摩擦.初始时,外界大气压强为p0,活塞紧压小挡板.现缓慢升高缸内气体的温度,则图X262中能反映气缸内气体的压强p随热力学温度T变化的图像是( )图X261图X2623.B [解析] 缓慢升高缸内气体的温度,当缸内气体的压强p<p0时,气体的体积不变,由查理定律知p =p 1TT 1,故缸内气体的压强p 与热力学温度T 呈线性关系;当气缸内气体的压强p =p 0时发生等压变化.正确的图像为图B.8.(2014·唐山一模)如图X266所示,密闭容器有进气口和出气口可以和外部连通,容器的容积为V 0,将进气口和出气口关闭,此时内部封闭的气体的压强为p 0,将气体缓慢加热,使气体的温度由T 0=300 K 升至T 1=350 K.(1)求此时气体的压强.(2)保持T 1=350 K 不变,缓慢由出气口抽出部分气体,使气体的压强再回到p 0.求容器内剩余气体的质量与原来质量的比值.图X2668. (1)76p 0 (2)67[解析] (1)设升温后气体的压强为p 1,由查理定律得p 0T 0=p 1T 1 代入数据得p 1=76p 0. (2)抽气过程可等效为等温膨胀过程,设膨胀后气体的体积为V ,由玻意耳定律得 p 1V 0=p 0V解得V =76V 0 设剩余气体的质量与原来质量的比值为k ,由题意得k =V 0V解得k =67. 内能 热力学定律10.【选修3-3】(1)(6分)[2014·重庆卷] 重庆出租车常以天然气作为燃料,加气站储气罐中天然气的温度随气温升高的过程中,若储气罐内气体体积及质量均不变,则罐内气体(可视为理想气体)( )A.压强增大,内能减小B.吸收热量,内能增大C.压强减小,分子平均动能增大D.对外做功,分子平均动能减小10.[答案] (1)B37.(12分)【物理-3-3】[2014·山东卷] (1)如图所示,内壁光滑、导热良好的气缸中用活塞封闭有一定质量的理想气体.当环境温度升高时,缸内气体________.(双选,填正确答案标号) a.内能增加b.对外做功c.压强增大d.分子间的引力和斥力都增大37.[答案] (1)ab[解析] (1)根据理想气体状态方程,缸内气体压强不变,温度升高,体积增大,对外做功.理想气体不计分子间的作用力,温度升高,内能增加.选项a、b正确.17.、[2014·广东卷] 用密封性好、充满气体的塑料袋包裹易碎品,如图10所示,充气袋四周被挤压时,假设袋内气体与外界无热交换,则袋内气体( )A.体积减小,内能增大B.体积减小,压强减小C.对外界做负功,内能增大D.对外界做正功,压强减小17.AC [解析]充气袋被挤压时,气体体积减小,外界对气体做功,由于袋内气体与外界无热交换,故由热力学第一定律知,气体内能增加,故选项C 正确,选项D 错误;体积减小,内能增加,由理想气体状态方程可知压强变大,故选项A 正确,选项B 错误.2.(2014·北京顺义测试)如图G102所示,固定在水平面上的气缸内封闭着一定质量的理想气体,气缸壁和活塞绝热性能良好,气缸内气体分子间相互作用的势能忽略不计,则以下说法正确的是( )A .使活塞向左移动,气缸内气体对外界做功,内能减少B .使活塞向左移动,气缸内气体内能增大,温度升高C .使活塞向左移动,气缸内气体压强减小D .使活塞向左移动,气缸内气体分子无规则运动的平均动能减小2.B [解析] 使活塞向左移动,外界对气缸内气体做功,活塞绝热,Q =0,由热力学第一定律可知,内能增大,温度升高,由pV T =C 可知,压强增大,选项B 正确.9.(2014·烟台一模)某次科学实验中,从高温环境中取出一个如图X267所示的圆柱形导热气缸,把它放在大气压强p 0=1 atm 、温度t 0=27 ℃的环境中自然冷却.该气缸内壁光滑,容积V =1 m 3,开口端有一厚度可忽略的活塞.开始时,气缸内密封有温度t =447 ℃、压强p = atm 的理想气体,将气缸开口向右固定在水平面上,假设气缸内气体的所有变化过程都是缓慢的.求:(1)活塞刚要向左移动时,气缸内气体的温度t 1;(2)最终气缸内气体的体积V 1;(3)在整个过程中,气缸内气体对外界________(选填“做正功”“做负功”或“不做功”),气缸内气体放出的热量________(选填“大于”“等于”或“小于”)气体内能的减少量.图X2679.(1) 327 ℃ (2) 0.5 m 3 (3)做负功 大于[解析] (1)气体做等容变化,由查理定律得p T =p 0T 1 解得T 1=600 K ,即t 1=327 ℃.(2)由理想气体状态方程得pV T =p 0V 1T 0解得V 1=0.5 m 3.(3)体积减小,气缸内气体对外界做负功;由ΔU =W +Q 知,气缸内气体放出的热量大于气体内能的减少量.实验:用油膜法估测分子的大小7.(2014·孝感二模)在“用油膜法估测分子的大小”的实验中,用注射器将一滴油酸酒精溶液滴入盛水的浅盘里,待水面稳定后,将玻璃板放在浅盘上,在玻璃板上描出油膜的轮廓,随后把玻璃板放在坐标纸上,其形状如图X254所示,坐标纸上正方形小方格的边长为10 mm ,该油酸膜的面积是__________m 2;若一滴油酸酒精溶液中含有纯油酸的体积是4×10-6 mL ,则油酸分子的直径是__________m .(上述结果均保留1位有效数字)图X2547.8×10-3 5×10-10[解析] 正方形小方格的个数约为80个,油膜面积 S =80×1 cm 2=8×10-3 m 2油酸分子的直径d =V S =4×10-128×10-3 m =5×10-10 m. 热学综合37.(12分)【物理-3-3】[2014·山东卷](1)如图所示,内壁光滑、导热良好的气缸中用活塞封闭有一定质量的理想气体.当环境温度升高时,缸内气体________.(双选,填正确答案标号)a.内能增加b.对外做功c.压强增大d.分子间的引力和斥力都增大(2)一种水下重物打捞方法的工作原理如图所示.将一质量M=3×103kg、体积V0=0.5 m3的重物捆绑在开口朝下的浮筒上.向浮筒内充入一定量的气体,开始时筒内液面到水面的距离h1=40 m,筒内气体体积V1=1 m3.在拉力作用下浮筒缓慢上升,当筒内液面到水面的距离为h2时,拉力减为零,此时气体体积为V2,随后浮筒和重物自动上浮,求V2和h2.已知大气压强p0=1×105 Pa,水的密度ρ=1×103 kg/m3,重力加速度的大小g=10 m/s2.不计水温变化,筒内气体质量不变且可视为理想气体,浮筒质量和筒壁厚度可忽略.37.[答案] (1)ab (2)2.5 m310 m[解析] (1)根据理想气体状态方程,缸内气体压强不变,温度升高,体积增大,对外做功.理想气体不计分子间的作用力,温度升高,内能增加.选项a、b正确.(2)当F=0时,由平衡条件得Mg=ρg(V0+V2)①代入数据得V2=2.5 m3②设筒内气体初态、末态的压强分别为p1、p2,由题意得p1=p0+ρgh1③p2=p0+ρgh2④在此过程中筒内气体温度和质量不变,由玻意耳定律得p 1V 1=p 2V 2⑤联立②③④⑤式,代入数据得h 2=10 m ⑥(2)一定质量的理想气体被活塞封闭在竖直放置的圆柱形气缸内,气缸壁导热良好,活塞可沿气缸壁无摩擦地滑动.开始时气体压强为p ,活塞下表面相对于气缸底部的高度为h ,外界的温度为T 0.现取质量为m 的沙子缓慢地倒在活塞的上表面,沙子倒完时,活塞下降了h 4.若此后外界的温度变为T ,求重新达到平衡后气体的体积.已知外界大气的压强始终保持不变,重力加速度大小为g .(2)解:设气缸的横载面积为S ,沙子倒在活塞上后,对气体产生的压强为Δp ,由玻意耳定律得phS =(p +Δp )⎝ ⎛⎭⎪⎫h -14h S ① 解得Δp =13p ② 外界的温度变为T 后,设活塞距底面的高度为h ′.根据盖一吕萨克定律,得⎝ ⎛⎭⎪⎫h -14h S T 0=h ′S T ③解得 h ′=3T4T 0h ④据题意可得Δp =mg S ⑤气体最后的体积为V =Sh ′⑥联立②④⑤⑥式得V =9mghT 4pT 0.⑦ 9.(2014·石家庄二模)如图G107所示,两端开口的气缸水平固定,A 、B 是两个厚度不计的活塞,可在气缸内无摩擦地滑动,其面积分别为S 1=20 cm 2、S 2=10 cm 2,它们之间用一根细杆连接,B 通过水平细绳绕过光滑的定滑轮与质量为M =2 kg 的重物C 连接,静止时气缸中气体的温度T 1=600 K ,气缸两部分的气柱长均为L ,已知大气压强p 0=1×105 Pa ,g 取10 m/s 2,缸内气体可看作理想气体.(1)求活塞静止时气缸内气体的压强;(2)若降低气缸内气体的温度,当活塞A 缓慢向右移动12L 时,求气缸内气体的温度. 图G1079.(1)×105 Pa (2)500 K[解析] (1)设活塞静止时气缸内气体的压强为p 1,活塞受力平衡,则 p 1S 1+ p 0S 2= p 0S 1+ p 1S 2+Mg代入数据解得压强p 1=×105 Pa.(2)由活塞A 受力平衡可知缸内气体的压强没有变化,由盖·吕萨克定律得S 1L +S 2LT 1=S 1L 2+S 23L 2T 2代入数据解得T 2=500 K.。
高考物理一轮总复习专题10电磁感应第2讲法拉第电磁感应定律自感涡流课后提能演练
专题十 第2讲知识巩固练1.如图甲所示,100匝的线圈(图中只画了2匝)两端A 、B 与一个理想电压表相连.线圈内有指向纸内方向的匀强磁场,线圈中的磁通量在按图乙所示规律变化.下列说法正确的是( )A .A 端应接电压表正接线柱,电压表的示数为150 VB .A 端应接电压表正接线柱,电压表的示数为50.0 VC .B 端应接电压表正接线柱,电压表的示数为150 VD .B 端应接电压表正接线柱,电压表的示数为50.0 V【答案】B 【解析】线圈相当于电源,由楞次定律可知A 相当于电源的正极,B 相当于电源的负极,故A 应该与理想电压表的正接线柱相连.由法拉第电磁感应定律得E =nΔΦΔt =100×0.15-0.10.1V =50.0 V ,电压表的示数为50.0 V ,故B 正确.2.如图所示,闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场.若第一次用0.3 s 时间拉出,外力所做的功为W 1,通过导线截面的电荷量为q 1;第二次用0.9 s 时间拉出,外力所做的功为W 2,通过导线截面的电荷量为q 2,则( )A .W 1<W 2,q 1<q 2B .W 1<W 2,q 1=q 2C .W 1>W 2,q 1=q 2D .W 1>W 2,q 1>q 2【答案】C 【解析】第一次用0.3 s 时间拉出,第二次用0.9 s 时间拉出,两次速度比为3∶1,由E =BLv ,两次感应电动势比为3∶1,两次感应电流比为3∶1,由于F 安=BIL ,两次安培力比为3∶1,由于匀速拉出匀强磁场,所以外力比为3∶1,根据功的定义W =Fx ,所以W 1∶W 2=3∶1;根据电量q =I Δt ,感应电流I =E R ,感应电动势E =ΔΦΔt ,得q =ΔΦR,所以q 1∶q 2=1∶1,故W 1>W 2,q 1=q 2.故C 正确.3.(2021年龙岩二模)如图所示,abcd 为水平放置的平行“”形光滑金属导轨,导轨间距为l ,电阻不计.导轨间有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B .金属杆放置在导轨上,与导轨的接触点为M 、N ,并与导轨成θ角.金属杆以ω 的角速度绕N 点由图示位置匀速转动到与导轨ab 垂直,转动过程中金属杆与导轨始终接触良好,金属杆单位长度的电阻为r .则在金属杆转动的过程中( )A .M 、N 两点电势相等B .金属杆中感应电流的方向由N 流向MC .电路中感应电流的大小始终为Bl ω2rD .电路中通过的电荷量为Bl2r tan θ【答案】A 【解析】根据题意可知,金属杆MN 为电源,导轨为外电路,由于导轨电阻不计,外电路短路,M 、N 两点电势相等,A 正确;转动过程中磁通量减小,根据楞次定律可知金属杆中感应电流的方向是由M 流向N ,B 错误;由于切割磁场的金属杆长度逐渐变短,感应电动势逐渐变小,回路中的感应电流逐渐变小,C 错误;因为导体棒MN 在回路中的有效切割长度逐渐减小,所以接入电路的电阻逐渐减小,不能根据q =ΔΦR计算通过电路的电荷量,D 错误.4.(多选)如图所示的电路中,电感L 的自感系数很大,电阻可忽略,D 为理想二极管,则下列说法正确的有( )A .当S 闭合时,L 1立即变亮,L 2逐渐变亮B .当S 闭合时,L 1一直不亮,L 2逐渐变亮C .当S 断开时,L 1立即熄灭,L 2也立即熄灭D .当S 断开时,L 1突然变亮,然后逐渐变暗至熄灭 【答案】BD5.(2021年莆田质检)(多选)如图甲所示,边长为L 的正方形单匝线框水平放置,左侧一半置于沿竖直方向的匀强磁场中,线框的左侧接入电阻R ,右侧接入电容器,其余电阻不计.若磁场的磁感应强度B 随时间t 的变化规律如图乙所示(规定竖直向下为正方向),则在0~2t 0时间内( )A .电容器a 板带负电B .线框中磁通量变化为零C .线框中产生的电动势为B 0L 22t 0D .通过电阻R 的电流为B 0L 22Rt 0【答案】AC 【解析】由题图可知在0~t 0时间内磁场向上减小,根据楞次定律,可知线圈中产生逆时针方向的充电电流,则电容器a 板带负电,A 正确;因磁感应强度的变化率不为零,则线框中磁通量变化不为零,B 错误;线框中产生的电动势E =ΔΦΔt =ΔB ·12L2Δt =B 0L 22t 0,C 正确;因电动势恒定,则回路中只有瞬时的充电电流,电容器充电完毕后,回路中电流变为零,D 错误.6.(多选)如图所示,半径为2r 的弹性螺旋线圈内有垂直纸面向外的圆形匀强磁场区域,磁场区域的半径为r ,已知弹性螺旋线圈的电阻为R ,线圈与磁场区域共圆心,则以下说法正确的是( )A .保持磁场不变,线圈的半径由2r 变到3r 的过程中,有顺时针的电流B .保持磁场不变,线圈的半径由2r 变到0.5r 的过程中,有逆时针的电流C .保持半径不变,使磁场随时间按B =kt 变化,线圈中的电流为k πr 2RD .保持半径不变,使磁场随时间按B =kt 变化,线圈中的电流为2k πr2R【答案】BC 【解析】在线圈的半径由2r 变到3r 的过程中,穿过线圈的磁通量不变,则线圈内没有感应电流,故A 错误;当线圈的半径由2r 变到0.5r 的过程中,穿过线圈的磁通量减小,根据楞次定律,则有逆时针的电流,故B 正确;保持半径不变,使磁场随时间按B =kt 变化,根据法拉第电磁感应定律,有E =ΔB Δt ·πr 2=k πr 2,因此线圈中的电流I =E R=k πr 2R,故C 正确,D 错误. 7.(2021年株洲质检) 零刻度在表盘正中间的电流计,非常灵敏,通入电流后,线圈所受安培力和螺旋弹簧的弹力作用达到平衡时,指针在示数附近的摆动很难停下,使读数变得困难.在指针转轴上装上的扇形铝框或扇形铝板,在合适区域加上磁场,可以解决此困难.下列方案合理的是( )A BC D【答案】D 【解析】当指针向左偏转时,铝框或铝板可能会离开磁场,产生不了涡流,起不到电磁阻尼的作用,指针不能很快停下,A、C方案不合理,A、C错误;磁场在铝框中间,当指针偏转角度较小时,铝框不能切割磁感线,不能产生感应电流,起不到电磁阻尼的作用,指针不能很快停下,B错误,D正确.8.(2021年郑州模拟)(多选)涡流检测是工业上无损检测的方法之一.如图所示,线圈中通以一定频率的正弦式交变电流,靠近待测工件时,工件内会产生涡流,同时线圈中的电流受涡流影响也会发生变化.下列说法正确的是( )A.涡流的磁场总是要阻碍穿过工件磁通量的变化B.涡流的频率等于通入线圈的交变电流的频率C.通电线圈和待测工件间存在恒定的作用力D.待测工件可以是塑料或橡胶制品【答案】AB综合提升练9.(多选)如图甲所示,螺线管内有一平行于轴线的磁场,规定图中箭头所示方向为磁感应强度B的正方向,螺线管与U形导线框cdef相连,导线框cdef内有一半径很小的金属圆环L,圆环面积为S,圆环与导线框cdef在同一平面内.当螺线管内的磁感应强度随时间按图乙所示规律变化时,下列说法正确的是( )A .在t 1时刻,金属圆环L 内的磁通量最大,最大值Φm =B 0S B .在t 2时刻,金属圆环L 内的磁通量最大C .在t 1~t 2时间内,金属圆环L 有扩张的趋势D .在t 1~t 2时间内,金属圆环L 内有顺时针方向的感应电流 【答案】BD10.(多选)空间有磁感应强度为B 的有界匀强磁场区域,磁场方向如图所示,有一边长为L 、电阻为R 、粗细均匀的正方形金属线框abcd 置于匀强磁场区域中,ab 边跟磁场的右边界平行,若金属线框在外力作用下以速度v 向右匀速运动,下列说法正确的是( )A .当ab 边刚离开磁场时,cd 边两端的电压为3BLv4B .从ab 边到磁场的右边界至cd 边离开磁场的过程中,外力所做的功为B 2L 3vRC .从ab 边到磁场的右边界至cd 边离开磁场的过程中,外力做功的功率为B 2L 2vRD .从ab 边到磁场的右边界至cd 边离开磁场的过程中,通过线框某一截面的电量为BL 2R【答案】ABD 【解析】当ab 边刚离开磁场时,线框只有cd 边切割磁感线,产生的电动势为E =BLv ,cd 边为等效电源,两端的电压为闭合电路的路端电压,电路等价为四个电阻串联,cd 边为一个内阻R 4,外电路为三个R 4的电阻,故有U dc =E R 4+3R 4×3·R 4=3BLv4,故A正确;从ab 边到磁场的右边界至cd 边离开磁场的匀速过程,产生的恒定电流为I =E R,由动能定理W F 外-W F 安=0,由功的定义W F 安=F 安·L =BIL ·L ,可解得W F 外=B BLv R L 2=B 2L 3vR ,故B 正确;由能量守恒定律P F 外·t -P F 安·t =0,可得P F 外=P F 安=F 安·v =B BLv R L ·v =B 2L 2v 2R,故C 错误;根据电量的定义q =I ·Δt ,I =ER,E =ΔΦΔt ,联立可得q =ΔΦR,从ab 边到磁场的右边界到cd 边离开磁场的过程中,磁通量的变化量为ΔΦ=B ΔS =BL 2,可得q=BL 2R,故D 正确. 11.如图所示,匀强磁场的磁感应强度方向竖直向上,大小为B 0,用电阻率为ρ,横截面积为S 的导线做成的边长为l 的正方形线框abcd 水平放置,OO ′为过ad 、bc 两边中点的直线,线框全部都位于磁场中.现把线框右半部分固定不动,而把线框左半部分以OO ′为轴向上转动60°,如图中虚线所示.(1)求转动过程中通过导线横截面的电荷量;(2)若转动后磁感应强度随时间按B =B 0+kt 变化(k 为常量),求出磁场对线框ab 边的作用力大小随时间变化的关系式.解:(1)线框在转动过程中产生的平均感应电动势 E =ΔΦΔt=B 0·12l 2cos 60°Δt=B 0l 24Δt, ①在线框中产生的平均感应电流I =E R,② R =ρ4l S,③ 转动过程中通过导线横截面的电荷量q =I Δt , ④ 联立①~④解得q =B 0lS16ρ.⑤(2)若转动后磁感应强度随时间按B =B 0+kt 变化,在线框中产生的感应电动势大小E =ΔB ·S Δt=⎝ ⎛⎭⎪⎫12l 2cos 60°+l 22ΔB Δt=3l24k ,⑥在线框中产生的感应电流I =E R,⑦线框ab 边所受安培力的大小F =BIl ,⑧联立⑥~⑧解得F =(B 0+kt )3kl 2S16ρ.。
高考物理一轮总复习专题10电磁感应第3讲电磁感应定律的综合应用课后提能演练
专题十 第3讲知识巩固练1.如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R ,质量不能忽略的金属棒与两导轨始终保持垂直并接触良好且无摩擦,棒与导轨的电阻均不计.整个装置放在匀强磁场中,磁场方向与导轨平面垂直,棒在竖直向上的恒力F 作用下加速上升一段时间,则力F 做的功与安培力做的功的代数和等于( )A .棒的机械能增加量B .棒的动能增加量C .棒的重力势能增加量D .电阻R 上放出的热量【答案】C 【解析】棒受重力G 、拉力F 和安培力F A 的作用.由动能定理W F +W G +W 安=ΔE k ,得W F +W 安=ΔE k +mgh ,即力F 做的功与安培力做功的代数和等于机械能的增加量,A 、B 错误,C 正确;电阻R 上放出的热量等于克服安培力所做的功,D 错误.2.(多选)如图所示,水平地面上方矩形区域内有垂直纸面向里的匀强磁场,两个边长不等(左侧线圈边长长)的正方形单匝闭合线圈,分别用同种材料、不同粗细(右侧线圈粗)的均匀导线绕制而成.两线圈下边在距离磁场上边界h 高处由静止开始自由下落,再进入磁场,磁场上下边界间距为d (d 略大于线圈边长),最后落到地面上.运动过程中,线圈平面始终保持在竖直平面内且下边平行于磁场上边界,则下列判断正确的是( )A .两线圈进入磁场的过程中受到的安培力一定不相等B .整个过程中通过两线圈导线截面的电荷量可能相等C .两线圈落至地面时速度大小一定相等D .两线圈进入磁场过程的加速度一定时刻相等【答案】BD 【解析】由电阻定律有R =4L Sρ,(ρ为材料的电阻率,L 为线圈的边长,S 为导线的横截面积),线圈的质量为 m =ρ0S ·4L (ρ0为材料的密度);线圈从同一高度下落,到达磁场边界时具有相同的速度v ,切割磁感线产生感应电流,受到磁场的安培力大小为F =B 2L 2v R =B 2LvS 4ρ,由于LS 的大小不知道,故无法判断安培力的大小,A 错误;根据电荷量的推导公式可得q =ΔΦR =BLS 4ρ,如果LS 相等,则整个过程中通过两线圈导线截面的电荷量相等,B 正确;当线圈的下边刚进入磁场时其加速度为a ,根据牛顿第二定律可得mg -BIL =ma ,解得a =g -Bv 16ρ0.大线圈和小线圈进入磁场的过程先同步运动,由于小线圈刚好全部进入磁场中时,大线圈由于边长较长还没有全部进入磁场,小线圈完全进入磁场后做加速度为g 的匀加速运动,而大线圈仍先做加速度小于g 的变加速运动,完全进入磁场后再做加速度为g 的匀加速运动,设大线圈落地速度为v 1,小线圈落地速度为v 2,两线圈匀加速运动的位移相同,所以落地速度关系为v 1<v 2,C 错误、D 正确.3.(2022届厦门名校质检)如图所示,PQ 、MN 是放置在水平面内的光滑导轨,GH 是长度为L 、电阻为r 的导体棒,其中点与一端固定的轻质弹簧连接,轻质弹簧的劲度系数为k .导体棒处在方向向下、磁感应强度为B 的匀强磁场中.图中电源是电动势为E 、内阻不计的直流电源,电容器的电容为C .闭合开关,待电路稳定后,下列选项正确的是( )A .导体棒中电流为E R 2+r +R 1B .轻质弹簧的长度增加BLE k r +R 1C .轻质弹簧的长度减少BLE k r +R 2 D .电容器带电量为E r +R 1Cr 【答案】C 【解析】根据闭合电路欧姆定律可得,导体棒中电流I =ER 2+r ,A 错误;由左手定则知导体棒受的安培力向左,则弹簧长度减少,由平衡条件BIL =k Δx ,代入I 的数值,可得Δx =BLE k R 2+r,B 错误,C 正确;电容器上的电压等于导体棒两端的电压,根据公式Q =CU 可得电容器带电量为Q =CU =ECr R 2+r ,D 错误. 4.如图甲,一矩形金属线圈abcd 垂直匀强磁场并固定于磁场中,磁场是变化的,磁感应强度B 随时间t 的变化关系图像如图乙所示,则线圈的ab 边所受安培力F 随时间t 变化的图像是图中的(规定向右为安培力F 的正方向)( )A BC D 【答案】A 【解析】0~1 s 内,由楞次定律知,感应电流的方向为adcba ,根据I =S ΔB R Δt,电流为定值,根据左手定则,ab 边所受安培力的方向向左,为负值,由F =BIL 知,安培力均匀减小;1~2 s 内,由楞次定律知,感应电流的方向为abcda ,根据I =S ΔB R Δt ,电流为定值,根据左手定则,ab 边所受安培力的方向向右,为正值,由F =BIL 知,安培力均匀增大.故B 、C 、D 错误,A 正确.5.(多选)如图,光滑水平面上两虚线之间区域内存在竖直方向的足够大的匀强磁场,磁感应强度大小为B .边长为a 的正方形导线框PQMN 沿图示速度方向进入磁场,当对角线PM 刚进入磁场时线框的速度大小为v ,方向与磁场边界成45°角,若线框的总电阻为R ,则( )A .PM 刚进入磁场时线框中的感应电流为Bav RB .PM 刚进入磁场时线框所受安培力大小为B 2a 2v RC .PM 刚进入磁场时两端的电压为Bav RD .PM 进入磁场后线框中的感应电流将变小【答案】AD 【解析】PM 刚进入磁场时有效的切割长度等于a ,产生的感应电动势为E=Bav ,感应电流为I =E R =Bav R ,故A 正确;NM 边所受的安培力大小为F 1=BIa =B 2a 2v R,方向垂直NM 向下.PN 边所受的安培力大小为F 2=BIa =B 2a 2v R,方向垂直PN 向下,线框所受安培力大小F =F 21+F 22=2B 2a 2v R ,故B 错误;PM 两端电压为U =I ·R 2=Bav2,故C 错误; PM 进入磁场后,有效的切割长度逐渐减小,感应电动势逐渐减小,感应电流将减小,故D 正确.6.如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计,阻值为R 的导体棒垂直于导轨放置,且与导轨接触良好.导轨所在空间存在匀强磁场,匀强磁场与导轨平面垂直,t =0时,将开关S 由1掷向2,若分别用q 、i 、v 和a 表示电容器所带的电荷量、棒中的电流、棒的速度大小和加速度大小,则下图所示的图像中正确的是( )A BCD 【答案】D综合提升练 7.(多选)如图所示,倾角为θ=37°的足够长的平行金属导轨固定在水平面上,两导体棒ab 、cd 垂直于导轨放置,空间存在的垂直导轨平面向上的匀强磁场,磁感应强度大小为B .现给导体棒ab 一沿导轨平面向下的初速度v 0使其沿导轨向下运动,已知两导体棒质量均为m ,电阻相等,两导体棒与导轨之间的动摩擦因数均为μ=0.75,导轨电阻忽略不计.从ab 开始运动到两棒相对静止的整个运动过程中两导体棒始终与导轨保持良好的接触,下列说法正确的是( )A .导体棒cd 中产生的焦耳热为14mv 20 B .导体棒cd 中产生的焦耳热为18mv 20 C .当导体棒cd 的速度为14v 0时,导体棒ab 的速度为12v 0D .当导体棒ab 的速度为34v 0时,导体棒cd 的速度为14v 0 【答案】BD 【解析】由题意可知mg sin 37°=μmg cos 37°,则对两棒的系统沿轨道方向的动量守恒,当最终稳定时mv 0=2mv ,解得v =0.5v 0,则回路产生的焦耳热为Q =12mv 20-12×2mv 2=14mv 20,则导体棒cd 中产生的焦耳热为Q cd =Q ab =12Q =18mv 20,A 错误,B 正确;当导体棒cd 的速度为14v 0时,则由动量守恒有mv 0=m ·14v 0+mv ab ,解得v ab =34v 0,C 错误;当导体棒ab 的速度为34v 0时,则由动量守恒有mv 0=m ·34v 0+mv cd ,解得v cd =14v 0,D 正确. 8.(多选)如图甲所示,一个刚性圆形线圈与电阻R 构成闭合回路,线圈平面与其所处的匀强磁场方向垂直,磁场的磁感应强度B 随时间t 的变化规律如图乙所示.关于线圈中产生的感应电动势E 、电阻R 消耗的功率P 随时间t 变化的图像,可能正确的是( )甲 乙A B C D【答案】BD 【解析】根据图像知,0~0.5T 时间内磁场增强,根据楞次定律,线圈中的感应电流沿逆时针方向;0.5T ~T 时间内磁场减弱,由楞次定律,线圈中的感应电流沿顺时针方向,故A 错误;根据法拉第电磁感应定律E =ΔΦΔt =ΔB ΔtS ,因为0~0.5T 和0.5T ~T 时间内磁感应强度的变化率为定值且绝对值相等,所以感应电动势大小不变,故B 正确;根据I =E R 总,整个过程中电流大小不变,由P =I 2R 知电阻R 消耗的功率不变,故C 错误,D 正确.9.两根足够长的平行光滑金属导轨水平放置,匀强磁场垂直轨道平面向下,两导轨之间连接阻值为R 的电阻.在导轨上放一金属棒ab ,ab 始终与导轨垂直,如图所示.若在ab 棒上施加水平恒力F 使其从静止开始向右运动,下列说法正确的是( )A .金属棒ab 中感应电流的方向a →bB .金属棒ab 所受安培力大小始终保持不变C .金属棒ab 最终将做匀速直线运动D .运动过程中水平恒力F 对金属棒ab 所做的功全部转化为金属棒的动能【答案】C 【解析】根据右手定则可得通过ab 的电流方向由b 到a ,A 错误;设金属棒ab 运动的速度大小为v ,金属棒ab 的感应电动势E =BLv ,设金属棒ab 的电阻为r ,则电路电流I =E R +r =BLv R +r ,金属棒ab 受到的安培力F B =BIL =B 2L 2v R +r ,由于金属棒ab 的速度增大,所以金属棒ab 受到的安培力增大.金属棒ab 的加速度大小为a =F -F B m =F m -B 2L 2v m R +r,由于速度增大,金属棒ab 的加速度减小,所以金属棒ab 做加速度减小的加速直线运动,当a =0时,金属棒ab 的速度最大,金属棒ab 做匀速直线运动,所以金属棒ab 所受安培力大小先增大后保持不变,B 错误,C 正确;对金属棒ab ,根据动能定理可得W F-W 安=12mv 2-0,可得W F =12mv 2+W 安,所以运动过程中水平恒力F 对金属棒ab 所做的功等于金属棒ab 的动能和电路产生的全部焦耳热之和,D 错误.10.如图所示,两金属杆ab 和cd 长均为l ,电阻均为R ,质量分别为M 和m (M >m ),用两根质量和电阻均可忽略且不可伸长的柔软导线将它们连成闭合回路,并悬挂在水平、光滑、不导电的圆棒两侧.两金属杆都处在水平位置,整个装置处在一与回路平面相垂直的匀强磁场中,磁感应强度为B .若金属杆ab 正好匀速向下运动,求其运动的速度.解:方法一 假设磁感应强度B 的方向垂直纸面向里,ab 杆向下匀速运动的速度为v ,则ab 杆切割磁感线产生的感应电动势大小E i =Blv ,方向a →b ;cd 杆以速度v 向上切割磁感线运动产生的感应电动势大小E i ′=Blv ,方向d →c .在闭合回路中产生a →b →d →c →a 方向的感应电流I ,据闭合电路欧姆定律,知 I =E i +E i ′2R =2Blv 2R =Blv R, ab 杆受磁场作用的安培力F 1方向向上,cd 杆受的安培力F 2方向向下,F 1、F 2的大小相等,有F 1=F 2=BIl =B 2l 2v R, 对ab 杆应有F =Mg -F 1,对cd 杆应有F =F 2+mg ,解得v =M -m gR 2B 2l2. 方法二 若把ab 、cd 和柔软导线视为一个整体,因M >m ,故整体动力为(M -m )g ,ab 向下、cd 向上运动时,穿过闭合回路的磁通量发生变化,根据电磁感应定律判断回路中产生感应电流,根据楞次定律知I 感的磁场要阻碍原磁场的磁通量的变化,即阻碍ab 向下,cd 向上运动,即F 安为阻力.整体受到的动力与安培力满足平衡条件,即(M -m )g =2B 2l 2v R . 则可解得v .方法三 整个回路视为一整体系统,因其速度大小不变,故动能不变,ab 向下,cd 向上运动过程中,因Mg >mg ,系统的重力势能减少,将转化为回路的电能,根据能量守恒定律,重力的机械功率(单位时间内系统减少的重力势能)要等于电功率(单位时间内转化的回路中的电能).所以有Mgv -mgv =E 2总R 总=2Blv 22R.同样可解得v .。
近代物理初步-五年高考(2014-2018)三年模拟(2016-2018)物理----精校解析Word版
五年高考真题 2014----20182014年高考真题1.【2014·天津卷】下列说法正确确的是A.玻尔对氢原子光谱的研究导致原子的核式结构模型的建立B.可利用某些物质在紫外线照射下发出荧光来设计防伪措施C.天然放射现象中产生的射线都能在电场或磁场中发生偏转D.观察者与波源互相远离时接收到波的频率与波源频率不同【答案】BD【考点定位】近代物理学知识2. 【2014·上海卷】核反应方程式94Be+42He→126C+X中的X表示(A)质子(B)电子(C)光子(D)中子【答案】D【解析】试题分析:核反应方程式遵循电荷数守恒和质量数守恒,设X的质量数为a,电荷数为b,则有9412a+=+,426b+=+,可得1a=,0b=,所有对应得粒子是中子,选项D对。
考点:电荷数守恒和质量数守恒3. 【2014·上海卷】不能..用卢瑟福原子核式结构模型得出的结论是(A)原子中心有一个很小的原子核(B)原子核是由质子和中子组成的(C)原子质量几乎全部集中在原子核内(D)原子的正电荷全部集中在原子核内【答案】B考点:原子核式结构模型4.【2014·上海卷】链式反应中,重核裂变时放出的可以使裂变不断进行下去的粒子是 (A )质子 (B )中子 (C )β粒子 (D )α粒子 【答案】B 【解析】试题分析:重核裂变时放出的中子引起其他重核的裂变,可以使裂变不断进行下去,这就是链式反应,比如铀核的裂变235113797192052400U+n Te+Zr+2n →,选项B 对。
考点:链式反应5. 【2014·上海卷】在光电效应的实验结果中,与光的波动理论不矛盾...的是 (A )光电效应是瞬时发生的 (B )所有金属都存在极限频率(C )光电流随着入射光增强而变大 (D )入射光频率越大,光电子最大初动能越大 【答案】C 【解析】试题分析:按照光的波动理论,电子通过波动吸收能量,若波的能量不足以使得电子逸出,那么就需要多吸收一些,需要一个能量累积的过程,而不是瞬时的,选项A 对波动理论矛盾。
专题16+光学+电磁波+相对论-五年高考(2014-2018)三年模拟(2016-2018)Word版含解析
1.【2014·四川卷】电磁波已广泛运用于很多领域,下列关于电磁波的说法符实际的是()A.电磁波不能产生衍射现象B.常用的遥控器通过里出紫外线脉冲信号来遥控电视机C.根据多普勒效应可以判断遥远天体相对于地球的运动速度D.光在真空中运动的速度在不同惯性系中测得的数值可能不同【答案】C【考点定位】波的衍射红外线和紫外线的用途多普勒效应相对论2.【2014·上海卷】下列电磁波中,波长最长的是(A)无线电波(B)红外线(C)紫外线(D)γ射线【答案】A【解析】试题分析:所有的电磁波在真空中传播速度都相等,等于c=3×108m/s,根据波长cfλ=可判断,频率越低,波长越长,四个选项中无线电波频率最低,所有波长最长,答案A对。
考点:波长波速和频率的关系3.【2014·福建卷】如图,一束光由空气射向半圆柱体玻璃砖,O点为该玻璃砖截面的圆心,下图能正确描述其光路图的是()【答案】A【考点定位】本题考查光的折射、全反射4.【2014·全国大纲卷】在双缝干涉实验中,一钠灯发出的波长为589nm的光,在距双缝1.00m的屏上形成干涉图样。
图样上相邻两明纹中心间距为0.350cm,则双缝的间距为()A.2.06×10-7m B.2.06×10-4m C.1.68×10-4m D.1.68×10-3m【答案】 C【解析】试题分析:根据双缝干涉实验中相邻两明纹中心间距公式有:Δx=ldλ,解得:d=lxλ∆=21.000.35010-⨯×589×10-9m=1.68×10-4m,故选项C正确。
【考点定位】本题主要考查了对双缝干涉实验中相邻两明纹中心间距公式的理解与应用问题,属于中档题。
5.【2014·四川卷】如图所示,口径较大、充满水的薄壁圆柱形玻璃缸底有一发光小球,则()A.小球必须位于缸底中心才能从侧面看到小球B.小球所发的光能从水面任何区域射出C.小球所发的光从水中进入空气后频率变大D.小球所发的光从水中进入空气后传播速度变大【答案】D【解析】试题分析:只要发光小球在缸底的光线能从侧面折射出光线,就可以从侧面看到发光小球,故A选项错误;发光小球由水中射向水面的光线,存在一个全反射临界角,当入射角大于全反射临界角时,不能从水面射出,故B 选项错误;折射光不改变光的频率,故C 选项错误;由c n v =,得cv n=,而1n >,故c v >,所以D 选项正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题十 电磁感应 考点一 电磁感应现象 楞次定律 1.(2014课标Ⅰ,14,6分)在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是( )
A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化 B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化 C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化 D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化 答案 D 2.(2014大纲全国,20,6分)很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐。让条形磁铁从静止开始下落。条形磁铁在圆筒中的运动速率( ) A.均匀增大 B.先增大,后减小 C.逐渐增大,趋于不变 D.先增大,再减小,最后不变 答案 C 3.(2014广东理综,15,4分)如图所示,上下开口、内壁光滑的铜管P和塑料管Q竖直放置,小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块( )
A.在P和Q中都做自由落体运动 B.在两个下落过程中的机械能都守恒 C.在P中的下落时间比在Q中的长 D.落至底部时在P中的速度比在Q中的大 答案 C 4.(2014山东理综,16,6分)(多选)如图,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好。在向右匀速通过M、N两区的过程中,导体棒所受安培力分别用FM、FN表示。不计轨道电阻。以下叙述正确的是( )
A.FM向右 B.FN向左 C.FM逐渐增大 D.FN逐渐减小 答案 BCD 5.(2014四川理综,6,6分)(多选)如图所示,不计电阻的光滑U形金属框水平放置,光滑、竖直玻璃挡板H、P固定在框上,H、P的间距很小。质量为0.2 kg的细金属杆CD恰好无挤压地放在两挡板之间,与金属框接触良好并围成边长为1 m的正方形,其有效电阻为0.1 Ω。此时在整个空间加方向与水平面成30°角且与金属杆垂直的匀强磁场,磁感应强度随时间变化规律是B=(0.4-0.2t)T,图示磁场方向为正方向。框、挡板和杆不计形变。则( ) A.t=1 s时,金属杆中感应电流方向从C到D B.t=3 s时,金属杆中感应电流方向从D到C C.t=1 s时,金属杆对挡板P的压力大小为0.1 N D.t=3 s时,金属杆对挡板H的压力大小为0.2 N 答案 AC 6.(2014重庆理综,8,16分)某电子天平原理如图所示,E形磁铁的两侧为N极,中心为S极,两极间的磁感应强度大小均为B,磁极宽度均为L,忽略边缘效应。一正方形线圈套于中心磁极,其骨架与秤盘连为一体,线圈两端C、D与外电路连接。当质量为m的重物放在秤盘上时,弹簧被压缩,秤盘和线圈一起向下运动(骨架与磁极不接触),随后外电路对线圈供电,秤盘和线圈恢复到未放重物时的位置并静止,由此时对应的供电电流I可确定重物的质量。已知线圈匝数为n,线圈电阻为R,重力加速度为g。问
(1)线圈向下运动过程中,线圈中感应电流是从C端还是从D端流出? (2)供电电流I是从C端还是从D端流入?求重物质量与电流的关系。 (3)若线圈消耗的最大功率为P,该电子天平能称量的最大质量是多少? 答案 (1)感应电流从C端流出 (2)外加电流从D端流入 m=I (3) 考点二 法拉第电磁感应定律 自感 互感 7.(2014江苏单科,1,3分)如图所示,一正方形线圈的匝数为n,边长为a,线圈平面与匀强磁场垂直,且一半处在磁场中。在Δt时间内,磁感应强度的方向不变,大小由B均匀地增大到2B。在此过程中,线圈中产生的感应电动势为( )
A. B. C. D. 答案 B 8.(2014课标Ⅰ,18,6分)如图(a),线圈ab、cd绕在同一软铁芯上。在ab线圈中通以变化的电流。用示波器测得线圈cd间电压如图(b)所示。已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是( ) 答案 C 9.(2014课标Ⅱ,25,19分)半径分别为r和2r的同心圆形导轨固定在同一水平面内,一长为r、质量为m且质量分布均匀的直导体棒AB置于圆导轨上面,BA的延长线通过圆导轨中心O,装置的俯视图如图所示。整个装置位于一匀强磁场中,磁感应强度的大小为B,方向竖直向下。在内圆导轨的C点和外圆导轨的D点之间接有一阻值为R的电阻(图中未画出)。直导体棒在水平外力作用下以角速度ω绕O逆时针匀速转动,在转动过程中始终与导轨保持良好接触。设导体棒与导轨之间的动摩擦因数为μ,导体棒和导轨的电阻均可忽略。重力加速度大小为g。求 (1)通过电阻R的感应电流的方向和大小; (2)外力的功率。
答案 (1) 方向:由C端到D端 (2)μmgωr+ 10.(2014浙江理综,24,20分)某同学设计一个发电测速装置,工作原理如图所示。一个半径为R=0.1 m的圆形金属导轨固定在竖直平面上,一根长为R的金属棒OA,A端与导轨接触良好,O端固定在圆心处的转轴上。转轴的左端有一个半径为r=R/3的圆盘,圆盘和金属棒能随转轴一起转动。圆盘上绕有不可伸长的细线,下端挂着一个质量为m=0.5 kg的铝块。在金属导轨区域内存在垂直于导轨平面向右的匀强磁场,磁感应强度B=0.5 T。a点与导轨相连,b点通过电刷与O端相连。测量a、b两点间的电势差U可算得铝块速度。铝块由静止释放,下落h=0.3 m时,测得U=0.15 V。(细线与圆盘间没有滑动,金属棒、导轨、导线及电刷的电阻均不计,重力加速度g=10 m/s2) (1)测U时,与a点相接的是电压表的“正极”还是“负极”? (2)求此时铝块的速度大小; (3)求此下落过程中铝块机械能的损失。
答案 (1)正极 (2)2 m/s (3)0.5 J 考点三 电磁感应中的图象问题 11.(2014安徽理综,23,16分)如图1所示,匀强磁场的磁感应强度B为0.5 T,其方向垂直于倾角θ为30°的斜面向上。绝缘斜面上固定有“”形状的光滑金属导轨MPN(电阻忽略不计),MP和NP长度均为2.5 m,MN连线水平,长为3 m。以MN中点O为原点、OP为x轴建立一维坐标系Ox。一根粗细均匀的金属杆CD,长度d为3 m、质量m为1 kg、电阻R为0.3 Ω,在拉力F的作用下,从MN处以恒定速度v=1 m/s在导轨上沿x轴正向运动(金属杆与导轨接触良好)。g取10 m/s2。 (1)求金属杆CD运动过程中产生的感应电动势E及运动到x=0.8 m处电势差UCD; (2)推导金属杆CD从MN处运动到P点过程中拉力F与位置坐标x的关系式,并在图2中画出F-x关系图象; (3)求金属杆CD从MN处运动到P点的全过程产生的焦耳热。
答案 (1)金属杆CD在匀速运动中产生的感应电动势 E=Blv(l=d),解得E=1.5 V (D点电势高) 当x=0.8 m时,金属杆在导轨间的电势差为零。设此时杆在导轨外的长度为l外,则 l外=d-d、OP=,得l外=1.2 m 由楞次定律判断D点电势高,故CD两端电势差 UCD=-Bl外v,即UCD=-0.6 V (2)杆在导轨间的长度l与位置x关系是l=d=3-x 对应的电阻Rl为Rl=R,电流I= 杆受的安培力F安=BIl=7.5-3.75x 根据平衡条件得F=F安+mg sin θ F=12.5-3.75x(0≤x≤2) 画出的F-x图象如图所示。
(3)外力F所做的功WF等于F-x图线下所围的面积,即 WF=×2 J=17.5 J 而杆的重力势能增加量ΔEp=mg sin θ 故全过程产生的焦耳热Q=WF-ΔEp=7.5 J 考点四 电磁感应的综合问题
12.(2014安徽理综,20,6分)英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场。如图所示,一个半径为r的绝缘细圆环水平放置,环内存在竖直向上的匀强磁场B,环上套一带电荷量为+q的小球。已知磁感应强度B随时间均匀增加,其变化率为k,若小球在环上运动一周,则感生电场对小球的作用力所做功的大小是( ) A.0 B.r2qk C.2πr2qk D.πr2qk 答案 D 13.(2014天津理综,11,18分)如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L=0.4 m。导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B=0.5 T。在区域Ⅰ中,将质量m1=0.1 kg,电阻R1=0.1 Ω的金属条ab放在导轨上,ab刚好不下滑。然后,在区域Ⅱ中将质量m2=0.4 kg,电阻R2=0.1 Ω的光滑导体棒cd置于导轨上,由静止开始下滑。cd在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与导轨垂直且两端与导轨保持良好接触,取g=10 m/s2。问 (1)cd下滑的过程中,ab中的电流方向; (2)ab刚要向上滑动时,cd的速度v多大; (3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8 m,此过程中ab上产生的热量Q是多少。
答案 (1)由a流向b (2)5 m/s (3)1.3 J 14.(2014江苏单科,13,15分)如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L,长为3d,导轨平面与水平面的夹角为θ,在导轨的中部刷有一段长为d的薄绝缘涂层。匀强磁场的磁感应强度大小为B,方向与导轨平面垂直。质量为m的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端。导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为R,其他部分的电阻均不计,重力加速度为g。求:
(1)导体棒与涂层间的动摩擦因数μ; (2)导体棒匀速运动的速度大小v; (3)整个运动过程中,电阻产生的焦耳热Q。 答案 (1)tan θ (2) (3)2mgd sin θ- 15.(2014北京理综,24,20分)
导体切割磁感线的运动可以从宏观和微观两个角度来认识。如图所示,固定于水平面的U形导线框处于竖直向下的匀强磁场中,金属直导线MN在与其垂直的水平恒力F作用下,在导线框上以速度v做匀速运动,速度v与恒力F方向相同;导线MN始终与导线框形成闭合电路。已知导线MN电阻为R,其长度L恰好等于平行轨道间距,磁场的磁感应强度为B。忽略摩擦阻力和导线框的电阻。