继电器的工作原理
继电器的工作原理

继电器的工作原理继电器是一种常用的电控开关设备,广泛应用于各种电路控制和自动化系统中。
它可以实现电路的开关、分合、保护和信号放大等功能。
继电器的工作原理基于电磁感应和电磁吸引力,通过控制电流来实现电路的开关操作。
继电器由电磁铁和触点组成。
电磁铁由线圈和铁芯构成,线圈一端接入控制电路,另一端接入电源。
当控制电路通电时,线圈中会产生磁场,磁场会使铁芯被吸引,进而改变触点的状态。
触点是继电器中的关键部件,它有常闭触点和常开触点两种类型。
常闭触点在继电器不通电时闭合,通电时打开;常开触点则相反,在继电器不通电时打开,通电时闭合。
触点的状态决定了继电器的工作状态。
当继电器的线圈通电时,电磁铁产生的磁场会使铁芯被吸引,触点的状态随之改变。
如果继电器是用来控制电路的开关操作,那末触点的闭合或者打开就会导致被控制电路的通断。
例如,当继电器的线圈通电时,常闭触点会断开,常开触点会闭合,从而使被控制电路断开;当继电器的线圈断电时,常闭触点会闭合,常开触点会断开,从而使被控制电路闭合。
继电器还可以实现信号放大的功能。
当继电器的线圈接收到微弱的控制信号时,通过电磁感应作用,可以使触点产生较大的开关动作,从而实现信号的放大。
这种特性使得继电器在电路中起到信号放大和隔离的作用,可以将微弱的信号转换为较大的信号,从而实现对其他设备的控制。
继电器的工作原理可以用以下步骤总结:1. 控制电路通电,线圈中产生磁场。
2. 磁场使铁芯被吸引,触点的状态发生改变。
3. 触点的状态变化导致被控制电路的通断。
4. 控制电路断电,线圈中的磁场消失。
5. 铁芯失去吸引力,触点恢复原来的状态。
继电器的工作原理使其在各种电路控制和自动化系统中得到广泛应用。
例如,在家庭中,继电器可以用来控制灯光、机电和电器设备的开关;在工业领域,继电器可以用来控制生产线的启停、机电的正反转和信号的放大等;在电力系统中,继电器可以用来保护电路和设备,实现过载保护、短路保护和接地保护等功能。
继电器的原理

继电器的原理
继电器是一种控制设备,它通过电磁吸引力来控制开关,实现电路的自动控制。
继电器由电磁铁、触点和弹簧组成,当电磁铁通电时,产生磁场吸引触点闭合,断开触点时则断开。
继电器的原理主要包括电磁吸引原理、触点连接原理和弹簧原理。
首先,电磁吸引原理是继电器工作的基础。
当继电器的线圈通电时,产生磁场,磁场会使得铁芯受到吸引力,铁芯吸引触点闭合,从而实现电路的通断控制。
这种原理使得继电器可以实现对电路的远程控制,广泛应用于自动化控制系统中。
其次,触点连接原理是继电器实现电路通断的关键。
继电器的触点有常开触点
和常闭触点,当继电器线圈通电时,常开触点闭合,常闭触点断开;当线圈断电时,常开触点断开,常闭触点闭合。
这种触点连接原理使得继电器可以实现对电路的开关控制,实现了电路的自动化操作。
最后,弹簧原理是继电器实现触点连接和断开的保证。
继电器的触点是通过弹
簧来连接和断开的,当电磁铁通电时,触点闭合,弹簧受到压缩;当电磁铁断电时,触点断开,弹簧恢复原状。
这种弹簧原理使得继电器的触点可以稳定可靠地连接和断开,保证了电路的正常工作。
综上所述,继电器的原理主要包括电磁吸引原理、触点连接原理和弹簧原理。
它通过电磁吸引力来实现对电路的自动控制,是自动化控制系统中不可或缺的重要元件。
通过对继电器原理的深入理解,可以更好地应用和设计继电器,实现对电路的精确控制,提高自动化控制系统的效率和可靠性。
继电器工作原理以及电路图

继电器工作原理以及电路图
继电器工作原理:
继电器是一种通过控制小电流来实现对大电流的开关操作的装置。
它由一个电磁铁和一对触点组成。
当控制电路通电时,电流通过继电器的线圈,产生磁场。
这个磁场会吸引铁芯,使之向下运动。
当铁芯靠近底部时,触点之间的接触断开。
当控制电路断电时,线圈中的电流停止流动,磁场消失,铁芯恢复原位,触点之间的接触闭合。
根据继电器的不同类型,触点可以是常开型(NO)或常闭型(NC)。
常开型继电器在无控制信号时处于断开状态,常闭型继电器在无控制信号时处于闭合状态。
继电器工作原理电路图如下:(无标题)
[继电器工作原理电路图]
请注意,根据不同的继电器类型(如电压、电流、功率等),电路图的具体连接方式可能会有所不同。
以上电路图仅为示意图,供参考。
继电器的工作原理

继电器的工作原理继电器是一种电控开关装置,它通过控制小电流来开关大电流,常用于电气控制系统中。
继电器的工作原理基于电磁感应和电磁吸合断开的特性。
一、继电器的组成和结构继电器主要由电磁系统、触点系统和外壳组成。
1. 电磁系统: 电磁系统是继电器的核心部分,由线圈和铁芯组成。
线圈通电时产生磁场,使铁芯磁化。
铁芯磁化后,会对触点产生吸引力或排斥力。
2. 触点系统: 触点系统由固定触点和动触点组成。
当电磁系统激励时,触点会发生吸合或断开动作。
触点的材料通常是银合金,具有良好的导电性和耐磨性。
3. 外壳: 外壳是继电器的外部保护结构,通常由绝缘材料制成,能够防止外界灰尘、湿气等对继电器的影响。
二、继电器的工作原理继电器的工作原理可以分为两个过程:激励过程和动作过程。
1. 激励过程: 当线圈通电时,产生磁场使铁芯磁化。
磁化后的铁芯对触点产生吸引力,使得动触点与固定触点闭合。
此时,继电器处于激励状态,通常称为“吸合”。
2. 动作过程: 当线圈断电时,磁场消失,铁芯失去磁化。
失去磁化后的铁芯对触点产生排斥力,使得动触点与固定触点断开。
此时,继电器处于断电状态,通常称为“断开”。
继电器的工作原理可以简单描述为:通过控制线圈通断来控制触点的闭合和断开,实现对电路的开关控制。
三、继电器的应用继电器广泛应用于各种电气控制系统中,常见的应用场景包括:1. 自动化控制系统: 继电器可以实现自动化控制系统中的逻辑控制,如自动化生产线、机器人控制等。
2. 电力系统: 继电器在电力系统中用于保护和控制,如电力变压器保护、电力开关控制等。
3. 交通信号系统: 继电器用于控制交通信号灯的开关,确保道路交通的顺畅和安全。
4. 家用电器: 继电器在家用电器中用于实现电路的开关控制,如冰箱、洗衣机、空调等。
5. 汽车电子系统: 继电器在汽车电子系统中用于控制车灯、喇叭、电动窗户等设备的开关。
继电器的工作原理使得它成为电气控制系统中不可或缺的元件,它能够实现对大电流的精确控制,保护电路和设备的安全运行。
继电器的工作原理

继电器的工作原理继电器是一种电控开关设备,能够通过小电流控制大电流的通断。
它是电路中常用的控制元件,广泛应用于自动化控制系统、电力系统和通信系统等领域。
继电器的工作原理主要包括电磁吸合和机械传动两个部分。
1. 电磁吸合部分:继电器的电磁吸合部分由线圈和铁芯组成。
当通过线圈通入电流时,线圈会产生磁场,使铁芯磁化并吸引触点闭合。
线圈通入的电流称为激励电流,通常是直流电流。
当激励电流消失时,铁芯失去磁化,触点恢复原位。
2. 机械传动部分:继电器的机械传动部分由触点、弹簧和驱动机构组成。
触点是继电器的通断部分,通常由铜合金制成。
当继电器吸合时,触点闭合,电流得以通过。
当继电器释放时,触点打开,电流中断。
弹簧起到恢复触点原位的作用。
驱动机构则是通过电磁力或机械力使触点开闭。
继电器的工作过程如下:1. 通电阶段:当激励电流通过继电器线圈时,线圈产生磁场,使铁芯磁化并吸引触点闭合。
闭合后,继电器的输入端与输出端相连,电流可以通过。
这个过程称为继电器的吸合过程。
2. 断电阶段:当激励电流停止流动时,线圈的磁场消失,铁芯失去磁化,触点由于弹簧的作用恢复原位,断开输入端与输出端的连接。
这个过程称为继电器的释放过程。
继电器的工作原理基于电磁感应和机械传动的相互作用。
通过控制激励电流的开关,可以实现对继电器的通断控制。
继电器具有隔离输入和输出的功能,可以将高电压或高电流的电路与低电压或低电流的电路进行隔离,起到保护和控制的作用。
继电器的应用范围广泛,常见的应用场景包括:1. 自动化控制系统中的信号放大和转换;2. 电力系统中的保护和控制;3. 通信系统中的信号传输和转换;4. 家用电器中的开关控制等。
总结:继电器的工作原理是通过电磁吸合和机械传动实现对电路的通断控制。
电磁吸合部分由线圈和铁芯组成,通过激励电流产生磁场使触点闭合。
机械传动部分由触点、弹簧和驱动机构组成,触点闭合时电流通过,触点打开时电流中断。
继电器广泛应用于各个领域,起到信号放大、保护和控制的作用。
继电器的工作原理

继电器的工作原理继电器是一种电控开关装置,它通过电磁原理实现电路的开关和控制。
它可以将小电流控制大电流的通断动作,广泛应用于各种电气设备和自动化系统中。
下面将详细介绍继电器的工作原理。
一、继电器的组成结构继电器主要由电磁系统、触点系统和辅助系统组成。
1. 电磁系统:包括线圈和铁芯。
线圈通电时会产生磁场,使铁芯受力,引起触点的动作。
2. 触点系统:包括固定触点和动触点。
当线圈通电时,铁芯受力使动触点与固定触点闭合或断开,实现电路的通断。
3. 辅助系统:包括引线、外壳、弹簧等。
引线用于连接继电器与电路,外壳起到保护作用,弹簧用于恢复触点的初始位置。
二、继电器的工作原理继电器的工作原理基于电磁感应和磁力作用。
1. 通电过程:当继电器的线圈通电时,电流通过线圈产生磁场,磁场作用于铁芯,使铁芯受力。
受力后,铁芯会向线圈方向移动,带动动触点与固定触点闭合。
此时,继电器的触点处于通电状态,电流可以从继电器的一个端口流入,经过触点,再从另一个端口流出。
2. 断电过程:当继电器的线圈断电时,磁场消失,铁芯不再受力,由于弹簧的作用力,铁芯恢复到初始位置。
此时,动触点与固定触点断开,继电器的触点处于断电状态,电流无法通过继电器。
三、继电器的工作特点继电器具有以下几个特点:1. 电流放大作用:继电器可以将小电流控制大电流的通断动作。
通过线圈的电流变化,可以实现对大功率负载的控制。
2. 绝缘隔离作用:继电器的触点能够实现电路的隔离,从而保护控制电路和被控制电路之间的设备。
3. 可靠性高:继电器采用机械结构,具有较高的可靠性和稳定性。
触点的闭合和断开动作可靠,寿命长。
4. 可逆性:继电器的通断动作可以反复进行,具有可逆性。
四、继电器的应用领域继电器广泛应用于各种电气设备和自动化系统中,主要包括以下几个领域:1. 电力系统:继电器用于电力系统的保护和控制,如过流保护、欠压保护、过压保护等。
2. 自动化控制:继电器用于自动化控制系统中的信号传递和控制,如PLC控制系统、工业自动化设备等。
简述继电器工作原理
简述继电器工作原理继电器是一种电控制装置,它通过控制小电流或低电压来开关大电流或高电压。
继电器被广泛应用于自动化控制领域,如电力系统、机械控制、通信设备等。
继电器的工作原理可以大致分为两个步骤:输入控制和输出控制。
输入控制是指通过激励电流或电压来控制继电器的开关状态,输出控制则是指继电器根据输入控制的状态来控制输出电路的通断。
继电器的核心部件是电磁线圈和触点。
电磁线圈由绕组、铁芯和电磁细丝组成,当通过电流或电压激励电磁线圈时,绕组会产生磁场,引起铁芯产生磁导强磁铁和弱磁铁的Master清洗。
在继电器中,电磁线圈起到输入控制的作用。
触点是继电器的输出控制元件,它是由固定触点和动触点组成的。
当继电器的电磁线圈没有激励时,触点保持着一种状态(通常是触点闭合或断开)。
当继电器的电磁线圈被激励时,电磁力将引起动触点和固定触点之间的接触或分离,实现输出电路的通断控制。
继电器根据触点的不同类型可以分为常开型(正常状态下触点断开)和常闭型(正常状态下触点闭合)。
根据电磁线圈的控制方式可以分为直流继电器和交流继电器。
在继电器的工作过程中,还会涉及到反电动势,它是指当电磁线圈的电流突变时,会产生峰值的电动势,导致线圈中的电流不会立即按照输入控制变化。
为了解决这个问题,通常在继电器中加入了抑制反电动势的元件,如并联二极管。
继电器的工作可以分为两种模式:吸合和释放。
当继电器的电磁线圈被激励时,触点从一种状态转变为另一种状态,这个过程称为吸合。
而当继电器的电磁线圈停止激励时,触点又会从吸合状态恢复到初始状态,这个过程称为释放。
虽然继电器在现代工控系统中被更先进的电子元件所取代,但由于其简单可靠、易于维护的特点,仍然广泛应用于各个领域。
继电器的工作原理
继电器的工作原理继电器是一种电控开关装置,它通过控制小电流来开关大电流,常用于电力系统、自动化设备和通信系统中。
它的工作原理基于电磁感应和电磁吸合。
一、基本结构继电器由铁芯、线圈、触点和外壳组成。
铁芯是继电器的核心部件,由软磁材料制成,起到集中磁场的作用。
线圈是继电器的输入端,通电时产生磁场。
触点是继电器的输出端,根据线圈的磁场强弱来开关电路。
外壳用于保护内部结构。
二、工作原理1. 吸合过程当线圈通电时,产生磁场,磁场通过铁芯,使得铁芯磁化。
磁化后的铁芯会吸引触点,使得触点闭合,从而形成通路,电流可以流过。
这个过程称为吸合。
2. 断开过程当线圈断电时,磁场消失,铁芯失去磁化。
失去磁化后的铁芯不再具有磁性,触点失去吸引力,回到原位,触点断开,电路断开。
这个过程称为断开。
3. 控制电路继电器的线圈通电可以通过开关、传感器、计算机等控制。
通过控制线圈通断电,可以实现对触点的开关控制,从而达到控制电路的目的。
三、应用领域继电器广泛应用于各个领域,包括电力系统、自动化设备和通信系统等。
以下是几个典型的应用案例:1. 电力系统继电器在电力系统中起到了重要的作用,用于保护和控制电力设备。
例如,过流继电器可以监测电流是否超过额定值,当电流超过额定值时,继电器会触发保护动作,切断电路,保护设备安全运行。
2. 自动化设备继电器在自动化设备中用于实现信号的转换和控制。
例如,温度继电器可以根据温度的变化来控制加热或制冷设备的开关,实现温度的自动调节。
3. 通信系统继电器在通信系统中用于信号的转发和放大。
例如,电话继电器可以将低电平的语音信号转换为高电平的信号,以便传输信号的远距离传输。
四、优点和局限性继电器具有以下优点:1. 可靠性高:继电器的触点可以承受较大的电流和电压,具有较高的耐久性。
2. 隔离性好:继电器的线圈和触点之间有良好的隔离,可以避免干扰和电气噪声。
3. 适应性强:继电器可以适应不同的电压和电流要求,具有较大的适应范围。
继电器的工作原理
继电器的工作原理继电器是一种电控开关装置,它通过电磁吸合和释放来控制较大电流的开关动作。
它在电路中起到了信号放大、隔离和转换的作用,被广泛应用于自动化控制系统、电力系统和通信系统等领域。
一、继电器的基本结构继电器主要由电磁系统和触点系统两部份组成。
1. 电磁系统:电磁系统由电磁线圈和铁芯组成。
当电流通过电磁线圈时,产生的磁场会使铁芯磁化,从而实现吸合或者释放的动作。
电磁系统是继电器工作的核心部份。
2. 触点系统:触点系统由正触点和副触点组成。
正触点通常由铜合金制成,具有良好的导电性能和耐磨损性能。
副触点则是用于承载较大电流的触点。
触点系统的开闭状态由电磁系统的动作控制。
二、继电器的工作原理继电器的工作原理可以分为两个过程:吸合过程和释放过程。
1. 吸合过程:当继电器的电磁线圈通电时,电流通过线圈产生磁场,使铁芯磁化。
磁化后的铁芯会吸引正触点,使其与副触点闭合,从而实现电路的通断控制。
吸合过程中,继电器的线圈消耗的电能转化为磁能,实现了信号的放大和转换。
2. 释放过程:当继电器的电磁线圈断电时,磁场消失,铁芯失去磁化,正触点与副触点分离,电路断开。
释放过程中,继电器的触点恢复到初始状态,完成一次开关动作。
三、继电器的工作特点继电器具有以下几个工作特点:1. 隔离性:继电器的线圈和触点系统是隔离的,可以将控制信号与被控制电路隔离开来,保证了电路的稳定性和安全性。
2. 放大性:继电器可以将微弱的控制信号放大到足够大的电流或者电压,以控制较大负载。
3. 可靠性:继电器的触点采用金属材料制成,具有良好的导电性能和耐磨损性能,能够承受较大的电流和电压,具有较高的可靠性。
4. 可逆性:继电器的吸合和释放过程是可逆的,可以实现多次开关动作。
5. 多种工作方式:继电器可以根据不同的工作要求,采用不同的接线方式,如常开型、常闭型和双刀双掷型等。
四、继电器的应用领域继电器作为一种常用的电控开关装置,被广泛应用于各个领域。
3种继电器的工作原理
3种继电器的工作原理继电器是一种电气控制设备,用来控制电路中的电流。
它适用于需要接通和断开电路中的电源信号的场合,可以实现自动化控制。
下面将介绍三种常见的继电器工作原理及其应用。
1.电磁继电器电磁继电器是最常见的一种继电器,它的工作原理基于磁场的吸引和释放。
电磁继电器由线圈、铁芯、触点和固定部件构成。
当线圈通电时,它会产生磁场,使铁芯被吸引到触点处,从而使触点闭合,接通电路。
当线圈断电时,磁场消失,铁芯被释放,触点打开,断开电路。
电磁继电器可以实现高电压、大电流的控制,广泛应用于电力系统、自动化设备和家用电器等领域。
2.热继电器热继电器是一种根据恒定电流通过热式元件的加热效应来实现连接和断开电路的继电器。
它由热式元件、触点和恒温调节器组成。
当通过线圈的电流增大时,热式元件加热,使恒温调节器动作,触点闭合,接通电路。
当电流减小或中断时,热式元件冷却,恢复原状,触点打开,断开电路。
热继电器具有过载保护功能,广泛应用于电机保护、空调和电焊设备等领域。
3.固态继电器固态继电器是一种无触点的电子开关,利用半导体器件代替传统继电器中的机械触点来实现电路的连接和断开。
它由输入光电耦合器、输出晶体管和触发电路组成。
当输入光电耦合器收到控制信号时,输出晶体管导通,实现电路的连接。
当控制信号消失时,输出晶体管截止,断开电路。
固态继电器具有快速响应、可靠性高和无噪音等优点,适用于精密仪器、自动化生产线和数控设备等场合。
综上所述,电磁继电器通过磁场的吸引和释放实现电路的开关;热继电器利用热式元件的加热效应实现电路的连接和断开;固态继电器通过半导体器件实现电路的开闭。
它们分别具有适应不同场景需求的特点,在工业、家用和自动化控制领域都有广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
继电器的工作原理和特性
一、继电器的工作原理和特性
继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。
故在电路中起着自动调节、安全保护、转换电路等作用。
1、电磁继电器的工作原理和特性
电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。
只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。
当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。
这样吸合释放,从而达到了在电路中的导通、切断的目的。
对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。
2、热敏干簧继电器的工作原理和特性
热敏干簧继电器是一种利用热敏磁性材料检测和控制温度的新型热敏开关。
它由感温磁环、恒磁环、干簧管、导热安装片、塑料衬底及其他一些附件组成。
热敏干簧继电器不用线圈励磁,而由恒磁环产生的磁力驱动开关动作。
恒磁环能否向干簧管提供磁力是由感温磁环的温控特性决定的。
3、固态继电器(SSR)的工作原理和特性
固态继电器是一种两个接线端为输入端,另两个接线端为输出端的四端器件,中间采用隔离器件实现输入输出的电隔离。
固态继电器按负载电源类型可分为交流型和直流型。
按开关型式可分为常开型和常闭型。
按隔离型式可分为混合型、变压器隔离型和光电隔离型,以光电隔离型为最多。
二、继电器主要产品技术参数
1、额定工作电压
是指继电器正常工作时线圈所需要的电压。
根据继电器的型号不同,可以是交流电压,也可以是直流电压。
2、直流电阻
是指继电器中线圈的直流电阻,可以通过万能表测量。
3、吸合电流
是指继电器能够产生吸合动作的最小电流。
在正常使用时,给定的电流必须略大于吸合电流,这样继电器才能稳定地工作。
而对于线圈所加的工作电压,一般不要超过额定工作电压的1.5倍,否则会产生较大的电流而把线圈烧毁。
4、释放电流
是指继电器产生释放动作的最大电流。
当继电器吸合状态的电流减小到一定程度时,继电器就会恢复到未通电的释放状态。
这时的电流远远小于吸合电流。
5、触点切换电压和电流
是指继电器允许加载的电压和电流。
它决定了继电器能控制电压和电流的大小,使用时不能超过此值,否则很容易损坏继电器的触点。
三、继电器测试
1、测触点电阻
用万能表的电阻档,测量常闭触点与动点电阻,其阻值应为0;而常开触点与动点的阻值就为无穷大。
由此可以区别出那个是常闭触点,那个是常开触点。
2、测线圈电阻
可用万能表R×10Ω档测量继电器线圈的阻值,从而判断该线圈是否存在着开路现象。
3、测量吸合电压和吸合电流
找来可调稳压电源和电流表,给继电器输入一组电压,且在供电回路中串入电流表进行监测。
慢慢调高电源电压,听到继电器吸合声时,记下该吸合电压和吸合电流。
为求准确,可以试多几次而求平均值。
4、测量释放电压和释放电流
也是像上述那样连接测试,当继电器发生吸合后,再逐渐降低供电电压,当听到继电器再次发生释放声音时,记下此时的电压和电流,亦可尝试多几次而取得平均的释放电压和释放电流。
一般情况下,继电器的释放电压约在吸合电压的10~50%,如果释放电压太小(小于1/10的吸合电压),则不能正常使用了,这样会对电路的稳定性造成威胁,工作不可靠。
四、继电器的电符号和触点形式
继电器线圈在电路中用一个长方框符号表示,如果继电器有两个线圈,就画两个并列的长方框。
同时在长方框内或长方框旁标上继电器的文字符号“J”。
继电器的触点有两种表示方法:一种是把它们直接画在长方框一侧,这种表示法较为直观。
另一种是按照电路连接的需要,把各个触点分别画到各自的控制电路中,通常在同一继电器的触点与线圈旁分别标注上相同的文字符号,并将触点组编上号码,以示区别。
继电器的触点有三种基本形式:
1.动合型(H型)线圈不通电时两触点是断开的,通电后,两个触点就闭合。
以合字的拼音字头“H”表示。
2.动断型(D型)线圈不通电时两触点是闭合的,通电后两个触点就断开。
用断字的拼音字头“D”表示。
3.转换型(Z型)这是触点组型。
这种触点组共有三个触点,即中间是动触点,上下各一个静触点。
线圈不通电时,动触点和其中一个静触点断开和另一个闭合,线圈通电后,动触点就移动,使原来断开的成闭合,原来闭合的成断开状态,达到转换的目的。
这样的触点组称为转换触点。
用“转”字的拼音字头“z”表示。
五、继电器的选用
1.先了解必要的条件
①控制电路的电源电压,能提供的最大电流;
②被控制电路中的电压和电流;
③被控电路需要几组、什么形式的触点。
选用继电器时,一般控制电路的电源电压可作为选用的依据。
控制电路应能给继电器提供足够的工作电流,否则继电器吸合是不稳定的。
2.查阅有关资料确定使用条件后,可查找相关资料,找出需要的继电器的型号和规格号。
若手头已有继电器,可依据资料核对是否可以利用。
最后考虑尺寸是否合适。
3.注意器具的容积。
若是用于一般用电器,除考虑机箱容积外,小型继电器主要考虑电路板安装布局。
对于小型电器,如玩具、遥控装置则应选用超小型继电器产品。
更多专业知识,请扫描下方二维码!。