【配套K12】2011中考数学一轮复习(几何篇)5.角平分线、垂直平分线
【中考数学必备专题】几何辅助线大揭秘 之角平分线问题(含答案)

【中考数学必备专题】几何辅助线大揭秘之角
平分线问题
一、证明题(共3道,每道40分)
1.已知,如图,△ABC的外角∠CBD和∠BCE的平分线相交于点F.求证:点F在∠DAE的平分线上.
答案:∵BF是∠CBD的平分线∴FG=FI ∵CF是∠BCE的平分线∴FH=FI ∴FG=FH ∴点F在∠DAE的平分线上
解题思路:过F作FG⊥AD于点G,FH⊥AE于点H,FI⊥BC于点I,如图只要证明FG=FH即可
试题难度:三颗星知识点:三角形角平分线
2.如图,在△ABC中,AD为∠BAC的平分线,∠B=2∠C.求证:AC=AB+BD.
答案:∵AD是∠BAC的平分线∴∠BAD=∠EAD 在△ABD和△AED中AB=AE ∠BAD=∠EAD AD=AD ∴△ABD≌△AED(SAS)∴BD=ED,∠B=∠AED ∵∠AED=∠B=2∠C ∴∠CDE=∠AED ﹣∠C=∠C ∴DE=CE ∴BD=CE ∵AC=AE+CE ∴AC=AB+BD
解题思路:在AC上截取AE=AB,连接DE,如图只要证明BD=CE即可
试题难度:三颗星知识点:三角形角平分线
3.已知:如图,在△ABC中,BE平分∠ABC,AD⊥BE,垂足为点D.求证:∠BAD=∠DAE+∠C.
答案:∵BE平分∠ABC,AD⊥BE ∴△ABF为等腰三角形(三线合一)∴∠BAD=∠BFD ∵∠BFD 为△ACF的外角∴∠BFD=∠DAE+∠C ∴∠BAD=∠DAE+∠C
解题思路:延长AD与BC交于点F,如图只要证明∠BFD=∠BAD即可
试题难度:三颗星知识点:三角形角平分线。
【中考一轮复习】几何初步课件

考点聚焦---相交线
垂线及 其性质
互相 垂直
性质
两条直线相交所构成的四个角中有一个角 是 直角 ,则这两条直线互相垂直,其中一条直线 叫另一条直线的_垂__线_____.
①过一点__有且只有一条直线 与已知直线垂直;
②直线外一点与直线上各点连接的所有线段中, 垂线段 最短(简称:垂__线__段__最__短___).
当堂训练---命题
1.能说明命题“关于x方程x2-4x+m=0一定有实数根”是假命题的
反例为( D )
A.m=-1
B.m=0
C.m=4
D.m=5
拓展提升---命题
1.在△ABC中,BC=6,AC=3,过点C作CP⊥AB,垂足为P,则CP长的最
大值为( C ) A.5
B.4
C.3
D.2
2.在△ABC中,AB=4,∠C=60º,∠A>∠B,则BC的长的取值范围是 __4_<_B__C_≤__8__3___
d
解:∵直线a,b被c,d所截,且a∥b,
3
∴∠3=∠4,
4
故选:B.
考点聚焦---相交线
如果一个角的两边分别是另一个角两边的反向延长 对顶角 定义
线,且这两个角有公共顶点,那么这两个角是对顶角. 及性质
性质 对顶角相等 两个角有一条公共边,它们的另一条边互为反向延长
定义 邻补角 线,具有这种关系的两个角,叫做邻补角.
“折线型”图形求角度时常作的辅助线类型 已知AB∥CD,过点E作EF∥AB,常见图形类型如下表:
A
B
A
B
A
B
图形 E
FF
E
C
D
C
D
教育最新K122011中考数学一轮复习(几何篇)19.圆的有关概念和性质

19.圆的有关概念和性质知识考点:1、理解圆的定义,掌握点与圆的位置关系;2、理解弦、弧、半圆、优弧、同心圆、等圆、等弧、弓形、圆心角、圆周角等与圆有关的概念;3、掌握圆心角、弧、弦、弦心距之间的关系,并会运用这些关系解决一些几何证明题和计算题。
精典例题:【例1】在平面直角坐标系内,以原点O 为圆心,5为半径作⊙O ,已知A 、B 、C 三点的坐标分别为A (3,4),B (-3,-3),C (4,10-)。
试判断A 、B 、C 三点与⊙O 的位置关系。
分析:要判断点与圆的位置关系就是要比较点到圆心的距离与半径的大小关系。
解:∵OA =54322=+=OA523)3()3(22<=-+-=OB526)10(422>=-+=OC∴点A 在⊙O 上,点B 在⊙O 内,点C 在⊙O 外。
【例2】如图,△ABC 中,∠A =700,⊙O 截△ABC 的三条边所截得的弦长都相等,则∠BOC = 。
分析:由于⊙O 截△ABC 的三条边所截得的弦长都相等,则点O 到三边的距离也相等,即O 是△ABC 角平分线的交点,问题就容易解决了。
解:作OD ⊥BC 于D ,OE ⊥AC 于E ,OF ⊥AB 于F ,则OD =OE =OF ∴O 为△ABC 角平分线的交点 ∵∠A =700∴∠ABC +∠ACB =1100∴∠OBC +∠OCB =21×1100=550∴∠BOC =1800-550=1250【例3】如图1,在⊙O 中,AB =2CD ,那么( ) A 、⋂⋂>CD AB 2 B 、⋂⋂<CD AB 2C 、⋂⋂=CD AB 2 D 、⋂AB 与⋂CD 2的大小关系不能确定 分析:如图1,把⋂CD 2作出来,变成一段弧,然后比较⋂CD 2与⋂AB 的大小。
解:如图1,作⋂⋂=CD DE ,则⋂⋂=CD CE 2 ∵在△CDE 中,CD +DE >CE ∴2CD >CE 例2图OFEDCBA∵AB =2CD ∴AB >CE∴⋂⋂=CE AB ,即⋂⋂>CD AB 2∙例3图1OEDCB A∙变式图OEDCBA问题图变式:如图,在⊙O 中,⋂⋂=CD AB 2,问AB 与2CD 的大小关系? 略解:取⋂AB 的中点E ,则⋂⋂⋂==CD BE AB ∴AB =BE =CD∵在△AEB 中,AE +BE >AB ∴2CD >AB ,即AB <2CD探索与创新:【问题】已知点M (p ,q )在抛物线12-=x y 上,若以M 为圆心的圆与x 轴有两个交点A 、B ,且A 、B 两点的横坐标是关于x 的方程022=+-q px x 的两根(如上图)。
中考数学习题精选:线段垂直平分线、角平分线、中位线(含参考答案)

中考数学习题精选: 一、选择题 1.(2018北京市东城区初二期末)如图,在△ABC 中,∠B =∠C =60︒,点D 为AB 边的中点,DE ⊥BC 于E , 若BE=1,则AC 的长为BA .2B C .4D . 解:C2.(2018北京市平谷区初二期末)如图,在Rt △ABC 中,∠C=90︒,点D 为AB 边中点,DE ⊥AB ,并与AC 边交于点E. 如果∠A=15︒,BC=1,那么AC 等于( ). A. 2B. 31+C. 32+D.3答案:C3. (2018北京市顺义区八年级期末)如图,AD 是△ABC 的角平分线,DE ⊥AB 于点E ,S △AB C =10,DE =2,AB=4, 则AC 长是A.9B. 8C. 7D. 6答案:D4.(2018北京市西城区八年级期末)如图,在△ABC 中,BC 的垂直平分线分别交AC ,BC 于点D ,E .若△ABC 的周长为22,BE =4,则△ABD 的周长为( ). A .14 B .18C .20D .26答案:AEDCBA二、填空题5.(2018北京昌平区初二年级期末)在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于M ,N ,作直线MN ,交BC 于点D ,连接AD . 如果BC =5,CD =2,那么AD = .答案:36.(2018北京市东城区初二期末)如图,在△ABC 中,∠ACB =90°,AD 平分∠ABC ,BC =10cm ,BD :DC =3:2,则点D 到AB 的距离为_____ cm .解:4 7.(2018北京市东城区初二期末)阅读下面材料:在数学课上,老师提出如下问题:小俊的作法如下:MNBACD的垂直平分线.老师说:“小俊的作法正确.”请回答:小俊的作图依据是_________________________.解:到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线8.(2018北京市丰台区初二期末)阅读下面材料:在数学课上,老师提出如下问题:老师说:“小阳的作法正确.”请回答:小阳的作图依据是_________________________.答案:9.(2018北京市海淀区八年级期末)某地地震过后,小娜同学用下面的方法检测教室的房梁是否处于水平:在等腰直角三角尺斜边中点O处拴一条线绳,线绳的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,由此得出房梁是水平的(即挂铅锤的线绳与房梁垂直).用到的数学原理是.答案:“等腰三角形三线合一”或“到线段两端距离相等的点在这条线段的垂直平分线上和两点确定一条直线”10.(2018北京市朝阳区一模)如图,∠AOB =10°,点P 在OB 上.以点P 为圆心,OP 为半径画弧,交OA 于点P 1(点P 1与点O 不重合),连接PP 1; 再以点P 1为圆心,OP 为半径画弧,交OB 于点P 2(点P 2与点P 不重合),连接P 1 P 2; 再以点P 2为圆心,OP 为半径画弧,交OA 于点P 3(点P 3与点P 1不重合),连接P 2 P 3; … …请按照上面的要求继续操作并探究: ∠P 3 P 2 P 4= º;按照上面的要求一直画下去,得到点P n ,若之后就不能再画出符合要求点P n+1了,则n = . 答案 40 ;8 三、解答题11.(2018北京海淀区第二学期练习)如图,△ABC 中,90ACB ∠=︒,D 为AB 的中点,连接CD ,过点B 作CD 的平行线EF ,求证:BC 平分ABF ∠. 证明:∵90ACB ∠=︒,D 为AB 的中点,∴12CD AB BD ==. ∴ABC DCB ∠=∠. ………………2分∵DC EF ∥, ∴CBF DCB∠=∠. ………………3分FE DCB A∴CBF ABC ∠=∠. ∴BC平分ABF ∠. ………………5分 12.(2018北京平谷区中考统一练习)如图,在△ABC 中,AB=AC ,点D 是BC 边上一点,EF 垂直平分CD ,交AC 于点E ,交BC 于点F ,连结DE ,求证:DE ∥AB .证明:∵AB=AC ,∴∠B =∠C . ................................................................................. 1 ∵EF 垂直平分CD , ∴ED=EC . ................................................................................... 2 ∴∠EDC =∠C . ............................................................................. 3 ∴∠EDC =∠B . ............................................................................. 4 ∴DF ∥AB . . (5)13.(2018北京东城区二模)如图,在Rt ABC △中,90C ∠=︒,AB 的垂直平分线交AC于点D ,交AB 于点E . (1)求证:ADE ABC △≌△;(2)当8AC =,6BC =时,求DE 的长.证明:(1) ∵DE 垂直平分AB , ∴ 90AED ∠=︒. ∴AED C ∠=∠. ∵A A ∠=∠,∴ADE ABC △∽△.--------------------------------------------------------------------2分(2) ABC Rt △中,8AC =,6BC =, ∴10AB =. ∵DE 平分AB , ∴5AE =. ∵ADE ABC △∽△,∴DE AEBC AC =. ∴568DE = . ∴154DE = . ---------------------------------------------------------------------5分14.(2018北京市怀柔区初二期末)已知:如图,AD 是△ABC 的角平分线,AB=AC=13cm ,AD=12cm.求BC 的长.解:∵AB=AC ,AD 是△ABC 的角平分线,∴AD ⊥BC. BD=CD. ………………… 2分∴∠ADB=90Ο. ∵AB=13 AD=12∴BD ………………… 3分=5………………… 4分∴BC=10cm. ………………… 5分15.(2018北京大兴区八年级第一学期期末)已知:如图,在△ABC 中,D 是BA 延长线上一点,AE 是∠DAC 的平分线,P 是AE 上的一点(点P 不与点A 重合),连接PB,PC .通过观察,测量,猜想PB+PC 与AB+AC 之间的大小关系,并加以证明.BB16.(2018北京延庆区八年级第一学区期末)如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF(1)依题意画出图形(要求:尺规作图,不写作法,保留作图痕迹) (2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是解:(1)如图 …………2分(2)到线段两个端点距离相等的点在这条线段的垂直平分线上; 两点确定一条直线.……4分或 sss 、全等三角形性质、等腰三角形三线合一,两点确定一条直线答案不唯一.(3)8………………………… 5分B。
给初二数学垂直平分线知识点总结

给初二数学垂直平分线知识点总结给初二数学垂直平分线知识点总结初二数学垂直平分线知识点总结知识要领:垂直平分线,简称“中垂线”,是初中几何学科中非常重要的一部分。
垂直平分线的性质1.垂直平分线垂直且平分其所在线段。
2.垂直平分线上任意一点,到线段两端点的距离相等。
3.如果两个图形某直线对称,那么对称轴是对应点连线的垂直平分线。
4.线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
5.三角形三条边的垂直平分线相交于一点,该点叫外心(circumcenter),并且这一点到三个顶点的距离相等。
(此时以外心为圆心,外心到顶点的长度为半径,所作的圆为此三角形的外接圆。
) 垂直平分线的逆定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
图式如图:直线MN即为线段AB的垂直平分线。
注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明通常来说,垂直平分线会与全等三角形来使用。
垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。
巧记方法:点到线段两端距离相等。
可以通过全等三角形证明。
垂直平分线的尺规作法方法之一:(用圆规作图)1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。
2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。
得到两个交点(两交点交与线段的同侧)。
3、连接这两个交点。
原理:等腰三角形的高垂直平分底边。
方法之二:1、连接这两个交点。
原理:两点成一线。
等腰三角形的性质:1、三线合一 ( 等腰三角形底边上的高、底边上的中线、顶角平分线相互重合。
)2、等角对等边(如果一个三角形,有两个内角相等,那么它一定有两条边相等。
)3、等边对等角(在同一三角形中,如果两个角相等,即对应的边也相等。
)知识归纳:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
专题16角平分线与线段的垂直平分线(知识点总结+例题讲解)-2021届中考数学一轮复习

2021年中考数学专题16 角平分线与线段的垂直平分线(知识点总结+例题讲解)一、角平分线:1.角的平分线定义:(1)从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线;如图,因为AD是∠BAC的平分线,所以∠1=∠2=∠BAC;(2)类似地,还有角的三等分线等。
2.角平分线的作法(尺规作图):(1)以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;(2)分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;(3)过点P作射线OP,射线OP即为所求。
3.角平分线的性质:(1)定理:角平分线上的点到角的两边的距离相等。
符号语言:∵OP平分∠AOB,AP⊥OA,BP⊥OB,∴AP=BP(2)逆定理:到角的两边距离相等的点在角的平分线上。
符号语言:∵ AP⊥OA,BP⊥OB,AP=BP,∴点P在∠AOB的平分线上。
(3)三角形的角平分线。
三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
12①三角形的角平分线是线段;②一个三角形有三条角平分线,并且都在三角形的内部;③三角形三条角平分线交于三角形内部一点,这一点叫做三角形的内心;④可以用量角器或圆规画三角形的角平分线。
4.角平分线的综合应用:(1)为推导线段相等、角相等提供依据和思路;(2)在解决综合问题中的应用。
【例题1】(2020•乐山)如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB=( )A.10°B.20°C.30° D.40°【答案】B【解析】根据平角的定义得到∠CEF=180°﹣∠FEA=180°﹣40°=140°,由角平分线的定义可得∠CEB=12∠CEF=12×140°=70°,由GE⊥EF可得∠GEF=90°,可得∠CEG=180°﹣∠AEF﹣∠GEF=180°﹣40°﹣90°=50°,由∠GEB=∠CEB﹣∠CEG 可得结果.解:∵∠FEA=40°,GE⊥EF,∴∠CEF=180°﹣∠FEA=180°﹣40°=140°,∠CEG=180°﹣∠AEF﹣∠GEF=180°﹣40°﹣90°=50°,∵射线EB平分∠CEF,∴∠CEB=12∠CEF=12×140°=70°,∴∠GEB=∠CEB﹣∠CEG=70°﹣50°=20°。
角平分线与垂直平分线经典例题
沪教版八年级第一学期角平分线角平分线性质定理:角平分线上的点到这个角两边的距离相等。
角平分线的判定: 到一个叫两边的距离相等的点在这个角的平分线上。
例1.如图,在ABC △中,90C ∠=,AD 平分CAB ∠,8cm 5cm BC BD ==,,那么D 点到直线AB 的距离是 cm .例2.如图,已知在Rt △ABC 中,∠C =90°, BD 平分∠ABC , 交AC 于D .(1) 若∠BAC =30°, 则AD 与BD 之间有何数量关系,说明你的理由; (2) 若AP 平分∠BAC ,交BD 于P , 求∠BPA 的度数.3、考点深入练习例3:如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG 。
求证:(1)AD=AG ,(2)AD 与AG 的位置关系如何。
BPABCD GHFEDCBA例4:两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(8分)(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE图1 图2例5:△DAC, △EBC均是等边三角形,AE,BD分别与CD,CE交于点M,N.求证:(1)AE=BD (2)CM=CN (3) △CMN为等边三角形(4)MN∥BCC B垂直平分线的性质与判定强化练习1如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于 ( ) A .6cm B .8cm C .10cm D .12cm2题2如图,在Rt ABC △中,90ACB D E ∠=,,分别为AC AB ,的中点,连DE CE ,. 下列结论中不一定正确的是 ( ) A .ED BC ∥B .ED AC ⊥C .ACE BCE ∠=∠D .AE CE =3、△ABC 中,∠C=90°,AB 的中垂线交直线BC 于D ,若∠BAD -∠DAC=22.5°,则∠B 等于 ( ) A.37.5° B.67.5° C.37.5°或67.5° D.无法确定4、线段的垂直平分线上的点_____________________________________.5、到一条线段的两个端点的距离相等的点,______________________.6、如图,在△ABC 中,AC 的垂直平分线交AC 于E ,交BC 于D ,△ABD 的周长是12 cm ,AC=5cm ,则AB+BD+AD= cm ;AB+BD+DC= cm ;△ABC 的周长是 cm 。
中考数学复习--角平分线问题
A.2
B.3
C.4
D.5
2.(2018 枣庄)如图,在 Rt△ABC 中,∠ACB=90°,CD⊥AB,垂足为 D,AF 平分∠CAB,交 CD 于点
E,交 CB 于点 F,若 AC=3,AB=5,则 CE 的长为------------------------------------------------------------( )
(1分∠ACO,交 x 轴于点 D,求直线 CD 的函数关系式。
类型二、角平分线+角平分线的垂线→等腰三角形 当题目中有垂直于角平分线的线段时,通过延长该线段构造等腰三角形加以求解。
第5题
第6题
第7题
5.如图,在△ABC 中,∠C=90°,AC=BC,AD 平分∠BAC,BD⊥AD,若 BD=2,则 AE=
16.(2018 广州)如图,在四边形 ABCD 中,∠B=∠C=90°,AB>CD,AD=AB+CD。 (1)利用尺规作∠ADC 的平分线 DE,交 BC 于点 E,连接 AE(保留作图痕迹,不写作法); (2)在(1)的条件下, ①证明:AE⊥DE; ②若 CD=2,AB=4,点 M,N 分别是 AE,AB 上的动点,求 BM+MN 的最小值。
1
类型三、由角平分线作对称→全等三角形 如图,若点 P 是∠MON 平分线上一点,点 A 是边 OM 上任意一点,可以考虑在边 ON 上截取 OB=OA, 连接 PB,构造△OPB≌△OPA,从而将一些线段或角转化到到另一侧,进而达到解题目的。
8.如图,在菱形 ABCD 中,P 是 AB 上一个动点且不与 A,B 重合,连接 DP 交对角线 AC 于点 E,连接 BE,求证:∠APD=∠CBE。
9.如图,在△ABC 中,∠C=2∠B,AD 平分∠BAC,求证:AB=AC+CD。
中考数学之平面几何最全总结+经典习题(K12教育文档)
(直打版)中考数学之平面几何最全总结+经典习题(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)中考数学之平面几何最全总结+经典习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)中考数学之平面几何最全总结+经典习题(word版可编辑修改)的全部内容。
平面几何知识要点(一)【线段、角、直线】1.过两点有且只有一条直线。
2.两点之间线段最短。
3.过一点有且只有一条直线和已知直线垂直。
4.直线外一点与直线上各点连接的所有线段中,垂直线段最短。
垂直平分线,简称“中垂线"。
定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)。
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。
中垂线性质:垂直平分线垂直且平分其所在线段。
垂直平分线定理:垂直平分线上任意一点,到线段两端点的距离相等。
逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.角1.同角或等角的余角相等。
2.同角或等角的补角相等。
3.对顶角相等。
角的平分线性质角的平分线是到角的两边距离相等的所有点的集合定理1:角的平分线上的点到这个角的两边的距离相等。
定理2:到一个角的两边距离相等的点,在这个角的平分线上。
三角形各内角平分线的交点,该点叫内心,它到三角形三边距离相等.【平行线】平行线性质1:两直线平行,同位角相等.平行线性质2:两直线平行,内错角相等。
平行线性质3:两直线平行,同旁内角互补。
初中数学专题复习角的平分线 精讲精练(含解答)
角的平分线【基础知识精讲】角平分线是过角的顶点,且在角的内部的一条射线,它把一个角分成两个相等的角,它与角的两边三线共点.(角的顶点)角平分线是到角两边距离相等的所有点的集合.关于这一点需从两个方面去说明:①角平分线上的点到角两边的距离相等.②到角两边距离相等的点在角平分线上.进而推广到一般,若要证明某一图形B 是满足条件A 的点的集合,要说明两点:①图形B 上的所有点满足条件A.②满足条件A 的所有点都在图形B 上.关于命题“角平分线上的点到角两边距离相等”的证明,先要分清题目的题设部分及结论部分.依照命题准确作出图形,写出已知、求证,再利用相关知识进行证明,这也是证明一个命题(定理)的几个基本步骤.角平分线性质定理及其逆定理(判定定理)的证明分别利用了全等三角形中“AAS ”定理及“HL ”公理.本节还介绍了互逆命题及互逆定理,两个命题若条件(题设)与结论位置互换,即一个命题条件是另一个命题的结论,同时它的结论是另一命题的条件,则两命题互为逆命题.若一个定理的逆命题是真命题,则称逆命题为该定理的逆定理.这两个定理互为逆定理. 应当注意,每个命题都有逆命题,每个定理也有逆命题,但不一定有逆定理,只有当逆命题正确而成为定理时,才是原定理的逆定理.一个命题的正确与否与它的逆命题正确与否无关.难点:是“角平分线是到角两边距离相等的点的集合”这一结论的理解及运用. 例1 △ABC 中,∠C=90°,AD 为角平分线,BC=64,BD ∶DC=9∶7,求D 到AB 的距离.(图3.9-1)图3.9-1分析 设DE 为D 到AB 的距离,由角平分线性质CD=DE ,再由已知可求CD 、DE. 解 作DE ⊥AB 于E ,∵∠C=90°,DC ⊥AC ,又AD 为∠BAC 平分线,∴DC=DE ,BC=64,BD ∶DC=9∶7∴DC=167×64=28 ∴DE=28 例2 求证:三角形三条内角平分线交于一点.分析 此类命题证明需先作图,写出已知、求证,再根据条件进行证明.证明三直线共点,常用方法之一为二直线的交点必在第三条直线上,此题中,可考虑如图3.9-2,设∠ABC 与∠ACB 的平分线交于O ,再证AO 平分∠BAC.图3.9-2已知:△ABC 中,AA ′,BB ′,CC ′为角平分线,求证AA ′,BB ′,CC ′交于一点.证 设BB ′,CC ′交于O ,过O 分别作OD ⊥BC 于D ,DE ⊥AC 于E ,OF ⊥AB 于F ,∵O 在∠ABC 平分线上,∴OD=OF.O 在∠ACB 平分线上,∴OE=OD ∴OE=OF.∴O 在∠BAC 平分线上,即O 在AA ′上,∴AA ′,BB ′,CC ′交于一点.注:该点称为三角形内心.例3 定理“末位数字为0的整数能被5整除”是否存在逆定理?请说明理由.分析 先写出逆命题:“能被5整除的整数末位数字是0”,再说明逆命题的真假,显然这是一个假命题,我们只需举一反倒即可,例如15能被5整除,但末位数字为5,故逆命题为假命题,因此原定理没有逆定理例4 判断命题“两整数相加,和为整数”的逆命题的真假.解 逆命题为“和为整数,则两加数必为整数”,它是一个假命题,如“21+21=1,31+35=2”等,都能说明逆命题为假命题.【难题巧解点拨】例1 △ABC 的周长为41cm,边BC=17cm,角平分线AD 将△ABC 分为面积比为3∶5的两部分,且AB <AC ,求AB ,AC.(图3.9-3)图3.9-3分析 设AB=x,AC=y,则有x+y+17=41,而S △ABD ∶S △ADC =3∶5,此条件不好利用,故考虑AD 为角平分线,它到两边的距离相等,即△ABD 中AB 边上的高,△ADC 中AC 边上的高相等,从得求出x ∶y,进而求出x,y.解 作DE ⊥AB 于E ,DF ⊥AC 于F.∵AD 为角平分线∴DE=DF∵AB <AC ,∵S △ABD ∶S △ADC =(21DE ·AB )∶(21DF ·AC )=AB ∶AC=3∶5 ∴x+y+17=41 x ∶y=3∶5 (x <y)∴x=9,y=15 即AB=9cm, AC=15cm.例2 “三角形两内角平分线的交点到三角形三边距离相等”这一命题的逆命题是真命题还是假命题?图3.9-4分析 先要写出逆命题:到三角形三边距离相等的点是两内角平分线的交点.该命题是一个假命题.例如:图3.9-4,P 为△ABC 的两外角∠MBC 和∠NCB 的角平分线交点.此时P 到三边AB 、AC 、BC 的距离PD=PF=PE.而P 不为△ABC 的内角平分线交点.注意:不要误以为过点向△ABC 三边的作垂线那么垂足一定都落在边上,也可落在边延长线上,从这里入手证明逆命题为一假命题.【同步达纲练习】一、判断(3分×8=24分)( )1.P 为∠AOB 内一点,C 在OA 上,D 在OB 上,若PC=PD ,则OP 平分∠AOB.( )2.到角两边距离不相等的一点一定不在角平分线上.( )3.因为“三内角对应相等的两个三角形全等”是假命题,所以它的逆命题也是假命题.( )4.三角形三条角平分线交于一点,且这一点到三顶点的距离相等.( )5.任何命题都有逆命题.( )6.任何定理都有逆定理.( )7.“三角形三条角平分线交点到三边距离相等”这个命题的逆命题是真命题.( )8.有命题“若x=y ,则x 2=y 2”的逆命题是个假命题.二、填空(4分×8=32分)1.角平分线是到角的两边 相等的所有点的 .2.三角形三内角平分线 ,该点到三边的距离 .3.“对顶角相等”的逆命题是 ,它是一个 命题.4.P 在∠MON 的角平分线上,PA ⊥OM 于A ,PB ⊥ON 于B ,PA+PB=12,则PA= ,PB= .5.一个定理的 是正确的时,我们称它为原定理的 .6.“直角三角形有两个角是锐角”这个命题的逆命题是 ,它是一个 命题.7.定理“同位角相等,两直线平行”的逆定理是 .三、选择(5分×6=3分)1.下列说法正确的是( )A.每个命题都有逆命题B.每个定理都有逆定理C.真命题的逆命题也是真命题D.假命题的逆命题是假命题2.P 、Q 为∠AOB 内两点,且∠AOP=∠POQ=∠QOB=31∠AOB ,PM ⊥OA 于M ,QN ⊥OB 于N ,PQ ⊥OP,则下面结论正确的是( )A.PM >QMB.PM=QNC.PM <QND.PM=PQ3.下列关于三角形角平分线的说法错误的是( )A.两角平分线交点在三角形内B.两角平分线交点在第三个角的平分线上C.两角平分线交点到三边距离相等D.两角平分线交点到三顶点距离相等4.下列命题中,正确的命题有几个( )①对顶角相等;②相等的角是对顶角;③不是对顶角的两个角就不相等;④不相等的角不是对顶角A.1个B.2个C.3个D.0个5.设a,b为实数,下面四个命题.①若a>b, 则a2>b2②若a2>b2, 则a>b③若a>b,则a2>b2④若a2>b2则a>b其中正确的有( )A.1个B.2个C.3个D.4个6.下列命题真命题是( )A.同位角相等B.同旁内角相等,两直线平行C.不相等的角不是内错角D.同旁内角不互补,两直线不平行四、解答题(7分×2=14分)1.如图3.9-6,P为∠AOB内一点,OA=OB,且△OPA与△OPB面积相等,求证∠AOP=∠BOP.图3.9-62.△ABC的外角∠CBD,∠BCE的角平分线交于点F,求证AF平分∠BAC.【素质优化训练】1.如图3.9-7,AB=AC,AD=AE,BD、CE交于O,求证AO平分∠BAC.图3.9-72.△ABC 中,AB=BC=CA ,三内角平分线交于O ,OP ⊥AB 于P ,OM ⊥BC 于M ,ON ⊥CA 于N ,AH ⊥BC 于H.求证OP+OM+ON=AH.【生活实际运用】1.如图(3.9-8),某铁路MN 和公路PQ 相交于点O ,且交角为90°,某仓库G 在A 区,到公路、铁路距离相等(即G 在∠NOQ 的平分线上),且到公路与铁路的相交点O 的距离为200m.(1)在图上标出仓库G 的位置(比例尺1∶10000,用圆规作图,保留作图痕迹,不写作法):(2)求出仓库G 到铁路的实际距离.图3.9-8参考答案:【同步达纲练习】一、1.× 2.√ 3.× 4.× 5.√ 6.× 7.× 8.√二、1.距离,集合 2.交于一点,相等 3.相等的角是对顶角,假 4.6,6 5.逆命题,逆定理 6.有两个锐角的三角形是直角三角形,假 7.两直线平行,同位角相等三、1.A 2.C 3.D 4.B 5.B 6.D四、1.作PM ⊥OA 交OA 延长线于M PN ⊥OB 交OB 延长线于N.∵S △OPA =S △OPB ∴21OA ·PM=21OB ·PN OA=OB ∴PM=PN ∴∠AOP=∠BOP 2.提示:过F 分别作三边的垂线FM ,FP ,FN. 易证FM=FP=FN ,再利用角平分线性质可得结论.【素质优化训练】1.作OM ⊥AB 于M ,ON ⊥CD 于N. AB=AC ∠BAD=∠CAE. AD=AE∴△ABD ≌△ACE ∴S △ABD =S △ACE ∴S △BOE =S △COD .又BE=CD ∴OM=ON ∴AO 平分∠BAC.2.S △ABC =S △OAB +S △OAC +S △OBC .21AH ·BC=21OP ·AB+21BC ·OM+21AC ·ON 又AB=BC=CA ∴OP+OM+ON=AH.【生活实际运用】(1)略 (2)1002(m)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.角平分线、垂直平分线
知识考点:
了解角平分线、垂直平分线的有关性质和定理,并能解决一些实际问题。
精典例题:
【例题】如图,已知在△ABC 中,AB =AC ,∠B =300
,AB 的垂直平分线EF 交AB 于点E ,交BC 于点F ,求证:CF =2BF 。
分析一:要证明CF =2BF ,由于BF 与CF 没有直接联系,联想题设中EF 是中垂线,根
据其性质可连结AF ,则BF =AF 。
问题转化为证CF =2AF ,又∠B =∠C =300
,这就等价于要
证∠CAF =900,则根据含300
角的直角三角形的性质可得CF =2AF =2BF 。
分析二:要证明CF =2BF ,联想∠B =300
,EF 是AB 的中垂线,可过点A 作AG ∥EF 交FC
于G 后,得到含300
角的Rt △ABG ,且EF 是Rt △ABG 的中位线,因此BG =2BF =2AG ,再设法证明AG =GC ,即有BF =FG =GC 。
例题图1
F E
C B A
例题图2 G F E
C
B A
分析三:由等腰三角形联想到“三线合一”的性质,作AD ⊥BC 于D ,则BD =CD ,考虑
到∠B =300
,不妨设EF =1,再用勾股定理计算便可得证。
以上三种分析的证明略。
例题图3
D F E
C
B A
问题图
3
2
1E
D C
B A
探索与创新:
【问题】请阅读下面材料,并回答所提出的问题: 三角形内角平分线性质定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例。
如图,△ABC 中,AD 是角平分线。
求证:
AC
AB
DC BD =。
分析:要证
AC
AB
DC BD =,一般只要证BD 、DC 与AB 、AC 或BD 、AB 与DC 、AC 所在三角形相似,现在B 、D 、C 在同一条直线上,△ABD 与△ADC 不相似,需要考虑用别的方法换比。
我们注意到在比例式
AC
AB
DC BD =中,AC 恰好是BD 、DC 、AB 的第四比例项,所以考虑过C 作CE ∥AD 交BA 的延长线于E ,从而得到BD 、CD 、AB 的第四比例项AE ,这样,证明
AC
AB
DC BD =就可以转化为证AE =AC 。
证明:过C 作CE ∥AD 交BA 的延长线于E
CE ∥AD ⎪⎭
⎪
⎬⎫⎪⎩
⎪
⎨⎧∠=∠∠=∠∠=∠⇒E 13
221⇒∠E =∠3⇒AE =AC CE ∥AD ⇒
AE AB
DC BD = ∴AC
AB
DC BD = (1)上述证明过程中,用了哪些定理(写出两个定理即可);
(2)在上述分析、证明过程中,主要用到了三种数学思想的哪一种?选出一个填入后面的括号内( )
①数形结合思想 ②转化思想 ③分类讨论思想 答案:②转化思想
(3)用三角形内角平分线性质定理解答问题:已知AD 是△ABC 中∠BAC 的角平分线,AB =5 cm ,AC =4 cm ,BC =7 cm ,求BD 的长。
答案:
9
35cm 评注:本题的目的主要在于考查学生的阅读理解能力。
跟踪训练:
一、填空题:
1、如图,∠A =520
,O 是AB 、AC 的垂直平分线的交点,那么∠OCB = 。
2、如图,已知AB =AC ,∠A =440
,AB 的垂直平分线MN 交AC 于点D ,则∠DBC = 。
第1题图
O
C
B
A
第2题图
M
D
C
B A
第3题图
E
D
C
B
第4题图
E
A
B C
D
3、如图,在△ABC 中,∠C =900
,∠B =150
,AB 的中垂线DE 交BC 于D 点,E 为垂足,若BD =8,则AC = 。
4、如图,在△ABC 中,AB =AC ,DE 是AB 的垂直平分线,△BCE 的周长为24,BC =10,则AB = 。
5、如图,EG 、FG 分别是∠MEF 和∠NFE 的角平分线,交点是G ,BP 、CP 分别是∠MBC 和∠NCB
的角平分线,交点是P ,F 、C 在AN 上,B 、E 在AM 上,若∠G =680
,那么∠P = 。
填空第5题图 G
P
M
E B C F
A 选择第1题图 F
E
D
C B A
选择第2题图 4
32
1D
C
B
A
二、选择题:
1、如图,△ABC 的角平分线CD 、BE 相交于点F ,且∠A =600
,则∠BFC 等于( )
A 、800
B 、1000
C 、1200
D 、1400
2、如图,△ABC 中,∠1=∠2,∠3=∠4,若∠D =360
,则∠C 的度数为( )
A 、820
B 、720
C 、620
D 、520
3、某三角形有一个外角平分线平行于三角形的一边,而这三角形另一边上的中线分周长为2∶3两部分,若这个三角形的周长为30cm ,则此三角形三边长分别是( ) A 、8 cm 、8 cm 、14cm B 、12 cm 、12 cm 、6cm C 、8 cm 、8 cm 、14cm 或12 cm 、12 cm 、6cm D 、以上答案都不对
4、如图,Rt △ABC 中,∠C =900,CD 是AB 边上的高,CE 是中
线,CF 是∠ACB 的平分线,图中相等的锐角为一组,则共有( )
A 、0组
B 、2组
C 、3组
D 、4组 5、如果三角形两边的垂直平分线的交点在第三边上,那么这个三角形是( )
A 、锐角三角形
B 、直角三角形
C 、钝角三角形
D 、不能确定 三、解答题:
1、如图,Rt △ABC 的∠A 的平分线与过斜边中点M 的垂线交于点D ,求证:MA =MD 。
第1题图
M
D
C B
A
第2题图
E F
D C
B A
第3题图
E F
D C
B A
2、在△ABC 中,AB ≠AC ,D 、E 在BC 上,且DE =EC ,过D 作DF ∥BA 交AE 于点F ,DF =AC ,求证:AE 平分∠BAC 。
3、如图,在△ABC 中,∠B =22.50
,∠C =600
,AB 的垂直平分线交BC 于点D ,BD =26,
AE ⊥BC 于点E ,求EC 的长。
4、如图,在Rt △ABC 中,∠ACB =900
,AC =BC ,D 为BC 的中点,CE ⊥AD ,垂足为E ,BF ∥AC 交CE 的延长线于点F ,求证AB 垂直平分DF 。
选择第4题图 E F D
C
第4题图
E
F
D
B
A
参考答案
一、填空题:
1、380;
2、240;
3、4;
4、14;
5、680
二、选择题:CBCDB 三、解答题:
1、过A 作AN ⊥BC 于N ,证∠D =∠DAM ;
2、延长FE 到G ,使EG =EF ,连结CG ,证△DEF ≌△CEG
3、连结AD ,DF 为AB 的垂直平分线,AD =BD =26,∠B =∠DAB =22.50
∴∠ADE =450
,AE =2
2
AD =2622⨯=6
又∵∠C =600
∴EC =
323
63
==
AE
4、证△ACD ≌△CBF。