中考数学专题-辅助线的添加

合集下载

2024辽宁中考数学二轮专题复习 微专题 遇到角平分线如何添加辅助线(课件)

2024辽宁中考数学二轮专题复习 微专题  遇到角平分线如何添加辅助线(课件)
第1题图
2. 如图,AB∥CD,∠ABC的平分线与∠BCD的平分线相交于点E, AD过点E,且与AB互相垂直,点P为线段BC上一动点,连接PE.若 AD=8,则PE的最小值为___4___.
第2题图
3. 如图,∠MON=30°,OP平分∠MON,过点P作PQ∥OM交ON于 点Q.若OQ=4,则点P到OM的距离为___2__.
微专题 遇到角平分线如何添加辅助线
方法一 过角平分线上一点向角两边作垂线
方法解读 如图,已知∠MON,点P是∠MON平分线上一点.
过角平分线上的点向角两边作垂线. 已知PA⊥OM, 添加辅助线,作PB⊥ON于点B.
结论:PA=PB,OA=OB,∠APO=∠BPO等.
1. 如图,在Rt△ABC中,∠C=90°4 ,AD平分∠BAC交BC于点D,若 AC=4,BC=3,则CD的长为____3____.
第7题图
方法四 作角平分线的垂线,构造等腰三角形
方法解读 过角平分线上的点作角平分线的垂线,三线合一试试看. 已知AP⊥OP,延长AP交ON于点B.
结论:__R_t_△__A_O__P_≌__R_t_△__B_O__P_,__O_A__=__O_B_,__A__P_=__B_P__. __
8. 如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD. 若BD=1,BC=3,则AC的长为__5___.
结论:____△__A__O_P_≌__△__B__O_P_,__A__P_=__B_P______
6. 如图,在△ABC中,∠A=2∠B,CD是∠ACB的平分线,若AC= 16,AD=8,则线段BC的长为__2_4___.
第6题图
7. 如图,四边形ABCD中,AC平分∠BAD,∠B+∠ADC=180°, 若BC=2,则DC的长为__2___.

中考数学几何辅助线:倍长中线法

中考数学几何辅助线:倍长中线法

中考数学几何添加辅助线:倍长中线中线或中点是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线。

所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法。

此法常用于构造全等三角形,利用中线的性质、辅助线、对顶角进而用“SAS”证明对应边之间的关系。

常规的倍长中线可以出全等,但需要证明“三点共线”,遇到“中点+平行”,我们“延长出全等”,而非“倍长出全等”. 用“倍长中线法”作辅助线解几何题,是一种重要的技巧套路。

它可以有效地生发出全等、平行等基本条件,关联好多基本图形,帮助解题,大家务必好好掌握。

也给我们解题的启示:抓住核心,找到关键,才能快速解题。

逢中点,便倍长,全等观,平行现.倍长中线法:是指加倍延长中线,使所延长部分与中线相等,然后连接相应的顶点,构造“8字形”的全等三角形。

在与中点有关的线段尤其是涉及线段的等量关系时,倍长中线应用较常见,常见添加如图(AD是底边中线)典例1.已知:AD是ΔABC的中线,AE=EF.求证:AC=BF.名师指点:延长AD到M,使AD=DM,连接BM,根据SAS证△ADC≌△MDB,推出BM=AC,∠CAD=∠M,根据AE=EF,推出∠CAD=∠AFE=∠BFD,求出∠BFD=∠M,再根据等腰三角形的性质证明即可.满分解答:证明:延长AD 到M ,使AD =DM ,连接BM ,∵AD 是△ABC 中线,∴CD =BD ,∵在△ADC 和△MDB 中,{CD =BD∠ADC =∠MDB AD =DM,∴△ADC ≌△MDB (SAS ),∴BM =AC ,∠CAD =∠M ,∵AE =EF ,∴∠CAD =∠AFE ,∵∠AFE =∠BFD ,∴∠BFD =∠CAD =∠M ,∴BF =BM =AC ,即AC =BF .名师点评:倍长中线是常见的辅助线、全等中相关的角、线段的代换是解决问题的关键. 1.如图,在平行四边形ABCD 中,28CD AD ==,E 为AD 上一点,F 为DC 的中点,则下列结论中正确的是( )A .4BF =B .2ABC ABF ∠>∠。

几何辅助线添法种种--------中考数学专题研究

几何辅助线添法种种--------中考数学专题研究

几何辅助线添法种种--------中考数学专题研究一,补全图形1.如图2,在△ABC 中,AC =BC ,∠ACB =900,D 是AC 上一点,AE ⊥BD 的延长线于E ,又AE =21BD ,求证:BD 是∠ABC 的角平分线。

分析:∠ABC 的角平分线与AE 边上的高重合,故可作辅助线补全图形,构造出全等三角形(证明略)。

2(2012.深圳)如图6,Rt△ABC 中,C= 90o,以斜边AB 为边向外作正方形ABDE ,且正方形对角线交于点D ,连接OC ,已知AC=5,OC=62,则另一直角边BC 的长为 .3. 如图1,已知AB ⊥BC ,DC ⊥BC ,E 在BC 上,AE =AD ,AB =BC 。

求证:CE =CD 。

分析:作AF ⊥CD 的延长线(证明略)4.如图,在四边形ABCD 中,∠A =600,∠B =∠D =900,BC =2,CD =3,则AB =?分析:通过作辅助线,将四边形问题转化为三角形问题来解决,其关键是对内分割还是向外补形。

答案:338 例1图32ED CBA5、如图,四边形ABCD 中,AB =6,BC =35-,CD =6,且∠ABC =1350,∠BCD =1200,你知道AD 的长吗?分析:这个四边形是一个不规则四边形,应将它补割为规则四边形才便于求解。

略解:作AE ⊥CB 的延长线于E ,DF ⊥BC 的延长线于F ,再作AG ⊥DF 于G ∵∠ABC =1350,∴∠ABE =450∴△ABE 是等腰直角三角形又∵AB =6,∴AE =BE =3 ∵∠BCD =1200,∴∠FCD =600 ∴△DCF 是含300的直角三角形 ∵CD =6,CF =3,DF =33 ∴EF =3)35(3+-+=8 由作图知四边形AGFE 是矩形 ∴AG =EF =8,FG =AE =3 从而DG =DF -FG =32 在△ADG 中,∠AGD =900例2图F EDCBA例1图F E DCB A 问题一图GD∴AD =22DG AG +=1264+=76=1926. 如图,在四边形ABCD 中,∠B =135°,∠C =120°,AB =,BC =,CD =,则AD 边的长为( ). (A ) (B )(C )(D )解:D如图,过点A ,D 分别作AE ,DF 垂直于直线BC ,垂足分别为E ,F .由已知可得BE =AE =,CF =,DF =2,于是 EF =4+.过点A 作AG ⊥DF ,垂足为G .在Rt △ADG 中,根据勾股定理得AD=.勾股定理、涉及双重二次根式的化简,补全图形法二、截长补短法1. 如图2,已知在△ABC 中,∠C =2∠B ,∠1=∠2,求证:AB =AC +CD 。

中考数学如何巧妙的添加辅助线

中考数学如何巧妙的添加辅助线

中考数学如何巧妙的添加辅助线在中考中,数学考试中的添加辅助线问题是一个非常常见的考点。

合理添加辅助线可以帮助我们更好地理解题目,简化问题,而不妨碍最终的解题思路和结果。

下面将介绍一些巧妙的添加辅助线的方法。

一、三角形问题:1.中点辅助线法:当我们面对一个三角形问题时,如果涉及到三角形的边的中点或高度等,可以尝试添加中点辅助线。

这样可以将原有的三角形拆分为更简单的几何图形,从而更好地解题。

例如:已知一个平行四边形,且四个交角都是90°,两边分别是5cm和4cm,求平行四边形的周长。

解题思路:我们可以先绘制平行四边形,然后添加一个对角线,将平行四边形划分为两个等腰三角形。

然后可以通过计算三角形的周长,再将结果相加,得到最后的答案。

2.相似三角形法:当我们面对一个问题涉及到相似三角形的情况时,可以通过添加相似三角形的辅助线来简化问题。

例如:已知一个直角三角形ABC,AB=9cm,AC=12cm,通过辅助线BD和BC=C切割出两个小直角三角形。

求BD的长度。

解题思路:我们可以通过已知条件绘制直角三角形ABC,然后添加一条辅助线BD,连接B和C。

由于BC=AB,所以三角形BCA和BAC是相似的。

因此,我们可以利用相似三角形之间的比例关系,设BD=x,则有x/9=12/9,解得x=16,所以BD的长度为16cm。

二、平行四边形问题:1.中心对角线辅助线法:当我们面对一个平行四边形问题时,可以通过添加中心对角线辅助线来简化问题。

例如:已知平行四边形ABCD的对角线AC与边AD垂直相交,且AC=4cm,AD=3cm,求平行四边形的面积。

解题思路:我们可以先绘制平行四边形ABCD,然后通过已知条件绘制对角线AC,并与边AD垂直相交,连接交点E。

由于AC与AD垂直相交,所以AE是AD的中线。

我们可以利用平行四边形的性质,使AE和AC之间的线段通过重合,就可以拆分出一个矩形和两个直角三角形。

然后可以通过计算矩形和直角三角形的面积,再将结果相加,得到最后的答案。

初中数学辅助线添加技巧:轴对称

初中数学辅助线添加技巧:轴对称

初中数学辅助线添加技巧:轴对称方法总结1.图形的折叠是指某个图形或其部分沿某直线翻折,这条直线为对称轴.在近年来全国各地的中考题中,图形折叠问题渐渐成了考查的热点模型.思路:图形的折叠问题分为两类题型:一是考察图形折叠的不变性:只需抓住不变量,即对应边相等,对应角相等;二是考察图形折叠的折痕:只需抓住折痕垂直平分对应点所连的线段且平分对应边所成的夹角.2.轴对称变换是作点、线、图形关于某一直线的对称图形,从而使图形中隐藏条件凸显出来或将分散条件集中起来,从而达到解题目的.那么,我们在什么情况下应该想到用或作轴对称呢?以下给出几种常见考虑要用或作轴对称的基本图形.(1)线段或角度存在2倍关系时,可考虑对称;(2)有互余、互补关系的图形,可考虑对称;(3)角度和或差存在特殊角度的,可考虑对称;(4)路径最短问题,基本上运用轴对称,将分散的线段集中到两点之间,从而运用两点之间线段最短,来实现最短路径的求解.所以最短路径问题,需要考虑轴对称.几何最值问题的几种中考题型及解题作图方法如下所示.3.轴对称的基本模型(1)(2)(3)(4)典例精析例1.如图,在△ABC中,∠B=22.5°,边AB的垂直平分线交BC于点D,DF⊥AC于点F,交BC边上的高AE于点G,求证:EG=EC.GFED CBA证明:连接AD.21GFEDCBA∵点D 为AB 垂直平分线上一点, ∴DA DB =,∴22.5BAD B ∠=∠=︒, 又AE BC ⊥,∴45DAE ADE ∠=∠=︒, ∴DE AE =, ∵DF AC ⊥ ∴290C ∠+∠=︒, 又∵190C ∠+∠=︒, ∴12∠=∠, ∴AEC DEG △≌△, ∴EG GC =.点拨:本题用到了基本模型(4),线段的垂直平分线“模型”是典型的轴对称基本模型. 例2.(1)如图1,把矩形ABCD 沿EF 折叠,使点B 落在边AD 上的点B'处,点A 落在点A'处.若AE =a ,AB =b ,BF =c ,请写出a ,b ,c 之间的一个等量关系 .(2)如图2,Rt △ABC 中,∠ACB =90°,∠A =50°,,将其折叠,使点A 落在边CB 上A'处,折痕为CD ,则∠A'DB =( )A .40°B .30°C .20°D .10°(3)如图3,等边△ABC 的边长为1cm ,D 、E 分别是AB 、AC 边上的点,将△ADE 沿直线DE 折叠,点A 落在A'处,且点A'在△ABC 外部,则阴影部分图形的周长为 cm .(4)如图,正方形纸片ABCD 的边长为1,M 、N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使A 落在MN 上,落点记为A ′,折痕交AD 于点E ,若M 、N 分别是AD 、BC 边的中点,则A ′N = ; 若M 、N 分别是AD 、BC 边的上距DC 最近的n 等分点(2n ≥,且n 为整数),则A ′N = (用含有n 的式子表示)图4图3图2图1N MABCDE ABCDEF ABCDA解(1)222c a b =+(提示B'E =BF =FB =c ) (2)D ;(3)3;(4(n ≥2,且n 为整数). 点拨:本例中几个题都是折叠问题,折叠与轴对称是密不可分的,对于折叠问题,我们的思路通常是确定对应边、对应角及折痕,折叠前后的图形全等,且折痕是对应点连线的垂直平分线,求线段长通常确定一个直角三角形或两个相似三角形,利用勾股定理和相似三角形的性质求解.例3.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,求折痕MN 的长度.NM A BCDEF解:方法一:过点M 作MHAD 交CD 于点H ,连接DE .H NM A BCD EF∵正方形ABCD ,MN 是折痕,∴,MN DE MH AD ⊥=, ∵E 是BC 中点, ∴4BE CE ==, 易证MHN DCE △≌△, ∴MN DE =,在Rt DCE △中,CD =8,EC =4,∴DE ==,∴MN =.方法二:延长NE 交AB 的延长线于点H ,由题意可知EN =DN ,CE =4.K HN M A B CDEF在Rt NEC △中,设DN =x , ∵222EN EC CN =+, ∴()22248x x =+- ∴5x =,∴5,3DN CN ==.易证,5,10NEC HEB HE NE HN ===△≌△, ∵ABCD ,∴DNM HMN ∠=∠. ∵DNM HNM ∠=∠, ∴HMN HNM ∠=∠. ∴10MH NH ==. 作NK AB ⊥于K ,∴3KB NC BH ===. ∴4MK =. ∵8KN =,∴MN ==点拨:本例是一道典型的考查折痕的问题,方法一应用了折痕垂直平分对应点所连线段,再用正方形中一个经典模型:并将MN 转化;方法运用了折痕平分对应边所成的夹角,和平行线一起构成等腰三角形.例4.在四边形ABCD 中,AB =30,AD =48,BC =14,CD =40,90ABD BDC ∠+∠=︒,求四边形ABCD 的面积.40144830A B CD解:作BD 的垂直平分线l ,以l 为对称轴,作ABD △关于l 的轴对称图形A'DB △.l A'40144830A B CD∴,30,48,ABD A'DB S S A'D AB A'B AD A'DB ABD =====∠=∠△△. ∴90A'DC A'DB BDC ABD BDC ∠=∠+∠=∠+∠=︒. ∴A'DC △是直角三角形.∴50A'C ,在A'BC △中,50,48,14A'C A'B AD BC ====. 而22222214481962304250050BC A'B A'C +=+=+===, ∴由勾股定理逆定理可知90A'BC =∠︒. ∴A'BC A'DC ABCD A'BCD S S S S ==+△△四边形四边形 1111481430403366009362222A'B BC A'D CD =+=⨯⨯+⨯⨯=+=. 点拨:题目给出两角互余,考虑直接将两角挪在一起,构成直角,进而得到特殊三角形,特殊图形具有特殊性质,便于我们做题.而此题我们利用轴对称达到这一目的.应用了基本模型(1),因此说互余、互补关系的图形与轴对称有着很奇妙的关系,也是轴对称的应用.例5.在四边形ABCD 中,连接AC ,BC =CD ,60BAC ACD ∠-∠=︒,求证:AD CD AB +≥.ABCD证明:以AC 所在直线为对称轴将ADC △翻折到AD'C △的位置,连接BD'.D'ABCD则,CD'CD BC ACD ACD'==∠=∠.∵60BCD'BAC ACD'BAC ACD ∠=∠-∠=∠-∠=︒, ∴D'BC △为等边三角形.∴AD CD AD'D'B AB +=+≥,等号成立时AC 平分BAD ∠.点拨:本题中出现角度差为特殊角60°,提示我们可以进行对称变换“构造”出60°角.例6.问题:已知△ABC 中,∠BAC =2∠ACB ,点D 是△ABC 内一点,且AD =CD ,BD =BA .探究∠DBC 与∠ABC 度数的比值.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明. (1)当∠BAC =90°时,依问题中的条件补全右图. 观察图形,AB 与AC 的数量关系为________________;当推出∠DAC =15°时,可进一步推出∠DBC 的度数为_________; 可得到∠DBC 与∠ABC 度数的比值为_______________.(2)当∠BAC ≠90°时,请你画出图形,研究∠DBC 与∠ABC 度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.ABC解:(1)图形补全如下图所示,ABCD①当∠BAC =90°时, ∵∠BAC =2∠ACB , ∴∠ACB =45°,在△ABC 中,∠ABC =180°-∠ACB -∠BAC =45°, ∴∠ACB =∠ABC , ∴AB =AC (等角对等边); ②当∠DAC =15°时, ∠DAB =90°-15°=75°,∵BD =BA ,∴∠BAD =∠BDA =75°, ∴∠DBA =180°-75°-75°=30°,∴∠DBC =45°-30°=15°,即∠DBC =15°, ∴∠DBC 的度数为15°; ③∵∠DBC =15°,∠ABC =45°, ∴∠DBC =15°:∠ABC =45°=1:3, ∴∠DBC 与∠ABC 度数的比值为1:3.(2)猜想:∠DBC 与∠ABC 度数的比值与(1)中结论相同.证明:如图,作∠KCA =∠BAC ,过B 点作BK ∥AC 交CK 于点K ,连接DK .654321l K ABCD E∴四边形ABKC 是等腰梯形, ∴CK =AB , ∵DC =DA , ∴∠DCA =∠DAC , ∵∠KCA =∠BAC , ∴∠KCD =∠3, ∴△KCD ≌△BAD , ∴∠2=∠4,KD =BD , ∴KD =BD =BA =KC . ∵BK ∥AC , ∴∠ACB =∠6,∵∠BAC =2∠ACB ,且∠KCA =∠BAC , ∴∠KCA =2∠ACB , ∴∠5=∠ACB ,∴∠5=∠6, ∴KC =KB , ∴KD =BD =KB , ∴∠KBD =60°,∵∠ACB =∠6=60°-∠1, ∴∠BAC =2∠ACB =120°-2∠1,∵∠1+(60°-∠1)+(120°-2∠1)+∠2=180°, ∴∠2=2∠1,∴∠DBC 与∠ABC 度数的比值为1:3.点拨:本题出现倍角关系,又有轴对称的基本模型(2)、(3),所以很容易想到用对称解决问题.本题的难点在于轴对称的选择.例7.(1)在正方形ABCD 中,M 是BC 的中点,2CM =,点P 是BD 上一动点,则PM PC +的最小值是 .(2)若将(1)中的正方形换成菱形且60ABC ∠=︒,其它条件不变,则PM PC +的最小值是 .(2)(1)M CDPAB PABCDM解:(1)2)点拨:求线段和最小时,可以利用对称性求解. 例8.阅读下列材料:问题:如图1,在四边形ABCD 中,M 是BC 边的中点,且90AMD ∠=︒,试判断AB +CD 与AD 之间的大小关系。

初中数学中考几何如何巧妙做辅助线大全

初中数学中考几何如何巧妙做辅助线大全

人教版北师大初中数学中考几何如何巧妙做辅助线大全人们从来就就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这就是解决问题常用的策略。

一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往就是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线就是个基本图形:当几何中出现平行线时添辅助线的关键就是添与二条平行线都相交的等第三条直线(2)等腰三角形就是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段就是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段就是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点就是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

万唯中考数学几何辅助线方法

万唯中考数学几何辅助线方法

万唯中考数学几何辅助线方法
万唯中考数学几何辅助线方法主要涉及以下几种:
1. 构造法:通过添加一些辅助线,将复杂的几何图形转化为简单的图形,便于分析和求解。

例如,在三角形中添加高线、中线、角平分线等。

2. 反证法:通过假设某个命题不成立,然后利用已知条件进行推理,得出矛盾的结论,从而证明原命题的正确性。

这种方法常用于证明一些难以直接证明的命题。

3. 代数法:通过将几何问题转化为代数问题,利用代数方法求解。

这种方法需要一定的代数基础,例如,利用方程组、不等式等求解。

4. 坐标法:通过建立坐标系,将几何问题转化为代数问题,利用代数方法求解。

这种方法需要一定的代数和解析几何基础,例如,利用函数、方程、向量等求解。

5. 面积法:通过利用面积关系证明或求解几何问题。

这种方法需要掌握一些基本的面积公式和性质,例如,三角形面积公式、平行四边形面积公式等。

以上是万唯中考数学几何辅助线方法的一些主要方法,具体应用要根据实际情况而定。

北京数学中考添加辅助线题型解题方法

北京数学中考添加辅助线题型解题方法

北京数学中考添加辅助线题型解题方法
北京数学中考中,添加辅助线是一种常见的解题方法。

通过添加辅助线,可以将复杂的几何图形转化为更简单的图形,从而更容易找到解题思路。

以下是一些常见的添加辅助线的解题方法:
1. 连接两点:如果两个点与另一个点或线段有关联,可以考虑连接这两点,从而将问题转化为三角形或平行四边形的问题。

2. 作平行线:如果需要证明两条直线平行,可以考虑作一条与这两条直线都平行的线段,从而利用平行线的性质来证明。

3. 作垂线:如果需要证明一条直线与另一条直线垂直,可以考虑作一条与这两条直线都垂直的线段,从而利用垂直线的性质来证明。

4. 延长线段:如果需要证明一条线段的长度等于另一条线段的长度,可以考虑延长这条线段,从而利用全等三角形的性质来证明。

5. 构造中点:如果需要证明一条线段是另一条线段的一半,可以考虑构造一个中点,从而利用中点的性质来证明。

在添加辅助线时,需要注意以下几点:
1. 辅助线不是任意画的,需要符合题目的条件和要求。

2. 辅助线的作用是帮助解题,而不是增加难度。

因此,在添加辅助线时要考虑其作用和目的。

3. 在添加辅助线时,需要考虑其与已知条件和要求的关系,从而找到正确的解题思路。

总之,添加辅助线是解决几何问题的一种有效方法。

通过掌握常见的添加辅助线的解题方法,可以更好地解决几何问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

个性化教案(内部资料,存档保存,不得外泄)
海豚教育个性化教案编号:教案正文:
辅助线的添加
【知识要点】
平面几何是中学数学的一个重要组成部分,证明是平面几何的重要内容。

许多初中生对几何证明题感到困难,尤其是对需要添加辅助线的证明题,往往束手无策。

在这里我们介绍"添加辅助线"在平面几何中的运用。

一、三角形中常见辅助线的添加
1. 与角平分线有关的
ⅰ可向两边作垂线。

ⅱ可作平行线,构造等腰三角形
ⅲ在角的两边截取相等的线段,构造全等三角形
2. 与线段长度相关的
ⅰ截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可
ⅱ补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可
ⅲ倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。

ⅳ遇到中点,考虑中位线或等腰等边中的三线合一。

3. 与等腰等边三角形相关的
ⅰ考虑三线合一
60
ⅱ旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转
二、四边形
特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线.下面介绍一些辅助线的添加方法.
1、和平行四边形有关的辅助线作法
平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形.
ⅰ.利用一组对边平行且相等构造平行四边形
ⅱ.利用两组对边平行构造平行四边形
ⅲ.利用对角线互相平分构造平行四边形
2、和菱形有关的辅助线的作法
和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题. ⅰ. 作菱形的高;
ⅱ.连结菱形的对角线.
3、与矩形有辅助线作法
和矩形有关的题型一般有两种:
例2 如图,AB>AC, ∠1=∠2,求证:AB -AC>BD -CD 。

例3 如图9—5,设O 是正三角形ABC 内一点,已知∠AOB=115°,∠BOC=125°。

求以线段OA ,OB ,OC 为边构成的三角形的各角。

【举一反三】
1、如图,AB=6,AC=8,D 为BC 的中点,求AD 的取值范围。

2、如图,BC>BA ,BD 平分∠ABC ,且AD=CD ,求证:∠A+∠C=180。

考点2. 四边形:
例5 如图1,已知点O 是平行四边形ABCD 的对角线AC 的中点,四边形OCDE 是平行四边形. 求证:OE 与AD 互相平分.
例6 如图3,已知AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE=EF.求证BF=AC.
1 2
A C
D B 图9—5
B A
C
O B
D
C
A
A B
C
D
6 8
例7如图7,已知矩形ABCD内一点,PA=3,PB=4,PC=5.求 PD的长.
【举一反三】
1. 如图2,在△ABC中,E、F为AB上两点,AE=BF,ED//AC,FG//AC交BC分别为D,G.求证:ED+FG=AC.
2. 如图6,四边形ABCD是菱形,E为边AB上一个定点,F是AC上一个动点,求证EF+BF的最小值等于DE 长.
考点3. 圆:
cm cm,则试求例10 (2010江苏泰州,18,3分)如图⊙O的半径为1cm,弦AB、CD的长度分别为2,1弦AC、BD所夹的锐角 .
例11(2010年安徽芜湖市)如图所示,在圆⊙O内有折线OABC,其中OA=8,AB=12,
∠A =∠B =60°,试求BC 的长为.
例12.(2010山东临沂)如图,AB 是半圆的直径,O 为圆心,AD 、BD 是半圆的弦,且PDA PBD ∠=∠.
(1)判断直线PD 是否为O e 的切线,并说明理由;
(2)如果60BDE ∠=o
,3PD =,求PA 的长。

【举一反三】
1.已知:如图12,在Rt ABC △中,90C ∠=o
,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠.
(1)判断直线BD 与⊙O 的位置关系,并证明你的结论; (2)若2AD BD ==,求⊙O 的面积.
2.(天河一模)如图,在Rt △ABC 中,∠ACB =90°,AC =5,CB =12,AD 是△ABC 的角平分线,过A 、C 、D 三点的圆与斜边AB 交于点E ,连接DE 。

(1)求证:AC =AE ; (2)求△ACD 外接圆的半径。

综合
O E D C
B A 图12
A C
B D E
1.(2010年宁德市)(本题满分13分)如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不
含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM. ⑴ 求证:△AMB ≌△ENB ;
⑵ ①当M 点在何处时,AM +CM 的值最小;
②当M 点在何处时,AM +BM +CM 的值最小,并说明理由; ⑶ 当AM +BM +CM 的最小值为13 时,求正方形的边长.
2.(广雅一模)平面直角坐标系中有一张矩形纸片OABC ,O 为坐标原点,A 点坐标为(10,0),C 点坐标为(0,6),D 是BC 边上的动点(与点B 、C 不重合).如图②,将△COD 沿OD 翻折,得到△FOD ;再在AB 边上选取适当的点E ,将△BDE 沿DE 翻折,得到△GDE ,并使直线DG ,DF 重合.
(1)图①中,若△COD 翻折后点F 落在OA 边上,写出 D 、E 点坐标,并且 求出直线DE 的解析式.
(2)设(1)中所求直线DE 与x 轴交于点M ,请你猜想过点M 、C 且关于y 轴对称的抛物线与直线DE 的公共点的个数,在图①的图形中,通过计算验证你的猜想. (3)图②中,设E (10,b ),求b 的最小值.
E
A D
B C
N
M
图① 图②。

相关文档
最新文档