列一元二次方程解应用题教案

合集下载

一元二次方程的应用——销售问题 (2)

一元二次方程的应用——销售问题 (2)

一元二次方程的应用——销售问题教案授课人:董楠授课时间:2017年6月8日上午9:20--10:00授课地点:包头市第四十七中学八年级一班教材背景分析:本节课内容应为九年级上册一元二次方程应用的拓展内容,在教材中没有体现,但在多次模拟考试甚至是某些省市的中考中都有体现,是学生必须掌握的内容之一。

学情分析:本班的学生已经掌握了一元二次方程的解法,在之前的几节课也学习了一元二次方程的几种一元二次方程应用问题(包括图形问题、增长率问题和传染、繁殖等问题)。

本班人数不多,基础薄弱,本节课同时完成列方程和解方程,难度较大,故把教学重点确定为会列同种类型的方程。

教学方法:讲授式、小组讨论教学用具:多媒体、展示台、黑板、DV等教学重点:会列有关销售问题(涨价降价)的一元二次方程教学难点:对于涨价降价后销售量的确定教学目标:1、通过拍卖活动引出主题,给出利润最基本的公式,复习了旧知识,同时活跃了班级气氛,缓解紧张的情绪,为之后的小组讨论环节奠定基础。

2、通过问题一:卖糖环节,对百年老店包头糖厂进行简单的了解,对家乡产生热爱的情怀,并以自己为糖厂人、包头人为自豪,提高学习数学的兴趣。

通过设计的6个问题,小组讨论由定到变的过程,能够深入理解涨价后销售量、利润之间的关系,最后通过表格总结出结论。

3、通过问题二:买卖书包的环节中再次列表、讨论、探究能够简化表格,并独立总结出此种类型题的做题步骤。

4、通过问题三:买卖核桃的环节,加深记忆,巩固知识,4个变式训练有简到难,再联系的同时强调此种类型题应该注意的问题,并提出思考题作为拓展训练。

将题目细化,步子缩小稳步将知识内化为自己的。

教学过程:一、班级拍卖会现场课前5分钟左右由学生自己组织进行2将小商品的拍卖,拍卖结束公布价格(售价、进价)学生计算利润,教师出场引入新课主题《一元二次方程的应用——销售问题》并板书,全班齐说利润公式:利润=售价-进价教师指出:如果销售量不只是1件呢?公式该如何写?二、卖糖师:说到销售,我想起了我们的社区——糖厂曾经的辉煌,糖厂1955年开始正常运营,去年被包头市评为“百年老店”,那时的糖厂解决了华北地区的民众吃糖问题。

数学《一元二次不等式》教学设计(优秀4篇)

数学《一元二次不等式》教学设计(优秀4篇)

数学《一元二次不等式》教学设计(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!数学《一元二次不等式》教学设计(优秀4篇)作为一名教师,常常要写一份优秀的教案,教案是实施教学的主要依据,有着至关重要的作用。

北师大版九年级数学上册教案《一元二次方程的应用》

北师大版九年级数学上册教案《一元二次方程的应用》

《一元二次方程的应用》教学设计合肥市第三十八学徐晶第1课时:行程问题及几何问题教材分析:本节课的主题是发展学生的应用意识,这也是方程教学的重要任务。

但学生应用意识和能力的发展不是自发的,需要通过大量的应用实例,在实际问题的解决中让学生感受到其广泛应用,并在具体应用中增强学生的应用能力。

因此,本节教学中需要选用大量的实际问题,通过列方程解决问题,并且在问题解决过程中,促进学生分析问题、解决问题意识和能力的提高以及方程观的初步形成。

显然,这个任务并非某个教学活动所能达成的,而应在教学活动中创设大量的问题解决的情境,在具体情境中发展学生的有关能力。

教学目标:【知识与技能】通过分析问题中的数量关系,建立方程解决问题,认识方程模型的重要性,并总结运用方程解决实际问题的一般过程。

【过程与方法】1、经历分析和建模的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型;2、能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;【情感态度与价值观】在问题解决中,经历一定的合作交流活动,进一步发展学生合作交流的意识和能力。

教学重难点:【教学重点】重点:掌握列一元二次方程解决几何问题、数学问题,并能根据具体问题的实际意义,检验结果的合理性.【教学难点】难点:理解将实际问题抽象为方程模型的过程,并能运用所学的知识解决问题.课前准备:多媒体教学过程:一、复习引入问题:如图,在一块长为92m ,宽为60m 的矩形耕地上挖三条水渠,水渠的宽都相等,水渠把耕地分成面积均为885m2 的 6 个矩形小块,水渠应挖多宽?【设计意图】用熟悉的情境激发学生解决问题的欲望,用学生已有的知识为支点,进一步让学生体会数形结合的思想。

二、讲授新课活动1:典例精析例1 :如图,某海军基地位于A处,在其正南方向200n mile处有一目标B,在B的正东方向200nmile处有一重要目标C.小岛D位于AC的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向.一艘军舰沿A出发,经B到C匀速巡航,一艘补给船同时从出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.(1)小岛D与小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里(结果精确到0.1海里)?【设计意图】该部分是学习中的难点,在教学中要给学生充分的时间去审清题意,分析各量之间的关系,不能粗线条解决。

九年一元二次方程应用题综合复习经典教案

九年一元二次方程应用题综合复习经典教案

个性化教学辅导教案(10+x)*(500-20x)=6000 解方程可得x1=10,x2=5要让顾客得到实惠,就是要价格最低,所以每千克应涨价5元;2.设获利y元则y=(10+x)(500-20x)=-20x²+300x+5000=-20(x²-15x)+5000=-20[x²-15x+(15/2)²-225/4]+5000=-20(x-15/2)²+1125+5000=-20(x-15/2)²+6125因-20<0,抛物线开口向下,利用二次函数求最大值可也.(五)面积问题例6: 如图12—1,在宽20米,长32米的矩形耕地上,修筑同样宽的三条路(两条纵向,一条横向,并且横向与纵向互相垂直),把这块耕地分成大小相等的六块试验田,要使试验田的面积是570平方米,问道路应该多宽?分析:设路宽为x米,那么两条纵路所占的面积为2·x·20=40x(米2),一条横路所占的面积为32x(米2).纵路与横路所占的面积都包括两个小正方形ABCD、EFGH的面积,所以三条路所占耕地面积应当是(40x+32x-2x2)米2,根据题意可列出方程32×20-(40x+32x-2x2)=570.解:设道路宽为x米,根据题意,得32×20-(40x+32x-2x2)=570.整理,得x2-36x+35=0.解这个方程,得x1=1,x2=35.x=35不合题意,所以只能取x1=1.2答:道路宽为1米.说明:本题的分析中,若把所求三条路平移到矩形耕地边上(如图12—2),就更易发现等量关系列出方程.如前所设,知矩形MNPQ的长MN=(32-2x)米,宽NP=(20-x)米,则矩形MNPQ的面积为:(32-2x)(20-x).而由题意可知矩形MNPQ的面积为570平方米.进而列出方程(32-2x)(20-x)=570,思路清晰,简单明了.6、储蓄问题例7:王明同学将100元第一次按一年定期储蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的50元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的一半,这样到期后可得本金利息共63元,求第一次存款时的年利率.解:设第一次存款时的年利率为x ,根据题意,得[100(1+x )-50](1+21x )=63. 整理,得50x 2+125x -13=0. 解得x 1=101,x 2=-513. ∵x 2=-513不合题意,∴x =101=10%.答:第一次存款时的年利率为10%. 说明:要理解“本金”“利息”“利率”“本息和”等有关的概念,再找清问题之间的相等关系.7、图表信息问题例8:某开发区为改善居民的住房条件,每年都新建一批住房,人均住房面积逐年增加(人均住房面积=该区人口总数该区住房总面积,单位:平方米/人).该开发区1997年至1999年,每年年底人口总数和人均住房面积的统计结果分别如图12—4,请根据两图中所提供的信息解答下面的问题:(1)该区1998年和1999年两年中,哪一年比上一年增加的住房面积多?多增加多少万平方米?答:_______年比上一年增加的住房面积多,多增加__________万平方米.(2)由于经济的发展,预计到2001年底,该区人口总数将比1999年年底增加2万,为使到2001年年底该区人均住房面积达到11平方米/人,试求2000年和2001年两年该区住房总面积的年平均增长率应达到百分之几?14.(1)1999,7.4 (2)10%10(5-x)+x.新的两位数个位上的数字为(5-x),十位上的数字为x,新的两位数就是:10x+(5-x).可列出方程:[10(5-x)+x][10x+(5-x)]=736.解:设原来两位数个位上的数字为x,则十位上的数字为(5-x).根据题意,得[10(5-x)+x][10x+(5-x)]=736.整理,得x2-5x+6=0,解得x1=2,x2=3.当x=2时,5-x=5-2=3;当x=3时,5-x=5-3=2.答:原来的两位数是32或23.说明:解决这类问题,关键是写出表示这个数的代数式.11、动态几何:例11:如图,在△ABC中,∠B=90o。

22.3.2一元二次方程的应用——面积问题

22.3.2一元二次方程的应用——面积问题
x在一幅长80cm宽50cm的矩形风景画的四周镶一条金色纸边制成一幅矩形挂图如图所示如果要使整个挂图的面积是5400cm设金色纸边的宽为xcm那么x满足的方程是130x14000bx65x3500cx130x14000dx65x350080cm6m16mp583题一个矩形的两条邻边相差3cm面积是4cmp345题一个矩形的长比宽多1cm对角线长5cm矩形的长和宽各是多少
2 2
b 4ac (10) 4 1 30 20 0
∴此方程无解. ∴用20cm长的铁丝不能折成面积为30cm2的矩形.
例3:某校为了美化校园,准备在一块长32米,宽
20米的长方形场地上修筑若干条道路,余下部
分作草坪,并请全校同学参与设计,现在有两位
学生各设计了一种方案(如图),根据两种设计方
1、掌握面积法建立一元二次方程的数学模型
并运用它解决实际问题.
2、利用提问的方法复习几种特殊图形的面积
公式来引入新课,解决新课中的问题.
教学重点
根据面积与面积之间的等量关系建立一元二元方
程的数学模型并运用它解决实际问题. 教学难点 根据面积与面积之间的等量关系建立一元二次方
程的数学模型.
例1 有一块矩形铁皮,长100㎝,宽50㎝, 在它的四角各切去一个正方形,然后将四 周突出部分折起,就能制作一个无盖方盒, 如果要制作的方盒的底面积为3600平方
32 2 20 2 2 =100 (米2) 草坪面积= 32 20 100 = 540(米2)
2
取x=2时,道路总面积为:
答:所求道路的宽为2米。
解法二: 我们利用“图形经过移动, 它的面积大小不会改变”的道理, 把纵、横两条路移动一下,使列 方程容易些(目的是求出路面的 宽,至于实际施工,仍可按原图 的位置修路)

一元二次方程应用题

一元二次方程应用题
20
练习:
mn% 1、浓度为m% 的盐酸n千克,含纯盐酸--------mn 千克;若再加p千克水,此时浓度为 n p % 。
2、将一升水加入到硫酸和水的混合液中, 得到新的混合液含硫酸20%,再将一升硫酸 加入到新的混合液中,如果使混合液含硫酸 1 33 %,在原混合液中含硫酸的百分比25% 。 3
资金增长 河南省中考题 率问题
2、某商店从厂家以每件21元的价格购进一 批商品,该商品可以自行定价。若每件商品 售价为a元,则可卖出(350-10a)件,但物价 局限定每件商品加价不能超过进价的20%。 商店计划要赚400元,需要卖出多少件商品? 每件商品应售价多少元?
x 2 52 x 100 0, x1 503、建造成一个长方体形的水池,原计划水 池深3米,水池周围为1400米,经过研讨,修 改原方案,要把长与宽两边都增加原方案中的 宽的2倍,于是新方案的水池容积为270万米3, 求原来方案的水池的长与宽各是多少米?
例3、有一个两位数,十位数字比个位数 字大3,而此两位数比这两个数字之积的 二倍多5,求这个两位数。
解:设个位上的数为x,则十位上的数为 x+3,根据题意得:
10(x+3)+x-2x(x+3)=5
解得: x1=5 ∴ x+3=8 x2=- 5/2(舍去)
答:所求两位数为85.
三、课堂练习:
1、两个连续整数的积是210,则这两个 数是 14,15或 -4,-15 。 2、已知两个数的和等于12,积等于32, 则这两个数是 4,8 。 3、一个六位数,低位上的三个数字组成的 三位数是a ,高位上的三个数是b,现将a,b 互换,得到的六位数是_____________。 1000a+b 4、三个连续整数两两相乘后,再求和,得 362,求这三个数。

23.2.5_一元二次方程的解法(五)应用题1

23.2.5_一元二次方程的解法(五)应用题1

23.2.5一元二次方程的解法(五)教学目标1、使学生能根据量之间的关系,列出一元二次方程的应用题。

2、提高学生分析问题、解决问题的能力。

3、培养学生数学应用的意识。

研讨过程一、复习旧知,提出问题1、叙述列一元一次方程解应用题的步骤。

2、用多种方法解方程22(31)69x x x -=++二、解决问题请同学们先看看P18页问题1,要想解决§23.1的问题1,首先要解方程2109000x x +-=,同学谁能解这个方程吗? 口答结果:x 1= x 2= ,提问:1、所求1x 、2x 都是所列方程的解吗?2、所求1x 、2x 都符合题意吗?说明了什么问题?我们应把实际问题转化为数学问题来解决,求得的方程的解,不一定是原问题的解答,因此,要注意是检验解是否符合题意。

(作为应用题,还应作答)。

三、例题例1.如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方米.求截去正方形的边长。

分析:设截去正方形的边长x 厘米,底面(图中虚线线部分)长等于 厘米,宽等于 厘米,S 底面= 。

解:设截去正方形的边长为x 厘米,根据题意,得解方程得经检验, 不符合题意,应舍去,符合题意的解是答:截去正方形的边长为 厘米。

合作交流:列一元二次方程解应用题的步骤: 。

三、课堂练习1.学校生物小组有一块长32m ,宽20m 的矩形试验田,为了管理方便,准备沿平行于两边的方向纵、横各开辟一条等宽的小道.要使种植面积为5402m ,小道的宽应是多少?2.用一块长80cm 、宽60cm 的薄钢片,在四个角上截去四个相同的边长为xcm 的小正方形,然后做成底面积为1500cm 的无盖长方体盒子。

为求出x ,根据题意,列方程并整理得( )A 、x 2-70x+825=0B 、x 2+70x-825=0C 、x 2-70x-825=0D 、x 2+70x+825=03.要用一条长为24cm 的铁丝围成一个斜边长为10cm 的直角三角形,则两条直角边的长分别为( )A 、4cm ,8cmB 、6cm ,8cmC 、4cm ,10cmD 、7cm ,7cm课后延伸:(典型习题)1、台门中学为美化校园,准备在长32米,宽20米的长方形场地上,修筑若干条道路,余下部分作草坪,并请全校学生参与图纸设计.现有三位学生各设计了一种方案(图纸如下所示),问三种设计方案中道路的宽分别为多少米?⑴甲方案图纸为图1,设计草坪总面积540平方米.解:设道路宽为x 米,根据题意,得答:本方案的道路宽为 米. ⑵乙方案图纸为图2,设计草坪总面积540平方米.解:设道路宽为x 米,根据题意,得答:本方案的道路宽为 米. ⑶丙方案图纸为图3,设计草坪总面积570平方米.解:设道路宽为x 米,根据题意,得答:本方案的道路宽为 米. 四、小结让学生反思、归纳、总结,应用一元二次方程解实际问题,要认真审题,要分析题意,找出数量关系,列出方程,把实际问题转化为数学问题来解决。

【人教版】九年级数学上:《实际问题与一元二次方程》教案

【人教版】九年级数学上:《实际问题与一元二次方程》教案

《 22.3 实际问题与一元二次方程》学习目标:能根据具体问题中的数量关系,列出一元二次方程,并根据具体问题的实际意义,检验结果是否合理.经历将实际问题抽象为数学问题的过程,体会方程是刻画现实世界的一个有效的数学模型.一、自主学习列方程解应用题:有一张长方形的桌子,桌面长100cm,宽 60cm,有一块台布的面积是桌面面积的 2 倍,并且铺在桌面上时,各边垂下的长度相同,求台布的长和宽各是多少?三、达标巩固1.如图所示,李萍要在一幅长 9 0cm、宽 40cm的风景画的四周外围,镶上一条宽度相同的金色纸边,制成一幅挂图,使风景画的面积占整个挂图面积的54%,设金色纸边的宽为xcm,根据题意可列方程()A.( 90+x)( 40+x)× 54%=90× 40B.( 90+2x)( 40+2x)× 54%=90× 40C.( 90+x)( 40+2x )× 54%=90× 40D.( 90+2x)( 40+x )× 54%=90× 402.张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15 立方米的无盖长方体运输箱,且此长方体运输箱底面的长比宽多 2 米, ?现已知购买这种铁皮每平方米需20 元钱,问四、学后记五、课时训练基础过关1.三角形一边的长是该边上高的 2 倍,且面积是32,则该边的长是()A.8 B.4C.42D.822.将一块正方形铁皮的四个角各剪去一个边长为4cm 的小正方形,做成一个无盖的盒子,盒子的容积是3,求原铁皮的边长.400cm3.如图所示,要用防护网围成长方形花坛,其中一面利用现有的一段墙,且在与墙平行的一边开一个 2 米宽的门,现有防护网的长度为 91 米,花坛的面积需要 1080 平方米,若墙长 50 米,求花坛的长和宽.(1)一变:若墙长 46 米,求花坛的长和宽.(2)二变:若墙长 40 米,求花坛的长和宽.(3)通过对上面三题的讨论,你觉得墙长对题目有何影响?4.一条长 64cm的铁丝被剪成两段,每段均折成正方形,若两个正方形的面积和等于160cm2,求两个正方形的边长.5.如图,在长32 米,宽 20 米的矩形草坪上建有两条等宽的弯曲小路,?若草坪实际面积为540平方米,求中路的平均宽度.6.如图,在 Rt △ ABC 中∠ B=90°, AB=8m ,BC=6m ,点 M 、点 N 同时由 A 、 C?两点出发分别沿AB 、 CB 方向向点 B 匀速移动,它们的速度都是 1m/s ,几秒后,△ MBN?的面积为 Rt △ABC 的 面积的 1?3聚焦中考G 7. 如图,矩形 ABCD 的周长是 20cm ,以 AB ,AD 为边向外作正方H FD形 ABEF 和正方形 ADGH , 若正方形 ABEF 和 ADGH 的面积之 A和为 68cm 2 ,那么矩形 ABCD 的面积是( )A . 21cm 2B . 16cm 2C . 24cm 2EBCD . 9cm 28. 在长为 a m ,宽为 b m 的一块草坪上修了一条 1m 宽的笔直小路,则余下草坪的面积可表 示为m 2 ;现为了增加美感,把这条小路改为宽恒为1m 的弯曲小路(如图6),则此时余下草坪的面积为m 2 .9. 某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为 2 :1.在温室内,沿前侧内墙保留3m 宽的空地,其它三前侧 蔬菜种植区域侧内墙各保留 1m 宽的通道.当矩形温室的长与宽各为多少空288m 2 ?时,蔬菜种植区域的面积是地10. 如图所示,在长和宽分别是 a 、b的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用 a ,b, x 表示纸片剩余部分的面积;(2)当 a =6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.《 22.3 实际问题与一元二次方程》学习目标:能根据具体问题中的数量关系,列出一元二次方程,并根据具体问题的实际意义,检验结果是否合理.经历将实际问题抽象为数学问题的过程,体会方程是刻画现实世界的一个有效的数学模型.一、自主学习(一)温故知新列方程解应用题的基本步骤有哪些?(二)探索新知列方程解应用题:一个小组若干人,新年互送贺卡,若全组共送贺卡72 张,则这个小组共多少人?分析:设这个小组有x 人,那么每个人要送给除了他自己以外的人,共送张贺卡,由此可列方程:二、学习过程列方程解应用题:有一人患了流感,经过两轮传染后,有121 人患了流感,每轮传染中平均一个人传染了几个人?分析:设每轮传染中平均一个人传染了x 个人,则第一轮传染后有人患了流感,第二轮传染后有人患了流感 .于是可列方程:思考:如果按这样的传播速度,三轮传染后有多少人患了流感?三、达标巩固1.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x 名同学,那么根据题意列出的方程是()A. x( x+1) =182 B.x(x-1)=182C. 2x( x+1) =182 D.x(1-x)=182× 22.参加足球联赛的每两队之间都进行了两次比赛(双循环比赛),共要比赛90 场,共有多少个队参加了比赛?四、学后记五、课时训练 1.一个多边形有70 条对角线,则这个 多边形有 ________条边.2.九年级( 3)班文学小组在举行的图书共享仪式上互赠图书, 每个同学都把自己的图书向本组其他成员赠送一本, 全组共互赠了 240 本图书,如果设全组共有x 名同学,依题意, 可列出的方程是( )A . x ( x+1) =240B . x ( x-1 ) =240C . 2x ( x+1) =240D. 1x (x+1) =24023.有一人患了流感,经过两轮传染后共有 100 人患了流感,那么每轮传染中平均一个人传染的人数为()A .8 人B .9 人C .10 人D .11 人6.学校组织了一次篮球单循环比赛, 共进行了 15 场比赛,那么有几个球队参加了这次比赛?7.某商店将甲、乙两种糖果混合运算, ?并按以下公式确定混合糖果的单价 :单价=a 1m 1 a 2m 2 (元/千克),其中 m ,m 分别为甲、乙两种糖果的重量(千克) , a , a2m 1 m 2121分别为甲、乙两种糖果的单价(元/千克) .已知 a =20 元/千克, a =16 元/千克,现将1210 千克乙种糖果和一箱甲种糖果混合(搅拌均匀)销售,售出 5 千克后, ?又在 混合糖果中加入 5 千克乙种糖果,再出售时混合糖果的单价为17.5 元/千克,问这箱甲种糖果有多少千克?22.3 实际问题与一元二次方程教学目:1.通学生自学探究感受用一元二次方程解决的程;2.在的程中,掌握的型(利)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列一元二次方程解应用题教案
列一元二次方程解应用题教案1
一、目的要求
1.使学生能画出正比例函数与一次函数的图象。

2.结合图象,使学生理解正比例函数与一次函数的性质。

3.在学习一次函数的图象和性质的基础上,使学生进一步理解正比例函数和一次函数的概念。

二、内容分析
1、对函数的研究,在初中阶段,只能是初步的。

从方法上,是用初等方法,即传统的初等数学的方法,而不是用极限、导数等高等数学的基本工具,并且,比起高中对函数的研究,更多地依赖于图象的直观,从研究的内容上,通常,包括定义域、值域、函数的变化特征等方面。

关于定义域,只是在开始学习函数概念时,有一个一般的简介,在具体学习几种数时,就不一一单独讲述了,关于值域,初中暂不涉及,至于函数的变化特征,像上升、下降、极大、极小,以及奇、偶性、周期性,连续性等,初中只就一次函数与反比例函效的升降问题略作介绍,其它,在初中都不做为基本教学要求。

2、关于一次函数图象是直线的问题,在前面学习13.3节时,利用几何学过的角平分线的性质,对函数y=x的图象是一条直线做了一些说明,至于其它种类的一次函数,则只是在描点画图时,从直观上看出,它们的图象也都是一条直线,教科书没有对这个结论进行严格的论证,对于学生,只要求他们能结合y=x的图象以及其它一些一次函数图象的实例,对这个结论有一个直观的认识就可以了。

三、教学过程
复习提问:
1.什么是一次函数?什么是正比例函数?
2.在同一直角坐标系中描点画出以下三个函数的图象:
y=2x?? y=2x-1?? y=2x+1
新课讲解:
1.我们画过函数y=x的图象,并且知道,函数y=x的图象上的点的坐标满足横坐标与纵坐标相等的.条件,由几何上学过的角平分线的性质,可以判断,函数y=x,这是一个一次函数(也是正比例函数),它的图象是一条直线。

再看复习提问的第2题,所画出的三个一次函数的图象,从直观上看,也分别是一条直线。

一般地,一次函数的图象是一条直线。

前面我们在画一次函数的图象时,采用先列表、描点,再连续的方法.现在,我们明确了一次函数的图象都是一条直线。

因此,在画一次函数的图象时,只要在坐标平面内描出两个点,就可以画出它的图象了。

先看两个正比例项数,
y=0.5x
与y=-0.5x
由这两个正比例函数的解析式不难看出,当x=0时,
y=0
即函数图象经过原点.(让学生想一想,为什么?)
除了点(0,0)之外,对于函数y=0.5x,再选一点(1,0.5),对于函数y=-0.5x。

再选一点(1,一0.5),就可以分别画出这两个正比例函数的图象了。

实际画正比例函数y=kx(k≠0)的图象,一般按以以下三步:
(1)先选取两点,通常选点(0,0)与点(1,k);
(2)在坐标平面内描出点(0,O)与点(1,k);
(3)过点(0,0)与点(1,k)做一条直线.
这条直线就是正比例函数y=kx(k≠0)的图象.
观察正比例函数? y=0.5x的图象.
这里,k=0.5>0.
从图象上看,y随x的增大而增大.
再观察正比例函数?y=-0.5x?的图象。

这里,k=一0.5<0
从图象上看,y随x的增大而减小
实际上,我们还可以从解析式本身的特点出发,考虑正比例函数的性质.
先看
y=0.5x
任取两对对应值. (x 1 ,y 1 )与(x 2 ,y 2 ),
如果x 1 >x 2 ,由k=0.5>0,得
0.5x 1 >0.5x 2
即y l >y 2
这就是说,当x增大时,y也增大。

类似地,可以说明的y=-0.5x?性质。

从解析式本身特点出发分析正比例函数性质,可视学生程度考虑是否向学生介绍。

一般地,正比例函数y=kx(k≠0)有下列性质:
(1)当k>0时,y随x的增大而增大;
(2)当k<0时,y随x的增大而减小。

2、讲解教科书13.5节例1.与画正比例函数图象类似,画一次函数图象的关键是选取适当的两点,然后连线即可,为了描点方便,对于一次函数
y=kx+b(k,b是常数,k≠0)
通常选取
(O,b)与(- ,0)
两点,
对于例l中的一次函效
y=2x+1与y=-2x+1
就分别选取
(O,1)与(一0.5,2),
还有
(0,1)—与(0.5.0).
在例1之后,顺便指出,一次函数y=kx+b的图象,习惯上也称为直线) y =kx+b
结合例1中的两个一次函数的图象,就可以得到与正比例函数类似的关于
一次函数的两条性质。

对于一次函数的性质,也可以从一次函数的解析式分析得出,这与正比例
函数差不多。

课堂练习:
教科书13.5节第一个练习第l—2题,在做这两道练习时,可结合实例进一步说明正比例函数与一次函数的有关性质。

课堂小结:
1.正比例函数y=kx图象的画法:过原点与点(1,k)的直线即所求图象.
2.一次函数y=kx+b图象的画法:在y轴上取点(0,6),在x轴上取点(,0),过这两点的直线即所求图象.
3.正比例函数y=kx与一次函数y=kx+b的性质(由学生自行归纳).
四、课外作业
1.教科书习题13.5A组第l一3题.
2.选作教科书习题13.5B组第1题.
列一元二次方程解应用题教案2
一、教学目标
1、能分析应用题中的数量关系,并找出等量关系.
2、能用列一元二次方程的方法解应用题.
3、培养学生化实际问题为数学问题的能力及分析问题、解决问题的能力.
二、教学重难点
教学重点:能分析应用题中的数量间的关系,列出一元二次方程解应用题.
教学难点:例2涉及比例、平均增长率与多年的增长量之间的关系.
三、教学过程
(一)引入新课
设问:已知一个数是另一个数的2倍少3,它们的积是135,求这两个数.
(由学生自己设未知数,列出方程).
问:所列方程是几元几次方程?由此引出课题.
(二)新课教学
1、对于上述问题,设其中一个数为x,则另一个数是2x-3,根据题意列出方程:
135,整理得:
这是一个关于x的一元二次方程.下面先复习一下列一元一次方程解应用题的一般步骤:
(1)分析题意,找出等量关系,分析题中的数量及其关系,用字母表示问题里的未知数;
(2)用字母的一次式表示有关的量;
(3)根据等量关系列出方程;
(4)解方程,求出未知数的值;
(5)检查求得的值是否正确和符合实际情形,并写出答案.
列一元二次方程解应用题的步骤与列一元一次方程解应用题的步骤一样,只不过所列的方程是一元二次方程而非一元一次方程而已.
2、例题讲解
例1 在长方形钢片上冲去一个小长方形,制成一个四周宽相等的长方形框(如图11—1).已知长方形钢片的长为30cm,宽为20cm,要使制成的长方形框的面积为400cm ,求这个长方形框的框边宽.
分析:
(1)复习有关面积公式:矩形;正方形;梯形;
三角形;圆.
(2)全面积= 原面积–截去的面积 30
(3)设矩形框的框边宽为xcm,那么被冲去的矩形的长为(30—2x)cm,宽为(20-2x)cm,根据题意,得 .
注意:方程的解要符合应用题的实际意义,不符合的应舍去.
例2 某城市按该市的“九五”国民经济发展规划要求,1997年的社会总产值要比1995年增长21%,求平均每年增长的百分率.
分析:(1)什么是增长率?增长率是增长数与原来的基数的百分比,可用下列
公式表示:
增长率=
何谓平均每年增长率?平均每年增长率是在假定每年增长的百分数相同的前提下所求出的每年增长的百分数.(并不是每年增长率的平均数) 有关增长率的基本等量关系有:
①增长后的量=原来的量 (1+增长率),
减少后的量=原来的量 (1--减少率),
②连续n次以相同的增长率增长后的量=原来的量 (1+增长率) ;
连续n次以相同的减少率减少后的量=原来的量 (1+减少率) .
(2)本例中如果设平均每年增长的百分率为x,1995年的社会总产值为1,那么
1996年的社会总产值= ;
1997年的社会总产值= = .
根据已知,1997年的社会总产值= ,于是就可以列出方程:
3、巩固练习
p.152练习及想一想
补充:将进货单价为40元的商品按50元售出时,就能卖出500个,已知这种商品每个涨价1元,其销售量就减少10个,问为了赚得8000元的利润,售价应定
为多少?这时应进货多少?
(三)课堂小结
善于将实际问题转化为数学问题,要深刻理解题意中的已知条件,严格审题,注意解方程中的巧算和方程两根的取舍问题.。

相关文档
最新文档