二次函数与一元二次方程专题2022-2023学年人教版数学九年级上册同步习题

合集下载

专题21.1一元二次方程-2022-2023学年九年级数学上册同步题典解析版人教版

专题21.1一元二次方程-2022-2023学年九年级数学上册同步题典解析版人教版

2022-2023学年九年级数学上册尖子生同步培优题典【人教版】专题21.1一元二次方程【名师点睛】1.一元二次方程(1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.(2)概念解析:一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.2.一元二次方程的一般形式(1)一般地,任何一个关于x 的一元二次方程经过整理,都能化成如下形式ax²+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax ²叫做二次项,a 叫做二次项系数;bx 叫做一次项;c 叫做常数项.一次项系数b 和常数项c 可取任意实数,二次项系数a 是不等于0的实数,这是因为当a=0时,方程中就没有二次项了,所以,此方程就不是一元二次方程了.(2)要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式.3.一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.【典例剖析】【知识点1】一元二次方程的定义【例1】(2020秋•安居区期中)已知方程2(2)(3)10m m x m x -+-+=.(1)当m 为何值时,它是一元二次方程?(2)当m 为何值时,它是一元一次方程?【分析】(1)根据一元二次方程的定义解答本题;(2)根据一次方程的定义可解答本题.【解答】解:(1)Q 方程2(2)(3)10m m x m x -+-+=为一元二次方程,\2220m m ì=í-¹î,解得:m =,所以当m 或时,方程方程2(2)(3)10m m x m x -+-+=为一元二次方程;(2)Q 方程2(2)(3)10m m x m x -+-+=为一元一次方程,\2030m m -=ìí-¹î或21(2)(3)0m m m ì=í-+-¹î或0m =,解得,2m =或1m =±,0,故当m 为2或1±,0时,方程方程2(2)(3)10m m x m x -+-+=为一元一次方程.【变式1】(2022春•江都区月考)下列方程中是一元二次方程的是( )A .210x -=B .35x x +=C .6x y +=D .2230x x --=【分析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.【解答】解:A .该方程是一元一次方程,故本选项不符合题意;B .该方程是分式方程,故本选项不符合题意;C .该方程中含有两个未知数,不是一元二次方程,故本选项不符合题意;D .该方程是一元二次方程,故本选项符合题意.故选:D .【知识点2】一元二次方程的一般形式【例2】(2021秋•龙岗区校级期末)把下列方程化成一般形式,并写出它的二次项系数、一次项系数以及常数项.(1)2(21)(32)2x x x -+=+;(2)2)(3)x x x +=+.【分析】各方程整理为一般形式,找出二次项系数,一次项系数,以及常数项即可.【解答】解:(1)化简后为2540x x +-=,因此二次项系数为5;一次项系数为1;常数项为4-;(2)化简后为22610x x ++=,二次项系数为2;一次项系数为6;常数项为1.【变式2】(2021·江苏常州·九年级期中)将(x +3)2﹣3x =5x 2化为一元二次方程的一般式为_________【答案】4x 2-3x -9=0【解析】【分析】去括号、移项,合并同类项,即可得出答案.【详解】解:(x +3)2-3x =5x 2,x 2+6x +9-3x -5x 2=0,-4x 2+3x +9=0,4x 2-3x -9=0,即一般式是4x 2-3x -9=0,故答案为:4x 2-3x -9=0.【点睛】本题考查了一元二次方程的一般形式的应用,注意:一元二次方程的一般形式是ax 2+bx +c =0,(a 、b 、c 为常数,a ≠0)【知识点3】一元二次方程的解【例3】(2021秋•金湖县期末)若a 为方程2240x x +-=的解,则228a a +-的值为( )A .2B .4C .4-D .12-【分析】将x a =代入方程2240x x +-=,求出224a a +=,再代入所求代入式即可.【解答】解:a Q 为方程2240x x +-=的解,2240a a \+-=,224a a \+=,228484a a \+-=-=-,故选:C .【知识点4】列一元二次方程【例4】根据下列问题中的条件,列出关于x 的方程,并将其化为标准形式.(1)一个长方形的长比宽多2,面积是120,求这个长方形的长x ;(2)一个直角三角形的两条直角边之和为7,它的面积为6,求这个三角形的其中一条直角边长x ;(3)某小组同学元旦互赠贺年卡一张,全组共赠贺年卡90张,求这个小组的同学数x ;(4)一个小组的同学元旦见面时,每两人都握手一次,所有人共握手10次,求这组同学数x ;(5)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,前侧内墙保留3m 宽的空地,其他三侧内墙各保留1m 宽的通道,要使蔬菜种植区域的面积为2288m ,求矩形温室的长x .【分析】(1)设长为x ,则宽为2x -,利用长乘以宽等于面积即可列出方程;(2)设出直角三角形的一边长并表示出另一直角边长,利用三角形的面积公式列出方程即可;(3)设这个小组的同学数为x 人.根据互赠贺年卡一张,则x 人共赠贺卡(1)x x -张,列方程即可;(4)设有x 人,根据每两人都握手一次手,有人共握手10次,列出方程即可;(5)设矩形温室的长为xm ,则为宽2x m ,根据矩形的面积计算公式即可列出方程.【解答】解:(1)设长为x ,则宽为2x -,根据题意得:(2)120x x -=,化为一般形式为221200x x --=;(2)Q 直角三角形的两条直角边长的和为7,设一条直角边长为x ,\另一条直角边长为7x -,Q 该直角三角形的面积为6,\(7)62x x -=,化为一般形式为27120x x -+=;(3)设这个小组的同学数为x 人.根据题意,得(1)90x x -=,化为一般形式为:2900x x --=;(4)设有x 人参加聚会,根据题意得:(1)210x x -=´,化为一般形式为:2200x x --=;(5)设矩形温室的长为xm ,则宽为2x m ,根据题意,得(2)(4)2882x x -×-=,化为一般形式为:285600x x --=.【满分训练】一.选择题(共10小题)1.(2022春•镇海区校级期中)下列方程中,是一元二次方程的是( )A .3(x +2)=8B .3x 2+6x =8C .ax 2+bx +c =0D .=1【分析】根据一元二次方程的定义,即可判断.【解答】解:A 、3(x +2)=8,是一元一次方程,故A 不符合题意;B 、3x 2+6x =8,是一元二次方程,故B 符合题意;C 、ax 2+bx +c =0(a ,b ,c 是常数,a ≠0)是一元二次方程,故C 不符合题意;D 、=1是分式方程,故D 不符合题意;故选:B .2.(2022春•琅琊区校级月考)若(m +3)x |m |﹣1﹣(m ﹣3)x ﹣5=0是关于x 的一元二次方程,则m 的值为( )A .3B .﹣3C .±3D .±2【分析】根据一元二次方程的定义即可求出答案.【解答】解:由题意可知:,解得:m =3,故选:A .3.(2022春•镇海区校级期中)将方程2x 2+7=4x 改写成ax 2+bx +c =0的形式,则a ,b ,c 的值分别为( )A .2,4,7B .2,4,﹣7C .2,﹣4,7D .2,﹣4,﹣7【分析】根据任何一个关于x 的一元二次方程经过整理,都能化成如下形式ax 2+bx +c =0(a ≠0).这种形式叫一元二次方程的一般形式.其中ax 2叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 是一次项系数;c叫做常数项进行分析即可.【解答】解:2x2+7=4x可化为2x2﹣4x+7=0,它的二次项系数,一次项系数和常数项分别为2,﹣4,7,故选:C.4.(2022春•琅琊区校级月考)将一元二次方程(x+3)(2x﹣1)=﹣4化为一般形式,结果是( )A.2x2+5x﹣7=0B.2x2+5x+1=0C.2x2﹣5x+1=0D.x2﹣7x﹣1=0【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).在一般形式中ax2叫二次项,bx叫一次项,c是常数项.【解答】解:(x+3)(2x﹣1)=﹣4,2x2﹣x+6x﹣3+4=0,2x2+5x+1=0,故选:B.5.(2021秋•大化县期中)下列方程中,一元二次方程的个数为( )(1)2x2﹣3=0;(2)x2+y2=5;(3)x(x+3)=x2﹣1;(4)x2+=2.A.1个B.2个C.3个D.4个【分析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.【解答】解:(1)是一元二次方程;(2)含有2个未知数,不是一元二次方程;(3)方程整理后可得3x=﹣1,是一元一次方程;(4)该方程是分式方程,不是一元二次方程.所以一元二次方程的个数为1个.故选:A.6.(2021秋•天津期末)已知x=1是关于x的一元二次方程x2+mx﹣5=0的一个根,则m的值是( )A.5B.﹣5C.﹣4D.4【分析】把x=1代入方程x2+mx﹣5=0,得出一个关于m的方程,解方程即可.【解答】解:把x=1代入方程x2+mx﹣5=0得:1+m﹣5=0,解得:m=4.故选:D.7.(2022•新化县模拟)若a是x2﹣3x﹣2022=0的一个根,则a2﹣3a+1的值是( )A.2020B.2021C.2022D.2023【分析】先根据一元二次方程解的定义得到a2﹣3a=2022,然后利用整体代入的方法计算即可.【解答】解:∵a是x2﹣3x﹣2022=0的一个根,∴a2﹣3a﹣2022=0,∴a2﹣3a=2022,∴a2﹣3a+1=2022+1=2023.故选:D.8.(2022春•杭州期中)已知m是方程x2﹣x﹣1=0的一个根,则代数式2m2﹣2m﹣3的值等于( )A.﹣2B.0C.﹣1D.1【分析】先根据一元二次方程根的定义得到m2﹣m=1,再把2m2﹣2m﹣3变形为2(m2﹣m)﹣3,然后利用整体代入的方法计算.【解答】解:∵m是方程x2﹣x﹣1=0的一个根,∴m2﹣m﹣1=0,∴m2﹣m=1,∴2m2﹣2m﹣3=2(m2﹣m)﹣3=2×1﹣3=﹣1.故选:C.9.(2022春•西湖区校级期中)关于x的一元二次方程(m﹣2)x2﹣2x+m2﹣m=0有一个根是1,则m的值是( )A.﹣2B.2C.0D.±2【分析】把x=1代入方程中进行计算可得m=±2,再根据一元二次方程的二次项系数不为0,即可解答.【解答】解:由题意得:把x=1代入(m﹣2)x2﹣2x+m2﹣m=0中可得,(m﹣2)﹣2+m2﹣m=0,解得:m=±2,∵m﹣2≠0,∴m≠2,∴m=﹣2,故选:A.10.(2022•泰安)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是( )A.3(x﹣1)x=6210B.3(x﹣1)=6210C.(3x﹣1)x=6210D.3x=6210【分析】设这批椽的数量为x株,则一株椽的价钱为3(x﹣1)文,利用总价=单价×数量,即可得出关于x的一元二次方程,此题得解.【解答】解:∵这批椽的数量为x株,每株椽的运费是3文,少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,∴一株椽的价钱为3(x﹣1)文.依题意得:3(x﹣1)x=6210.故选:A.二.填空题(共6小题)11.(2020秋•阜平县期中)将方程8x=3x2﹣1化为一般形式为 3x2﹣8x﹣1=0 .【分析】方程移项,化为一般形式即可.【解答】解:方程整理得:3x2﹣8x﹣1=0.故答案为:3x2﹣8x﹣1=0.12.(2019秋•东台市月考)一元二次方程3x2﹣3x﹣2=0的二次项系数是3,它的一次项系数是 ﹣3 .【分析】根据一元二次方程得出即可.【解答】解:一元二次方程3x2﹣3x﹣2=0的一次项系数是﹣3,故答案为:﹣3.13.(2021秋•黔西南州期中)已知方程(m﹣2)+x=0是关于x的一元二次方程,则m的值是 ﹣2 .【分析】根据一元二次方程的定义得到m2﹣2=2,且m﹣2≠0,然后求解即可得出答案.【解答】解:∵方程(m﹣2)+x=0是关于x的一元二次方程,∴m2﹣2=2,且m﹣2≠0.解得,m=﹣2.故答案为:﹣2.14.(2019秋•岳阳月考)某种品牌的手机经过四、五月份连续两次降价,每部售价由3000元降到了2400元.设平均每月降价的百分率为x,根据题意列出的方程是 3000(1+x)2=2400 .【分析】设平均每月降价的百分率为x,根据售价的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解.【解答】解:设平均每月降价的百分率为x,依题意,得:3000(1﹣x)2=2400.故答案为:3000(1﹣x)2=2400.15.(2020秋•扬州期末)已知关于x的方程为一元二次方程,则a的取值范围是 a ≥1且a≠3 【分析】如果方程是一元二次方程,那么a﹣3≠0,同时有意义,a≥1,可以确定a的取值范围.【解答】解:∵方程是一元二次方程,∴a﹣3≠0,得a≠3,又∵二次根式有意义,∴a﹣1≥0,得a≥1,∴a≥1且a≠3.故本题的答案是a≥1且a≠3.16.(2020•新北区模拟)学校打算用长16m的篱笆围成一个长方形的生物园饲养小动物,生物园的一面靠墙(如图),面积是30m2,求生物园的长和宽.设生物园的宽(与墙相邻的一边)为xm,则列出的方程为 x(16﹣2x)=30 .【分析】可设宽为x m,则长为(16﹣2x)m,根据等量关系:面积是30m2,列出方程即可.【解答】解:设宽为x m,则长为(16﹣2x)m.由题意,得x(16﹣2x)=30,故答案为:x(16﹣2x)=30.三.解答题(共6小题)17.把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.(1)(x﹣5)2=36;(2)3y(y+1)=2(y+1).【分析】(1)首先去括号、移项、合并同类项,进而整理为一元二次方程的一般形式得出各项系数;(2)首先去括号、移项、合并同类项,进而整理为一元二次方程的一般形式得出各项系数.【解答】解:(1)一元二次方程(x﹣5)2=36的一般形式是:x2﹣10x﹣11=0,二次项系数是1、一次项系数是﹣10,常数项是﹣11;(2)一元二次方程3y(y+1)=2(y+1)的一般形式是:3y2+y﹣2=0,二次项系数3、一次项系数是1,常数项是﹣2.18.下列方程中哪些是一元二次方程?哪些不是一元二次方程?(1)(p﹣3)2=(p﹣1)(p+1);(2)2x2﹣3x=x(x﹣3);(3)(4z﹣3)(z+1)=5z2﹣3;(4)2x(3+x2)=2x(3x﹣5).【分析】(1)(2)(3)(4)根据单项式乘多项式、多项式乘多项式的运算法则把原方程化简,根据一元二次方程的定义判断.【解答】解:(1)(p﹣3)2=(p﹣1)(p+1),整理得,3p﹣5=0,不是一元二次方程;(2)2x2﹣3x=x(x﹣3),整理得,x2=0,是一元二次方程;(3)(4z﹣3)(z+1)=5z2﹣3,整理得,z2﹣z=0,是一元二次方程;(4)2x(3+x2)=2x(3x﹣5),整理得,2x3﹣6x2+16x=0,不是一元二次方程.19.关于x的方程(k2﹣1)x2+2(k﹣1)x+2k+2=0,(1)当k满足什么条件时,该方程是一元二次方程;(2)当k满足什么条件时,该方程是一元一次方程.【分析】利用一元二次方程的定义判断即可.【解答】解:(1)∵关于x的方程(k2﹣1)x2+2(k﹣1)x+2k+2=0是一元二次方程,∴k2﹣1≠0,∴k≠±1,所以k≠±1时关于x的方程(k2﹣1)x2+2(k﹣1)x+2k+2=0是一元二次方程;(2)关于x的方程(k2﹣1)x2+2(k﹣1)x+2k+2=0是一元一次方程,∴k2﹣1=0且k﹣1≠0,∴k=﹣1,∴k=﹣1时关于x的方程(k2﹣1)x2+2(k﹣1)x+2k+2=0是一元一次方程.20.(2020秋•城关区校级月考)当k取何值时,关于x的方程(k﹣5)x2+(k+2)x+5=0.(1)是一元一次方程?(2)是一元二次方程?【分析】(1)根据一元一次方程的定义得出k﹣5=0且k+2≠0,求出即可;(2)根据一元二次方程的定义得出k﹣5≠0,求出即可.【解答】解:(1)(k﹣5)x2+(k+2)x+5=0,当k﹣5=0且k+2≠0时,方程为一元一次方程,即k=5,所以当k=5时,方程(k﹣5)x2+(k+2)x+5=0为一元一次方程;(2)(k﹣5)x2+(k+2)x+5=0,当k﹣5≠0时,方程为一元二次方程,即k≠5,所以当k≠5时,方程(k﹣5)x2+(k+2)x+5=0为一元二次方程.21.(2016秋•海门市校级期中)已知a2﹣3a+1=0,求下列各式的值:(1)2a2﹣6a﹣3;(2)a2+a﹣2;(3)a﹣a﹣1.【分析】(1)由已知条件变形得到a2﹣3a=﹣1,再把2a2﹣6a﹣3变形为2(a2﹣3a)﹣3,然后利用整体代入的方法计算;(2)把已知等式两边除以a得到a+=3,再利用完全平方公式得到a2+a﹣2=(a+)2﹣2,然后利用整体代入的方法计算;(3)利用完全平方公式变形得到a﹣a﹣1=±,然后利用整体代入的方法计算.【解答】解:(1)∵a2﹣3a+1=0,∴a2﹣3a=﹣1,∴2a2﹣6a﹣3=2(a2﹣3a)﹣3=2×(﹣1)﹣3=﹣5;(2)∵a2﹣3a+1=0,∴a+=3,∴a2+a﹣2=(a+)2﹣2=32﹣2=7;(3)a﹣a﹣1==±=±.22.(2021秋•赵县月考)根据下列问题,列出关于x的方程,并将其化为一般形式.(1)某印刷厂3月份印刷了50万册书籍,5月份印刷了72万册书籍,如果每月印刷的增长率都相同,求每月印刷的增长率x;(2)一个微信群里共有x个好友,每个好友都分别给其他好友发了一条消息,这样一共产生132条消息.【分析】(1)设每月印刷的增长率都为x,根据该印刷厂3月份及5月份印刷书籍的数量,即可得出关于x的一元二次方程,此题得解;(2)每个好友都有一次发给QQ群其他好友消息的机会,即每两个好友之间要互发一次消息;设有x个好友,每人发x﹣1条消息,则发消息共有x(x﹣1)条.【解答】解:(1)设每月印刷的增长率都为x,根据题意得:50(1+x)2=72.化为一般形式为25x2+50x﹣11=0;(2)设有x个好友,依题意得x(x﹣1)=132,化为一般形式为x2﹣x﹣132=0.。

2022-2023学年九年级数学上学期期末高分必刷专题《一元二次方程与二次函数》强化训练

2022-2023学年九年级数学上学期期末高分必刷专题《一元二次方程与二次函数》强化训练

期末高分必刷专题《一元二次方程与二次函数》强化训练1.下列方程中,属于一元二次方程的是()A.B.C.D.2.用配方法解一元二次方程,配方后的方程为()A.B.C.D.3.已知关于x的一元二次方程(k+1)x2+2x+k2-2k-3=0的常数项等于0,则k的值等于()A.-1 B.3 C.-1或3 D.-34.若关于x的一元二次方程x2+x-3m+1=0有两个实数根,则m的取值范围是()A.m>B.m<C.m≥D.m≤5.下列关于一元二次方程的根的情况判断正确的是()A.有一个实数根B.有两个相等的实数根C.没有实数根D.有两个不相等的实数根6.已知4是关于x的方程的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为()A.7 B.7或C.或D.7.若实数、满足,则一元二次方程根的情况是().A.两个不相等的实数根 B.两个相等的实数根C.无实数根D.两个实数根8.定义新运算:对于任意实数m、n都有m☆n=m2n-m+n,等式右边是常用的加法、减法、乘法及乘方运算,例如:-3☆2=(-3)2×2-(-3)+2=23.根据以上知识请判断方程:x☆2=0的根的情况()A.有两个不相等的实数根B.有两个相等的实数根 C.无实数根D.只有一个实数根9.若α、β是方程x2+2x﹣2015=0的两个实数根,则α2+3α+β的值为()A.2015 B.2013 C.﹣2015 D.403010.已知,是一元二次方程的两个实数根,则的值是( ) A . B . C .2- D .11.某企业五月份的利润是25万元,预计七月份的利润将达到49万元.设平均月增长率为x ,根据题意可列方程是( )A .25(1+ x %)2=49B .25(1+x)2=49C .25(1+ x 2) =49D .25(1- x)2=4912.某医院内科病房有护士人,每人一班,轮流值班,每8小时换班一次,某两人同值一班后,到下次两人再同班,最长需要的天数是天,则( ) A . B . C . D .13.某商场销售一种新文具,进价为20元/件,市场调查发现,每件售价35元,每天可销售此文具250件,在此基础上,若销售单价每上涨1元,每天销售量将减少10件,针对这种文具的销售情况,若销售单价定为元时,每天可获得4000元的销售利润,则应满足的方程为( )A .B .C .D .14.下列关系式中,属于二次函数的是( )A .B .C .D .15.若函数是二次函数,则m 的值为( ) A .3 B . C . D .916.下列二次函数中,图像的开口向上的是( )A .216y x x =--B .281y x x =-++C .()()15y x x =-+D .()225y x =-- 17.抛物线的顶点坐标为( )A .(1,4)--B .C .D . 18.抛物线()21+5y x =--与轴的交点坐标是( )A .(0,4)B .(1,4)C .(0,5)D .(4,0) 19.已知二次函数,则下列关于这个函数图象和性质的说法,正确的是( ) A .图象的开口向上B .图象的顶点坐标是C .当时,随的增大而增大D .图象与轴有唯一交点20.已知关于x 的二次函数21(3)(2)4y m x m x m =+-++ 的图像与x 轴总有交点,则实数m 的取值范围是( )A .m >﹣4且m≠﹣3B .m≥﹣4且m≠﹣3C .m >﹣4D .m≥﹣4 21.在平面直角坐标系中,将抛物线22y x = 先向左平移3个单位长度,再向下平移4个单位长度,所得到的抛物线的表达式为( )A .22(3)4y x =--B .C .D .22.若(,), (,), (,)为二次函数的图像上的三点,则,,的大小关系是( )A .B .C .D .23.已知二次函数,关于该函数在31x -≤≤的取值范围内,下列说法正确的是( ). A .有最大值6,有最小值-3B .有最大值5,有最小值-3C .有最大值6,有最小值5D .有最大值6,有最小值-1 24.函数23y ax bx =++.当与时,函数值相等,则当时,函数值等于( ) A .-3 B . C . D .325.用一根长60cm 的铁丝围成一个矩形,则矩形的最大面积为( )A .125cm2B .225cm2C .200cm2D .250cm226.二次函数的图象如图所示,则下列结论中正确的是()A.a>0 B.b>0 C.c>0 D.b2-4ac>027.如图是二次函数图象的一部分,其对称轴是,且过点,说法:①;②;③;④若、是抛物线上两点,则,其中说法正确的有()个A.1 B.2 C.3 D.428.已知二次函数y=ax²+bx+c(a≠0)图象的一部分如图所示,给出以下结论:①abc<0;②当x=-1时,函数有最大值;③方程ax²+bx+c=0的解是x=1,x=-3;④4a+2b+c>0,⑤2a-b=0,其中结论正确的个数是()A.1 B.2 C.3 D.429.在同一平面直角坐标系中,函数和(是常数,且)的图象可能是( ) A . B . C . D .30.如图,已知中,2,30,AB AC B P ︒==∠=是边上一个动点,过点作,交其他边于点.若设为,的面积为,则与之间的函数关系的图象大致是( )A .B .C .D .二、解答题 1.(2021·山东安丘·九年级期末)已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.2.(2021·广东郁南·九年级期末)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G 等为代表的战略性新兴产业,据统计,目前广东5G 基站的数量约1.5万座,计划到2020年底,全省5G 基站数是目前的4倍,到2022年底,全省5G 基站数量将达到17.34万座.(1)计划到2020年底,全省5G 基站的数量是多少万座?;(2)按照计划,求2020年底到2022年底,全省5G 基站数量的年平均增长率.3.(2021·河北卢龙·九年级期末)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?4.(2021·山东郓城·九年级期末)已知关于x 的方程x2+(2k ﹣1)x+k2﹣1=0有两个实数根x1,x2. (1)求实数k 的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k 的值.5.(2021·河北曲阳·九年级期末)在平面直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A .抛物线21y ax bx =++恰好经过,,A B C 三点中的两点.()1判断点B 是否在直线y x m =+上.并说明理由;()2求,a b 的值;()3平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.6.(2021·海南海口·九年级期末)如图,已知二次函数212y x bx c =-++的图象经过()2,0A ,()0,6B -两点.(1)求这个二次函数的解析式;的面积.(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求ABC7.(2021·山东禹城·九年级期末)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.8.(2021·广西玉林·九年级期末)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.参考答案1.D 符合一元二次方程定义的是21023x x --=, 故选:D.2.A∵29190x x -+=,∴2919x x -=-, 则2818191944x x -+=-+, 即29524x ⎛⎫-= ⎪⎝⎭, 故选:A.3.B由题意,得2230k k --=且10k +≠,∴()()310k k -+=且10k +≠,∴30k -=.解得3k =.故选:B .4.C∵ 关于x 的一元二次方程2310x x m +-+=有两个实数根, ∴ ()214131m ∆=-⨯⨯-+≥0, 解得:m≥14, 故选:C .5.C解:∵△=22-4×1×3=-8<0, ∴方程23210x x ++=没有实数根.故选:C .6.C解:把x=4代入方程得16-4(m+1)+2m=0,解得m=6,则原方程为x 2-7x+12=0,解得x1=3,x2=4,因为这个方程的两个根恰好是等腰△ABC 的两条边长,①当△ABC 的腰为4,底边为3时,则△ABC 的周长为4+4+3=11; ②当△ABC 的腰为3,底边为4时,则△ABC 的周长为3+3+4=10. 综上所述,该△ABC 的周长为10或11.故选C .7.A ∵21203ax x b +-= ∴∆=4-4a×13b ⎛⎫- ⎪⎝⎭=4+43ab , ∵0b a>, ∴ab>0,∴∆=4+43ab >0, ∴一元二次方程21203ax x b +-=有两个不相等的实数根. 故选A .8.C解:∵x ☆2=0,∴2x2-x+2=0,∵a=2,b=-1,,c=2,∴△=b²-4ac=1-16=-15<0,∴无实数根, 故选C .9.B解:∵α是方程x2+2x ﹣2015=0的根,∴α2+2α﹣2015=0,∴α2+2α=2015,∴α2+3α+β=2015+α+β,∵α、β是方程x2+2x ﹣2015=0的两个实数根,∴α+β=﹣2,∴α2+3α+β=2015﹣2=2013.故选:B .10.A∵1x ,2x 是一元二次方程2210x x --=的两个实数根,∴1x +2x =2,1x 2x =-1, ∴12112121x x +-- 21122121(21)(21)x x x x -+-=-- 1212122()242()1x x x x x x +-=-++ 2224(1)221⨯-=⨯--⨯+ =27-, 故选:A.11.B解:依题意得七月份的利润为25(1+x )2,∴25(1+x )2=49.故选:B .12.C解:由已知护士x 人,每2人一班,轮流值班,可得共有()12x x -种组合,又已知每8小时换班一次,每天3个班次,所以由题意得:()12x x -÷(24÷8)=70解得:x=21,即有21名护士.故选C .13.C由题意知:销售单价定为x 元,∵进价为20元/件,每件售价35元,每天可销售此文具250件,∴销售利润=(35-20)×250=3750<4000 ∴销售利润为4000时,x >35,又∵销售单价每上涨1元,每天销售量将减少10件∴可得方程为(20)[25010(35)]4000x x ---=.故选C .14.A根据二次函数的定义:2(0)y ax bx c a =++≠,可判断出只有A 符合二次函数的定义,故选:A .15.C 由题意得:272320m m ⎧-=⎨-≠⎩,解得3m =±,故选:C .16.B解:A. 261y x x =--+,开口方向向下;B. 281y x x =-+,开口方向向上;C. ()()215=45y x x x x =-+--+,开口方向向下;D. ()22251023y x x x =--=-+-,开口方向向下.故答案为B .17.D 解:2223(1)4y x x x∴顶点坐标为(1,4)-.故选:D .18.A把x =0代入得y =-(-1)2+5,即y =4,∴抛物线()21+5y x =--与y 轴的交点坐标是(0,4).故选:A .19.C解:2224(1)5y x x x =-++=--+, ∴抛物线的开口向下,顶点坐标为(1,5),抛物线的对称轴为直线1x =,当 1x <时,y 随x 的增大而增大,令0y =,则2240x x -++=,解方程解得 11x =21x =,∴△44(1)4200=-⨯-⨯=>,∴抛物线与x 轴有两个交点.故选:C .20.B解:∵关于x 的二次函数21(3)(2)4y m x m x m =+-++的图像与x 轴总有交点, ∴△=()()212434m m m ---+⋅=22443m m m m ++--=4m +≥0解得:m≥﹣4又∵m+3≠0∴m≠-3∴实数m 的取值范围是m≥﹣4且m≠﹣3.故选B .21.D解:∵抛物线22y x = 先向左平移3个单位长度,再向下平移4个单位长度, ∴所得到的抛物线的表达式为22(3)4y x =+-,故选:D .22.B解:∵245y x x =--∴该函数图像开口方向向上,对称轴为x=422-=- ∵|134--2|=5.25,|54--2|=3.25,|14-2|=1.75, ∴1.75<3.25<5.25∴y3<y2<y1.故答案为B .23.A∵242y x x =--+∴二次函数图像的对称轴为:()()422x -=-=-- ∵31x -≤≤,且10-< ∴当2x =-时,函数取最大值()()224226y =----+=又∵242y x x =--+在2x =-右侧,y 随着x 的增大而减小;在2x =-左侧,y 随着x 的增大而增大∴当3x =-时,()()234325y =----+=当1x =时,1423y =--+=-∵35-<∴31x -≤≤,二次函数取最小值-3故选:A .24.D解:∵当x=1与x=2018时,函数值相等,故该函数为二次函数,∴对称轴为:x=12018201922+-=- ∴x=2019与x=0的函数值相等,∵当x=0时,y=3,∴当x=2019时,y=3,故选:D .25.B解:设矩形的长为xcm ,则宽为602x 2-cm , ∴矩形的面积S =(602x 2-)x =−x2+30x . ∵a =−1<0, ∴S 最大=24ac 4b a-=9004--=225(cm2). 故矩形的最大面积是225cm2.故选:B .26.D解:由函数图象,可得:函数开口向下,则a <0,对称轴在y 轴左侧,则b <0,图象与y 轴交点在y 轴负半轴,则c <0,抛物线与x 轴有两个交点,则b2−4ac >0,故错误的结论是A 、B 、C ,正确的结论是D .故选:D .27.C解:∵抛物线开口向上,∴0a >, ∵抛物线对称轴是直线12b x a=-=-, ∴20b a =>,则20a b -=,故②正确,∵抛物线与y 轴的交点在x 轴下方,∴0c <,∴0abc <,故①正确,∵当3x =-时,0y =,且图象关于直线1x =-对称,∴当1x =时,0y a b c =++=,即a c b +=-,∵0b >,∴0a c +<,故③正确,∵点()15,y -离对称轴要比点25,2y ⎛⎫⎪⎝⎭离对称轴远, ∴12y y >,故④错误.故选:C .28.C∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=2b a-=-1, ∴b=2a<0,2a-b=0,故⑤正确,∵抛物线与y 轴的交点在x 轴上方,∴c>0,∴abc>0,所以①错误;∵抛物线开口向下,对称轴为直线x=-1,∴当x=-1时,函数有最大值,所以②正确;∵抛物线与x 轴的一个交点坐标为(1,0),而对称轴为直线x=-1,∴抛物线与x 轴的另一个交点坐标为(−3,0),∴当x=1或x=-3时,函数y 的值都等于0,∴方程ax2+bx+c=0的解是:x1=1,x2=-3,所以③正确;∵x=2时,y<0,∴4a+2b+c<0,所以④错误,综上,正确的有②③⑤故选:C .29.D解:解法一:逐项分析;A 、由函数y mx m =+的图象可知0m <,即函数222y mx x =-++开口方向朝上,与图象不符,故A 选项错误;B 、由函数y mx m =+的图象可知0m <,二次函数的对称轴为21022b x a m m=-=-=<,则对称轴应在y 轴左侧,与图象不符,故B 选项错误;C 、由函数y mx m =+的图象可知0m >,即函数222y mx x =-++开口方向朝下,与图象不符,故C 选项错误;D 、由函数y mx m =+的图象可知0m <,即函数222y mx x =-++开口方向朝上,对称轴为 21022b x a m m=-=-=<,则对称轴应在y 轴左侧,与图象相符,故D 选项正确; 解法二:系统分析当二次函数开口向下时,0m -<,0m >,一次函数图象过一、二、三象限.当二次函数开口向上时,0m ->,0m <, 对称轴2102x m m==<, 这时二次函数图象的对称轴在y 轴左侧,一次函数图象过二、三、四象限. 故选:D .30.C解:(1)当03BP<时,在ABC ∆中,2AB AC ==,30B ∠=︒,PD BC ⊥,BP ∴=;21(03)2y BP DP x ∴=⨯<,2>, ∴函数图象开口向上;(2BP <<BP ==;11)22y BP DP x ∴=⨯=,22y x =-+; 302-<, ∴函数图象开口向下;综上,答案C 的图象大致符合.故选:C .二:解答题1解析:(1)证明:∵()230x m x m ---=,∴△=[﹣(m ﹣3)]2﹣4×1×(﹣m )=m2﹣2m+9=(m ﹣1)2+8>0,∴方程有两个不相等的实数根;(2)∵()230x m x m ---=,方程的两实根为1x ,2x ,且2212127x x x x +-=,∴123x x m +=- ,12x x m =- ,∴()2121237x x x x +-=,∴(m ﹣3)2﹣3×(﹣m )=7,解得,m1=1,m2=2,即m 的值是1或2.2解:(1)由题意可得:到2020年底,全省5G 基站的数量是1.546⨯=(万座).答:到2020年底,全省5G 基站的数量是6万座.(2)设年平均增长率为x ,由题意可得: ()26117.34x +=,解得:10.7=70%x =,2 2.7x =-(不符合,舍去)答:2020年底到2022年底,全省5G 基站数量的年平均增长率为70%.3解析:(1)由题意得60×(360-280)=4800(元).即降价前商场每月销售该商品的利润是4800元; (2)设每件商品应降价x 元,由题意得(360-x -280)(5x +60)=7200,解得x1=8,x2=60.要更有利于减少库存,则x =60.即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元. 4:(1)∵关于x 的方程x2+(2k ﹣1)x+k2﹣1=0有两个实数根x1,x2,∴△=(2k ﹣1)2﹣4(k2﹣1)=﹣4k+5≥0,解得:k≤, ∴实数k 的取值范围为k≤. (2)∵关于x 的方程x2+(2k ﹣1)x+k2﹣1=0有两个实数根x1,x2,∴x1+x2=1﹣2k ,x1x2=k2﹣1.∵x12+x22=(x1+x2)2﹣2x1x2=16+x1x2,∴(1﹣2k )2﹣2×(k2﹣1)=16+(k2﹣1),即k2﹣4k ﹣12=0,解得:k=﹣2或k=6(不符合题意,舍去).∴实数k 的值为﹣2.5【详解】(1)点B 在直线y x m =+上,理由如下:将A (1,2)代入y x m =+得21m =+,解得m=1,∴直线解析式为1y x , 将B (2,3)代入1y x ,式子成立,∴点B 在直线y x m =+上;(2)∵抛物线21y ax bx =++与直线AB 都经过(0,1)点,且B ,C 两点的横坐标相同, ∴抛物线只能经过A ,C 两点,将A ,C 两点坐标代入21y ax bx =++得124211a b a b ++=⎧⎨++=⎩, 解得:a=-1,b=2;(3)设平移后所得抛物线的对应表达式为y=-(x-h )2+k ,∵顶点在直线1y x 上,∴k=h+1,令x=0,得到平移后抛物线与y 轴交点的纵坐标为-h2+h+1,∵-h2+h+1=-(h-12)2+54, ∴当h=12时,此抛物线与y 轴交点的纵坐标取得最大值54.6(1)把()2,0A ,()0,6B -代入212y x bx c =-++得 2206b c c -++=⎧⎨=-⎩, 解得46b c =⎧⎨=-⎩. ∴这个二次函数解析式为21462y x x =-+-.(2)∵抛物线对称轴为直线44122x =-=⎛⎫⨯- ⎪⎝⎭, ∴C 的坐标为()4,0, ∴422AC OC OA =-=-=, ∴1126622ABC S AC OB ∆=⨯=⨯⨯=. 7解:(1)把A (1,0)和C (0,3)代入y=x2+bx+c ,103b c c ++=⎧⎨=⎩解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B (3,0),∴点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1, ①当CP=CB 时,,∴或OP=PC ﹣3 ∴P1(0,,P2(0,3﹣;②当PB=PC 时,OP=OB=3,∴P3(0,-3);③当BP=BC 时,∵OC=OB=3∴此时P 与O 重合,∴P4(0,0);综上所述,点P 的坐标为:(0,)或(0,3﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=12×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.8(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣12,所以抛物线解析式为y=﹣12(x﹣6)(x+2)=﹣12x2+2x+6;(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t2+2t+6)其中0<t <6,则N (t ,﹣t+6),∴PN=PM ﹣MN=﹣12t2+2t+6﹣(﹣t+6)=﹣12t2+2t+6+t ﹣6=﹣12t2+3t , ∴S △PAB=S △PAN+S △PBN =12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t2+3t )×6 =﹣32t2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,P(3,152),△PAB 的面积有最大值; (3)△PDE 为等腰直角三角形,则PE=PD ,点P (m ,-12m2+2m+6),函数的对称轴为:x=2,则点E 的横坐标为:4-m ,则PE=|2m-4|,m2+2m+6+m-6=|2m-4|,即-12解得:m=4或-2或或-2和故点P的坐标为:(4,6)或().。

人教版九年级上册数学 22.2二次函数与一元二次方程 同步训练

人教版九年级上册数学   22.2二次函数与一元二次方程   同步训练

人教版九年级上册数学22.2二次函数与一元二次方程同步训练一.单选题1.二次函数y =x −12−1与坐标轴的交点个数是()A.有三个交点B.有两个交点C.有一个交点D.没有交点2.二次函数y =3x 2-6x+k 的图象与x 轴有两个公共点,则k 的取值范围是()A.k≤3且k≠0B.k=3C.k<3D.k≤33.如图,二次函数y =ax 2+bx +c 的图象与x 轴相交于A ,B 1,0两点,对称轴是直线x =−1,下列说法正确的是()A.a <0B.4a −2b +c <0C.点A 的坐标为−2,0D.当x >−1时,y 的值随着x 的值增大而减小4.若m <n <0,且关于x 的方程ax 2−2ax +3−m =0a <0的解为x 1,x 2(x 1<x 2),关于x 的方程ax 2−2ax +3−n =0a <0的解为x 3,x 4(x 3<x 4).则下列结论正确的是()A.x 3<x 1<x 2<x 4B.x 1<x 3<x 4<x 2C.x 1<x 2<x 3<x 4D.x 3<x 4<x 1<x 25.下列关于二次函数y =−3x +1x −2的图象和性质的叙述中,正确的是()A.对称轴是直线x =1B.开口方向向上C.与直线y =3x 有两个交点D.点0,2在函数图象上6.如图,抛物线y=ax 2+bx+c 的对称轴为直线x=1,与x 轴一个交点的坐标为(﹣1,0),其部分图像如图所示,下列结论:①ac<0;②b<0;③方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3;④当y>0时,x 的取值范围是﹣1<x<3.其中结论错误的是()A.①B.②C.③D.④7.规定:如果关于x的一元二次方程ax2+bx+C=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”下列结论正确的有()①方程x2+2x−8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③若关于x的方程ax2−6ax+C=0(a≠0)是倍根方程,则抛物线y=ax2−6ax+C与x轴的公共点的坐标是(2,0)和(4,0)A.0个B.1个C.2个D.3个二.填空题8.若抛物线y=−x2+bx+c的顶点在x轴上,且不等式−x2+bx+c>m的解集为−1<x<3,则m 的值为.9.抛物线y=x2+bx+c的图象与x轴交点的横坐标为−5和1,则不等式cx2+bx+1>0的解集是.10.已知二次函数y=(x−m)2+b的图象如图,则关于x的一元二次方程(x−m)2+b=0的解为.11.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则关于x的方程ax2+bx+c=0(a≠0)的解为.12.如图,已知抛物线y=ax2+c与直线y=kx+m交于A−3,y1,B1,y2两点,则关于x的不等式ax2+c≥kx+m的解集是.13.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A−3,9,B1,1,则关于x的方程ax2−bx−c=0的解为.三.解答题14.已知抛物线的对称轴为直线x=1,顶点A在直线y=−4x上,且抛物线经过点2,−3.(1)求抛物线解析式.(2)求抛物线与x轴、y轴交点坐标.15.已知,抛物线y=4x2−k+2x+k−4,(1)求证:不论k x轴总有两个交点;(2)若已知抛物线与x轴有一个交点A(−1,0),另一交点B,求k的值及线段AB的长.16.已知二次函数y=−x2+2mx−4m+5,当x<2时,y随x的增大而增大,当x>2时,y随x的增大而减小.(1)求函数解析式;(2)若抛物线与x轴交点分别是A,B(A在B左边),在对称轴上有点P,使AB=AP,求点P的坐标.17.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当在什么范围内时,一次函数的值大于二次函数的值.18.如图,点P(0,m2)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C:y=14x21:y=19x2于点C、D,求AB CD的值.于点A、B,交抛物线C2。

人教版九年级数学上册《二次函数与一元二次方程》同步练习2.docx

人教版九年级数学上册《二次函数与一元二次方程》同步练习2.docx

初中数学试卷桑水出品《二次函数与一元二次方程》同步练习●基础探究1.已知二次函数y=ax 2-5x+c 的图象如图所示,请根据图象回答下列问题:(1) a=_______,c=______.(2)函数图象的对称轴是_________,顶点坐标P__________. (3)该函数有最______值,当x=______时,y 最值=________. (4)当x_____时,y 随x 的增大而减小. 当x_____时,y 随x 的增大而增大. (5)抛物线与x 轴交点坐标A_______,B________; 与y 轴交点C 的坐标为_______;ABC S ∆=_________,ABP S ∆=________.(6)当y>0时,x 的取值范围是_________;当y<0时,x 的取值范围是_________. (7)方程ax 2-5x+c=0中△的符号为________.方程ax 2-5x+c=0的两根分别为_____,____. (8)当x=6时,y______0;当x=-2时,y______0. 2.已知下表:x 0 1 2 ax 21 ax 2+bx+c 33(1)求a 、b 、c 的值,并在表内空格处填入正确的数;(2)请你根据上面的结果判断:①是否存在实数x,使二次三项式ax2+bx+c的值为0?若存在,求出这个实数值;若不存在,请说明理由.②画出函数y=ax2+bx+c的图象示意图,由图象确定,当x取什么实数时,ax2+ bx+c>0?x+3的解.3.请画出适当的函数图象,求方程x2=12x2+bx+c的图象与x轴相交于A(-5,0),B(-1,0).4.若二次函数y=-12(1)求这个二次函数的关系式;(2)如果要通过适当的平移,使得这个函数的图象与x轴只有一个交点,那么应该怎样平移?向右还是向左?或者是向上还是向下?应该平移向个单位?5.已知某型汽车在干燥的路面上, 汽车停止行驶所需的刹车距离与刹车时的车速之间有下表所示的对应关系.(1)请你以汽车刹车时的车速V为自变量,刹车距离s为函数, 在图所示的坐标系中描点连线,画出函数的图象;(2)观察所画的函数的图象,你发现了什么?(3)若把这个函数的图象看成是一条抛物线,请根据表中所给的数据,选择三对,求出它的函数关系式;(4)用你留下的两对数据,验证一个你所得到的结论是否正确.●能力提升6.如图所示,矩形ABCD 的边AB=3,AD=2,将此矩形置入直角坐标系中,使AB 在x 轴上,点C 在直线y=x-2上. (1)求矩形各顶点坐标;(2)若直线y=x-2与y 轴交于点E,抛物线过E 、A 、B 三点,求抛物线的关系式; (3)判断上述抛物线的顶点是否落在矩形ABCD 内部,并说明理由.C BAxO D y E7.已知一条抛物线经过A(0,3),B(4,6)两点,对称轴是x=53. (1)求这条抛物线的关系式.(2)证明:这条抛物线与x 轴的两个交点中,必存在点C,使得对x 轴上任意点D 都有AC+BC≤AD+BD.8.如图所示,一位篮球运动员在离篮圈水平距离为4m 处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5m 时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心离地面距离为3.05m.(1)建立如图所示的直角坐标系,求抛物线所对应的函数关系式;(2)若该运动员身高1.8m,这次跳投时,球在他头顶上方0.25m 处出手.问:球出手时,他跳离地面多高?9.某工厂生产A 产品x 吨所需费用为P 元,而卖出x 吨这种产品的售价为每吨Q 元, 已知P=110x 2+5x+1000,Q=-30x+45. (1)该厂生产并售出x 吨,写出这种产品所获利润W(元)关于x(吨)的函数关系式;(2)当生产多少吨这种产品,并全部售出时,获利最多?这时获利多少元? 这时每吨的价格又是多少元?10.已知抛物线y=2x 2-kx-1与x 轴两交点的横坐标,一个大于2,另一个小于2,试求k 的取值范围.11.如图,在Rt △ABC 中,∠ACB=90°,BC>AC,以斜边AB 所在直线为x 轴,以斜边AB 上的高所在直线为y 轴,建立直角坐标系,若OA 2+OB 2= 17, 且线段OA 、OB 的长度是关于x 的一元二次方程x 2-mx+2(m-3)=0的两个根. (1)求C 点的坐标;(2)以斜边AB 为直径作圆与y 轴交于另一点E,求过A 、B 、E 三点的抛物线的关系式,并3.05m4m2.5mxOy画出此抛物线的草图.(3)在抛物线上是否存在点P,使△ABP与△ABC全等?若存在,求出符合条件的P点的坐标;若不存在,说明理由.●综合探究12.已知抛物线L;y=ax2+bx+c(其中a、b、c都不等于0), 它的顶点P的坐标是24,24b ac ba a⎛⎫-- ⎪⎝⎭,与y轴的交点是M(0,c)我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的关系式:伴随抛物线的关系式_________________伴随直线的关系式___________________(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3, 则这条抛物线的关系是___________:(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0) 的伴随抛物线和伴随直线的关系式;(4)若抛物线L与x轴交于A(x1,0),B(x2,0)两点x2>x1>0,它的伴随抛物线与x 轴交于C,D两点,且AB=CD,请求出a、b、c应满足的条件.13已知抛物线y=mx2-(m+5)x+5.(1)求证:它的图象与x轴必有交点,且过x轴上一定点;(2)这条抛物线与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,过(1) 中定点的直线L;y=x+k交y轴于点D,且AB=4,圆心在直线L上的⊙M为A、B两点,求抛物线和直线的关系式,弦AB 与弧»AB围成的弓形面积.参考答案1.(1)a=1;c=4 (2)直线x=52,59,24⎛⎫- ⎪⎝⎭ (3)小; 52;94-(4)55;22≤≥ (5)(1,0);(4,0);(0,4); 6; 278; (6)x<1或x>4;1<x<4 (7)正号;x1=1;x2=4 (8)>;>2.(1)由表知,当x=0时,ax 2+bx+c=3;当x=1时,ax 2=1;当x=2时,ax 2+bx+c=3.∴31423c a a b c =⎧⎪=⎨⎪++=⎩,∴123a b c =⎧⎪=-⎨⎪=⎩, ∴a=1,b=-2,c=3,空格内分别应填入0,4,2. (2)①在x 2-2x+3=0中,∵△=(-2)2-4×1×3=-8<0, ∴不存在实数x 能使ax 2+bx+c=0.②函数y=x 2-2x+3的图象示意图如答图所示, 观察图象得出,无论x 取什么实数总有ax 2+bx+c>0. 3.:在同一坐标系中如答图所示,画出函数y=x 2的图象,画出函数y=12x+3 的图象,这两个图象的交点为A,B,交点A,B 的横坐标32-和2就是方程x 2=12x+3的解.4.:(1)∵y=12-x 2+bx+c,把A(-5,0),B(-1,0)代入上式,得∴()221(5)5021(1)(1)02b c b c ⎧⎛⎫-⨯-+⨯-+= ⎪⎪⎪⎝⎭⎨⎛⎫⎪-⨯-+⨯-+= ⎪⎪⎝⎭⎩,352a b =-⎧⎪⎨=-⎪⎩,∴y=215322x x ---.(2)∵y=215322x x ---=21(3)22x -++ ∴顶点坐标为(-3,2),∴欲使函数的图象与x 轴只有一个交点,应向下平移2个单位. 5.:(1)函数的图象如答图所示.(2)图象可看成是一条抛物线这个函数可看作二次函数.632BAxyO(3)设所求函数关系式为:s=av 2+bv+c,把v=48,s=22.5;v=64,s=36;v=96,s=72分别代入s=av 2+bv+c,得222484822.5646436969672a b c a b c a b c ⎧++=⎪++=⎨⎪++=⎩, 解得35123160a b c ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩. ∴23351216s v v =+ (4)当v=80时,223333808052.55121651216v v +=⨯+⨯= ∵s=52.5, ∴23351216s v v =+当v=112时, 22333311211294.55121651216v v +=⨯+⨯=∵s=94.5,∴23351216s v v =+经检验,所得结论是正确的.6.:(1)如答图所示.∵y=x-2,AD=BC=2,设C 点坐标为(m,2), 把C(m,2)代入y=x-2,2=m-2.∴m=4.∴C(4,2),∴OB=4,AB=3.∴OA=4-3=1, ∴A(1,0),B(4,0),C(4,2),D(1,2).(2)∵y=x-2,∴令x=0,得y=-2,∴E(0,-2).设经过E(0,-2),A(1,0),B(4,0) 三点的抛物线关系式为y=ax 2+bx+c,∴201640c a b c a b c =-⎧⎪++=⎨⎪++=⎩, 解得12522a b c ⎧=-⎪⎪⎪=⎨⎪=-⎪⎪⎩∴y=215222x x -+-.(3)抛物线顶点在矩形ABCD 内部. ∵y=215222x x -+-, ∴顶点为59,28⎛⎫ ⎪⎝⎭.∵5142<<, ∴顶点59,28⎛⎫ ⎪⎝⎭在矩形ABCD 内部.7.(1)解:设所求抛物线的关系式为y=ax 2+bx+c, ∵A(0,3),B(4,6),对称轴是直线x=53.∴31646523c a b c b a ⎧⎪=⎪++=⎨⎪⎪-=⎩, 解得981543a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∴y=2915384x x -+. (2)证明:令y=0,得2915384x x -+=0, ∴ 124,23x x ==∵A(0,3),取A 点关于x 轴的对称点E,∴E (0,-3).设直线BE 的关系式为y=kx-3,把B(4,6)代入上式,得6=4k-3, ∴k=94,∴y=94x-3 . 由94x-3=0,得x=43. 故C 为4,03⎛⎫ ⎪⎝⎭,C 点与抛物线在x 轴上的一个交点重合,在x 轴上任取一点D,在△BED 中,BE< BD+DE. 又∵BE=EC+BC,EC=AC,ED=AD,∴AC+BC<AD+BD. 若D 与C 重合,则AC+BC=AD+BD. ∴AC+BC≤AD+BD. 8:(1)图中各点字母表示如答图所示.∵OA=2.5,AB=4,∴OB=4-2.5=1.5. ∴点D 坐标为(1.5,3.05). ∵抛物线顶点坐标(0,3.5),∴设所求抛物线的关系式为y=ax 2+3.5, 把D(1.5, 3.05)代入上式,得3.05=a×1.52+3.5, ∴a=-0. 2,∴y=-0.2x 2+3.5(2)∵OA=2.5,∴设C 点坐标为(2.5,m),∴把C(2.5,m)代入y=-0.2x 2+3.5, 得m=- 0.2×2.52+3.5=2.25.3.05m4m2.5m xOy BDA∴该运动员跳离地面高度h=m-(1.8+0.25)=2.25-(1.8+0.25)=0.2(m).9:(1)∵P=110x 2+5x+1000,Q=-30x+45. ∴W=Qx-P=(-30x +45)-(110x 2+5x+1000)= 224010015x x -+-.(2)∵W=224010015x x -+-=-215(x-150)2+2000.∵-215<0,∴W 有最大值.当x=150吨时,利润最多,最大利润2000元. 当x=150吨,Q=-30x+45=40(元). 10:∵y=2x 2-kx-1,∴△=(-k)2-4×2×(-1)=k 2+8>0,∴无论k 为何实数, 抛物线y=2x 2-kx-1与x 轴恒有两个交点. 设y=2x 2-kx-1与x 轴两交点的横坐标分别为x 1,x 2,且规定x 1<2,x 2> 2, ∴x 1-2<0,x 2-2>0.∴(x 1-2)(x 2-2)<0,∴x 1x 2-2(x 1+x 2)+4<0.∵x 1,x 2亦是方程2x 2-kx-1=0的两个根, ∴x 1+x 2=2k,x 1·x 2=-12, ∴124022k --⨯+<,∴k>72. ∴k 的取值范围为k>72.法二:∵抛物线y=2x 2-kx-1与x 轴两交点横坐标一个大于2,另一个小于2,∴此函数的图象大致位置如答图所示. 由图象知:当x=2时,y<0.即y=2×22-2k-1<0,∴k>72.∴k 的取值范围为k>72.11:(1)线段OA,OB 的长度是关于x 的一元二次方程x 2-mx+2(m-3)=0 的两个根, ∴(1)2(3)(2)OA OB m OA OB m +=⎧⎨=-⎩L g L又∵OA 2+OB 2=17,∴(OA+OB)2-2·OA·OB=17.③把①,②代入③,得m 2-4(m-3) =17,∴m 2-4m-5=0.解之,得m=-1或m=5. 又知OA+OB=m>0,∴m=-1应舍去.∴当m=5时,得方程:x 2-5x+4=0,解之,得x=1或x=4. ∵BC>AC,∴OB>OA,∴OA=1,OB=4,在Rt △ABC 中,∠ACB=90°,CO ⊥AB,∴OC 2=OA·OB=1×4=4.∴OC=2,∴C(0,2)(2)∵OA=1,OB=4,C,E 两点关于x 轴对称,∴A(-1,0),B(4,0),E(0,-2).设经过A,B,E 三点的抛物线的关系式为y=ax 2+bx+c,则016402a b c a b c c -+=⎧⎪++=⎨⎪=-⎩ ,解之,得12322a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩∴所求抛物线关系式为y=213222x x --.(3)存在.∵点E 是抛物线与圆的交点.∴Rt △ACB ≌Rt △AEB,∴E(0,-2)符合条件.∵圆心的坐标(32,0 )在抛物线的对称轴上.∴这个圆和这条抛物线均关于抛物线的对称轴对称.∴点E 关于抛物线对称轴的对称点E′也符合题意.∴可求得E′(3,-2).∴抛物线上存在点P 符合题意,它们的坐标是(0,-2)和(3,-2)12.(1)y=-2x 2+1,y=-2x+1.(2)y=x 2-2x-3(3)∵伴随抛物线的顶点是(0,c),∴设它的解析式为y=m(x-0)2+c(m≠0).∴设抛物线过P 24,24b ac b aa ⎛⎫-- ⎪⎝⎭, ∴22442ac b b m c a a -⎛⎫=-+ ⎪⎝⎭g 解得m=-a,∴伴随抛物线关系式为y=-ax 2+c.设伴随直线关系式为y=kx+c(k≠0).∵P 24,24b ac b a a ⎛⎫-- ⎪⎝⎭在此直线上,∴2442ac b b k c a a -⎛⎫=-+ ⎪⎝⎭g , ∴k=2b .∴伴随直线关系式为y=2b x+c(4)∵抛物线L 与x 轴有两交点,∴△1=b 2-4ac>0,∴b 2<4ac.∵x 2>x 1>0,∴x 1+ x 2= -b a >0,x 1x 2=c a >0,∴ab<0,ac>0.对于伴随抛物线y=-ax 2+c,有△2=02-(-4ac)=4ac>0.由-ax 2+c=0,得x=∴,C D ⎛⎫⎫ ⎪⎪ ⎪⎪⎝⎭⎭,∴. 又AB=x 2-x 1==. 由AB=CD,得整理得b 2=8ac,综合b 2>4ac,ab<0,ac>0,b 2=8ac,得a,b,c 满足的条件为b 2=8ac 且ab<0,(或b 2=8ac 且bc<0).13.(1)证明:∵y=mx 2-(m+5)x+5,∴△=[-(m+5)]2-4m×5=m 2+10m+25-20m=(m- 5)2.不论m 取任何实数,(m-5)2≥0,即△≥0,故抛物线与x 轴必有交点.又∵x 轴上点的纵坐标均为零,∴令y=0,代入y=mx 2mx 2-(m+5)x+ 5=0,(mx-5)(x-1)=0,∴x=5m或x=1.故抛物线必过x 轴上定点(1,0). (2)解:如答图所示,∵L:y=x+k,把(1,0)代入上式, 得0=1+k,∴k=-1,∴y=x-1.又∵抛物线与x 轴交于两点A(x 1,0),B(x 2,0),且0<x 1<x 2∵x 1x 2>0,∴x 1=1, x 2=5,∴A(1,0),B(5,0),把B(5,0)代入y=mx 2-(m+5)x+5,得0=25m-(m+5)×5+5.∴m=1,∴y=x 2-6x+5.∵M 点既在直线L:y=x-1上,又在线段AB 的垂直平分线上,∴M 点的横坐标x 1+2AB =1+42. 把x=3代入y=x-1,得y=2.∴圆心M(3,2),∴半径,∴MA 2=MB 2=8.又AB 2=42= 16,∴MA 2+MB 2=AB 2,x∴△ABM 为直角三角形,且∠AMB=90°,∴S 弓形ACB=S 扇形AMB- S △1242π-⨯-.。

部编数学九年级上册专题22.4二次函数与一元二次方程【六大题型】(人教版)(解析版)含答案

部编数学九年级上册专题22.4二次函数与一元二次方程【六大题型】(人教版)(解析版)含答案

专题22.4 二次函数与一元二次方程【六大题型】【人教版】【题型1 抛物线与x 轴的交点情况】....................................................................................................................1【题型2 抛物线与x 轴交点上的四点问题】........................................................................................................3【题型3 由二次函数解一元二次方程】................................................................................................................6【题型4 由二次函数的图象求一元二次方程的近似解】....................................................................................9【题型5 由二次函数的图象解不等式】..............................................................................................................11【题型6 由二次函数与一次函数交点个数求范围】 (13)【题型1 抛物线与x 轴的交点情况】【例1】(2022春•西湖区校级期末)抛物线y =(x ﹣x 1)(x ﹣x 2)+mx +n 与x 轴只有一个交点(x 1,0).下列式子中正确的是( )A.x1﹣x2=m B.x2﹣x1=m C.m(x1﹣x2)=n D.m(x1+x2)=n【分析】由抛物线与x轴只有一个交点(x1,0)可得抛物线顶点式,从而可得x1,x2与m的关系.【解答】解:∵抛物线经过(x1,0),且抛物线与x轴只有一个交点,∴抛物线顶点坐标为(x1,0),y=(x﹣x1)2,∴x2﹣2x1x+x21=(x﹣x1)(x﹣x2)+mx+n=x2﹣(x1+x2﹣m)x+x1x2+n,∴x1+x2﹣m=2x1,即x2﹣x1=m,故选:B.【变式1-1】(2022春•澧县校级月考)抛物线y=x2+2x﹣3与坐标轴的交点个数有( )A.0个B.1个C.2个D.3个【分析】由b2﹣4ac的大小可判断抛物线与x轴交点个数,由c的大小可判断抛物线与y轴的交点,进而求解.【解答】解:∵y=x2+2x﹣3,∴a=1,b=2,c=﹣3,∴b2﹣4ac=22+12=16>0,∴抛物线与x轴有2个交点,∵c=﹣3,∴抛物线与y轴交点为(0.﹣3),∴抛物线与坐标轴有3个交点,故选:D.【变式1-2】(2022•广阳区一模)已知抛物线y=﹣3x2+bx+c与x轴只有一个交点,且过点A(m﹣2,n),B(m+4,n),则n的值为( )A.﹣9B.﹣16C.﹣18D.﹣27【分析】根据点A、B的坐标易求该抛物线的对称轴是直线x=m+1.故设抛物线解析式为y=﹣3(x﹣m ﹣1)2,直接将A(m﹣2,n)代入,通过解方程来求n的值.【解答】解:∵抛物线y=﹣3x2+bx+c过点A(m﹣2,n)、B(m+4,n),∴对称轴是直线x=m+1,又∵抛物线y=x2+bx+c与x轴只有一个交点,∴顶点为(m+1,0),∴设抛物线解析式为y=﹣3(x﹣m﹣1)2,把A(m﹣2,n)代入,得:n=﹣3(m﹣2﹣m﹣1)2=﹣27,即n=﹣27.故选:D.【变式1-3】(2022春•汉滨区期中)已知抛物线y=x2+bx+c与x轴的两个交点之间的距离为6,对称轴为x =3,则抛物线的顶点P关于x轴对称的点P'的坐标是( )A.(3,9)B.(3,﹣9)C.(﹣3,9)D.(﹣3,﹣9)【分析】根据抛物线y=x2+bx+c与x轴两个交点间的距离为6.对称轴为直线x=3,可以得到b、c的值,然后即可得到该抛物线的解析式,再将函数解析式化为顶点式,即可得到点P的坐标,然后根据关于x 轴对称的点的特点横坐标不变,纵坐标互为相反数,即可得到点P关于x轴的对称点的坐标.【解答】解:设抛物线y=x2+bx+c与x轴两个交点坐标为(x1,0),(x2,0),∵抛物线y=x2+bx+c与x轴两个交点间的距离为6,对称轴为直线x=3,=3,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=36,−b2×1∴(﹣b)2﹣4×c=36,b=﹣6,解得:c=0,∴抛物线的解析式为y=x2﹣6x=(x﹣3)2﹣9,∴顶点P的坐标为(3,﹣9),∴点P关于x轴的对称点的坐标是(3,9),故选:A.【题型2 抛物线与x轴交点上的四点问题】【例2】(2022•武汉模拟)二次函数与一元二次方程有着紧密的联系,一元二次方程问题有时可以转化为二次函数问题.请你根据这句话所提供的思想方法解决如下问题:若s,t(s<t)是关于x的方程1+(x﹣m)(x﹣n)=0的两根,且m<n,则m,n,s,t的大小关系是( )A.s<m<n<t B.m<s<n<t C.m<s<t<n D.s<m<t<n【分析】由y=(x﹣m)(x﹣n)可得抛物线与x轴交点坐标为(m,0),(n,0),开口向上,则抛物线y=(x﹣m)(x﹣n)与直线y=﹣1的交点坐标为(s,﹣1),(t,﹣1),从而可得m,n,s,t 的大小关系.【解答】解:由1+(x﹣m)(x﹣n)=0可得(x﹣m)(x﹣n)=﹣1,由y=(x﹣m)(x﹣n)可得抛物线y=(x﹣m)(x﹣n)与x轴交点坐标为(m,0),(n,0),抛物线开口向上,则抛物线y=(x﹣m)(x﹣n)与直线y=﹣1的交点在x轴下方,坐标为(s,﹣1),(t,﹣1),∴m<s<t<n.故选:C.【变式2-1】(2022•定远县模拟)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则下列结论正确的是( )A.x1<﹣1<5<x2B.x1<﹣1<x2<5C.﹣1<x1<5<x2D.﹣1<x1<x2<5【分析】方程a(x+1)(x﹣5)=﹣3的两根即为抛物线y=a(x+1)(x﹣5)与直线y=﹣3交点的横坐标,据此可判断选项.【解答】解:令y=a(x+1)(x﹣5),则抛物线y=a(x+1)(x﹣5)与y=ax2+bx+c形状相同、开口方向相同,且与x轴的交点为(﹣1,0)、(5,0),函数图象如图所示,由函数图象可知方程a(x+1)(x﹣5)=﹣3的两根即为抛物线y=a(x+1)(x﹣5)与直线y=﹣3交点的横坐标,∴x1<﹣1<5<x2,故选:A.【变式2-2】(2022•张店区期末)已知二次函数y=(x﹣1)2﹣t2(t是常数,且t≠0),方程(x﹣1)2﹣t2﹣1=0的两根分别为m,n(m<n),方程(x﹣1)2﹣t2﹣3=0的两根分别为p,q(p<q),判断m,n,p,q的大小关系是( )A.p<q<m<n B.p<m<n<q C.m<p<q<n D.m<n<p<q【分析】在平面直角坐标系中画出二次函数y=(x﹣1)2﹣t2(t是常数,且t≠0)的图象,再作出直线y =1,y=3,它们与抛物线交于A,B和C,D,分别过交点作x轴的垂线,则垂足对应的数值为题干中方程的根,利用数形结合的方法即可得出结论.【解答】解:在平面直角坐标系中画出二次函数y=(x﹣1)2﹣t2(t是常数,且t≠0)的图象如下图:作直线y=1与抛物线y=(x﹣1)2﹣t2(t是常数,且t≠0)交于A,B,分别经过A,B作x轴的垂线,垂足对应的数值分别为m,n,∴m,n是方程(x﹣1)2﹣t2﹣1=0的两根;作直线y=3与抛物线y=(x﹣1)2﹣t2(t是常数,且t≠0)交于C,D,分别经过AC,D作x轴的垂线,垂足对应的数值分别为p,q,∴p,q是方程(x﹣1)2﹣t2﹣3=0的两根.由图象可知m,n,p,q的大小关系是:p<m<n<q.故选:B.【变式2-3】(2022•河东区期末)已知抛物线y=x2+bx+c的图象与x轴的两交点的横坐标分别α,β(α<β),而x2+bx+c﹣2=0的两根为M、N(M<N),则α、β、M、N的大小顺序为( )A.α<β<M<N B.M<α<β<N C.α<M<β<N D.M<α<N<β【分析】依题意画出函数y=(x﹣α)(x﹣β)和y=2的图象草图,根据二次函数的图象可直接求解.【解答】解:依题意,画出函y=(x﹣α)(x﹣β)的图象,如图所示.函数图象为抛物线,开口向上,与x轴两个交点的横坐标分别为α,β(α<β),方程x2+bx+c﹣2=0的两根是抛物线y=(x﹣α)(x﹣β)与直线y=2的两个交点.由M<N,可知对称轴左侧交点横坐标为M,右侧为N.由图象可知,M<α<β<N,故选:B.【题型3 由二次函数解一元二次方程】【例3】(2022•娄底一模)已知二次函数y=ax2+bx+c的图象经过(﹣1,0)与(3,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是5.则关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是( )A.﹣2或4B.﹣2或0C.0或4D.﹣2或5【分析】根据二次函数y=ax2+bx+c的图象经过(﹣1,0)与(3,0)两点求对称轴,后面两个方程二次项、一次项系数没变,所以两根的和也不变还是2.【解答】解:∵二次函数y=ax2+bx+c的图象经过(3,0)与(﹣1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为3和﹣1,函数y=ax2+bx+c的对称轴是直线x=1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是5.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣3,函数y=ax2+bx+c的图象开口向下,如图,∵0<n<m,∴﹣m>﹣m,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴直线y=﹣n与y=ax2+bx+c的交点的横坐标为﹣2,4,∴这关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,是﹣2或4,故选:A.【变式3-1】(2022•潮南区模拟)已知二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),则关于x的一元二次方程ax2﹣2ax+c=0的根是 x1=﹣1,x2=3 .【分析】利用二次函数y=ax2﹣2ax+c的解析式求得抛物线的顶点坐标,利用抛物线的对称性求得抛物线与x轴的另一个交点,再利用抛物线与x轴的交点的横坐标与一元二次方程的根的关系得出结论.【解答】解:∵y=ax2﹣2ax+c,=1.∴抛物线的对称轴为直线x=−−2a2a∵二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),∴该抛物线与x轴的另一个交点为(3,0).∴关于x的一元二次方程ax2﹣2ax+c=0的根是:x1=﹣1,x2=3.故答案为:x1=﹣1,x2=3.【变式3-2】(2022•咸宁一模)已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的y与x的部分对应值如下表:x﹣5﹣4﹣202y60﹣6﹣46则关于x的一元二次方程ax2+bx+c=0的根是 x1=﹣4,x2=1 .【分析】由抛物线经过点(﹣5,6),(2,6)可得抛物线对称轴,根据抛物线对称性及抛物线经过(﹣4,0)求解.【解答】解:由抛物线经过点(﹣5,6),(2,6)可得抛物线抛物线对称轴为直线x=−522=−32,∵抛物线经过(﹣4,0),对称轴为直线x=−32,∴抛物线经过(1,0),∴一元二次方程ax2+bx+c=0的根是x1=﹣4,x2=1.故答案为:x1=﹣4,x2=1.【变式3-3】(2022•永嘉县校级模拟)已知二次函数y=﹣x2+bx+c的图象经过(﹣1,0)与(5,0)两点,且关于x的方程﹣x2+bx+c+d=0有两个根,其中一个根是6,则d的值为( )A.5B.7C.12D.﹣7【分析】先由二次函数y=﹣x2+bx+c的图象经过(﹣1,0)与(5,0)两点,求出b、c,再把b、c代入方程﹣x2+bx+c+d=0后,由方程的根是6求出d.【解答】解:∵二次函数y=﹣x2+bx+c的图象经过(﹣1,0)与(5,0)两点,∴−1−b+c=0−25+5b+c=0,解得:b=4 c=5,将b=4,c=5代入方程﹣x2+bx+c+d=0,可得:﹣x2+4x+5+d=0,又∵关于x的方程﹣x2+4x+5+d=0有两个根,其中一个根是6,∴把x=6代入方程﹣x2+4x+5+d=0,得:﹣36+4×6+5+d=0,解得:d=7,经验证d=7时,Δ>0,符合题意,∴d=7.故选:B.【题型4 由二次函数的图象求一元二次方程的近似解】【例4】(2022•平度市期末)如表给出了二次函数y=x2+2x﹣10中x,y的一些对应值,则可以估计一元二次方程x2+2x﹣10=0的一个近似解为( )x… 2.1 2.2 2.3 2.4 2.5…y…﹣1.39﹣0.76﹣0.110.56 1.25…A.2.2B.2.3C.2.4D.2.5【分析】根据函数值,可得一元二次方程的近似根.【解答】解:如图:x=2.3,y=﹣0.11,x=2.4,y=0.56,x2+2x﹣10=0的一个近似根是2.3.故选:B.【变式4-1】(2022•灌云县期末)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c=0的一个解的范围是 6.18<x<6.19 .x 6.17 6.18 6.19 6.20y﹣0.03﹣0.010.020.04【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【解答】解:由表格数据可得,当x=6.18时,y=﹣0.01,当x=6.19时,y=0.02,于是可得,当y=0时,相应的自变量x的取值范围为6.18<x<6.19,故答案为:6.18<x<6.19.【变式4-2】(2022•渠县一模)如图,是二次函数y=ax2+bx﹣c的部分图象,由图象可知关于x的一元二次方程ax2+bx=c的两个根可能是 x1=0.8,x2=3.2合理即可 .(精确到0.1)【分析】直接利用抛物线与x 轴交点的位置估算出两根的大小.【解答】解:由图象可知关于x 的一元二次方程ax 2+bx =c 的两个根可能是:x 1=0.8,x 2=3.2合理即可.故答案为:x 1=0.8,x 2=3.2合理即可.【变式4-3】(2022秋•萍乡期末)代数式ax 2+bx +c (a ≠0,a ,b ,c 是常数)中,x 与ax 2+bx +c 的对应值如下表: x ﹣1−12 0121 322 523ax 2+bx +c﹣2−141742741−14 ﹣2请判断一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 是常数)的两个根x 1,x 2的取值范围是下列选项中的( )A .−12<x 1<0,32<x 2<2B .﹣1<x 1<−12,2<x 2<52C .−12<x 1<0,2<x 2<52D .﹣1<x 1<−12,32<x 2<2【分析】观察表格可知,在x <1时,随x 值的增大,代数式ax 2+bx +c 的值逐渐增大,x 的值在−12~0之间,代数式ax 2+bx +c 的值由负到正,故可判断ax 2+bx +c =0时,对应的x 的值在−12~0之间,在x >1时,随x 的值增大,代数式ax 2+bx +c 逐渐减小,x 的值在2~52之间,代数式ax 2+bx +c 的值由正到负,故可判断ax 2+bx +c =0时,对应的x 的值在2~52之间,【解答】解:根据表格可知,代数式ax 2+bx +c =0时,对应的x 的值在−12~0和2~52之间,即:一元二次方程ax2+bx+c=0(a≠0,a,b,c是常数)的两个根x1,x2的取值范围是−12<x1<0,2<x2<52故选:C.【题型5 由二次函数的图象解不等式】【例5】(2022秋•垦利区期末)如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2﹣mx+c<n的解集为( )A.x>﹣1B.x<3C.﹣1<x<3D.x<﹣3或x>1【分析】由抛物线与直线交点横坐标确定直线在抛物线上方时x的取值范围.【解答】解:∵A(﹣1,p),B(3,q),∴﹣1<x<3时,直线在抛物线上方,即﹣1<x<3时,ax2+c<mx+n,∴不等式ax2﹣mx+c<n的解集为﹣1<x<3.故选:C.【变式5-1】(2022•定远县二模)抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x,纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…请求出当y<0时x的取值范围 x<﹣2或x>3 .【分析】把点(0,6)代入求出c,把点(﹣1,4)和(1,6)代入抛物线的解析式列方程组,解出可得a、b,即可得抛物线的解析式,进而可列不等式求出y<0时x的取值范围.【解答】解:由表得,抛物线y=ax2+bx+c(a≠0)过点(0,6),∴c=6,∵抛物线y=ax2+bx+6过点(﹣1,4)和(1,6),∴a−b+6=4a+b+6=6,解得:a=−1 b=1,∴二次函数的表达式为:y=﹣x2+x+6,所以令﹣x2+x+6<0,解得:x<﹣2或x>3.故答案为:x<﹣2或x>3.【变式5-2】(2022•工业园区校级模拟)若二次函数y=ax2+bx+c(a、b、c为常数)的图象如图所示,则关于x的不等式a(x+2)2+b(x+2)+c<0的解集为 x<﹣1或x>1 .【分析】根据图象可得x<1或x>3时ax2+bx+c<0,则a(x+2)2+b(x+2)+c<0时x+2<1或x+2>3,进而求解.【解答】解:由图象可得x<1或x>3时ax2+bx+c<0,∴当a(x+2)2+b(x+2)+c<0时,x+2<1或x+2>3,解得x<﹣1或x>1,故答案为:x<﹣1或x>1.【变式5-3】(2022•驿城区校级期末)如图,二次函数y=x2﹣4x+m的图象与y轴交于点C,点B是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.则满足kx+b≥x2﹣4x+m的x的取值范围是( )A.x≤1或x≥4B.1≤x≤4C.x≤1或x≥5D.1≤x≤5【分析】由二次函数解析式可得抛物线对称轴为直线x=2,从而可得点B横坐标,进而求解.【解答】解:∵y=x2﹣4x+m,∴抛物线对称轴为直线x=2,∵点B和点C关于直线x=2对称,∴点B横坐标为4,∵点A横坐标为1,∴1≤x≤4时,kx+b≥x2﹣4x+m,故选:B.【题型6 由二次函数与一次函数交点个数求范围】【例6】(2022•虞城县三模)已知抛物线y=a(x﹣2)2+c(a>0).(1)若抛物线与直线y=mx+n交于(1,0),(5,8)两点.①求抛物线和直线的函数解析式;②直接写出当a(x﹣2)2+c>mx+n时自变量x的取值范围.(2)若a=c,线段AB的两个端点坐标分别为A(0,3),B(3,3),当抛物线与线段AB有唯一公共点时,直接写出a的取值范围.【分析】(1)①利用待定系数法求解析式即可,②抛物线开口向上,数形结合直接写出答案;(2)结合抛物线和线段AB,分情况讨论求a的取值范围.【解答】解:(1)①∵抛物线y=a(x﹣2)2+c与直线y=mx+n交于(1,0),(5,8)两点,∴a+c=09a+c=8,m+n=05m+n=8,解得a=1c=−1,m=2n=−2,∴抛物线和直线的函数解析式分别为y=(x﹣2)2﹣1,y=2x﹣2.②∵a>0,抛物线开口向上,抛物线与直线y=mx+n交于(1,0),(5,8)两点,∴当a(x﹣2)2+c>mx+n时自变量x的取值范围为x<1或x>5.(2)若a=c,则抛物线y=a(x﹣2)2+a(a>0),∴开口向上,对称轴为x=2,顶点坐标为(2,a),当抛物线顶点在线段AB上时有唯一公共点,此时a=3,当抛物线顶点在线段AB下方时,当经过B(3,3)时,a+a=3,解得a=32,当经过A(0,3)时,4a+a=3,解得a=35,∴当抛物线与线段AB有唯一公共点时,a的取值范围为35≤a<32或a=3.【变式6-1】(2022•余姚市一模)已知:一次函数y1=2x﹣2,二次函数y2=﹣x2+bx+c(b,c为常数),(1)如图,两函数图象交于点(3,m),(n,﹣6).求二次函数的表达式,并写出当y1<y2时x的取值范围.(2)请写出一组b,c的值,使两函数图象只有一个公共点,并说明理由.【分析】(1)将(3,m),(n,﹣6)代入直线解析式求出点坐标,然后通过待定系数法求解,根据图象可得y1<y2时x的取值范围.(2)﹣x2+bx+c=2x﹣2,由Δ=0求解.【解答】解:(1)将(3,m)代入y1=2x﹣2得m=6﹣2=4,将(n,﹣6)代入y1=2x﹣2得﹣6=2n﹣2,解得n=﹣2,∴抛物线经过点(3,4),(﹣2,﹣6),将(3,4),(﹣2,﹣6)代入y2=﹣x2+bx+c得4=−9+3b+c−6=−4−2b+c,解得b=3 c=4,∴y=﹣x2+3x+4,由图象可得﹣2<x<3时,抛物线在直线上方,∴y1<y2时x的取值范围是﹣2<x<3.(2)令﹣x2+bx+c=2x﹣2,整理得x2+(2﹣b)x﹣(2+c)=0,当Δ=(2﹣b)2+4(2+c)=0时,两函数图象只有一个公共点,∴b=2,c=﹣2,满足题意.【变式6-2】(2022•河南模拟)小新对函数y=a|x2+bx|+c(a≠0)的图象和性质进行了探究.已知当自变量x的值为0或4时,函数值都为﹣3;当自变量x的值为1或3时,函数值都为0.探究过程如下,请补充完整.(1)这个函数的表达式为 y=|x2﹣4x|﹣3 ;(2)在给出的平面直角坐标系中,画出这个函数的图象并写出这个函数的一条性质: 函数关于直线x=2对称 ;(3)进一步探究函数图象并解决问题:①直线y=k与函数y=a|x2+bx|+c有三个交点,则k= 1 ;②已知函数y=x﹣3的图象如图所示,结合你所画的函数图象,写出不等式a|x2+bx|+c≤x﹣3的解集: x=0或3≤x≤5 .【分析】(1)将x=0,y=﹣3;x=4,y=﹣3;x=1,y=0代入y=a|x2+bx|+c(a≠0),得到:c=﹣3,b=﹣4,a=1,即可求解析式为y=|x2﹣4x|﹣3;(2)描点法画出函数图象,函数关于x=2对称;(3)①从图象可知:当x=2时,y=1,k=1时直线y=k与函数y=|x2﹣4x|﹣3有三个交点;②y=x﹣3与y=x2﹣4x﹣3的交点为x=0或x=5,结合图象,y=|x2﹣4x|﹣3≤x﹣3的解集为3≤x≤5.【解答】解:(1)将x=0,y=﹣3;x=4,y=﹣3;x=1,y=0代入y=a|x2+bx|+c(a≠0),得到:c=﹣3,b=﹣4,a=1,∴y=|x2﹣4x|﹣3,故答案为:y=|x2﹣4x|﹣3;(2)如图:函数关于直线x=2对称,故答案为:函数关于直线x=2对称;(3)①当x=2时,y=1,∴k=1时直线y=k与函数y=|x2﹣4x|﹣3有三个交点,故答案为1;②y=x﹣3与y=|x2﹣4x|﹣3的交点为x=0或x=3,结合图象,y=|x2﹣4x|﹣3≤x﹣3的解集为x=0或3≤x≤5,故答案为:x=0或3≤x≤5.x+t与函数y=【变式6-3】(2022•海珠区一模)令a、b、c三个数中最大数记作max{a,b,c},直线y=12 max{﹣x2+4,x﹣2,﹣x﹣2}的图象有且只有3个公共点,则t的值为 1或65 .16【分析】只需画出函数y=max{﹣x2+4,x﹣2,﹣x﹣2}的图象,然后结合图象并运用分类讨论的思想,就可解决问题.【解答】解:在直角坐标系中画出函数y=max{﹣x2+4,x﹣2,﹣x﹣2}的图象,如图所示.当直线y =12x +t 经过(﹣2,0)或与抛物线y =﹣x 2+4相切时,直线y =12x +t 与函数y =max {﹣x 2+4,x ﹣2,﹣x ﹣2}的图象有且只有3个公共点.①若直线y =12x +t 经过(﹣2,0),则有0=12×(﹣2)+t ,解得t =1;②若直线y =12x +t 与抛物线y =﹣x 2+4相切,则关于x 的方程12x +t =﹣x 2+4即x 2+12x +t ﹣4=0有两个相等的实数根,则△=(12)2﹣4×1×(t ﹣4)=0,解得t =6516.综上所述:t =1或6516.故答案为1或6516.。

人教版-数学-九年级上册-22.2二次函数与一元二次方程同步练习

人教版-数学-九年级上册-22.2二次函数与一元二次方程同步练习

22.2 二次函数与一元二次方程01 基础题知识点1 二次函数与一元二次方程1.(柳州中考)小兰画了一个函数y =x 2+ax +b 的图象如图,则关于x 的方程x 2+ax +b =0的解是(D )A .无解B .x =1C .x =-4D .x =-1或x =42.抛物线y =-3x 2-x +4与坐标轴的交点个数是(A )A .3个B .2个C .1个D .0个3.下列哪一个函数,其图象与x 轴有两个交点(D )A .y =14(x -23)2+155B .y =14(x +23)2+155C .y =-14(x -23)2-155D .y =-14(x +23)2+1554.(苏州中考)已知二次函数y =x 2-3x +m(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程x 2-3x +m =0的两实数根是(B )A .x 1=1,x 2=-1B .x 1=1,x 2=2C .x 1=1,x 2=0D .x 1=1,x 2=35.(德宏中考)二次函数y =x 2-2x -1的图象与x 轴有两个交点A(x 1,y 1)、B(x 2,y 2),则x 1+x 2的值等于(A )A .2B .-2C . 2D .- 26.抛物线y =2x 2+8x +m 与x 轴只有一个公共点,则m 的值为8.知识点2 利用二次函数求一元二次方程的近似解7.根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)一个解的范围是(C)x 3.23 3.24 3.25 3.26ax2+bx+c -0.06 -0.02 0.03 0.09A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25 D.3.25<x<3.268.用图象法求一元二次方程2x2-4x-1=0的近似解.解:设y=2x2-4x-1.画出抛物线y=2x2-4x-1的图象,如图所示.由图象知,当x≈2.2或x≈-0.2时,y=0.即方程2x2-4x-1=0的近似解为x1≈2.2,x2≈-0.2.知识点3二次函数与不等式9.二次函数y=x2-x-2的图象如图所示,则函数值y<0时,x的取值范围是(C) A.x<-1 B.x>2C.-1<x<2 D.x<-1或x>210.(牡丹江中考)抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c>0的解集是(C)A.x<2 B.x>-3C.-3<x<1 D.x<-3或x>102中档题11.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2 017的值为(D)A.2 015 B.2 016 C.2 017 D.2 01812.(贵港中考)如图,已知二次函数y1=23x2-43x的图象与正比例函数y2=23x的图象交于点A(3,2),与x轴交于点B(2,0),若0<y1<y2,则x的取值范围是(C)A.0<x<2 B.0<x<3C.2<x<3 D.x<0或x>313.(金华中考)如图是二次函数y=-x2+2x+4的图象,使y≤1成立的x的取值范围是(D)A.-1≤x≤3 B.x≤-1C.x≥1 D.x≤-1或x≥314.(红河期末)若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是0或1.解析:①若m=0,则函数y=2x+1是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1是二次函数.根据题意得:Δ=4-4m=0,解得m=1.故答案为:0或1.15.(南京中考)已知二次函数y=x2-2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?解:(1)证明:∵Δ=(-2m)2-4(m2+3)=-12<0,∴方程x2-2mx+m2+3=0没有实数根.∴不论m为何值,该函数的图象与x轴没有公共点.(2)y=x2-2mx+m2+3=(x-m)2+3,把函数y=(x-m)2+3的图象沿y轴向下平移3个单位长度后,得到函数y=(x-m)2的图象,它的顶点坐标是(m,0),∴这个函数的图象与x轴只有一个公共点.∴把该函数的图象沿y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.03综合题16.(孝感中考)已知关于x的方程x2-(2k-3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)试说明x1<0,x2<0;(3)若抛物线y=x2-(2k-3)x+k2+1与x轴交于A、B两点,点A、点B到原点的距离分别为OA、OB,且OA+OB=2OA·OB-3,求k的值.解:(1)由题意可知:Δ=2-4(k2+1)>0,即-12k+5>0,∴k<5 12.(2)∵k<512,∴⎩⎪⎨⎪⎧x1+x2=2k-3<0,x1·x2=k2+1>0.∴x1<0,x2<0.(3)依题意,不妨设A(x1,0),B(x2,0),∵x1<0,x2<0,∴OA+OB=||x1+||x2=-(x1+x2)=-(2k-3),OA·OB=||x1·||x2=(-x1)·(-x2)=x1x2=k2+1.∵OA+OB=2OA·OB-3,∴-(2k-3)=2(k2+1)-3.解得k1=1,k2=-2.∵k<512,∴k=-2.。

人教版2022-2023学年九年级数学上册一元二次方程根与系数的关系练习题含答案

人教版2022-2023学年九年级数学上册一元二次方程根与系数的关系练习题含答案
【详解】解:∵x1,x2是一元二次方程x2﹣2x﹣5=0的两个根,
∴x1+x2 2,
故选:B.
【点睛】此题考查了根与系数的关系,设x1,x2为方程ax2+bx+c=0(a≠0)的两个根,则有x1+x2 ,x1•x2= .
2.A
【分析】根据一元二次方程根与系数的关系求得 ,代入代数式即可求解.
【详解】解:∵一元二次方程 的两个根分别为 和 ,
∴ 或 ,
∵ , ,
∴ , ,
∴ ,
解得 ,
∴ ,
故选:D.
【点睛】本题主要考查了根与系数的关系,公式法解一元二次方程,熟记一元二次方程的求根公式是解本题的关键.
5.C
【分析】利用根的判别式可判断①;把 ,代入,得到不等式,即可判断②;求得抛物线的对称轴为直线x=b,利用二次函数的性质即可判断③;利用根与系数的关系即可判断④.
【详解】解:∵a= >0,开口向上,且当 时, ;当 时, ,
∴抛物线 与x轴有两个不同的交点,
∴ ,
∴ ;故①正确;
∵当 时, ,
∴ -b+c<0,即b> +c,
∵c>1,
∴b> ,故②正确;
抛物线 的对称轴为直线x=b,且开口向上,
当x<b时,y的值随x的增加反而减少,
∴当 时, ;故③正确;
∵方程 的两实数根为x1,x2,
则x1﹣2=x2﹣2或x1﹣2=2﹣x2,
∴x1=x2或x1+x2=4,
当x1=x2时,x1=x2= ,不能判断a与b之间的关系,
当x1+x2=4时,即 =4,
∴b=﹣4a,
故ax2+bx+c=0(a≠0)是2的等距方程时,b不一定等于﹣4a,故③错误;

2022-2023学年人教版数学九年级上册《二次函数与一元二次方程》提升训练

2022-2023学年人教版数学九年级上册《二次函数与一元二次方程》提升训练

22.2 二次函数与一元二次方程 精练提升一、单选题1.抛物线253y x x =-+-与y 轴的交点坐标是( )A .()0,3B .()0,3-C .()0,5-D .()0,52.函数y =x 2+2x ﹣3的图象与x 轴的交点个数是( )A .0B .1C .2D .33.若抛物线y =x 2+bx+c 对称轴为直线x =2,且与x 轴有交点,则c 的最大值为( )A .0B .3C .4D .84.已知抛物线y =x 2+mx 的对称轴为直线x =2,则关于x 的方程x 2+mx =n 2+1的根可能是( )A .0,4B .1,5C .1,﹣5D .﹣1,55.二次函数y =ax 2+bx 的图像如图,若一元二次方程ax 2+bx+m =0有实数根,则m 的最大值为( )A .﹣3B .﹣2C .2D .36.二次函数269y x x =-+与x 轴的交点个数是( )A .只有一个交点B .有两个交点C .没有交点D .无法确定7.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列5个结论:①0abc >;②24b ac <;③23c b <;④2()a b m am b +>+(1m ≠);⑤若方程2ax bx c ++=1有四个根,则这四个根的和为2,其中正确的结论有( )A .2个B .3个C .4个D .5个8.如图,抛物线y =ax 2+bx+c 的对称轴为直线x =1,与x 轴一个交点的坐标为(﹣1,0),其部分图像如图所示,下列结论:①ac <0;②b <0;③方程ax 2+bx+c =0的两个根是x 1=﹣1,x 2=3;④当y >0时,x 的取值范围是﹣1<x <3.其中结论错误的是( )A .①B .②C .③D .④二、填空题 9.已知抛物线(1)(5)y x x =--与x 轴的公共点坐标是12(,0),(,0)A x B x ,则12x x +=_______.10.若函数2y x 的图象与关于x 的函数y x a =+的图象有交点,则a 的取值范围是_________.11.已知函数y =﹣x 2+2x+6,当0≤x <m 时,函数值的取值范围是6≤y ≤7,则实数m 的取值范围是 __.12.已知抛物线(1)(5)y x x =--与x 轴的公共点坐标是12(,0),(,0)A x B x ,则12x x +=_______.13.若抛物线y =-x 2-6x +m 与x 轴没有交点,则m 的取值范围是14. 如图,已知二次函数y 1=23x 2-43x 的图象与正比例函数y 2=23x 的图象交于点A(3,2),与x 轴交于点B(2,0).若y 1<y 2,则x 的取值范围是三、解答题15.如图,已知二次函数2y x bx c =++的图象经过点A (-1,0),B (1,-2),与x 轴的另一个交点为C .(1)求该图象的解析式;(2)求AC 长.16.已知抛物线L :y =﹣x 2﹣2x+3与x 轴交于A 、B 点(A 点在B 点的左侧),与y 轴交于点C .(1)求A 、B 、C 三点的坐标;(2)把抛物线L 关于y 轴对称,得到抛物线L',在抛物线L'上是否存在点P ,使得S △ABP =S △BCP ?若存在,请求出点P 的横坐标;若不存在,请说明理由.17.二次函数()20y ax bx c a =++≠的图象如图所示,根据图象解答下列问题:(1)求二次函数的解析式;(2)直接写出不等式20ax bx c ++>的解集______;(3)若方程2ax bx c k ++=有两个不相等的实数根,则k 的取值范围是______.18.如图,二次函数的图象与x 轴交于A (﹣3,0)和B (1,0)两点,交y 轴于点C (0,3),点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D .(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使二次函数值大于一次函数值的x的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数与一元二次方程专题(原卷版)考点1:二次函数与一元二次方程的根之间关系【基础题】1.已知抛物线y=ax2+bx+c与x轴的两个交点坐标是(-2,0),(5,0),则一元二次方程ax²+bx+c=0的两个解是( )A. x1=-2,x2=5B. x1=2,x2=-5C.x1=-2,x2=-5D.x1=2,x2=52.已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是( )A. x1=1,x₂=-1B. x1=1,x₂=2C. x1=1,x₂=0D. x1=1,x₂=33已知二次函数y=ax2+2ax-3的部分图像如图,由图像可知关于x的一元二次方程ax2+2ax-3=0的两个根分别是x1=1.3和x2=( )A.-1.3B.-2.3C.-0.3D.-3.34.已知关于x的一元二次方程ax2+bx+c=3的一个根为x=2,且二次函数y=ax2+bx+c的对称轴是直线x=2,则抛物线的顶点坐标为( ).A.(2,-3)B. (2,1)C. (2,3)D. (3,2)5.关于x的一元二次方程x2﹣x﹣n=0没有实数根,则抛物线y=x2-x-n的顶点在()A.第一象限 B.第二象限C.第三象限D.第四象限6.已知二次函数y=-x2+bx+c的顶点为(1,5),那么关于x的一元二次方程-x2+bx+c-4=0的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法确定7.二次函数y=ax2+bx+c的图象如图所示,下列说法错误的是()A. a<0,b>0B. b2-4ac>0C. 方程ax2+bx+c=0的解是x1=5,x2=-1D.不等式ax2+bx+c>0的解集是0<x<58.【经典】已知抛物线y=ax2+bx+c上的部分点的横坐标x与纵坐标y的对应值如表:以下结论正确的是( )A.抛物线y=ax2+bx+c的开口向下B. 当x<3时,y随x增大而增大C.方程ax2+bx+c=0的根为0和2D. 当y>0时,x的取值范围是0<x<29.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x+c的图象可能是()A. B. C. D.10.已知二次函数y=ax2+bx+c的图象如图所示,利用图象回答:(1)方程ax2+bx+c=0的解是。

(2)方程ax2+bx+c=-3的解是。

(3)方程ax2+bx+c=5的解是。

(4)方程ax2+bx+c=-4的解是。

11.已知抛物线y=ax²+bx+c与x轴的交点的横坐标为-1,则a+c= 。

12.方程ax2+bx+c=0的两根为-3,1,则抛物线y=ax2+bx+c的对称轴是。

13.二次函数y=x2-2x-3与x轴的交点坐标是,两交点之间的距离是。

【提高题】1.二次函数y=x²+bx+c,若b+c=0,则它的图象一定过点( )。

A.(-1,-1)B. (1,-1)C. (-1,1)D. (1,1)2.若抛物线y=ax2+bx+c(a>0)经过第四象限中的点(1,-1),则关于x的方程ax2+bx+c=0 的根的情况是( )。

A.有两个大于1的不相等实数根B.有两个小于1的不相等实数根C.有两个实数根,其中一个大于1,另一个小于1D.没有实数根【经典+数形结合思想】3.如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根."请根据你对这句话的理解,解决下面问题:若m,n(m<n)是关于x的方程1-(x-a)(x-b)=0的两根,且a<b则a,b,m,n的大小关系是( )A.m<a<b<nB. a <m < n <bC. a<m<b<nD. m<a <n<b4.若x1,x2(x1<x2)是关于x的方程(x+1)(3-x)+p2=0(p为常数)的两根,下列结论中正确的是( )A.x 1<-1<3<x 2B.x 1≤-1<3≤x 2C.-1<x1<3<x 2D.-1≤x 1<x 2≤35.【经典】抛物线y=ax 2+bx+c(a≠0)的顶点为D(-1,2),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图像如图4所示,则以下结论: ①b 2-4ac<0;②a+b+c<0;③c-a=2;④方程ax²+bx+c -2=0有两个相等的实数根, 其中正确结论的个数为 ( ) A. 1 B. 2 C. 3 D. 4 6.如图是二次函数y=ax 2+bx+c 的图象,下列结论: ①二次三项式ax 2+bx+c 的最大值为4;②4a+2b+c<0; ③一元二次方程ax 2+bx+c=1的两根之和为-1; ④使y≤3成立的x 的取值范围是x≥0. 其中正确的个数有( )A. 1个B.2个C.3个D.4个7.已知二次函数y=-x 2+2(m-1)x+2m-m 2的图象关于y 轴对称,则此图象的顶点A 和图象与x 轴的两个交点B 、C 构成的△ABC 的面积是________. 【经典+函数与方程+图象平移】8.抛物线y=a(x-12)2+k 经过A(-3,0),B(m ,0)两点,则关于x 的一元二次方程a(x-32)2+k=0 的解是________。

【经典+函数与方程+增减性求最值】9.在平面直角坐标系xOy 中,抛物线y=mx 2-2mx-3(m ≠0)与x 轴交于A ,B 两点,且点A 的坐标为(3,0).(1)求点B 的坐标及m 的值; (2)画出函数的图象;(3)当-2<x<3时,结合函数图象直接写出y 的取值范围.【经典+根的判别式+割补法】10.已知直线l:y=kx+1与抛物线y=x 2-4x 。

(1)求证:直线l 与该抛物线总有两个交点;(2)设直线l 与该抛物线两交点为A,B,O 为原点,当k=-2时,求ΔOAB 的面积。

考点2:二次函数与一元二次方程根的判别式之间关系 【基础题】1.抛物线y=-3x 2-x+4与x 轴的公共点的个数为( ) A.0 B. 1 C. 2 D. 32.抛物线y=x 2+4x+5-m 与x 轴有两个不同的交点,则m 的取值范围是( ) A. m<-1 B. 0<m ≤1 C. m<1 D. m>1 【易错题+漏掉二次项系数】3.抛物线y=ax 2+3x-1与x 轴有两个不同的交点,则a 的取值范围是( )。

A. a >0B. a >-49C . a >94D. a >-94,且a ≠0【易错题+分类讨论】4.已知函数y=(k-3)x 2+2x+1的图象与x 轴有交点.则k 的取值范围是( ) 。

A.k<4 B. k≤4 C. k<4且k≠3 D. k≤4且k≠3 【2022山东潍坊】5.抛物线y=x 2+x+c 与x 轴只有一个公共点,则c 的值为( ) A.−14B. 14C. -4D.4【易错题+分类讨论】6.若函数y=(m-1)x 2-6x+32m 的图象与x 轴有且只有一个公共点,则m 的值为( )A.-2或3B. -2或-3C. 1或-2或3D. 1或-2或-3【易错题+分类讨论】7.已知函数y=kx2+x+1的图象与x轴只有一个交点,则交点坐标为______.【易错题+分类讨论】8.若函数y=x2-2x+b的图像与坐标轴有三个交点,则b的取值范围是()A. b<1,且b≠0B. b>1C. 0<b<1D. b<1【2020山东青岛+根的判别式】9.抛物线y=2x2+2(k-1)x-k(k为常数)与x轴交点的个数是______.10.抛物线y=-x2+6x-4与坐标轴的公共点个数为。

【经典+交点坐标+数形结合思想】11.已知二次函数y1=x2+bx-3的图象与直线y2=x+1交于点A(-1,0),C(4, m).(1)b= ,m= 。

(2)将直线AC沿y轴上下平移,当平移后的直线与抛物线只有一个公共点时,求平移后的直线解析式.【根的判别式+数形结合思想】12.已知二次函数y=x2-2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?【提高题】1.已知直线y=kx+2过第一、二、三象限,则直线y=kx+2与抛物线y=x2-2x+3的公共点个数为( )A. 0B. 1C. 2D. 1或2【经典+恒成立问题】2.二次函数y=ax2+bx+c的值永远为负值的条件是()A. a>0,b2-4ac<0B. a<0,b2-4ac>0C. a>0,b2-4ac>0D. a<0,b2-4ac<03.已知A=x2+a,B=2x,若对于所有的实数x,A的值始终比B的值大,则a的值可能是( )A. -1B. 0C. 1D. 2【分类讨论思想】4.在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则( )A.M=N-1或M=N+1B. M=N或M=N+1C. M=N-1或M=N+2D. M=N或M=N-1【经典+函数与方程+分类讨论思想】5.已知关于x的函数y=(k﹣1)x2+4x+k的图象与坐标轴只有2个交点,那么k的值为。

【新定义题目】6.定义:若两个函数图象与x轴有一个共同点的交点,我们就称这两个函数为“共根函数”.如y=x2-4与y=(x+1)(x-2)的图象与x轴的共同交点为(2,0),那么这两个函数就是“共根函数”. 若y=2x2-4x与y=x2-3x+m-1为“共根函数”,则m的值为( )A.1B.1或3C.1或2D.2或3【数形结合思想】7.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx-m=0有实数根,则m的最小值为( )A. 3B. -3C. 32D. -32【数形结合思想】8.二次函数y=ax²+bx+c(a≠0)的图象如图所示,若lax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是( )A. k<-3B. k>-3C. k<3D. k>3【2021贵州铜仁+数形结合思想】9.已知抛物线y=a(x-h)2+k与x轴有两个交点A(-1,0),B(3,0),抛物线y=a(x-h-m)2+k与x 轴的一个交点是(4,0),则m的值是( )。

相关文档
最新文档