太赫兹简介及特点和应用

合集下载

太赫兹技术应用

太赫兹技术应用

太赫兹技术应用的实际应用情况引言太赫兹技术是指在太赫兹频段(0.1-10 THz)进行研究和应用的一种新兴领域。

太赫兹波是介于红外线和微波之间的电磁波,具有高穿透力、非离子性和无辐射危害等特点。

近年来,太赫兹技术在多个领域得到了广泛的应用,包括材料科学、生物医学、安全检测等。

本文将详细描述太赫兹技术在这些领域中的应用背景、应用过程和应用效果。

一、材料科学领域中的太赫兹技术应用1. 应用背景材料科学是太赫兹技术最早被应用的领域之一。

传统的材料性能测试方法往往需要对样品进行破坏性测试或使用昂贵复杂的设备,而太赫兹技术可以通过非接触式测量手段实现对材料内部结构和性能的快速准确分析。

2. 应用过程太赫兹技术在材料科学中的应用过程通常包括以下几个步骤: #### a. 信号发射与接收通过太赫兹源产生太赫兹波,并使用太赫兹探测器接收反射、透射或散射的信号。

这些信号包含了材料的特征信息。

#### b. 数据处理与分析对接收到的信号进行数据处理和分析,提取有用的信息。

常用的方法包括时域分析、频域分析、图像重建等。

#### c. 结果展示与解释将处理和分析得到的数据结果进行展示,并根据结果解释材料的性能和结构。

3. 应用效果太赫兹技术在材料科学中的应用效果主要体现在以下几个方面: #### a. 材料成分分析太赫兹技术可以快速准确地检测材料中不同成分的存在和含量,例如聚合物、金属、陶瓷等。

这对于材料研发和质量控制具有重要意义。

#### b. 材料缺陷检测太赫兹技术可以探测材料中微小缺陷,如裂纹、气泡等。

这对于材料的评估和改进具有重要意义。

#### c. 材料性能表征太赫兹技术可以测量材料的电磁性能,如介电常数、导电率等。

这对于材料的设计和优化具有重要意义。

二、生物医学领域中的太赫兹技术应用1. 应用背景生物医学领域是太赫兹技术应用的另一个重要领域。

太赫兹波在生物组织中具有较好的穿透力,同时对水分子有较强的吸收作用,因此可以用于非侵入式地探测和诊断生物组织。

太赫兹原理及应用

太赫兹原理及应用

太赫兹原理及应用太赫兹波(Terahertz waves)是指频率范围在300 GHz到10 THz之间的电磁波。

与可见光和红外线相比,太赫兹波具有较长的波长和低能量,并处于电磁谱中所谓的"太赫兹间隙"(THz Gap)区域。

太赫兹波的产生、探测和应用领域已经得到了广泛的研究和发展。

本文将介绍太赫兹波的原理和应用。

太赫兹波的产生与检测是太赫兹技术的关键之一、产生太赫兹波的方法包括通过光学非线性效应、光电子发射、自由电子激发等。

光学非线性效应是指通过光束与物质相互作用,产生高次谐波或混频效应,进而产生太赫兹波。

光电子发射是指通过使用紫外光激发金属或半导体表面的自由电子,产生太赫兹波。

自由电子激发是指通过高能电子束轰击其中一种材料(如金属或半导体),产生太赫兹波。

检测太赫兹波的方法包括光电探测、热电探测、双晶探测等。

光电探测是指通过将太赫兹波照射到光电探测器上,利用光电效应将太赫兹波转化为电信号。

热电探测是指通过太赫兹波的吸收,使探测器产生温度变化从而产生电信号。

双晶探测是指通过将太赫兹波照射到一个非线性晶体上,在晶体中产生激发电荷,从而在两个电极上产生电流信号。

太赫兹波的应用领域非常广泛。

在通信领域,太赫兹波被用作无线通信的一种替代解决方案,具有高速传输和大带宽的优势。

太赫兹无线通信可以穿透衣物、纸张和塑料等各种材料,因此可以用于隐私保护和非侵入性的检测。

在安全检测领域,太赫兹技术可以用于探测和识别爆炸品、毒品和可疑物品等。

太赫兹波可以穿透多种物质,而且与X射线相比,辐射剂量小,不会对人体产生明显的伤害。

在材料检测领域,太赫兹波可以用于分析和检测材料的结构和成分,例如用于药物颗粒的表征,食品和农产品的质量检测等。

太赫兹光谱学是利用太赫兹波进行分析材料的一种方法,可以获得材料的特征光谱信息,因此在生物医学、化学和物理等领域得到广泛应用。

此外,太赫兹波还有许多其他的应用。

在无损检测领域,太赫兹波可以用于检测材料中的缺陷、裂纹和腐蚀等。

太赫兹应用技术在无损检测中的研究与应用

太赫兹应用技术在无损检测中的研究与应用

太赫兹应用技术在无损检测中的研究与应用一、简介太赫兹波段位于毫米波和红外线之间,其波长在0.1毫米至1毫米之间。

太赫兹技术作为一种新型检测手段,近年来得到了广泛的应用。

其在无损检测中的应用也得到了越来越多的关注。

本文将就太赫兹应用技术在无损检测中的研究与应用进行探究。

二、太赫兹无损检测的原理及特点1.原理太赫兹技术是一种利用太赫兹辐射的扫描成像技术,通过探测物体与太赫兹波的相互作用,测量物质的电磁特性,得到物体的三维图像。

太赫兹波与材料的分子结构、组分、内部结构密切相关,对物质的透明和不透明性、显微结构和各种非线性特性有着一定的探测力。

2.特点太赫兹技术的特点是它的探测和识别速度快,成像分辨率高,同时可以实现非接触性探测。

太赫兹波较弱,虽然其穿透力不如X射线和γ射线,但是可以易于穿透一些高分子材料,水、纸、塑料和大气等非金属材料,对于金属类的材料透射效果并不理想。

三、太赫兹应用技术在无损检测中的研究与应用1. 检测材料缺陷太赫兹无损检测技术可以用来检测非金属材料的表面缺陷,如裂纹、孔洞等,可以有效地检测到涂层的缺陷,以及陶瓷、玻璃等材料表面的裂纹,从而进行修补。

2. 金属离子的检测太赫兹无损检测技术对于金属离子的检测方面也具有一定的探测力。

通过反射、透射和散射等检测方法,结合多种参数计算分析,可以检测出金属离子在不同材料中的浓度和分布相关特性。

3. 人体组织检测太赫兹技术也可以用于人体组织的检测,如皮肤等组织的显微结构和组织排列模式的检测,以及癌细胞等指标的判定。

根据这些检测信息可以很好地判断人体细胞的异常情况和变异规律。

四、太赫兹无损检测技术的应用案例1. 汽车制造领域太赫兹技术在汽车制造领域的应用主要体现在对汽车涂层的质量检测工作中,能够清晰准确地检测及定位涂层内部的缺陷和甲醛气体的发散情况。

2. 食品加工领域太赫兹技术在食品加工领域的应用主要体现在食品生产、保鲜及检测过程中,可以检测食品是否新鲜、不新鲜的区分等,对食品的品质控制具有十分重要的作用。

太赫兹技术应用

太赫兹技术应用

太赫兹技术应用太赫兹技术是一种新兴的电磁波技术,其频率介于微波和红外线之间,具有穿透力强、分辨率高、非接触式探测等特点,被广泛应用于医疗、安检、通信等领域。

在医疗领域,太赫兹技术可以用于检测人体组织的病变情况,如乳腺癌、皮肤癌等。

太赫兹波可以穿透人体表层,直接探测组织内部的变化,而且不会对人体产生任何伤害。

此外,太赫兹技术还可以用于药物检测和分析,帮助医生更好地了解药物的成分和作用。

在安检领域,太赫兹技术可以用于检测危险品和非法物品。

太赫兹波可以穿透一些常见的材料,如纸张、塑料等,可以探测到隐藏在这些材料内部的物品。

与传统的金属探测器相比,太赫兹技术可以检测到更多种类的物品,而且不会对人体产生辐射。

在通信领域,太赫兹技术可以用于高速数据传输。

太赫兹波的频率高,可以传输更多的数据,而且不会受到电磁干扰的影响。

此外,太赫兹技术还可以用于无线电频段的拓展,为未来的5G通信提供更多的频谱资源。

总的来说,太赫兹技术具有广泛的应用前景,可以为人类的健康、安全和通信提供更好的保障。

随着技术的不断发展和完善,相信太赫兹技术将会在更多的领域得到应用。

排版格式:太赫兹技术应用太赫兹技术是一种新兴的电磁波技术,其频率介于微波和红外线之间,具有穿透力强、分辨率高、非接触式探测等特点,被广泛应用于医疗、安检、通信等领域。

在医疗领域,太赫兹技术可以用于检测人体组织的病变情况,如乳腺癌、皮肤癌等。

太赫兹波可以穿透人体表层,直接探测组织内部的变化,而且不会对人体产生任何伤害。

此外,太赫兹技术还可以用于药物检测和分析,帮助医生更好地了解药物的成分和作用。

在安检领域,太赫兹技术可以用于检测危险品和非法物品。

太赫兹波可以穿透一些常见的材料,如纸张、塑料等,可以探测到隐藏在这些材料内部的物品。

与传统的金属探测器相比,太赫兹技术可以检测到更多种类的物品,而且不会对人体产生辐射。

在通信领域,太赫兹技术可以用于高速数据传输。

太赫兹波的频率高,可以传输更多的数据,而且不会受到电磁干扰的影响。

太赫兹光谱技术的研究与应用

太赫兹光谱技术的研究与应用

太赫兹光谱技术的研究与应用随着科技的不断进步和发展,人类探索和研究物理世界的方法也在不断创新和更新。

太赫兹光谱技术就是其中较新颖的一种方法,由于它在材料识别、无损检测等方面有着广泛的应用,近些年来备受研究机构和企业的青睐。

本文将从概述太赫兹光谱技术的原理和特点开始,探究它在材料分析和无损检测、安检、生物医学等方面的应用前景。

一、太赫兹光谱技术的原理和特点太赫兹波段是介于微波和红外线之间、频率约为0.1-10 THz(1THz=10的12次方赫兹)的一种电磁波。

太赫兹波段的能量较低,作为真空中的电磁波又能被大气层所穿透,因此在材料结构、成分的探测、目标物的无损检测、安检等方面都有着广泛的应用前景。

太赫兹光谱技术是一种非破坏性的、高精度的分析和识别材料的方法,它主要是利用太赫兹波段电磁波与材料相互作用产生的反射、吸收、透射等特性来探测和分析材料的成分、结构等信息。

相比于传统的光谱技术,太赫兹光谱技术有以下几个特点:1.非破坏性由于太赫兹波段电磁波的能量较低,不会对被测试的材料产生破坏性的影响,因此太赫兹光谱技术可以被广泛地应用于无损检测领域。

2.高精度太赫兹光谱技术可以测量的是材料的结构和成分信息,这在某些情况下比仅仅通过表面形态特征的方法来进行检测更有优势,可以得到更为精准和可靠的数据信息。

3.操作简单相比于其他一些高科技测试工具,太赫兹光谱技术的设备较为简单,且已经能够商业化批量生产,因此广泛地应用于多个领域,包括安检、材料检测、医疗领域等等。

二、太赫兹光谱技术在材料分析和无损检测领域的应用1. 材料分析太赫兹光谱技术可以帮助材料科学研究者探测和分析材料中的缺陷、结构、合成物等信息。

太赫兹光谱技术可以拓展传统的X 射线、红外线、质谱等技术不能测量的材料特性。

因而,太赫兹光谱技术可以在分子结构、晶体结构和利用光电功能等领域实现对材料的深层次分析。

太赫兹技术的材料不再局限于金属材料、塑料、陶瓷材料等,还涉及到了生物医学、化工合成、天然产物和纳米材料等多个领域的研究。

太赫兹技术的发展和应用

太赫兹技术的发展和应用

太赫兹技术的发展和应用近年来,太赫兹技术已经得到广泛的应用和研究,成为了一种新兴的技术体系。

太赫兹波长介于红外光和微波之间,频率从300 GHz到3 THz,是一种在人类眼中看不见,同时也无法被电子束和X射线穿透的电磁波辐射。

在这片茫茫太赫兹的海洋中,有着无数探索的可能性。

本文将详细探讨太赫兹技术的发展和应用。

一、太赫兹技术的发展太赫兹技术在近二十年前被首次应用于飞行安全检测,主要用于炸药、武器等危险品的检测,在保障飞行安全方面起到了重要作用。

太赫兹技术的发展受益于微电子技术和光电子技术的不断进步,特别是宽带宏观成像、高频微波技术和集成电路的进化,以及高能粒子加速器和光学脉冲技术的成熟应用。

自从太赫兹波段开始波动以来,太赫兹技术的应用已经非常广泛了,从基础科学到应用技术的转化,从传统的通信到测量探测和成像技术的创新等等。

太赫兹技术是一种新型的光源,可以产生高功率、高频率的射频波,从而在生物医学、工业和环境等领域都具有广泛的应用潜力。

二、太赫兹技术的应用1. 太赫兹成像技术太赫兹成像技术是近年来最具有发展潜力的领域之一。

这种技术通过捕获物体反射的太赫兹波信号来生成I mage。

因为太赫兹波是电磁波,所以它不会像X射线一样对一个物体造成伤害。

在医学上,太赫兹技术可以用于乳腺癌和皮肤癌的检测。

而在安检方面,太赫兹成像技术可以帮助安检人员检测隐藏在行李和行人的炸药、毒品等。

2. 太赫兹通信技术太赫兹通信技术利用太赫兹波的高带宽与低能量的特性,使得传输速度更快,同时能够避免电磁波对人体产生的危害。

在通信技术发展的道路上,太赫兹通信将会成为一种重要的创新,在工业、通信和军事领域发挥重要作用。

3. 太赫兹光纤通信技术目前,太赫兹波在光纤通信中的潜力正在被探索。

太赫兹光纤通信技术可以实现高速、长距离、低噪声的通信,并且不会受到电磁辐射或干扰。

太赫兹光纤通信技术还可以用于地下煤层气的探测,并用于地球物理探测和导航系统。

太赫兹技术及应用介绍

太赫兹技术及应用介绍

太赫兹技术及应用介绍太赫兹技术是一种新兴的无线通信和传感技术,指的是在太赫兹频段(介于红外线和微波频段之间,约为0.1至10太赫兹)进行信号传输和数据通信的技术和应用。

太赫兹技术因其在高频段的特殊性质和广泛的应用前景而备受关注。

太赫兹技术的应用领域非常广泛,涵盖了通信、传感、成像、医学、安全检测等多个领域。

下面将对太赫兹技术及其应用进行详细介绍。

首先,太赫兹技术在通信领域有着广阔的应用前景。

相较于传统的无线通信技术,太赫兹技术能够提供更高的数据传输速率,比如可达到几百兆比特每秒到数十吉比特每秒的水平。

因此,太赫兹技术可以应用于高速数据传输、宽带通信和高密度通信等领域。

此外,太赫兹技术在无线局域网(WLAN)和无线传感器网络(WSN)中也能发挥重要作用。

其次,太赫兹技术在传感领域也具备巨大的潜力与应用价值。

太赫兹波可以穿透许多非金属材料,如纸张、衣物、塑料等。

因此,太赫兹技术可以用于非接触式的物体检测和远程传感。

在材料检测中,太赫兹技术可以检测物质的物理与化学性质,如折射率、吸收系数等,因此可以广泛用于材料分析、产品质量控制等方面。

此外,太赫兹技术还可以应用于安全检测,如用于检测危险品、武器等。

太赫兹技术在成像领域也有许多应用。

太赫兹波可以穿透许多常见的物体,并能够探测到物体的内部结构。

因此,太赫兹技术可以用于非破坏性检测和成像。

在医学领域,太赫兹技术可以用于人体组织结构的成像,如乳腺癌的早期诊断、皮肤癌的检测等。

此外,太赫兹技术还可以用于隐蔽物体的发现与识别,如用于安全检测中的X射线透视、行李检测等。

太赫兹技术在医学领域也有广泛的应用潜力。

太赫兹波可以穿透多种生物组织,如皮肤、毛发、牙齿等,而对于没有选择性吸收的健康组织,太赫兹波也不会对其产生伤害,这使得太赫兹技术成为了无创医学成像和诊断的理想选择。

太赫兹技术可以用于早期癌症的筛查和诊断,如乳腺癌、皮肤癌等。

同时,太赫兹技术还可以用于药物递送和治疗监测等方面。

太赫兹和毫米波的应用

太赫兹和毫米波的应用

太赫兹和毫米波的应用
1太赫兹与毫米波:简介
太赫兹(THz)波段和毫米波(mmWave)波段都属于电磁波辐射的高频段。

THz波段通常被定义为100GHz至10THz之间的频率范围,而mmWave波段则是指30GHz至300GHz的频率范围。

这两种波段的波长与传统电信波段的波长相比较短,但其具有更高的波束形成能力,可以实现更高的数据传输速率。

2太赫兹的应用
THz波段由于其穿透力强、辐射能量低、成像量大等优点,被广泛应用于安检、医学成像、天文学等领域。

在安检方面,THz技术可用于快速、无损地检测隐蔽武器、毒品等禁物。

在医学成像方面,其辐射能量极低,无损伤人体组织,可用于早期癌症诊断、肿瘤检测、糖尿病检测等。

3毫米波的应用
mmWave波段在高速无线通信领域具有广泛应用,可用于5G移动通信、智能家居、虚拟现实、自动驾驶等。

其高速传输能力、低延迟、稳定性好,可满足大规模高速通信需求。

4太赫兹与毫米波技术的未来
太赫兹和毫米波是无线通信和辐射应用领域的重要发展方向。

这两种技术通过不断创新,发展出了适用于不同场景的应用,如THz安
检、THz成像、5G等。

未来,这些技术将进一步发展,实现更加快速、高效、精确的应用,创造更多应用的可能性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太赫兹简介及特点和应用嘉兆科技THz波(太赫兹波)或成为THz射线(太赫兹射线)是从上个世纪80年代中后期,才被正式命名的,在此以前科学家们将统称为远红外射线。

太赫兹波是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,介于微波与红外之间。

实际上,早在一百年前,就有科学工作者涉及过这一波段。

在1896年和1897年,Rubens和Nichols就涉及到这一波段,红外光谱到达9um(0.009mm)和20um (0.02mm),之后又有到达50um的记载。

之后的近百年时间,远红外技术取得了许多成果,并且已经产业化。

但是涉及太赫兹波段的研究结果和数据非常少,主要是受到有效太赫兹产生源和灵敏探测器的限制,因此这一波段也被称为THz间隙。

随着80年代一系列新技术、新材料的发展,特别是超快技术的发展,使得获得宽带稳定的脉冲THz源成为一种准常规技术,THz技术得以迅速发展,并在实际范围内掀起一股THz研究热潮。

2004年,美国政府将THz科技评为“改变未来世界的十大技术”之四,而日本于2005年1月8日更是将THz技术列为“国家支柱十大重点战略目标”之首,举全国之力进行研发。

我国政府在2005年11月专门召开了“香山科技会议”,邀请国内多位在THz研究领域有影响的院士专门讨论我国THz事业的发展方向,并制定了我国THz技术的发展规划。

另外,美国、欧洲、亚洲、澳大利亚等许多国家和地区政府、机构、企业、大学和研究机构纷纷投入到THz的研发热潮之中。

THz研究领域的开拓者之一,美国著名学者张希成博士称:“Next ray,T-Ray !”目前国内已经有多家研究机构开展太赫兹领域的相关研究,其中首都师范大学,是入手较早,投入较大的一家,并且在毒品和炸药太赫兹光谱、成像和识别方面,利用太赫兹对非极性航天材料内部缺陷进行无损检测方面做出了许多开拓性的工作,同时由于太赫兹射线在安全检查方面的独特优势,首都师范大学太赫兹实验室正集中力量研发能够用于实景测试的安检原型设备。

目前,国际上对太赫兹辐射已达成如下共识,即太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。

它之所以能够引起人们广泛的关注、有如此之多的应用,首先是因为物质的太赫兹光谱(包括透射谱和反射谱)包含着非常丰富的物理和化学信息,所以研究物质在该波段的光谱对于物质结构的探索具有重要意义;其次是因为太赫兹脉冲光源与传统光源相比具有很多独特的性质。

人们关注THz技术的原因是THz射线普遍存在,是人们认识自然界的有效线索和工具。

但是相对于其他波段的电磁波比如红外和微波,对它的认识和应用非常匮乏。

THz射线的主要特点:(1)是THz 脉冲的典型脉宽在皮秒量级,不但可以方便地进行时间分辩的研究,而且通过取样测量技术,能够有效地抑制远红外背景噪声的干扰。

目前,脉冲THz 辐射通常只有较低的THz 射线平均功率,但是由于THz 脉冲有很高的峰值功率,并且采用相干探测技术获得的是THz 脉冲的实时功率而不是平均功率,因此有很高的信噪比。

目前,在时域光谱系统中的信噪比可达105或更高。

(2)是THz 脉冲源通常只包含若干个周期的电磁振荡,单个脉冲的频带可以覆盖从GHz 直至几十THz 的范围,许多生物大分子的振动和转动能级,电介质、半导体材料、超导材料、薄膜材料等的声子振动能级落在THz 波段范围。

因此THz 时域光谱技术作为探测材料在THz 波段信息的一种有效的手段,非常适合于测量材料吸收光谱,可用于进行定性鉴别的工作。

(3) THz 光子的能量低,只有几毫电子伏特,因此不容易破坏被检测物质。

(4) 许多的非金属非极性材料对THz 射线的吸收较小,因此结合相应的技术,使得探测材料内部信息成为可能。

例如,陶瓷,硬纸板,塑料制品,泡沫等对THz 电磁辐射是透明的,因此THz 技术可以作为x 射线的非电离和相干的互补辐射源,用于机场、车站等地方的安全监测,比如探查隐藏的走私物品包括枪械、爆炸物、和毒品等,以及用于集成电路焊接情况的检测等。

极性物质对THz 电磁辐射的吸收比较强,特别是水,THz 光谱技术中应采取各种措施避免水分的影响,不过在THz 成像技术中,可以利用这一特性分辨生物组织的不同状态,比如动物组织中脂肪和肌肉的分布,诊断人体烧伤部位的损伤程度,及植物叶片组织的水分含量分布等。

太赫兹成像技术与其他波段的成像技术相比,它所得到的探测图像的分辨率和景深都有明显的增加(超声、红外、X-射线技术也能提高图像分辨率,但是毫米波技术却没有明显的提高)。

另外太赫兹技术还有许多独特的特性,如在非均匀的物质中有较少的散射,能够探测和测量水汽含量等等。

太赫兹光谱技术不仅信噪比高,能够迅速地对样品组成的细微变化作出分析和鉴别,而且太赫兹光谱技术是一种非接触测量技术,使它能够对半导体、电介质薄膜及体材料的物理信息进行快速准确的测量。

THz主要应用领域太赫兹的独特性能给通信(宽带通信)、雷达、电子对抗、电磁武器、天文学、医学成像(无标记的基因检查、细胞水平的成像)、无损检测、安全检查(生化物的检查)等领域带来了深远的影响。

由于太赫兹的频率很高,所以其空间分辨率也很高;又由于它的脉冲很短(皮秒量级)所以具有很高的时间分辨率。

太赫兹成像技术和太赫兹波谱技术由此构成了太赫兹应用的两个主要关键技术。

同时,由于太赫兹能量很小,不会对物质产生破坏作用,所以与X射线相比更具有优势。

另外,由于生物大分子的振动和转动频率的共振频率均在太赫兹波段,因此太赫兹在粮食选种,优良菌种的选择等农业和食品加工行业有着良好的应用前景。

太赫兹的应用仍然在不断的开发研究当中,其广袤的科学前景为世界所公认。

(1)THz时域光谱技术。

目前已经开始商业化运作,世界范围内已经有多家企业开始生产商用THz时域光谱仪,主要是美国,欧洲和日本的厂家。

THz时域光谱技术的基本原理是利用飞秒脉冲产生并探测时间分辨的THz电场,通过傅立叶变换获得被测物品的光谱信息,由于大分子的振动和转动能级大多在THz 波段,而大分子,特别是生物和化学大分子是具有本身物性的物质集团,进而可以通过特征频率对物质结构、物性进行分析和鉴定。

一个比较重要的应用可以作为药品质量监管。

设想一下制药厂的流水线上安装一台THz时域光谱仪,从药厂出场的每一片药都进行进行光谱测量,并与标准的药物进行光谱对比,合格的将进入下一个环节,否则在流水线上将劣质药片清除掉,避免不同药片或不同批次药片的品质差仪,保证药品的品质。

(2)THz成像技术。

跟其他波段的成像技术一样,THz成像技术也是利用THz射线照射被测物,通过物品的透射或反射获得样品的信息,进而成像。

THz成像技术可以分为脉冲和连续两种方式。

前者具有THz 时域光谱技术的特点。

同时它可以对物质集团进行功能成像,获得物质内部的折射率分布。

例如葵花籽可以和容易获得葵花子的内部信息。

图3-4 给出了葵花籽样品的实物照片和相应方法重构的THz 透射图像,能清晰地分辨果壳的轮廓和隐藏在果壳中果仁的形状,这是最希望的。

同样,如果样品是人的牙齿,那么牙齿的正常部分与损蛀部分将很容易的区分开,同时不必照射x射线,对人体没有附加伤害。

(3)安全检查,利用安全检查应该说是现阶段最吸引人的THz技术,它的本质原理是THz成像,目前由于目前主要采用连续波THz源,而且又由于它要解决的是目前最受人关注的反恐、缉毒等最让人关注的问题,所以单列出来。

目前英国发展的THz安检设备已经进入试用阶段。

由于THz射线的穿透性和对金属材料的强反射特性,并且THz的高频率是的成像的分辨率更高,所以可以很容易看到隐藏在衣物、鞋内的刀具、枪械等物品。

同时如果结合THz的物质鉴别特性,能够区分你身上是否携带炸药或毒品。

首都师范大学THz实验室已经建立了常见的炸药和毒品的数据谱库,可以设想再过几年,可以真正在机场见到真正的THz安检的设备。

另外,世界范围内引起社会动荡的自杀式炸弹恐怖袭击,也可以利用THz 安检设备进行防范。

因为站岗的可以不再是士兵或保安人员,而是THz安检仪,人们不需要靠近可以分子就可以对其进行检查。

(4)THz雷达。

实际上也是成像的一种。

鉴于大气中水分对THz射线的强吸收作用,所以近距离雷达是THz射线的优势所在。

一个非常让人向往的应用是穿墙雷达和探雷雷达,当然也可以用于抗震救灾中遇难者的搜救,目前还处于研发阶段。

这是由于墙壁,木材等材料对THz透过,而人体包含大量水分,不透过THz,因此可以透过墙壁侦查到屋内的人员的分布和活动,将反恐怖反绑架起到深远的影响,同理也可以用于废墟下人体的寻找。

而探雷雷达是由于地雷一般在地表或地表附近,而干燥的泥土可以透过THz 射线,而地雷将会把THz射线反射回来,从而可以发现目标。

(5)天文学:在宇宙中,大量的物质在发出THz电磁波。

炭(C)、水(H2O)、一氧化碳(CO)、氮(N2)、氧(O2)等大量的分子可以在THz频段进行探测。

而这些物质在应用THz技术以前一部分根本无法探测而另一部分只能在海拔很高或者月球表面才可以探测到。

(6)通信技术:THz用于通信可以获得10GB/s的无线传输速度,特别是卫星通信,由于在外太空,近似真空的状态下,不用考虑水分的影响,这比当前的超宽带技术快几百至一千多倍。

这就使得THz通信可以以极高的带宽进行高保密卫星通信。

虽然由于缺乏高效的THz发射天线和源,使其还无法在通信领域商业化,但这必将由新型的发射装置和发射源所解决。

此外,太赫兹在半导体材料、高温超导材料的性质研究等领域也有广泛的应用。

研究该频段不仅将推动理论研究工作的重大发展,而且对固态电子学和电路技术也将提出重大挑战。

目前,笼统的说THz技术的研究主要围绕三大部分内容展开,THz产生源、THz探测和应用研究。

目前最大的困难还是没有高功率便携式连续可调的成本较低的THz发射源,另外也没有能够常温下直接探测太赫兹射线的被动式探测器。

相关文档
最新文档