北京一零一中2010年初三4月月考试题

合集下载

2010西城中考一模试卷及答案

2010西城中考一模试卷及答案

乒乓球拍上 粘贴橡胶皮B 北京市西城区2010年抽样测试初 三 物 理 试 卷 2010.5学校__________________姓名________________准考证号________________一、单项选择题(下列各小题均有四个选项,其中只有一个选项符合题意。

共24分,每小题2分) 1.图1描述的现象中,属于光的反射现象的是2.图2所述的事例中,为了减小有害摩擦的是3.下列现象中,用分子动理论解释正确的是A .压缩弹簧需要用力,说明分子间有斥力B .热水瓶的瓶塞有时很难拔出,说明分子间有引力C .用粉碎机可以把岩石打成粉末,说明岩石分子很小D .一桶污水把整个池塘都污染了,说明分子在不停地运动汽车轮胎上有 凸起的条纹A 拔河比赛时运动 员用力蹬住地面C在转动轴承 中装有滚珠D图2 从汽车“后视镜” 中看车后景物A 筷子在水中部分 看起来向上折了B 在小孔后的墙上 看到烛焰的像C用“放大镜”看日历 D图14.图3所述的事例中,为了增大压强的是 5.图4为四冲程汽油机工作过程的示意图。

其中表示把机械能转化为内能的是6.在图5所示的四个电路中,三个开关都闭合后,不会发生电源短路的是7.小明同学是一位初三的男生,下列与他相关的一些数据的估测,明显不合理.....的是 A .他的质量大约是60kg 左右B .他的身高大约是17dm 左右C .他穿的鞋的长度大约是40cm 左右D .他穿的校服上衣的长度大约是0.8m 左右 8.我们可以在不同的环境中看到“白气”。

下列有关形成“白气”的说法中正确的是A .文艺演出时舞台上经常施放“白气”,这是干冰在常温下的升华现象B .打开盖子的热水瓶口处会出现“白气”,这是瓶内水蒸气的液化现象C .清晨能看到河面上有一团团的“白气”,这是河面上水蒸气的蒸发现象D .夏天,打开冰箱门时常会出现“白气”,这是冰箱内水蒸气的液化现象 9.有质量相等的甲、乙、丙三个小球,另有盛有体积相等的水的A 、B 、C 三个完全相同的烧杯。

2017-2018年北京一零一中九年级(下)月考数学试卷(3月份)(解析版)

2017-2018年北京一零一中九年级(下)月考数学试卷(3月份)(解析版)

2017-2018学年北京一零一中九年级(下)月考数学试卷(3月份)一、选择题:本大题共8道小题,每小题2分,共16分.1.(2分)长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6700 000米.将6700 000用科学记数法表示应为()A.67×106B.6.7×106C.6.7×106D.0.67×106 2.(2分)如图,实数﹣3,x,3,y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最大的数对应的点是()A.点M B.点N C.点P D.点Q3.(2分)下列图形选自历届世博会会徽,其中是轴对称图形的是()A.B.C.D.4.(2分)如图,⊙O是△ABC的外接圆,∠A=50°,则∠BOC的度数为()A.40°B.50°C.80°D.100°5.(2分)老北京的老行当中有一行叫做“抓彩卖糖”:商贩将高丽纸裁成许多小条,用矾水在上面写上糖的块数,最少一块,多的是三块或五块,再将枝条混合在一起.游戏时叫儿童随意抽取一张,然后放入水罐中浸湿,即出现白道儿,按照上面的白道儿数给糖.一个商贩准备了10张质地均匀的纸条,其中能得到一块糖的纸条有5张,能得到三块塘的纸条有3张,能得到五块糖的纸条有2张.从中随机抽取一张纸条,恰好是能得到三块塘的纸条的概率是()A.B.C.D.6.(2分)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使P A+PC=BC,则符合要求的作图痕迹是()A.B.C.D.7.(2分)如图,A,B,C表示修建在一座山上的三个缆车站的位置,AB,BC表示连接缆车站的钢缆.已知A,B,C所处位置的海拔AA1,BB1,CC1分别为130米,400米,1000米.由点A测得点B的仰角为30°,由点B测得点C的仰角为45°,那么AB和BC 的总长度是()A.1200B.800C.540D.8008.(2分)如图,在Rt△ABC中,∠A=90°,AB=AC=4.点E为Rt△ABC边上一点,点E以每秒1个单位的速度从点C出发,沿着C→A→B的路径运动到点B为止.连接CE,以点C为圆心,CE长为半径作⊙C,⊙C与线段BC交于点D,设扇形DCE面积为S,点E的运动时间为t,则在以下四个函数图象中,最符合扇形面积S关于运动时间t的变化趋势的是()A.B.C.D.二、填空题,本大题共8小题,共16分.9.(2分)已知m+n=3,m﹣n=2,那么m2﹣n2的值是.10.(2分)写出图象经过点(﹣1,1)的一个函数的解析式是.11.(2分)如图,在同一平面内,将边长相等的正三角形、正五边形的一边重合,则∠1=°.12.(2分)为了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数是.13.(2分)如图,在直角三角形ABC中,∠C=90°,BC=6,AC=8,点D是AC边上一点,将△BCD沿BD折叠,使点C落在AB边的E点,那么AE的长度是.14.(2分)如图,⊙O的半径为3,正六边形ABCDEF内接于⊙O,则劣弧AB的长为.15.(2分)《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”.设秋千的绳索长为x尺,根据题意可列方程为.16.(2分)阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作已知角的角平分线.已知:如图,∠BAC.求作:∠BAC的角平分线AP.小霞的作法如下:(1)如图,在平面内任取一点O;(2)以点O为圆心,AO为半径作圆,交射线AB于点D,交射线AC于点E;(3)连接DE,过点O作射线OP垂直于线段DE,交⊙O于点P;(4)过点P作射线AP.所以射线AP为所求.老师说:“小霞的作法正确.”请回答:小霞的作图依据是.三、解答题:本大题共12小题,共68分.17.(5分)计算:+|﹣2|﹣2tan60°+()﹣1.18.(5分)(1)解不等式组:(2)计算:(﹣)×19.(5分)如图,在四边形ABCD中,∠A=∠B,CB=CE.求证:CE∥AD.20.(5分)已知关于x的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0有两个不相等的实数根.(1)求k的取值范围;(2)写出一个满足条件的k的值,并求此时方程的根.21.(5分)在平面直角坐标系xOy中,直线y=2x+1与双曲线y=的一个交点为A(m,﹣3).(1)求双曲线的表达式;(2)过动点P(n,0)(n<0)且垂直于x轴的直线与直线y=2x+1和双曲线y=的交点分别为B,C,当点B位于点C上方时,直接写出n的取值范围.22.(5分)如图,在平行四边形ABCD中,点E为BC的中点,AE与对角线BD交于点F.(1)求证:DF=2BF;(2)当∠AFB=90°且tan∠ABD=时,若CD=,求AD长.23.(6分)如图,AB为⊙O的直径,点D,E为⊙O上的两个点,延长AD至C,使∠CBD =∠BED.(1)求证:BC是⊙O的切线;(2)当点E为弧AD的中点且∠BED=30°时,⊙O半径为2,求DF的长度.24.(6分)阅读下列材料:2016年,北京市坚持创新、协调、绿色、开放、共享的发展理念,围绕首都城市战略定位,加快建设国际一流的和谐宜居之都,在教育、科技等方面保持平稳健康发展,实现了“十三五”良好开局.在教育方面,全市共有58所普通高校和81个科研机构培养研究生,全年研究生招生9.7万人,在校研究生29.2万人.全市91所普通高校全年招收本专科学生15.5万人,在校生58.8万人.全市成人本专科招生6.1万人,在校生17.2万人.在科技方面,2016年全年研究与试验发展(R&D)经费支出1479.8亿元,比2015年增长了6.9%,全市研究与试验发展(R&D)活动人员36.2万人,比上年增长1.1万人.2013年,2014年,2015年全年研究与试验发展(R&D)经费支出分别为1185.0亿元,1268.8亿元,1384.0亿元,分别比前一年度增长11.4%,7.1%,9.1%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)请用统计图或统计表将北京市2016年研究生、普通高校本专科学生、成人本专科学生的招生人数和在校生人数表示出来;(2)2015年北京市研究与试验发展(R&D)活动人员为万人;(3)根据材料中的信息,预估2017年北京市全年研究与试验发展(R&D)经费支出约亿元,你的预估理由是.25.(6分)佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b(k≠0)的解,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标即为一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函数y=x2﹣2x﹣3的图象与x轴的交点为(﹣1,0)和(3,0),交点的横坐标﹣1和3即为x2﹣2x﹣3=0的解.根据以上方程与函数的关系,如果我们直到函数y=x3+2x2﹣x﹣2的图象与x轴交点的横坐标,即可知方程x3+2x2﹣x﹣2=0的解.佳佳为了解函数y=x3+2x2﹣x﹣2的图象,通过描点法画出函数的图象.﹣(1)直接写出m的值,并画出函数图象;(2)根据表格和图象可知,方程的解有个,分别为;(3)借助函数的图象,直接写出不等式x3+2x2>x+2的解集.26.(6分)在平面直角坐标系xOy中,抛物线C:y=mx2+4x+1.(1)当抛物线C经过点A(﹣5,6)时,求抛物线的表达式及顶点坐标;(2)当直线y=﹣x+1与直线y=x+3关于抛物线C的对称轴对称时,求m的值;(3)若抛物线C:y=mx2+4x+1(m>0)与x轴的交点的横坐标都在﹣1和0之间(不包括﹣1和0),结合函数的图象,求m的取值范围.27.(7分)在△ABC中,∠ACB=90°,以AB为斜边作等腰直角三角形ABD,且点D与点C在直线AB的两侧,连接CD.(1)如图1,若∠ABC=30°,则∠CAD的度数为.(2)已知AC=1,BC=3.①依题意将图2补全;②求CD的长;(3)用等式表示线段AC,BC,CD之间的数量关系(直接写出即可).28.(7分)我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A到图形G的距离跨度为R=D﹣d.(1)①如图1,在平面直角坐标系xOy中,图形G1为以O为圆心,2为半径的圆,直接写出以下各点到图形G1的距离跨度:A(1,0)的距离跨度;B(﹣,)的距离跨度;C(﹣3,﹣2)的距离跨度;②根据①中的结果,猜想到图形G1的距离跨度为2的所有的点组成的图形的形状是.(2)如图2,在平面直角坐标系xOy中,图形G2为以D(﹣1,0)为圆心,2为半径的圆,直线y=k(x﹣1)上存在到G2的距离跨度为2的点,求k的取值范围.(3)如图3,在平面直角坐标系xOy中,射线OP:y=x(x≥0),⊙E是以3为半径的圆,且圆心E在x轴上运动,若射线OP上存在点到⊙E的距离跨度为2,直接写出圆心E的横坐标x E的取值范围.2017-2018学年北京一零一中九年级(下)月考数学试卷(3月份)参考答案与试题解析一、选择题:本大题共8道小题,每小题2分,共16分.1.(2分)长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6700 000米.将6700 000用科学记数法表示应为()A.67×106B.6.7×106C.6.7×106D.0.67×106【解答】解:将6700 000用科学记数法表示为6.7×106.故选:B.2.(2分)如图,实数﹣3,x,3,y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最大的数对应的点是()A.点M B.点N C.点P D.点Q【解答】解:∵实数﹣3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点M与N之间,∴这四个数中绝对值最大的数对应的点是点Q,故选:D.3.(2分)下列图形选自历届世博会会徽,其中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.4.(2分)如图,⊙O是△ABC的外接圆,∠A=50°,则∠BOC的度数为()A.40°B.50°C.80°D.100°【解答】解:∵⊙O是△ABC的外接圆,∠A=50°,∴∠BOC=2∠A=100°.故选:D.5.(2分)老北京的老行当中有一行叫做“抓彩卖糖”:商贩将高丽纸裁成许多小条,用矾水在上面写上糖的块数,最少一块,多的是三块或五块,再将枝条混合在一起.游戏时叫儿童随意抽取一张,然后放入水罐中浸湿,即出现白道儿,按照上面的白道儿数给糖.一个商贩准备了10张质地均匀的纸条,其中能得到一块糖的纸条有5张,能得到三块塘的纸条有3张,能得到五块糖的纸条有2张.从中随机抽取一张纸条,恰好是能得到三块塘的纸条的概率是()A.B.C.D.【解答】解:∵共有10张质地均匀的纸条,能得到三块塘的纸条有3张,∴从中随机抽取一张纸条,恰好是能得到三块塘的纸条的概率是;故选:B.6.(2分)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使P A+PC=BC,则符合要求的作图痕迹是()A.B.C.D.【解答】解:D选项中作的是AB的中垂线,∴P A=PB,∵PB+PC=BC,∴P A+PC=BC故选:D.7.(2分)如图,A,B,C表示修建在一座山上的三个缆车站的位置,AB,BC表示连接缆车站的钢缆.已知A,B,C所处位置的海拔AA1,BB1,CC1分别为130米,400米,1000米.由点A测得点B的仰角为30°,由点B测得点C的仰角为45°,那么AB和BC 的总长度是()A.1200B.800C.540D.800【解答】解:BD=400﹣130=270(米),CB2=1000﹣400=600(米),在Rt△ABD中,AB==540(米),在Rt△BCB2中,BC==600米,AB+BC=540+600故选:C.8.(2分)如图,在Rt△ABC中,∠A=90°,AB=AC=4.点E为Rt△ABC边上一点,点E以每秒1个单位的速度从点C出发,沿着C→A→B的路径运动到点B为止.连接CE,以点C为圆心,CE长为半径作⊙C,⊙C与线段BC交于点D,设扇形DCE面积为S,点E的运动时间为t,则在以下四个函数图象中,最符合扇形面积S关于运动时间t的变化趋势的是()A.B.C.D.【解答】解:∵Rt△ABC中,∠A=90°,AB=AC=4,点E以每秒1个单位的速度从点C 出发,∴当0≤t≤4时,扇形面积S=,∴前半段函数图象为开口向上的抛物线的一部分,故B选项错误;当4<t≤8时,随着t的增大,扇形的半径增大,而扇形的圆心角减小,∴后半段函数图象不是抛物线,故C选项错误;∵当t=8时,点E、D重合,∴扇形的面积为0,故D选项错误;故选:A.二、填空题,本大题共8小题,共16分.9.(2分)已知m+n=3,m﹣n=2,那么m2﹣n2的值是6.【解答】解:m2﹣n2=(m+n)(m﹣n)=3×2=6.故答案为:6.10.(2分)写出图象经过点(﹣1,1)的一个函数的解析式是y=﹣x.【解答】解:将点(1,1)代入一次函数或反比例函数的形式或二次函数得:y=﹣x,y=﹣,y=﹣x2等.故答案为:y=﹣x.11.(2分)如图,在同一平面内,将边长相等的正三角形、正五边形的一边重合,则∠1=48°.【解答】解:∵正三角形的每个内角是:180°÷3=60°,正五边形的每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,∴∠1=108°﹣60°=48°,故答案为:48°12.(2分)为了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数是70千米/时.【解答】解:70千米/时是出现次数最多的,故众数是70千米/时,故答案为:70千米/时.13.(2分)如图,在直角三角形ABC中,∠C=90°,BC=6,AC=8,点D是AC边上一点,将△BCD沿BD折叠,使点C落在AB边的E点,那么AE的长度是4.【解答】解:在Rt△ACB中,由勾股定理可知AB==10.由折叠的性质得:BE=BC=6,则AE=AB﹣BE=4.故答案为:4.14.(2分)如图,⊙O的半径为3,正六边形ABCDEF内接于⊙O,则劣弧AB的长为π.【解答】解:如图,连接OA、OB,∵ABCDEF为正六边形,∴∠AOB=360°×=60°,的长为=π.故答案为:π15.(2分)《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”.设秋千的绳索长为x尺,根据题意可列方程为x2=102+(x﹣4)2.【解答】解:设秋千的绳索长为x尺,根据题意可列方程为:x2=102+(x﹣4)2,故答案为:x2=102+(x﹣4)2.16.(2分)阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作已知角的角平分线.已知:如图,∠BAC.求作:∠BAC的角平分线AP.小霞的作法如下:(1)如图,在平面内任取一点O;(2)以点O为圆心,AO为半径作圆,交射线AB于点D,交射线AC于点E;(3)连接DE,过点O作射线OP垂直于线段DE,交⊙O于点P;(4)过点P作射线AP.所以射线AP为所求.老师说:“小霞的作法正确.”请回答:小霞的作图依据是(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)同弧或等弧所对的圆周角相等;(3)角平分线的定义.【解答】解:小霞的作图依据是(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)同弧或等弧所对的圆周角相等;(3)角平分线的定义;故答案为:(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)同弧或等弧所对的圆周角相等;(3)角平分线的定义三、解答题:本大题共12小题,共68分.17.(5分)计算:+|﹣2|﹣2tan60°+()﹣1.【解答】解:原式=2+2﹣﹣2+3=5﹣.18.(5分)(1)解不等式组:(2)计算:(﹣)×【解答】解:(1),解①得x≥,解②得x<2,所以不等式组的解集为≤x<2;(2)原式=(3﹣)×2=6﹣6.19.(5分)如图,在四边形ABCD中,∠A=∠B,CB=CE.求证:CE∥AD.【解答】证明:∵CB=CE,∴∠B=∠CEB,又∵∠A=∠B,∴∠A=∠CEB,∴CE∥AD.20.(5分)已知关于x的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0有两个不相等的实数根.(1)求k的取值范围;(2)写出一个满足条件的k的值,并求此时方程的根.【解答】解:(1)∵关于x的一元二次方程x2﹣2(k﹣a)x+k(k+2)=0有两个不相等的实数根,∴△=[﹣2(k﹣1)]2﹣4k(k﹣2)=﹣16k+4>0,解得:k<.(2)当k=0时,原方程为x2+2x=x(x+2)=0,解得:x1=0,x2=﹣2.∴当k=0时,方程的根为0和﹣2.21.(5分)在平面直角坐标系xOy中,直线y=2x+1与双曲线y=的一个交点为A(m,﹣3).(1)求双曲线的表达式;(2)过动点P(n,0)(n<0)且垂直于x轴的直线与直线y=2x+1和双曲线y=的交点分别为B,C,当点B位于点C上方时,直接写出n的取值范围.【解答】解:(1)当y=2x+1=﹣3时,x=﹣2,∴点A的坐标为(﹣2,﹣3),将点A(﹣2,﹣3)代入y=中,﹣3=,解得:k=6,∴双曲线的表达式为y=.(2)依照题意,画出图形,如图所示.观察函数图象,可知:当﹣2<x<0时,直线y=2x+1在双曲线y=的上方,∴当点B位于点C上方时,n的取值范围为﹣2<n<0.22.(5分)如图,在平行四边形ABCD中,点E为BC的中点,AE与对角线BD交于点F.(1)求证:DF=2BF;(2)当∠AFB=90°且tan∠ABD=时,若CD=,求AD长.【解答】(1)证明:∵四边形ABCD为平行四边形∴AD∥BC,AD=BC,AB=CD,∵点E为BC的中点,∴BE=BC=AD,∵AD∥BC,∴△BEF∽△DAF,∴=,∴DF=2BF(2)解:∵CD=,∴AB=CD=,∵在Rt△ABF中,∠AFB=90°,∴tan∠ABD==,∴设AF=x,则BF=2x,∴AB==x=,∴x=1,AF=1,BF=2,∵DF=2BF,∴DF=4,∴AD==.23.(6分)如图,AB为⊙O的直径,点D,E为⊙O上的两个点,延长AD至C,使∠CBD =∠BED.(1)求证:BC是⊙O的切线;(2)当点E为弧AD的中点且∠BED=30°时,⊙O半径为2,求DF的长度.【解答】(1)证明:∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠DBA=90°,∵=,∴∠A=∠E,∵∠CBD=∠E,∴∠CBD=∠A,∴∠CBD+∠DBA=90°,∴AB⊥BC,∴BC是⊙O的切线,(2)解:∵∠BED=30°,∴∠A=∠E=∠CBD=30°,∴∠DBA=60°,∵点E为弧AD的中点,∴∠EBD=∠EBA=30°,∵⊙O半径为2,∴AB=4,BD=2,AD=2,在Rt△BDF中,∠DBF=90°,tan∠DBF==,∴DF=.24.(6分)阅读下列材料:2016年,北京市坚持创新、协调、绿色、开放、共享的发展理念,围绕首都城市战略定位,加快建设国际一流的和谐宜居之都,在教育、科技等方面保持平稳健康发展,实现了“十三五”良好开局.在教育方面,全市共有58所普通高校和81个科研机构培养研究生,全年研究生招生9.7万人,在校研究生29.2万人.全市91所普通高校全年招收本专科学生15.5万人,在校生58.8万人.全市成人本专科招生6.1万人,在校生17.2万人.在科技方面,2016年全年研究与试验发展(R&D)经费支出1479.8亿元,比2015年增长了6.9%,全市研究与试验发展(R&D)活动人员36.2万人,比上年增长1.1万人.2013年,2014年,2015年全年研究与试验发展(R&D)经费支出分别为1185.0亿元,1268.8亿元,1384.0亿元,分别比前一年度增长11.4%,7.1%,9.1%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)请用统计图或统计表将北京市2016年研究生、普通高校本专科学生、成人本专科学生的招生人数和在校生人数表示出来;(2)2015年北京市研究与试验发展(R&D)活动人员为35.1万人;(3)根据材料中的信息,预估2017年北京市全年研究与试验发展(R&D)经费支出约1598.1亿元,你的预估理由是用近3年的平均增长率估计2017年的增长率.【解答】解:(1)北京市2016年研究生、普通高校本专科学生、成人本专科学生招生人数和在校生人数统计表(单位:万人)(2)36.2﹣1.1=35.1万人;答:2015年北京市研究与试验发展(R&D)活动人员为35.1万人;故答案为:35.1;(3)设2014到2016的平均增长率为x,则1268.8(1+x)2=1479.8,解得x≈8%,用近3年的平均增长率估计2017年的增长率,则2017年北京市在研究和实验发展(R&D)活动中的经费投入约为1479.8×(1+8%)≈1598.1亿元,理由是用近3年的平均增长率估计2017年的增长率.故答案分别为:1598.1,用近3年的平均增长率估计2017年的增长率.25.(6分)佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b(k≠0)的解,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标即为一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函数y=x2﹣2x﹣3的图象与x轴的交点为(﹣1,0)和(3,0),交点的横坐标﹣1和3即为x2﹣2x﹣3=0的解.根据以上方程与函数的关系,如果我们直到函数y=x3+2x2﹣x﹣2的图象与x轴交点的横坐标,即可知方程x3+2x2﹣x﹣2=0的解.佳佳为了解函数y=x3+2x2﹣x﹣2的图象,通过描点法画出函数的图象.﹣(1)直接写出m的值,并画出函数图象;(2)根据表格和图象可知,方程的解有3个,分别为﹣2,或﹣1或1;(3)借助函数的图象,直接写出不等式x3+2x2>x+2的解集.【解答】解:(1)由题意m=﹣1+2+1﹣2=0.函数图象如图所示.(2)根据表格和图象可知,方程的解有3个,分别为﹣2,或﹣1或1.故答案为3,﹣2,或﹣1或1.(3)不等式x3+2x2>x+2的解集,即为函数y=x3+2x2﹣x﹣2的函数值大于0的自变量的取值范围.观察图象可知,﹣2<x<﹣1或x>1.26.(6分)在平面直角坐标系xOy中,抛物线C:y=mx2+4x+1.(1)当抛物线C经过点A(﹣5,6)时,求抛物线的表达式及顶点坐标;(2)当直线y=﹣x+1与直线y=x+3关于抛物线C的对称轴对称时,求m的值;(3)若抛物线C:y=mx2+4x+1(m>0)与x轴的交点的横坐标都在﹣1和0之间(不包括﹣1和0),结合函数的图象,求m的取值范围.【解答】解:(1)∵抛物线C:y=mx2+4x+1经过点A(﹣5,6),∴6=25m﹣20+1,解得m=1,∴抛物线的表达式为y=x2+4x+1=(x+2)2﹣3,∴抛物线的顶点坐标为(﹣2,﹣3);(2)∵直线y=﹣x+1与直线y=x+3的交点为(﹣1,2),∴两直线的对称轴为直线x=﹣1.∵直线y=﹣x+1与直线y=x+3关于抛物线C的对称轴对称,∴﹣=﹣1,解得m=2;(3)∵抛物线C:y=mx2+4x+1(m>0)与x轴的交点的横坐标都在﹣1和0之间,∴当x=﹣1时,y>0,且△≥0,即,解得3<m≤4.27.(7分)在△ABC中,∠ACB=90°,以AB为斜边作等腰直角三角形ABD,且点D与点C在直线AB的两侧,连接CD.(1)如图1,若∠ABC=30°,则∠CAD的度数为105°.(2)已知AC=1,BC=3.①依题意将图2补全;②求CD的长;(3)用等式表示线段AC,BC,CD之间的数量关系(直接写出即可).【解答】解:(1)∵∠ACB=∠ADB=90°,∴∠CAD+∠CBD═180°.∵∠DBE+∠CBD═180°,∴∠CAD=∠DBE.∵△ADB是等腰直角三角形,∴∠ABD=45°,∵∠ABC=30°,∴∠CBD=∠ABD+∠ABC=75°,∴∠CAD=∠DBE=180°﹣75°=105°故答案为:105°.(2)①补全图形,如图1所示.②如图2,∵∠ACB=∠ADB=90°,∴∠CAD+∠CBD═180°.∵∠DBE+∠CBD═180°,∴∠CAD=∠DBE.∵DA=DB,AC=BE,∴△ACD≌△BED.∴DC=DE,∠ADC=∠BDE.∴∠CDE=90°.∴△CDE为等腰直角三角形.∵AC=1,BC=3,∴CE=4.∴CD=2.(3)AC+BC=CD,理由:如图3,∵∠ACB=∠ADB=90°,∴∠CAD+∠CBD═180°.∵∠DBE+∠CBD═180°,∴∠CAD=∠DBE.∵DA=DB,AC=BE,∴△ACD≌△BED.∴DC=DE,∠ADC=∠BDE.∴∠CDE=90°.∴△CDE为等腰直角三角形.∴CE=CD,∵CE=BC+BE=BC+AC.即:AC+BC=CD.28.(7分)我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A到图形G的距离跨度为R=D﹣d.(1)①如图1,在平面直角坐标系xOy中,图形G1为以O为圆心,2为半径的圆,直接写出以下各点到图形G1的距离跨度:A(1,0)的距离跨度2;B(﹣,)的距离跨度2;C(﹣3,﹣2)的距离跨度4;②根据①中的结果,猜想到图形G1的距离跨度为2的所有的点组成的图形的形状是圆.(2)如图2,在平面直角坐标系xOy中,图形G2为以D(﹣1,0)为圆心,2为半径的圆,直线y=k(x﹣1)上存在到G2的距离跨度为2的点,求k的取值范围.(3)如图3,在平面直角坐标系xOy中,射线OP:y=x(x≥0),⊙E是以3为半径的圆,且圆心E在x轴上运动,若射线OP上存在点到⊙E的距离跨度为2,直接写出圆心E的横坐标x E的取值范围﹣1≤x E≤2.【解答】解:(1)①∵图形G1为以O为圆心,2为半径的圆,∴直径为4,∵A(1,0),OA=1,∴点A到⊙O的最小距离d=1,点A到⊙O的最大距离D=3,∴点A到图形G1的距离跨度R=D﹣d=3﹣1=2;∵B(﹣,),∴OB==1,∴点B到⊙O的最小距离d=BG=OG﹣OB=1,点B到⊙O的最大距离D=BF=FO+OB=2+1=3,∴点B到图形G1的距离跨度R=D﹣d=3﹣1=2;∵C(﹣3,﹣2),∴OC==,∴点C到⊙O的最小距离d=CD=OC﹣OD=﹣2,点C到⊙O的最大距离D=CE=OC+OE=2+,∴点C到图形G1的距离跨度R=D﹣d=2+﹣(﹣2)=4;故答案为2,2,4.②a、设⊙O内一点P的坐标为(x,y),∴OP=,∴点P到⊙O的最小距离d=2﹣OP,点P到⊙O的最大距离D=2+OP,∴点P到图形G1的距离跨度R=D﹣d=2+OP﹣(2﹣OP)=2OP;∵图形G1的距离跨度为2,∴2OP=2,∴OP=1,∴=1,∴x2+y2=1,即:到图形G1的距离跨度为2的所有的点组成的图形的形状是以点O为圆心,1为半径的圆.b、设⊙O外一点Q的坐标为(x,y),∴OQ=,∴点Q到⊙O的最小距离d=OQ﹣2,点P到⊙O的最大距离D=OQ+2,∴点P到图形G1的距离跨度R=D﹣d=OQ+2﹣(OQ﹣2)=4;∵图形G1的距离跨度为2,∴此种情况不存在,所以,到图形G1的距离跨度为2的所有的点组成的图形的形状是以点O为圆心,1为半径的圆.故答案为:圆;(2)设直线y=k(x﹣1)上存在到G2的距离跨度为2的点P(m,k(m﹣1)),∴DP=,由(1)②知,圆内一点到图形圆的跨度是此点到圆心距离的2倍,圆外一点到图形圆的跨度是此圆的直径,∵图形G2为以D(﹣1,0)为圆心,2为半径的圆,到G2的距离跨度为2的点,∴距离跨度小于图形G2的圆的直径4,∴点P在图形G2⊙C内部,∴R=2OP=2,∵直线y=k(x+1)上存在到G2的距离跨度为2的点P,∴2=2,∴(k2+1)m2+2(1﹣k2)m+k2=0①,∵存在点P,∴方程①有实数根,∴△=4(1﹣k2)2﹣4×(k2+1)k2=﹣12k2+4≥0,∴﹣≤k≤.(3)如图,作EC⊥OP于C,交⊙E于D、H.由题意:⊙E是以3为半径的圆,且圆心E在x轴上运动,若射线OP上存在点到⊙E的距离跨度为2,此时以E为圆心1为半径的圆与射线OP相切,当以E为圆心1为半径的圆与射线OP有交点时,满足条件,∴CD=2,CH=4,CE=1,∵射线OP的解析式为y=,∴∠COE=30°,OE=2CE=2,当E′(﹣1,0)时,点O到⊙E的距离跨度为2,观察图象可知,满足条件的圆心E的横坐标x E的取值范围:﹣1≤x E≤2.故答案为:﹣1≤x E≤2.。

2010年北京房山区一模数学试卷145741

2010年北京房山区一模数学试卷145741

2010年房山区初三年级统一练习(一)数学学校 _________________ 姓名 _________________ 准考证号 ______________1 .本试卷共6页,共五道大题,25道小题,满分120分.考试时间120 分钟. 考2 .在试卷和答题卡上认真填写学校名称、姓名和准考证号. 生3 .试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 须4 .在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签 知字笔作答. 5 .考试结束,请将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共 32分,每小题4分) 下面各题均有四个选项,其中只有一个是符合题意的.11.的绝对值是34.某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为B . -32.上海世博会定于 2010年5月1日至10月 事,主办机构预计这届世博会将吸引世界各地约 将69 000 000用科学记数法表示正确的是 3111C .1D .—133日举行,这是继北京奥运会之后我国举办的又一世界盛 69 000 000人次参观.8A . 0 . 69 X 107B . 6. 9X 106C . 6. 9X 10669 X 103.如图,将一长方形纸条沿 EF 折叠,若/ AFD= 47 ,则/ CEB 等于A . 47°B . 86°C . 94 °D . 133°X 甲=82分,x 乙 =82分,S2甲=245, S2乙=190,那么成绩较为整齐的是5.6.A、甲班B、乙班C、两班一样整齐D、无法确定如图,L O的半径为2,弦AB丄OC于C, AB= 2.3,贝U OC等于A . 2 2B .3C. 1 D . 2 - 3如果正n边形的一个外角与和它相邻的内角之比是1: 3,那么n的值是B. 6 C . 7 D . 87.在一个不透明的口袋中装有2个红球、2个黑球,这些球除颜色外其他都相同,在看不到球的条件下,随机地从这个袋子中一次摸出两个球,摸到两个球都是红球的概率是1 1A .B .-12 6& 如图,矩形纸片ABCD中, BC=4, AB=3,点P是BC边上的动不与点B、C重合).现将△ PCD沿PD翻折,得到△ PC' D;作/ BPC 分线,交AB于点E设BP=x,BE= y,则下列图象中,能表示y与数关系的图象大致是点(点P 的角平x的函R Ac. D .过点E作ED丄BF交BF的延长线于点 D .求证:ED=AB .二、填空题(本题共16分,每小题4分)29、分解因式:ax 2 ax a = ___________________10. 在函数、二丄 -中,自变量x的取值范围是_________________x -111. 如图,在等边厶ABC中,点D、E分别在AB、AC边上,且DE // BC,如果DE=1,AD:DB=1:3,那么△ ABC 的1 4 9 1612. —组按规律排列的式子:—,5,8,讦,…(a = 0),其中第8个式子是______________________a a a a三、解答题(本题共30分,每小题5 分)13. 计算:52-sin60「(二-1)0-(2)」.2x —1 5x 亠114. 解不等式------- - ----- < 1,并把它的解集在数轴上表示出来.3 2-5 -4 -3 -2 -1 0 1 2 3 4 515. 已知:如图,在△ ABC中,/ ABC= 90 , F是AC上一点,且FB=FC,延长BC到点E使BE=AC,18.上海世博园区中的中国馆、主题馆、世博中心、演艺中心非常引人注目 是55. 51万平方米,世博中心比演艺中心的建筑面积多 和演艺中心的建筑面积各是多少万平方米?建筑面积16.已知a 2, 2a-15=0,求电二 2-- - 的值.a +2 a —2a +1 a +317. (1) (2) 如图,直线AB 与y 轴交于点A,与 x 轴交于点B ,点A 的纵坐标、点B 的横坐标如图所示. 求直线AB 的解析式;过原点O 的直线把厶ABO 分成面积相等的两部分,直接写出这条直线的解析式.已知“四馆”的总建筑面积约1 . 4万平方米•结合表中其它信息,求世博中心 场馆中国馆 主题馆世博中演艺中心列方程或方程组解应用题: (万平方 16. 01 12. 9米)四、解答题(本题共 20分,第佃题5分, 第20题5分, 第21题6分,第22题4 分)19. 如图,在梯形ABCD 中,AD // BC , AC 丄AB, B = 30" , AD=DC, E 是 AB 中点,EF / AC 交 BC于点F且EF= .3,求梯形ABCD的面积.20. 已知:如图,在△ ABC中,AB=BC , D是AC中点,BE平分/ ABD交AC于点E,点0是AB上一点,O 0过B、E两点,交BD于点G,交AB于点F.(1) 求证:AC与O 0相切;1(2) 当BD=2 , sinC=_时,求O O的半径.221. 2009年我区消费品市场吃、穿、用、烧类商品实现全面增长.下面是根据有关数据制作的2009年全区社会消费品零售额的统计图表.表1 2009年我区消费品市场吃、穿、用、烧类商品零售额的统计表(单位:亿元)各类商品吃类商品穿类商品用类商品烧类商品2009年零售20. 9 7. 2 47.9 23. 1N'请根据以上信息解答下列问题: (1) 补全图1;(2) 求2009年我区消费品市场吃、穿、用、烧类商品零售额的平均数; (3)已知2009年“穿类商品”的零售额同比增长 15%若按照这个比例增长,估计2011年全年穿类商品的零售额可能达到多少亿元?22. 阅读下列材料:小明遇到一个问题: 如图1,正方形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 和DA 边上靠近 A 、 B 、C 、D 的n 等分点,连结 AF 、BG 、CH 、DE ,形成四边形 MNPQ .求四边形 MNPQ 与正方形 ABCD 的面积比(用含n 的代数式表示).小明的做法是:先取n=2,如图2,将△ ABN 绕点B 顺时针旋转90°至厶CBN ',再将厶ADM 绕点D 逆时针旋转190°至厶CDM ',得到5个小正方形,所以四边形 MNPQ 与正方形ABCD 的面积比是-;5然后取n=3,如图3,将△ ABN 绕点B 顺时针旋转90°至厶CBN ',再将厶ADM 绕点D 逆时针旋转42 90°至厶CDM ',得到10个小正方形,所以四边形 MNPQ 与正方形ABCD 的面积比是 ,即一;105请你参考小明的做法,解决下列问题:(1) 在图4中探究n=4时四边形MNPQ 与正方形ABCD 的面积比(在图4上画图并直接写出结果); (2) 图5是矩形纸片剪去一个小矩形后的示意图,请你将它剪成三块后再拼成正方形(在图 5中画出并指明拼接后的正方形).图1DPC图4图B C五、解答题(本题共 22分,第23题7分,第24题7分,第25题8 分)223.已知:抛物线 C 1 : y =ax 4ax • 4a -5的顶点为P ,与x 轴相交于A 、B 两点(点A 在点B 的左边),点B 的横坐标是1.(1) 求抛物线的解析式和顶点 P 的坐 标;(2) 将抛物线沿 x 轴翻折,再向右平移,平移后的抛物线c 2的顶F ,设由点E 、P 、F 、M 构成的-5四边形的面积为s,试用含m 的 -6代数式表示s .24.如图,在梯形 ABCD 中,AD // BC , Z B= 90 ,AD=AB=2, B 重合),连结ED ,过ED 的中点F 作ED 的垂线,交 AD 于 AD 于 M .— A,(1) 当E 为AB 中点时,求的值;DGAE 1 DM ⑵ 若,则 的值等于:AB 3 DGAE 1⑶ 若(n 为正整数),AB n点为M ,当点P 、M 关于点B 成 中心对称时,求平移后的抛物线C 2的解析式;3(3 )直线y x ■ m 与抛物线5C 1、C 2的对称轴分别交于点 E 、-6 -5 -4 -3 -2-1O-1 --2 --3 - -4 - 1 2 3 4 5 6 7y A6 -5 - 4 . 点E 是AB 边上一动点(点E 不与点A 、点G,交BC 于点K,过点K 作KM 丄则的值等于DG(用含n的式子表示).25、如图,在平面直角坐标系xOy中,直线11 : y = -'.3x・6'、3交x轴、y轴于A、B两点,点M(m,n)是线段AB上一动点,点C是线段0A的三等分点.(1)求点(2)连接A'C 'M. C的坐标;CM,将△ ACM 绕点M旋转180°,得到△1AM时,连结A'C、AC ',若过原点0212将四边形A'CAC '分成面积相等的两个四边形,直线的解析式;①当BM=②过点A'作A'丄x轴于H,当点M的坐标为何由点A' H、C、M构成的四边形为梯形?的直线确定此值时,X2010年房山区初三年级统一练习(一)数学试卷参考答案和评分标准13原式=加拧1-214.去分母,得2(2x-1)-3(5x 1) < 6去括号,得4x -2 -15x -3 < 6移项,合并同类项,得-11x < 11系数化为1,得x >-1 -----------不等式的解集在数轴上表示如下:15.证明:FB=FC•••/ FCB=/ FBC ---------ED 丄BF•/ EDB=90 -----------•/ ABC玄EDB在厶ABC和厶EDB中ABC= EDB, #ACB=/EBD, AC =EB•△ABC^A EDB• ED=AB --■----------- 1----------- 分----------- 2 分3 分----------- 4 分------ 5 分一、选择题(本题共1、C2、B3、A32分,每小题4、B5、C16分,每小题4分)6、D7、B8、D4分)29. a(x 1) 10. 11. 1212. --64; (一1)a233n Ja 三、解答题(本题共30分,每小题5分)1 分(a -2)(a • 3) a -1=(a-1)(a 3)a -2 1 ------ + -------- — a -1 a 3 2a a - 6 a -1 (a-1)(a 3) a 2 2a -7 a 2a -32 因为 a2a -1^0,所以 a 2 2a =15 -------------------------- 4分 所以原式=1^2=: 8--------------------------------- 5分15-3 12 317. (1)根据题意得,A ( 0, 2), B (4, 0) ---------------------2 分 设直线AB 的解析式为y = kx • b(k = 0)1直线AB 的解析式为y X 亠22(2) y ------------------------------------------218. 列方程或方程组解应用题: 解:设演艺中心的建筑面积是x 万平方米,则世博中心的建筑面积是(x+1.4 )万平方米.---------------------- 1分依题意得16.01+12.9+X+ (x+1.4 ) = 55.51 ------------- 2分 解得x = 12.6 ---------------3 分 x+1.4 = 14 ---------------- 4分答:演艺中心的建筑面积是12.6万平方米,世博中心的建筑面积是14万平方米. ---------------------- 5分四、解答题(本题共 20分,第19题5分,第20题5分,第21题6分,第22题4 分)19. 过点A 作AGL BC 于点G. --------------------- 1分■■ E 是AB 中点,且 EF // AC16•原式a -1 (a -2)(a 2) 1 —a 2 (a -1) a 3---4 分5 分••• EF是A ABQ的中位线EF= ,3• AC=2EF=2 .. 3/ B=30°且AC丄AB •••/ ACB=60 , BC=4^3AD// BC•••/ CAD=60又AD=DC•A ACD是等边三角形• AD=2.. 3 ----------------------------- 320. (1)证明:连接0E,------•/ AB=BC 且D是BC中点• BD丄AC•/ BE平分 / ABD•/ ABE=/ DBE•/ OB=OE•/ OBE/ OEB•/ OEB/ DBE• OE// BD• OEL AC• AC与O O相切----------- 21(2)v BD=2 sinC= —, BD丄AC2• BC=4 ---------------------------------- 3• AB=4设O O的半径为r,则AO=4-r•/ AB=BC•/ C=/ A1• si nA=si nC=—2••• AC与O O相切于点E,• OEL AC• sin人=匹=丄=丄分,AC=2 .、3 ,分在Rt A ACG中,/ AGC=90 , / ACG=60• AG=3 --------------------------- -----4• S 梯形ABC=—( 2」3 + 4 .i'3 ) •-3=9 .3 .2----------------------------------------- 4OA 4—r 24 r= ---------------------------------------------------------5 321. (1)五、解答题(本题共 22分,第23题7分,第24题7分,第25题8 分)23. ( 1)由抛物线 C 1: y =ax 2 4ax 4^-5得(2) 20-9 7-2 47-9 23-^"^.24.775 4 4 --------------------------------- 4 分 答:2009年我区消费品市场吃、穿、用、烧类商品零售额的平均数是 24.775 (3) 7.2 (1 15%)2 =9.522 ----------------------------------------------------- 6 分答:2011年全年穿类商品的零售额可能达到9.522亿元. 22.-------------------- 1 分四边形 MNPQ 与正方形 ABCD 的面积比是9 17 ------------------ 2 分 ----------------- 3 分 拼接后的正方形是 正方形ABCD ------------------ 4 分MNC2 4a 4a(4a -5) -16a——=一2, 5 2a •顶点P 的坐标为(-2 , •••点B (1 , 0)在抛物线• a -5•- — 9(2)连接PM ,作PH 丄x 轴于H ,作•••点P 、M 关于点B 成中心对称• PM 过点 B ,且 PB = MB• △ PBH ◎△ MBGMG = PH = 5, BG = BH = 3•顶点M 的坐标为(4,1/31 丄37、厂 门丄18 …s ( m m) — = -—m -------------- 2 5 55 当E 点的纵坐标大于-5且F 点的纵坐标小于 5时, —31 12 37 PE= m 「(一5) m , MF= 5「( m) m 5 5 5 5 24. (1)连接 GE .•/ KML AD KG 是DE 的垂直平分线• / KMG W DFG=90•••抛物线C i 的解析式为20 25 x - 9 9 • •抛物线C 2的表达式为 (3)依题意得,E(-2, — m ), 5 当E 点的纵坐标小于-5时, —31 PE= -5 -( m) m5 5 51 — y x -4 i 亠 5 --------------- 9 12丄 m ), HG=6 5 F(4, MF=5-(』m)旦-m 5 5 4a-5 )C i 上,MG 丄x 轴于GMF=-③••• / GKM W GDF•/ MK=AB=AD, KMG W DAE=90• △ KMG^ △ DAE --------- 1 分• MG = AE•/ E 是 AB 中点,且 AB=AD=2• AE=MG=1•/ KG 是DE 的垂直平分线• GE=GD ------------------ 2分设 GE=GD=x则 AG=2-x在 Rt △ AEG 中, / EAG=90° ,由勾股定理得(2-x ) 2+12=x 2• x= 5 --------------- 3 分 41• DM=GD-GM= 4• DM 1DG 525. (1)根据题意:A (6, 0) , B ( 0, 6^3 )•/ C 是线段OA 的三等分点• C (2, 0)或 C (4, 0) ---------- 2(2)①如图,过点 M 作MN 丄y 轴于点N , 则厶 BMNBAO1 •/ BM — AM 21• BMd BA 31• BN=— BO3 • N(0, 4,3)•.•点 M 在直线 y - - 3x ' 6*3 上• M(2, 4.3) -------------------------- 3------------------------------------------- 分•/ △ ACM 是由△ ACM 绕点M 旋转180°得到的 (3) (n -1)2 n 2 1----------------------------------- 7 (2)-------------------------------------------- 5• AC II AC•••无论是C1、C2点,四边形A CAC •是平行四边形且M为对称中心•••所求的直线12必过点M(2, 4\3)••直线丨2的解析式为:y =2、.3x ---------- 4 ------------------------------------------------------------------- 分②当C1 (2, 0)时,第一种情况:H在C点左侧若四边形A HC1M是梯形•/ AM与HC1不平行•AH // MC1此时M(2, 4、、3) ------------ 5第二种情况:H在C点右侧若四边形AC1HM是梯形••• AM与C1H不平行•AC1 // HM•/ M是线段AA的中点• H是线段AC1的中点•- H(4, 0)由OA=6,OB=6 .3•/ OAB=60;•点M的横坐标为5• M(5, 、、3 ) ----------- 6 分当C2 (4, 0 )时,同理可得H在C2点左侧时,M(4,2,3) ---------7分第一种情况:第二种情况:H在C2点右侧时,M(^,-)--------8分M(2, 4.3) , M(5,综上所述,所求M点的坐标为:,3) , M(4, 23 )或M(“ ,2。

2010年北京市崇文区初三数学一模试题及答案

2010年北京市崇文区初三数学一模试题及答案

2010年北京市崇文区中考数学一模试卷数 学 2010.5一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.3-的倒数是A .31 B . 31- C . 3- D . 3 2.《国家中长期教育改革和发展规划纲要(2010-2020)》征求意见稿提出“财政性教育经费支出占国内生产总值比例不低于4%”,去年我国全年国内生产总值为335353亿元.335353亿元的4%,也就是约13400亿多元.将13400用科学记数法表示应为A .134210⨯ B . 13.4310⨯ C .1.34410⨯ D .0.134510⨯3.甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲的方差是1.2,乙的方差是1.8.下列说法中不一定正确的是 A .甲、乙射中的总环数相同 B .甲的成绩稳定 C .乙的成绩波动较大 D .甲、乙的众数相同 4.若右图是某几何体的三视图,则这个几何体是 A .三棱柱 B .圆柱 C .正方体 D .三棱锥5.若一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是A .4B .5C .6D . 76.如图,在梯形ABCD 中,AD BC ∥, 7040B C ∠=∠=°,°,DE AB ∥交BC 于点E .若3AD =,10BC =,则CD 的长是 A .7 B .10 C .13 D .147.在 6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形和圆. 在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是A .61B .31C .21D .328.函数y=x 2-2x-2的图象如右图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是A .31≤≤-xB .31<<-xC .31>-<x x 或D .31≥-≤x x 或 二、填空题(本题共16分,每小题4分)9.在函数y 自变量x 的取值范围是. 10.分解因式:32232a b a b ab -+= .11.如图,AB 是O 的直径,CD 是O 的弦,DAB ∠=48︒,则ACD ∠= ︒12.如图,在梯形ABCD 中,AB ∥CD ,AB =a ,CD =b ,E 为边AD 上的任意一点,EF ∥AB ,且EF 交BC 于点F .若E 为边AD 上的中点,则EF = (用含有a ,b 的式子表示);若E 为边AD 上距点A 最近的n 等分点(2n ≥,且n 为整数),则EF = (用含有n ,a ,b 的式子表示).三、解答题(本题共30分,每小题5分)132cos 45-︒-0(2010)-11()5--.14.解分式方程311323162x x -=--. 15.如图,在ABC 中,90A ∠=︒,AC CE ⊥,且BC CE =,过E 作BC 的垂线,交BC 延长线于点D .求证:AB CD =.16.如图,点A 是直线2y x =与曲线1m y x-=(m 为常数)一支的交点.过点A 作x 轴的垂线,垂足为B ,且OB =2.求点A 的坐标及m 的值.17.已知210x x +-=,求222(1)(1)(1)121x x x x x x x --÷+---+的值.18. 一列火车从北京出发到达广州大约需要15小时.火车出发后先按原来的时速匀速行驶8小时后到达武汉,由于2009年12月世界时速最高铁路武广高铁正式投入运营,现在从武汉到广州火车的平均时速是原来的2倍还多50公里,所需时间也比原来缩短了4个小时.求火车从北京到武汉的平均时速和提速后武汉到广州的平均时速.四、解答题(本题共20分,第19题5分,第20题5分,第21题6分,第22题4分)19.如图,在梯形ABCD 中,A DB C ∥,9038BD CD BDC AD BC =∠===,°,,.求AB 的长.20. 如图,AB 是半圆O 的直径,过点O 作弦AD 的垂线交半圆O 于点E ,交AC 于点C ,使BED C ∠=∠.(1)判断直线AC 与圆O 的位置关系,并证明你的结论;(2)若8AC =,4cos 5BED ∠=,求AD 的长. 21.应对全球经济危机,中国政府投资40000亿元人民币以拉动内需, 5月21日国家发改委公布了40000亿元投资构成.具体内容如下:单位:亿元请你根据统计图表中所提供的信息,完成下列问题: (1)在统计表中,投向“铁路等重大基础设施建设和城市电网改造”的资金测算和投向“汶川地震灾后恢复重建”的资金测算分别是多少亿元;(2)在扇形统计图中,“卫生、教育等社会事业发展”部分和 “节能减排和生态建设工程”部分所占的百分数分别是多少;(3)统计表“资金测算”栏目下的七个数据中,中位数和众数分别是多少亿元.资金测算 廉租住房等保障性住房4000CO BE D22.正方形ABCD 的边长为a ,等腰直角三角形FAE 的斜边AE b =(a b 2<),且边AD 和AE 在同一直线上 .小明发现:当b a =时,如图①,在BA 上选取中点G ,连结FG 和CG ,裁掉FAG ∆和CHD ∆的位置构成正方形FGCH . (1)类比小明的剪拼方法,请你就图②和图③两种情形分别画出剪拼成一个新正方形的示意图.(2)要使(1)中所剪拼的新图形是正方形,须满足=AEBG. 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知P (3,m -)和Q (1,m )是抛物线221y x bx =++上的两点.(1)求b 的值;(2)判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.24.在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC=3=BC ,CD=x ,求线段CP 的长.(用含x 的式子表示)25.已知抛物线21y ax bx =++经过点A (1,3)和点B (2,1).(1)求此抛物线解析式;(2)点C 、D 分别是x 轴和y 轴上的动点,求四边形ABCD 周长的最小值;(3)过点B 作x 轴的垂线,垂足为E 点.点P 从抛物线的顶点出发,先沿抛物线的对称轴到达F 点,再沿FE 到达E 点,若P 点在对称轴上的运动速度是它在直线FE,试确定点F 的位置,使得点P 按照上述要求到达E 点所用的时间最短.(要求:简述确定F 点位置的方法,但不要求证明)卷2010.5二、填空题13.解:原式=2152⨯--=6.14.解:去分母,得 3(31)213x --=. 解得 2x =.经检验,2x =是原方程的解. ∴原方程的解是2x =. 15.证明:,ED BD ⊥90D A ∴∠=︒=∠.90E ECD ∴∠+∠=︒.又AC CE ⊥,90ACB ECD ∴∠+∠=︒.ACB E ∴∠=∠. 在ABC 和DCE 中, ∴ABC ≅DCE . ∴AB CD =.16.解:由题意,可知点A 的横坐标是2,由点A 在正比例函数2y x =的图象上,∴点A 的坐标为()24,. 又点A 在反比例函数1m y x-=的图象上, 142m -∴=,即9m =. 17.解:222(1)(1)(1)121x x x x x x x --÷+---+ =2121(1)(1)[]11(1)x x x x x x x ---+⋅--+- =11()11x x x x +--- =21x x -- 210x x +-=,∴21x x -=-∴原式=1.18.解:设火车从北京到武汉的平均时速为x 公里每小时,提速后武汉到广州的平均时速为y 公里每小时. 依题意,有解方程组,得答:火车从北京到武汉的平均时速为150公里每小时,提速后武汉到广州的平均时速为350公里每小时.19.答案:解:作AE BC ⊥于E DF BC ⊥,于F . DF ∥AE ∴, AD BC ∴∥,四边形AEFD 是矩形.BD CD DF BC =⊥,,DF ∴是BDC △的BC 边上的中线. 在Rt ABE △中,222AB AE BE =+AB ∴=20.解:(1)AC 与O 的相切.证明如下:290AOC ∴∠+∠=°. 又2C BED ∠=∠=∠, 90AOC C ∠+∠=∴°. 即AC 与O 的相切.(2)解:连接BD .AB ∵是O 直径,在Rt AOC ∆中,90CAO ∠=︒, 8AC =,90ADB ∠=°.4cos cos 5C BED ∠=∠=. 6AO ∴=,12AB ∴=在Rt ABD ∆中,4cos 2cos 5BED ∠=∠=, 4cos 2125AD AB ∴=⋅∠=⨯=485.21.解:(1)15000,10000;(2)3.75%,5.25% ;(3)3700,3700.22.(1) (2)21. 23.解:(1)因为点P 、Q 在抛物线上且纵坐标相同,所以P 、Q 关于抛物线对称轴对称并且到对称轴距离相等.所以,抛物线对称轴3142b x -+=-=,所以,4b =. (2)由(1)可知,关于x 的一元二次方程为2241x x ++=0.因为,24b ac =-=16-8=8>0. 所以,方程有两个不同的实数根,分别是1122b x a-+==-+,2122b x a--==--. (3)由(1)可知,抛物线2241y x x =++的图象向上平移k (k 是正整数)个单位后的解析式为2241y x x k =+++.若使抛物线2241y x x k =+++的图象与x 轴无交点,只需22410x x k +++= 无实数解即可.由24b ac =-=168(1)k -+=88k -<0,得1k >CAOBED12又k 是正整数,所以k 得最小值为2.24.(1)CF 与BD 位置关系是垂直; 证明如下: AB=AC ,∠ACB=45º,∴∠ABC=45º. 由正方形ADEF 得 AD=AF ,∵∠DAF=∠BAC =90º,∴∠DAB=∠FAC ,∴△DAB ≌△FAC , ∴∠ACF=∠ABD . ∴∠BCF=∠ACB+∠ACF= 90º.即 CF ⊥BD . (2)CF ⊥BD .(1)中结论成立.来源:港中数学网理由是:过点A 作AG ⊥AC 交BC 于点G ,∴AC=AG 可证:△GAD ≌△CAF ∴∠ACF=∠AGD=45º ∠BCF=∠ACB+∠ACF= 90º. 即CF ⊥BD (3)过点A 作AQ ⊥BC 交CB 的延长线于点Q , ①点D 在线段BC 上运动时, ∵∠BCA=45º,可求出AQ= CQ=4.∴ DQ=4-x ,易证△AQD ∽△DCP ,∴CP CD DQ AQ = , ∴44CP xx =-,24x CP x ∴=-+.②点D 在线段BC 延长线上运动时, ∵∠BCA=45º,可求出AQ= CQ=4,∴ DQ=4+x .过A 作AC AG ⊥交CB 延长线于点G ,则ACF AGD ∆≅∆.∴ CF ⊥BD ,∴△AQD ∽△DCP ,∴CP CD DQ AQ = , ∴44CP xx =+,24x CP x ∴=+.25.解:(1)依题意:31,142 1.a b a b =++⎧⎨=++⎩解得2,4.a b =-⎧⎨=⎩∴抛物线的解析式为2241y x x =-++.(2)点A (1,3)关于y 轴的对称点A '的坐标是(-1,3),点B (2,1)关于x 轴的对称点B '的坐标是(2,-1).由对称性可知AB BC CD DA +++=''AB B C CD DA +++≥AB A B ''+由勾股定理可求5A B ''=.所以,四边形ABCD周长的最小值是5AB A B ''+=(3)确定F 点位置的方法:过点E 作直线EG 使对称轴到直线EG 成45︒角,则EG 与对称轴的交点为所求的F 点.设对称轴于x 轴交于点H ,在Rt HEF ∆中,由HE=1,90,45FHE EFH ∠=︒∠=︒,得HF=1.所以,点F 的坐标是(1,1).GABCDEF。

【VIP专享】2010年北京市高级中等学校招生考试含答案(全word)

【VIP专享】2010年北京市高级中等学校招生考试含答案(全word)

5
6. 将二次函数 y=x22x3 化为 y=(xh)2k 的形式,结果为 (A) y=(x1)24
(C) y=(x1)22 (D) y=(x1)22。
7. 10 名同学分成甲、乙两队进行篮球比赛,它们的身高(单位:cm)如下表所示:
甲队 乙对
队员 1 177 170
队员 2 176 175
队员 3 175 173
AE=6,则 AC 等于 (A) 3 (B) 4 (C) 6 (D) 8。
4. 若菱形两条对角线的长分别为 6 和 8,则这个菱形的周长为 (A) 20 (B) 16
(C) 12 (D) 10。
5. 从 1、2、3、4、5、6、7、8、9、10 这十个数中随机取出一个数,取出 B
的数是 3 的倍数的概率是 (A) 1 (B) 3 (C) 1 (D) 1 。
(A)
(C)
(B)
(D)
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。

2019年初中数学北京一零一中初三3月月考数学试题及答案

2019年初中数学北京一零一中初三3月月考数学试题及答案

北京一零一中2015年初三月考数 学 2015年3月(考试时间:120分钟 试卷总分:120分) 命题:初三数学备课组 审核:初三数学备课组一、选择题:本大题共10小题,共30分.把你的选项前的字母填入答题纸中相应的表格内. 1.太阳的半径大约是696000千米,用科学记数法可表示为 A .36.9610⨯千米 B .46.9610⨯千米 C .56.9610⨯千米 D .66.9610⨯千米 2A .3B .3-C .13D .13-3.在四张完全相同的卡片上分别印有等边三角形、平行四边形、等腰梯形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取一张,则抽到的卡片上印有的图案是轴对称图形的概率为A .14B .13C .12D .344.如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是5.如图,在梯形ABCD 中,AD BC ∥,对角线,AC BD 相交于点O ,若1,A D B C ==,则AOCO的值为 A .12B .13C .14D .196.方程2460x kx -+=的一个根是2,那么k 的值和方程的另一个根分别是A .5,34B .11,34C .11,34-D .5,34-7.根据表中二次函数()20y ax bx c a =++≠的自变量x 与函数y 的对应值,可判断此二次函数的图象与x 轴的交点情A .只有一个交点B .有两个交点,且它们均在y 轴同侧C .无交点D .有两个交点,且它们分别在y 轴两侧(第5题图)AB CD O8.在ABC △中,5AB AC ==,6BC =,点M 为BC 的中点,MN AC ⊥于点N ,则MN 等于A .65B .95C .125D .1659.如图所示,有一张一个角为60︒开后,不能拼成的四边形是A .邻边不等的矩形B .等腰梯形C .有一个角是锐角的菱形D .正方形10.如图,在平面直角坐标系xOy 中,P 是反比例函数()10y x x=>图象上的一个动点,点A 在x 轴上,且PO PA =,AB 是PAO △中OP 边上的高,设OA m =,AB n =,则下列图象中,能表示n 与m 的函数关系的图象大致是二、填空题:本大题共6小题,共18分.把你的答案填入答题纸中相应的位置上. 11.分解因式:2327_______________x -=.12.如图,的半径为5,AB 为O 的弦,OC AB ⊥于点C ,若3OC =,则AB 的长为________________.13.函数y 中,自变量x 的取值范围是__________________.14.如图,边长为1的小正方形构成的网格中,半径为1的O 的圆心O 在格点上,则AED ∠的正切值等于_______________.(第12题图)ABCO(第14题图)ABCDEO(第16题图)15.已知关于x 的不等式组030x a x ->⎧⎨->⎩的整数解共有4个,则a 的取值范围是____________.16.如图,已知正方形ABCD ,顶点()1,3A ,()1,1B ,()3,1C ,对角线交于点M .规定“把正方形ABCD 先沿x 轴翻折,再向左平移个单位”为一次变换,那么经过两次变换后,点M 的坐标变为____________,连续经过2015次变换后,点M 的坐标变为___________.北京一零一中2015年初三月考数学答题纸二、填空题:本大题共6小题,共18分.三、解答题:共72分.17.(5()20120153π-⎛⎫-+- ⎪⎝⎭.【解析】原式91=-+ 8=-18.(5分)解不等式组()2452213x x x x⎧++⎪⎨-<⎪⎩≤,并求它的整数解. 【解析】23x x ≥-⎧⎨<⎩23x -≤<21012--,,,, 19.(5分)已知:如图,点,C D 在线段AB 上,,E F 在AB 同侧,DE 与CF 相交于点O ,且AC BD =,AE BF =,A B ∠=∠.求证:DE CF =.【解析】证明:AC BD =,AC CD BD CD +=+即AD BC =∵在Rt EAD △与FBC △中 AE BF A B AD BC =⎧⎪∠=∠⎨⎪=⎩∴EAD FBC △≌△ ∴DE CF =20.(5分)已知12x y =,求2222222xx y yx xy y x y x y -⋅+-++-的值. 【解析】原式()()()()2220x y x y x yx y x y x yx y -+=⋅+≠≠+-- 22x yx y+=- A BC D EF O22126112x yx y ++===--- 21.(5分)如图,直线AB 过点A ,且与y 轴交于点B . (1)求直线AB 的解析式;(2)若点P 是直线AB 上一点,且P 的半径为1,请直接写出P 与坐标轴相切时点P 的坐标.【解析】⑴y kx b =+,将()03,,()33--,代入 :23AB y x =+⑵1x =,5y = 1x =-,1y =1y =,1x =-,1y =-,2x =- ∴()115P ,,()311P -,,()421P --,22.(5分)列方程或方程组解应用题:小华自驾私家车从北京到天津,驾驶原来的燃油汽车所需油费99元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.4元,求新购买的纯电动汽车每行驶1千米所需的电费. 【解析】设路程为s . 99270.4s s-= 解得:()180km s =720.4s = 270.15180=元 经验证:0.15s =满足条件 答:0.15元. 23.(5分)随着人们生活水平的提高,城市家庭私家车的拥有量越来越多.私家车给人们的生活带来很多方便,同时也给城市的道路交通带来了很大的压力,尤其是节假日期间交通拥堵现象非常严重.为了缓解交通堵塞,尽量保持道路通畅,某市有关部门号召市民“在节假日期间选择公共交通工具出行”,为了了解市民的意见和态度,有关部门随机抽取了若干市民进行了调查.经过统计、整理,制作统计图如图,请回答下列问题: (1)这次抽查的市民总人数是_______500_________; (2)并补全条形统计图和扇形统计图;(3)如果该市约有18万人,那么估计对这一问题持“赞成”态度的人数约是___4.5万___.24.(5分)如图,已知矩形ABCD 中,E 是AD 上的一点,过点E 作EF EC ⊥交边AB 于点F ,交CB 的延长线于点G ,且EF EC =. (1)求证:CD AE =;(2)若6DE =,矩形ABCD 的周长为48,求CG 的长.【解析】⑴90EFC ∠=︒,∴90AEF DEC ∠+∠=︒,+90AEF DCE ∠∠=︒∴AEF DCE ∠=∠,A D ∠=∠,EF FC =∴FAE EDC △≌△ ∴CD AE = ⑵()2648x x ++=∴9x =AE AFBC FB=∴14.52BG AE ==4.51519.5CG BC BG =+=+= 25.(5分)如图,已知直线l 与O 相离,OA l ⊥于点A ,交O 于点P ,点B 是O 上一点,连接BP 并延长,交直线l 于点C ,使得AB AC =. (1)求证:AB 是O 的切线;(2)若PC =,3OA =,求O 的半径和线段PB 的长. 【解析】⑴∵AB AC =∴ACB ABC ∠=∠∵90APC ACP ∠+∠=︒,BOH OPB APC ∠=∠=∠ ∴90BOH ABC ∠+∠=︒,即90OBA ∠=︒∴AB 为O 的切线. ⑵()222291231AB R AC R R =-==--⇒= 作OH BP ⊥于H ,由垂经定理BH HP =而HP PC OP PA ⋅=⋅∴HP∴PBG A B CD E F l AB CPO26.(5分)问题1:在图1中,已知线段,AB CD ,它们的中点分别为,E F .①若()2,0A -,()4,0B ,则E 点坐标为_______()10,______; ②若()1,3C -,()1,2D --,则F 点坐标为___112⎛⎫- ⎪⎝⎭,_________;问题2:在图2中,无论线段AB 处于直角坐标系中的哪个位置,当其端点坐标为(),A a b ,(),B c d ,AB 中点为(),D x y 时,请直接写出D 点的坐标(___2a c+_________,____2b d +_______);(用含a 、b 、c 、d 的式子表示).问题3:如图3,一次函数4y x =-与反比例函数5y x=的图象交于A 、B 两点,若以A 、O 、B 、P 为顶点的四边形是平行四边形,请直接写出顶点P 的坐标___()()()446666---,,,,,___________.图3图2图127.(7分)已知抛物线2y x bx c =-++,当13x <<时,y 值为正,当1x <或3x >时,y 值为负.(1)求抛物线的解析式;(2)若直线()0y kx b k =+≠与抛物线交于点1,2A m ⎛⎫⎪⎝⎭和()4,B n ,求直线的解析式.(3)设平行于y 轴的直线x t =和2x t =+分别交线段AB 于E 、F ,交抛物线于H 、G ,①求t 的取值范围;②是否存在适当的t 值,使得四边形EFGH 是平行四边形?若存在,求出t 值;若不存在,请说明理由.【解析】⑴()()21343y x x x x =---=-+- ⑵12x =,4代入:1524A ⎛⎫- ⎪⎝⎭,,()43B -,设y kx b =+,将A 、B 代入:12xy =--⑶①12t ≥24t +≤ 122t ≤≤ ②若存在,则HE FG =()229431222x x x x x f x -+-++=-+-=则()()2f t f t =+∴()922t t ++= 解得:54t =,在122⎡⎤⎢⎥⎣⎦,上∴54t =28.(8分)如图1,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE 、BF ,交点为G .(1)求证:AE BF ⊥;(2)将BCF △沿BF 对折,得到BPF △(如图2),延长FP 交BA 的延长线于点Q ,求sin BQP ∠的值; (3)将ABE △绕点A 逆时针方向旋转,使边AB 正好落在AE 上,得到AHM △(如图3),若AM 和BF 相交于点N ,当正方形ABCD 的面积为4时,求四边形GHMN 的面积.G图3图2图1MNG HF EDCB AGPQFEDCBAABCDE F【解析】⑴1tan tan 2EAB FBC ∠=∠=∴EAB EBF ∠=∠, ∵90EBF FBA ∠+∠=︒ ∴90EAB FBA ∠+∠=︒ ∴90AGB ∠=︒, ∴AE BF ⊥⑵sin sin sin sin 2BQP DFP PFC α∠=∠=∠=sin α,cos α=∴4sin 22sin cos 25ααα===⑶1115205GHMN AMH ANG ABE AGB BGE ABE ABCD S S S S S S S S =-=-===⋅=△△△△△△29.(7分)阅读材料:①直线l 外一点P 到直线l 的垂线段的长度,叫做点P 到直线l 的距离,记作(),d P l ;②两条平行线12,l l ,直线1l 上任意一点到直线2l 的距离,叫做这两条平行线12,l l 之间的距离,记作()12,d l l ; ③若直线12,l l 相交,则定义()12,0d l l =; ④对于同一直线l 我们定义(),0d l l =,对于两点12,P P 和两条直线12,l l ,定义两点12,P P 的“12,l l -相关距离”如下: ()()()()1212111222,|,,,,d P P l l d P l d l l d P L =++设()14,0P ,()20,3P ,1:l y x =,2:l y =,3:l y kx =,24:l y k x =, 解决以下问题:(1)()1211,|,d P P l l =,()1212,|,d P P l l =_______32+; (2)①若0k >,则当()1233,|,d P P l l 最大时,k =_____43______; ②若0k <,试确定k 的值使得()1233,|,d P P l l 最大.【解析】⑵②1sin 3d α=,2cos 4dα= 222212sin cos 1916d d αα+=+= ()()2221212916916d d d d ⎛⎫++≥+ ⎪⎝⎭ 125d d +≤,当且仅当3tan 4α=()4tan 903k α=--=-当 0k >,且34,l l 的夹角是30︒,直接写出()1234,|.d P P l l 的最大值_____________. 【解析】错题。

2022-2023学年北京市北京一零一中学九年级9月月考道德与法治试卷含详解

北京101中学2023届上学期初中九年级9月月考试卷道德与法治一、单项选择题1.2021年10月,中央人大工作会议在北京召开。

这是在党的历史上、人民代表大会制度历史上第一次以“中央人大工作会议”为名召开的会议。

这次会议为加强和改进新时代人大工作指明了方向。

加强和改进新时代人大工作()①要加强中国共产党对人大工作的全面领导②要充分发挥人大代表作用,密切与人民群众的联系③要求人民代表大会履行政治协商、民主监督和参政议政的职能④要求人民代表大会作为最高国家权力机关,统一行使国家权力A.①②B.①③C.②④D.③④2.1980年,中国第一家个体餐馆在北京开张。

那时,中国的个体工商户还不到1万户,占市场主体比重不足1%。

此后,个体工商户如雨后春笋一般出现在全国各地。

截至2021年底,全国登记在册个体工商户已达1.03亿户,约占市场主体总量的2/3。

由此可以推断出()A.个体经济体现生产资料属于一部分劳动者所有B.在我国,个体经济是国民经济的主导力量C.非公有制经济实行按劳分配,体现了多劳多得D.国家鼓励、支持、引导非公有制经济发展3.随着人们健康饮食意识的增强,低热量、低脂肪、高纤维的轻食越来越受到年轻消费者的青睐。

但由于轻食行业现阶段存在标准化程度低、食品安全隐患、商家夸大宣传等问题,亟待多方携手予以改善。

解决上述问题需要()①充分发挥市场在资源配置中的决定性作用②完善相关法律法规和行业规定,助力行业健康发展③监察委切实履行市场监管职责,筑牢食品安全防线④商家懂规则、明底线,不断提高法律意识和诚信意识A.①②B.①③C.②④D.③④4.张夏同学收看新闻,关注到了如下信息:第十三届全国人民代表大会第五次会议议程一、审议政府工作报告二、审查2021年国民经济和社会发展计划执行情况与2022年国民经济和社会发展计划草案的报告、2022年国民经济和社会发展计划草案三、审查2021年中央和地方预算执行情况与2022年中央和地方预算草案的报告、2022年中央和地方预算草案……九、审议最高人民法院工作报告十、审议最高人民检察院工作报告;针对上述议程,正确认识是()①全国人民代表大会作为最高国家权力机关,代表人民统一行使国家权力②政府的各项权力来自人民,对人民负责,受人民监督,要依法行使权力③国家行政机关是国家权力机关的执行机关,受权力机关监督,对其负责④人民法院依法独立行使审判权,惩办违法犯罪分子,捍卫社会公平正义A.①②B.①③C.②④D.②③5.中国在一穷二白的基础上,在不到70年的时间里建成了世界最大规模的教育体系,保障了亿万人民群众受教育的权利,推动教育总体发展水平进入世界中上行列,支撑中国成为世界第二大经济体。

2010年北京一零一中第二学期期中考试初一数学及答案

北京-冬•屮2010 -2011学年度第一孑期期屮占试初一数学命邂:杨辉审核:初一铁学备课组友牯提示:下面的銭学问題是为了展示同学们的学习成果,请放松心态,仔细审題,认典作题号12345678910签案4401.卜•列&度的三条线段能组成二角形的足()A 3,4.8 B.5,6, 11 C.1,2.3 D.5,6, 102•已知次于x的不等式2*-加》-3的解集如图2所示•则加的值为()4・•个三和形三个内角的浚数是三个连续的格数.则这个三角形二个内和的度数是()A.2B. IC.0 1).-13.卜列图中能说明Z1>Z2的是()A. 44\45\9fB. 49\59\69eC. 59)60*6°D. 57V59,d的解是(2x + y = 52-1[x = 2X = 12 B.< C.DJ卜=2y = ■],26.已知兰=2 3A 3X - 12丁3 3B. y = —x-3C. y =——x +1D. v = 一一x+ 3 Z 27•“数4“异号. 且其中正数绝对值较夫”•可川不笛式农小为()A. «/> < 0 H I 67 I > I IC. < 0 lLw 4 A < 0B. ah <011a b > 0D. ab <0 11«2+/「工00 3 4 55•方程组用含x的代数式表示y得x = 2&川种工2辺形仙滿血血.不年询满笛恣(B. “…:"I旳C. ||•方形D. il:六边形9 •芳 |* v6| + ix-F + 3 片()•则x 的值为( )9 3A•— B.6 C•— D - 62 210. MBC + . Z^ = ZGDs E分别AH. AC上的点.右AADE "AED • Z.BAD = 20°. Z£DC = 10v.则ZDAE度数•宦足( )A.20"B.40°C.60°D•不能啡••确定一、填空範(Wtt4分,共28分〉11.若x<l .则一2x + 2 0 (用或号城空)・12•—个£也形的何…个外角都绘30。

北京市实验外国语学校2010年中考语文模拟试题4

2010年中考语文模拟试题4注意事项:1、本试卷共8页,七大题,满分120分,考试为150分钟。

2、答卷前将密封线内的姓名、准考证号填写清楚。

题号一二三四五六七总分得分一、全卷书写(4分)二、完成下面1—8题(22分)1、给下面诗句中加点的字注音。

我是你簇()新的理想,刚从神话的蛛网里挣脱;我是你雪被下古莲的胚()芽;我是你挂着眼泪的笑涡;我是新刷出的雪白的起跑线;是绯()红的黎明;正在喷()薄;——祖国啊!2、写出下列作品的作者。

①《孔乙己》②《乡愁》③《变色龙》④《威尼斯商人》3、仿写下面的句子。

拥有青春,就拥有了一份潇洒和风流;拥有青春,就拥有了一份灿烂和辉煌;拥有;拥有。

4、以“交通安全”为主题设计广告词,要求言简意赅。

5、将下面这段文字的内容简要表述出来,字数30字以内。

国家统计局经济景气监测中心对10000户居民所做专项调查的结果显示:62.7%的家庭,教育消费已成为家庭开支的重要一项,超过50%的家庭1—3年内要把钱花在教育上,而且是大额支出。

然而对重金消费中的教育质量是否感觉物有所值呢?在调查中,只有25%的居民给予肯定,另有48.5%给予否定,有26.5%认为无法判断。

6、下面这则寓言告诉我们一个什么道理?有一冬天之夜,天降大雪,林中的豪猪冰冻不堪。

后来大家寻到一间破房,一齐进去。

起初,大家觉得寒冷,所以围作一团,大家分暖。

只因豪猪身上只只都有刺,一碰之后,大家不得不分开。

分开后,又觉得寒冷,又想聚拢分暖。

如此分后再合,合后再分,往返数次之后才找到一种适当的距离,既不相刺,又可稍微分暖,就此相安无事,一夜过去。

7、阅读李清照的《武陵春》,回答问题。

风住尘香花已尽,日晚倦梳头。

物是人非事事休,欲语泪先流。

闻说双溪春尚好,也拟泛轻舟,只恐双溪舴艋舟,载不动,许多愁。

①词人用,两个外在的行为具体表达了内心浓重的哀愁。

②“只恐双溪舴艋舟,载不动,许多愁。

”一句用了的修辞手法,表现了女词人战乱中的流离生活之苦。

2010年北京高级中等学校招生考试

2010年北京市高级中等学校招生考试数 学 试 卷学校___________________ 姓名___________________ 准考证号___________________一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 2-的倒数是A. 12-B. 12C. 2-D. 22. 2010年6月3日,人类首次模拟火星载人航天飞行试验“火星—500”正式启动,包括中国志愿者王跃在内的6名志愿者踏上了为期12 480小时的“火星之旅”.将12 480用科学记数法表示应为A. 312.4810⨯B. 50.124810⨯C. 41.24810⨯D. 31.24810⨯3. 如图,在ABC △中,点D E 、分别在AB AC 、边上,DE BC ∥,若:3:4AD AB =,6AE =,则AC 等于A. 3B. 4C. 6D. 84. 若菱形两条对角线的长分别为6和8,则这个菱形的周长为A. 20B. 16C. 12D. 105. 从1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是A.15 B. 310 C. 13D. 126. 将二次函数223y x x =-+化为()2y x h k =-+的形式,结果为A. ()214y x =++ B. ()214y x =-+ C. ()212y x =++ D. ()212y x =-+设两队队员身高的平均数依次为x 甲,x 乙,身高的方差依次为S 甲,S 乙,则下列关系中完全正确的是A. x x =乙甲,22S S >乙甲B. x x =乙甲,22S S <乙甲C. x x >乙甲,22S S >乙甲D. x x <乙甲,22S S <乙甲E D B AOE D CBAFE DC B A8. 美术课上,老师要求同学们将右图所示的白纸只沿虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后 放在桌面上,下面四个示意图中,只有一个....符合上述要求, 那么这个示意图是二、填空题(本题共16分,每小题4分)9. 若二次根式21x -有意义, 则x 的取值范围是___________.10. 分解因式:34m m -=_____________________. 11. 如图,AB 为O ⊙的直径,弦CD AB ⊥,垂足为点E ,连结OC ,若5OC =,8CD =,则AE =___________. 12. 右图为手的示意图,在各个手指间标记字母A B C D ,,,. 请你按图中箭头所指方向(即A B C D C B A B →→→→→→→C →→…的方式)从A 开始数连续的正整数1234,,,,…,当数到12时,对应的字母是________;当字母C 第201次出现时,恰好数到的数是_________;当字母C 第21n +次出现时(n 为正整数),恰好数到的数是_____________(用含n 的代数式表示).三、解答题(本题共30分,每小题5分) 13. 计算:101201043tan 603-⎛⎫-+--︒ ⎪⎝⎭.14. 解分式方程312422x x x -=--.15. 已知:如图,点A B C D 、、、在同一条直线上,EA AD ⊥,FD AD ⊥,AE DF =,AB DC =.求证:ACE DBF ∠=∠.16. 已知关于x 的一元二次方程2410x x m -+-=有两个相等的实数根,求m 的值及方程的根.D B A C17. 列方程或方程组解应用题:2009年北京生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米.18. 如图,直线23y x =+与x 轴交于点A ,与y 轴交于点B .(1)求A B ,两点的坐标;(2)过B 点作直线BP 与x 轴交于点P ,且使2OP OA =, 求ABP △的面积.四、解答题(本题共20分,每小题5分)19. 已知:如图,在梯形ABCD 中,AD BC ∥,2AB DC AD ===,4BC =.求B ∠的度数及AC 的长.20. 已知:如图,在ABC △中,D 是AB 边上一点,O ⊙过D B C 、、三点,290DOC ACD ∠=∠=︒. (1)求证:直线AC 是O ⊙的切线; (2)如果75ACB ∠=︒,O ⊙的半径为2,求BD 的长.21. 根据北京市统计局公布的2006-2009年空气质量的相关数据,回执统计图如下:2006—2009年北京全年市区空气质量达到二级和好于二级的天数统计图2009200820072006年份(1)有统计图中的信息可知,北京全年市区空气质量达到二级和好于二级的天数与上一年相比,增加最多的是_________年,增加了_______天;(2)表1是根据《中国环境发展报告(2010)》公布的数据绘制的2009年十个城市空气质量达到二级和好于二级的天数占全年天数百分比的统计表,请将表1中的空缺部分补充完整(精确到1%);图112 表1 2009年十个城市空气质量达到二级和好于二级的天数占全年天数百分比统计表(3)根据表1中的数据将十个城市划分为三组,百分比不低于95%的为A 组,不低于85%且低于95%的为B 组,低于85%的为C 组.按此标准,C 组城市数量在这十个城市中所占的百分比为_____%;请你补全右边的扇形统计图.22. 阅读下列材料:小贝遇到一个有趣的问题:在矩形ABCD 中,8cm AD =,6cm AB =.现有一动点P 按下列方式在矩形内运动:它从A 点出发,沿着与AB 边夹角为45︒的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,沿着与这条边夹角为45︒的方向作直线运动,并且它一直按照这种方式不停地运动,即当P 点碰到BC 边,沿着与BC 边夹角为45︒的方向作直线运动,当P 点碰到CD 边,再沿着与CD 边夹角为45︒的方向作直线运动,…,如图1所示.问P 点第一次与D 点重合前...与边相碰几次,P 点第一次与D 点重合时...所经过的路径的总长是多少.小贝的思考是这样开始的:如图2,将矩形ABCD 沿直线CD 折叠,得到矩形11A B CD .由轴对称的知识,发现232P P P E =,11P A PE =.请你参考小贝的思路解决下列问题:(1)P 点第一次与D 点重合前与边相碰______次;P 点从A 点出发到第一次与D 点重合时...所经过的路径地总长是_______________cm ;(2)进一步探究:改变矩形ABCD 中AD AB 、的长,且满足AD AB >.动点P 从A 点出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD 相邻的两边上.若P 点第一次与B 点重合前与边相碰7次,则:AB AD 的值为_________.五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)A 组20%2009 年十个城市空气质量达到二级和好于二级的天数占全年 天数百分比分组统计图图211123. 已知反比例函数ky x=的图象经过点()1A . (1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕O 点顺时针旋转30︒得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由; (3)已知点()6P m +也在此反比例函数的图象上(其中0m <),过P 点作x 轴的垂线,交x 轴于点M .若线段PM 上存在一点Q ,使得OQM △的面积是12,设Q 点的纵坐标为n,求29n -+的值.24. 在平面直角坐标系xOy 中,抛物线22153244m my x x m m -=-++-+与x 轴的交点分别为原点O 和点A ,点()2B n ,在这条抛物线上.(1)求B 点的坐标;(2)点P 在线段OA 上,从O 点出发向A 点运动,过P 点作x 轴的垂线,与直线OB 交于点E ,延长PE 到点D ,使得ED PE =,以PD 为斜边,在PD 右侧作等腰直角三角形PCD (当P 点运动时,C 点、D 点也随之运动).① 当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;② 若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一个点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动).过Q 点作x 轴的垂线,与直线AB 交于点F ,延长QF 到点M ,使得FM QF =,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q 点运动时,M 点、N 点也随之运动).若P 点运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t 的值.25. 问题:已知ABC △中,2BAC ACB ∠=∠,点D 是ABC △内的一点,且AD CD =,BD BA =.探究DBC ∠与ABC ∠度数的比值.请你完成下列探究过程: 先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明. (1)当90BAC ∠=︒时,依问题中的条件补全右图. 观察图形,AB 与AC 得数量关系为________;当退出15DAC ∠=︒时,可进一步推出DBC ∠的度数为_______; 可得到DBC ∠与ABC ∠度数的比值为_________.(2)当90BAC ∠≠︒时,请你画出图形,研究DBC ∠与ABC ∠度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.C B A内部使用 用毕收回2010年北京市高级中等学校招生考试数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数.三、解答题(本题共30分,每小题5分) 13.(本小题满分5分)解:1012010|tan 603-⎛⎫-+-- ⎪⎝⎭°31=-+…………………………………………………………4分2=+ 5分14.(本小题满分5分)解:去分母,得322x x -=-.…………………………………………… 2分整理,得35x =.解得53x =.…………………………………………………………… 4分经检验,53x =是原方程的解.所以原方程的解是53x =.………………………………………………5分15.(本小题满分5分)证明:∵AB DC =,∴AC DB =.…………………………………………………………1分 ∵EA AD ⊥,FD AD ⊥,∴90A D ∠=∠=°.…………………………2分 在EAC △与FDB △中, EA FD A D AC DB=⎧⎪∠=∠⎨⎪=⎩,, ∴EAC FDB △≌△.………………………4分∴ACE DBF ∠=∠.……………………… 5分16.(本小题满分5分)解:由题意可知0∆=.FE即()()24410m ---=.解得5m =.………………………………………………………………………3分当5m =时,原方程化为2440x x -+=. 解得122x x ==.所以原方程的根为122x x ==.…………………………………………………5分17.(本小题满分5分)解法一:设生产运营用水x 亿立方米,则居民家庭用水()5.8x -亿立方米.… 1分依题意,得5.830.6x x -=+.………………………………………………2分 解得 1.3x =.…………………………………………………………………3分 5.8 5.8 1.3 4.5x -=-=.…………………………………………………… 4分答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米.…………………5分解法二:设生产运营用水x 亿立方米,居民家庭用水y 亿立方米.………………1分依题意,得 5.830.6x y y x +=⎧⎨=+⎩……………………………………………………2分解这个方程组,得 1.34.5.x y =⎧⎨=⎩,………………………………………………4分答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米.…………………5分18.(本小题满分5分)解:(1)令0y =,得32x =-.∴A 点坐标为302⎛⎫- ⎪⎝⎭,.…………………………………………………1分令0x =,得3y =.∴B 点坐标为()03,.……………………………………………………2分(2)设P 点坐标为()0x ,.依题意,得3x =±.∴P 点坐标分别为()130P ,或()230P -,.……………………………3分 ∴1132733224ABP S ⎛⎫=⨯+⨯= ⎪⎝⎭△;213933224ABP S ⎛⎫=⨯-⨯= ⎪⎝⎭△.∴ABP △的面积为274或94.…………………5分四、解答题(本题共20分,每小题5分) 19.(本小题满分5分)解法一:分别作AF BC ⊥,DG BC ⊥,F 、G 是垂足.…………………1分∴90AFB DGC ∠=∠=°. ∵AD BC ∥,∴四边形AFGD 是矩形. ∴AF DG =. ∵AB DC =,∴Rt Rt AFB DGC △≌△. ∴BF CG =.∵2AD =,4BC =, ∴1BF =.在Rt AFB △中,∵1cos 2BF B AB ==,∴60B ∠=°. ∵1BF =,∴AF =. ∵3AC =,由勾股定理,得AC =∴60B ∠=°,AC =5分解法二:过A 点作AE DC ∥交BC 于点E .………………1分∵AD BC ∥,∴四边形AECD 是平行四边形. ∴AD EC =,AE DC =.∵2AB DC AD ===,4BC =, ∴AE BE EC AB ===.可证BAC △是直角三角形,ABE △是等边三角形. ∴90BAC ∠=°,60B ∠=°.在Rt ABC △中,tan 60AC AB =⋅=°∴60B ∠=°,AC =5分20.(本小题满分5分)(1)证明:∵OD OC =,90DOC ∠=°,∴45ODC OCD ∠=∠=°. ∵290DOC ACD ∠=∠=°, ∴45ACD ∠=°.∴90ACD OCD OCA ∠+∠=∠=°. ∵点C 在O e 上,∴直线AC 是O e 的切线.………………2分(2)解:∵2OD OC ==,90DOC ∠=°,可求CD =.∵75ACB ∠=°,45ACD ∠=°, ∴30BCD ∠=°. 作DE BC ⊥于点E . ∴90DEC ∠=°.∴sin30DE DC =⋅=° ∵45B ∠=°,∴2DB =.………………………………………………………5分21.(本小题满分5分)解:(1)2008;28;…………………………………………………………2分 (2)78%;………………………………………………………………3分 (3)30;…………………………………………………………………4分图1GFDBA C图2E DBA CE A BCDOC 组30%B 组50%A 组20%……………………………………5分22.(本小题满分5分)解:(1)5,;…………………………………………………………3分(2)4:5.………………………………………………………………5分解题思路示意图:B 2A 2D 1C 1B 1A 1DCBA五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.(本小题满分7分)解:(1)由题意得1=.解得k =.∴反比例函数的解析式为y =.………………1分 (2)过点A 作x 轴的垂线交x 轴于点C .在Rt AOC △中,OC =,1AC =.可得2OA =,30AOC ∠=°.…………………2分由题意,30AOB ∠=°,2OB OA ==, ∴60BOC ∠=°.过点B 作x 轴的垂线交x 轴于点D . 在Rt BOD △中,可得BD =1OD =.∴B点坐标为(1-.……………………………………………3分 将1x =-代入y =中,得y∴点(1B -在反比例函数y =的图象上.………………4分(3)由y =得xy =∵点()6P m +在反比例函数y =的图象上,其中0m <,∴)6m+=5分∴210m ++=. ∵PQ x ⊥轴,∴Q 点的坐标为()m n ,.∵OQM △的面积是12, ∴1122OM QM ⋅=. ∵0m <,∴1mn =-.………………………………………………………6分∴22220m n n ++=.∴21n -=-.∴298n -+=.……………………………………………7分24.(本小题满分8分)解:(1)∵抛物线22153244m my x x m m -=-++-+经过原点, ∴2320m m -+=. 解得11m =,22m =. 由题意知1m ≠, ∴2m =.∴抛物线的解析式为21542y x x =-+.∵点()2B n ,在抛物线21542y x x =-+上,∴4n =.∴B 点的坐标为()24,.……………………………………………2分(2)①设直线OB 的解析式为1y k x =.求得直线OB 的解析式为2y x =. ∵A 点是抛物线与x 轴的一个交点, 可求得A 点的坐标为()100,.设P 点的坐标为()0a ,,则E 点的坐标为()2a a ,. 根据题意作等腰直角三角形PCD ,如图1. 可求得点C 的坐标为()32a a ,.由C 点在抛物线上,得()21523342a a a =-⨯+⨯.即2911042a a -=.解得1229a =,20a =(舍去). ∴229OP =.………………………………………………………………4分② 依题意作等腰直角三角形QMN . 设直线AB 的解析式为2y k x b =+.由点()100A ,,点()24B ,,求得直线AB 的解析式为152y x =-+.当P 点运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上, 有以下三种情况: 第一种情况:CD 与NQ 在同一条直线上,如图2所示.可证DPQ △为等腰直角三角形.此时OP 、DP 、AQ 的长可依次表示为t 、4t 、2t 个单位. ∴4PQ DP t ==.图1图2∴4210t t t ++=.∴107t =.第二种情况:PC 与MN 在同一条直线上,如图3所示. 可证PQM △为等腰直角三角形.此时OP 、AQ 的长可依次表示为t 、2t 个单位. ∴102OQ t =-.∵F 点在直线AB 上, ∴FQ t =. ∴2MQ t =.∴2PQ MQ CQ t ===. ∴2210t t t ++=. ∴2t =.第三种情况:点P 、Q 重合时,PD 、QM 在同一条直线上,如图4所示.此时OP 、AQ 的长可依次表示为t 、2t 个单位. ∴210t t +=.∴103t =.综上,符合题意的t 值分别为107,2,103.…………………………8分25.(本小题满分7分)解:(1)相等;…………………………………1分15°;………………………………………2分1:3.………………………………………3分 (2)猜想:DBC ∠与ABC ∠度数的比值与(1)中结论相同.证明:如图2,作KCA BAC ∠=∠,过B 点作BK AC ∥交CK 于点K ,连结DK . ∵90BAC ∠≠°, ∴四边形ABKC 是等腰梯形. ∴CK AB =.∵DC DA =, ∴DCA DAC ∠=∠. ∵KCA BAC ∠=∠, ∴3KCD ∠=∠.∴KCD BAD △≌△. ∴24∠=∠,KD BD =. ∴KD BD BA KC ===. ∵BK AC ∥, ∴6ACB ∠=∠. ∵2KCA ACB ∠=∠, ∴5ACB ∠=∠. ∴56∠=∠. ∴KC KB =.∴KD BD KB ==. ∴60KBD ∠=°.图3图4图1D C BA 图2654321K A BC D∵6601∠=∠=-∠°,ACB∴212021°.BAC ACB∠=∠=-∠∵()()°°°,∠+-∠+-∠+∠=1601120212180∴221∠=∠.∴DBC∠度数的比值为1:3.……………………………………7分∠与ABC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档