污水处理A2O工艺调试详解

合集下载

污水处理技术之A2O工艺原理、特点及效果改进措施

污水处理技术之A2O工艺原理、特点及效果改进措施

污水处理技术之A2O工艺原理、特点及效果改进措施(最新版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的安全管理制度,如通用安全、交通运输、矿山安全、石油化工、建筑安全、机械安全、电力安全、其他安全等等制度,想了解不同制度格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of safety management systems, such as general safety, transportation, mine safety, petrochemical, construction safety, machinery safety, electrical safety, other safety, etc. systems, I want to know the format and writing of different systems ,stay tuned!污水处理技术之A2O工艺原理、特点及效果改进措施A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧-缺氧-好氧生物脱氮除磷工艺的简称。

AA0污水处理厂调试方案

AA0污水处理厂调试方案

污水处理厂调试方案目录目录 (2)第一节概述 (3)第二节调试前期工作 (5)一、人员配置计划 (5)二、设备内容 (5)三、工艺内容 (5)四、材料 (5)第三节单机调试 (6)一、目的 (6)二、范围 (6)三、空载试车 (8)四、负载试车 (9)第四节联机调试 (10)一、目的 (10)二、范围 (10)三、联机试车 (10)第五节培菌调试 (11)一、目的 (11)二、前提条件 (11)三、培菌方法 (11)四、菌种来源及数量 (12)五、培菌具体操作 (12)六、可能存在问题及解决办法 (13)第一节概述AAO污水处理厂一期工程采用A2/O氧化沟加紫外消毒工艺处理生活污水,规划总规模5万m3/d,近期设计规模2万m3/d(其中雨季为4万m3/d,截污倍数1.0),设计总变化系数1.489。

预处理能力为4万m3/d。

中期新增1万m3/d 的处理能力,设计规模3万m3/d(雨季为6万m3/d)。

污水经处理后的出水质执行广东省《水污染物排放限值》(DB44/26-2001)第二时段一级标准和国家《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准中取严值。

设计进出水水质下表所示:沉砂外运处置栅渣外运处置工程采用工艺是A2/O ,工艺流程图如下:污水厂建成之后,应组织调试前单项验收,验收工作应包括土建工程方面的验收和安装工程方面的验收。

验收工作结束后,即可进行污水处理设备、仪表及构筑物的调试。

调试可分为单机调试,联动调试及培菌调试三个阶段,视工程完成情况开始实施。

第二节调试前期工作一、人员配置计划工艺主管1名,设备主管1名,化验员1名,电工2名,钳工1名,运行人员6名。

二、设备内容1、完成设备资料、安装资料的收集,编写操作规程;2、完成对运行人员设备操作的培训;3、完成设备仪表控制柜及管线的标示工作;4、完成常用工具配件的申购;三、工艺内容1、参加设备操作及工艺培训;2、完成现场池体及设备仪表清理卫生;3、完成调试记录表及运行记录的制定;四、材料1、劳保用品:水鞋6双、棉手套20副、乳胶手套10副、化验劳保。

污水处理A2O工艺

污水处理A2O工艺

污水处理A2O工艺一、引言污水处理是指对废水进行物理、化学或者生物处理,以去除其中的污染物质,使其达到排放标准或者可再利用的水质要求。

A2O工艺(Anaerobic-Anoxic-Oxic Process)是一种常用的污水处理工艺,能够高效地去除污水中的有机物和氮磷等污染物。

本文将详细介绍A2O工艺的原理、工作流程以及应用案例。

二、A2O工艺原理A2O工艺是一种组合工艺,由厌氧污泥、缺氧污泥和好氧污泥三个阶段组成。

其原理如下:1. 厌氧阶段:废水首先进入厌氧污泥区域,通过厌氧菌的作用,有机物质被分解成有机酸和氨氮等物质。

2. 缺氧阶段:废水流入缺氧区域,有机酸和氨氮在此阶段被硝化细菌作用下转化为亚硝酸盐和硝酸盐。

3. 好氧阶段:废水进入好氧区域,亚硝酸盐和硝酸盐被硝化细菌和硝化细菌分别氧化为硝酸盐和硝氮,同时有机物质也被氧化分解。

通过这三个阶段的处理,废水中的有机物、氨氮和氮磷等污染物得以去除,最终达到排放标准。

三、A2O工艺工作流程A2O工艺的工作流程主要包括进水处理、厌氧污泥处理、缺氧污泥处理、好氧污泥处理和出水处理等环节。

1. 进水处理:污水首先经过格栅除去大颗粒杂质,然后进入沉砂池去除悬浮颗粒。

接下来,进水经过调节池进行水质调节,以保证进水的稳定性和均匀性。

2. 厌氧污泥处理:进水进入厌氧污泥处理区域,通过厌氧菌的作用,有机物质被分解为有机酸和氨氮等物质。

污水在此阶段停留的时间较长,以便有机物质充分分解。

3. 缺氧污泥处理:经过厌氧污泥处理后的水流入缺氧污泥处理区域,有机酸和氨氮在此阶段被硝化细菌作用下转化为亚硝酸盐和硝酸盐。

此阶段的停留时间较短。

4. 好氧污泥处理:经过缺氧污泥处理后的水流入好氧污泥处理区域,亚硝酸盐和硝酸盐被硝化细菌和硝化细菌分别氧化为硝酸盐和硝氮,同时有机物质也被氧化分解。

此阶段的停留时间较长,以确保废水中的有机物质被充分去除。

5. 出水处理:经过好氧污泥处理后的水流入沉淀池,其中的污泥沉淀下来,清水从上方流出,经过消毒等处理后即可达到排放标准。

污水处理工艺:A2O工艺优缺点及改进工艺总结解析

污水处理工艺:A2O工艺优缺点及改进工艺总结解析

污水处理工艺A2O工艺优缺点及改进工艺总结解析A20法又称AAO法,即厌氧-缺氧-好氧法,是一种常用的污水处理工艺,可用于二级污水处理或三级污水处理,以及中水回用,具有良好的脱氮除磷效果。

在传统A2/0工艺的单泥系统中高效地完成脱氮和除磷两个过程,就会发生各种矛盾冲突,比如泥龄的矛盾、碳源竞争、硝酸盐及溶解氧(D0)残余干扰等。

一、传统A?。

工艺存在的矛盾:1、污泥龄矛盾:传统A?/。

工艺属于单泥系统,聚磷菌(PAOs)、反硝化菌和硝化菌等功能微生物混合生长于同一系统中,而各类微生物实现其功能最大化所需的泥龄不同:1)自养硝化菌与普通异养好氧菌和反硝化菌相比,硝化菌的世代周期较长,欲使其成为优势菌群,需控制系统在长泥龄状态下运行。

冬季系统具有良好硝化效果时的污泥龄(SRT)需控制在30d以上;即使夏季,若SRT<5 d,系统的硝化效果将显得极其微弱。

2) PAOs属短周期微生物,甚至其最大周期(Gmax)都小于硝化菌的最小世代周期(Gmin) o从生物除磷角度分析富磷污泥的排放是实现系统磷减量化的唯一渠道。

若排泥不及时,一方面会因PAOs的内源呼吸使胞内糖原消耗殆尽,进而影响厌氧区乙酸盐的吸收及聚-疑基烷酸(PHAs)的贮存,系统除磷率下降,严重时甚至造成富磷污泥磷的二次释放;另一方面,SRT也影响到系统内PAOs和聚糖菌(GAOs)的优势生长。

在30 °C的长泥龄(SRTa 10 d)厌氧环境中,GAOs 对乙酸盐的吸收速率高于PAOs,使其在系统中占主导地位,影响PAOs释磷行为的充分发挥。

2、碳源竞争及硝酸盐和D0残余干扰:在传统A?/。

脱氮除磷系统中,碳源主要消耗于释磷、反硝化和异养菌的正常代谢等方面,其中释磷和反硝化速率与进水碳源中易降解部分的含量有很大关系。

一般而言,要同时完成脱氮和除磷两个过程,进水的碳氮比(B0D5 / P (TN)) >4〜5,碳磷比(B0D5 / P (TP)) > 20 〜30。

污水处理A2O工艺

污水处理A2O工艺

污水处理A2O工艺污水处理A2O工艺是一种常用的污水处理工艺,它采用了活性污泥法和厌氧-好氧-好氧(A2O)的组合工艺,能够高效地去除污水中的有机物和氮磷等污染物,达到环保排放标准。

一、工艺原理A2O工艺是将厌氧污泥和好氧污泥结合起来进行处理的工艺。

整个工艺分为三个阶段:厌氧阶段、好氧阶段和好氧阶段。

1. 厌氧阶段:在这个阶段,污水进入到厌氧池中,厌氧池中的厌氧菌通过分解有机物产生氨氮和硝酸盐,同时释放出一些有机酸温和体。

2. 好氧阶段:在好氧阶段,污水进入到好氧池中,好氧池中的好氧菌利用有机酸和氨氮进行氧化反应,将有机物和氨氮转化为氮气和二氧化碳。

同时,好氧池中的好氧菌还能够去除部份磷。

3. 好氧阶段:在第二个好氧阶段,进一步去除残留的有机物和氮磷等污染物,使污水的水质达到排放标准。

二、工艺优点1. A2O工艺具有处理效果好的优点,能够高效去除污水中的有机物和氮磷等污染物,使出水水质达到环保排放标准。

2. A2O工艺的处理过程中,产生的污泥量相对较少,减少了后续处理的成本。

3. A2O工艺的运行成本较低,对设备要求不高,操作简便,维护方便。

4. A2O工艺对负荷波动的适应能力较强,能够适应不同季节和不同时间段的污水处理需求。

5. A2O工艺的出水水质稳定,具有较好的稳定性和可靠性。

三、工艺应用A2O工艺广泛应用于城市污水处理厂、工业废水处理厂、农村生活污水处理等领域。

它可以处理不同规模的污水,适合于不同水质和水量的处理要求。

四、工艺改进为了进一步提高A2O工艺的处理效果,可以采取以下改进措施:1. 优化好氧池和厌氧池的比例,根据实际情况调整好氧池和厌氧池的容积比,以达到更好的处理效果。

2. 引入一些新的辅助设备,如曝气系统、混合系统等,提高氧气传递效率和混合效果,进一步提高处理效果。

3. 加强对污泥的处理和回收利用,通过污泥浓缩、脱水等工艺,将污泥的含水量降低,提高污泥的干固含量,实现污泥的资源化利用。

污水处理工艺:A2O工艺优缺点及改进工艺总结解析

污水处理工艺:A2O工艺优缺点及改进工艺总结解析

污水处理工艺A2O工艺优缺点及改进工艺总结解析A2O法又称AAO法,即厌氧-缺氧-好氧法,是一种常用的污水处理工艺,可用于二级污水处理或三级污水处理,以及中水回用,具有良好的脱氮除磷效果。

在传统A²/O 工艺的单泥系统中高效地完成脱氮和除磷两个过程,就会发生各种矛盾冲突,比如泥龄的矛盾、碳源竞争、硝酸盐及溶解氧(DO)残余干扰等。

一、传统A²O工艺存在的矛盾:1、污泥龄矛盾:传统A²/O 工艺属于单泥系统,聚磷菌(PAOs)、反硝化菌和硝化菌等功能微生物混合生长于同一系统中,而各类微生物实现其功能最大化所需的泥龄不同:1)自养硝化菌与普通异养好氧菌和反硝化菌相比,硝化菌的世代周期较长,欲使其成为优势菌群,需控制系统在长泥龄状态下运行。

冬季系统具有良好硝化效果时的污泥龄(SRT)需控制在 30d 以上;即使夏季,若 SRT<5 d,系统的硝化效果将显得极其微弱。

2)PAOs 属短周期微生物,甚至其最大周期(Gmax)都小于硝化菌的最小世代周期(Gmin)。

从生物除磷角度分析富磷污泥的排放是实现系统磷减量化的唯一渠道。

若排泥不及时,一方面会因 PAOs 的内源呼吸使胞内糖原消耗殆尽,进而影响厌氧区乙酸盐的吸收及聚 -β- 羟基烷酸(PHAs)的贮存,系统除磷率下降,严重时甚至造成富磷污泥磷的二次释放;另一方面,SRT 也影响到系统内 PAOs 和聚糖菌(GAOs)的优势生长。

在 30 ℃的长泥龄(SRT≈ 10 d)厌氧环境中,GAOs 对乙酸盐的吸收速率高于PAOs,使其在系统中占主导地位,影响 PAOs 释磷行为的充分发挥。

2、碳源竞争及硝酸盐和DO残余干扰:在传统A²/O脱氮除磷系统中,碳源主要消耗于释磷、反硝化和异养菌的正常代谢等方面,其中释磷和反硝化速率与进水碳源中易降解部分的含量有很大关系。

一般而言,要同时完成脱氮和除磷两个过程,进水的碳氮比(BOD5 /ρ(TN))>4~5,碳磷比(BOD5 /ρ(TP))>20~30。

污水处理A2O工艺

污水处理A2O工艺

污水处理A2O工艺污水处理A2O工艺是一种高效、节能、环保的污水处理技术,广泛应用于城市污水处理厂、工业废水处理厂等场所。

本文将详细介绍A2O工艺的原理、流程、设备以及优势。

一、A2O工艺原理A2O工艺是指将好氧、缺氧和厌氧处理结合在一起的生物处理工艺。

它通过好氧区、缺氧区和厌氧区的有机负荷分配,使有机物在不同环境条件下被不同类型的微生物降解,从而达到高效去除污水中的有机物和氮磷等污染物的目的。

二、A2O工艺流程1. 预处理:将进水污水进行初步处理,去除大颗粒悬浮物、沉淀物和油脂等。

2. 好氧处理:将预处理后的污水引入好氧区,通过曝气装置提供氧气,促使好氧微生物降解有机物。

3. 缺氧处理:将好氧区出水引入缺氧区,通过减少曝气时间和氧气供应,创造缺氧环境,使缺氧微生物对有机物进行进一步降解。

4. 厌氧处理:将缺氧区出水引入厌氧区,通过完全消耗有机物的厌氧微生物,进一步降解有机物,同时去除氮磷等污染物。

5. 深度处理:将厌氧区出水进行深度处理,去除残余的有机物和氮磷等污染物。

6. 出水处理:对深度处理后的水进行消毒、除臭等处理,达到排放标准。

三、A2O工艺设备1. 曝气系统:包括曝气管、曝气头和气体供应系统,用于提供氧气和搅拌污水,促进微生物的生长和降解有机物。

2. 混合池:用于混合好氧区、缺氧区和厌氧区的水,使不同环境下的微生物充分接触和交换。

3. 沉淀池:用于沉淀污水中的悬浮物和沉淀物,净化水质。

4. 污泥处理系统:包括污泥浓缩、脱水和处置等环节,将产生的污泥进行处理和利用。

四、A2O工艺优势1. 高效去除污染物:A2O工艺通过不同环境条件下的微生物降解,能够高效去除污水中的有机物、氮磷等污染物,使出水水质达到排放标准。

2. 节能环保:A2O工艺利用好氧、缺氧和厌氧处理结合的方式,能够最大程度地利用微生物的降解能力,减少能耗和化学药剂的使用,达到节能环保的目的。

3. 占地面积小:A2O工艺流程紧凑,设备结构简单,占地面积相对较小,适合于城市污水处理厂等空间有限的场所。

城市污水A2O氧化沟处理工艺

城市污水A2O氧化沟处理工艺

城市污水A2/O氧化沟处理工艺随着水体富营养化问题的日益突出,对污水进行脱磷除氮处理就成为水处理研究的热点〔1〕,而相应的污水处理工艺也不断被提出,如倒置A2/O 工艺〔2〕,CASS〔3〕工艺等,都有较好的脱氮除磷效果。

然而对于可生化性较差、含氮量高、含磷量低的城市污水,现有方法处理效果都不甚理想〔4, 5〕。

笔者以某污水处理厂为例,结合其工艺设计参数,介绍了水解酸化、氧化沟和纤维转盘滤池的组合工艺对城市污水脱磷除氮的处理效果,可为类似工程提供参考。

1 水量与水质某污水处理厂日处理能力为7 万m3,其污水主要由生活污水和部分工业污水组成,进水BOD5/COD <0.3,可生化性较差,TN 质量浓度较高,在54~65mg/L 范围内,TP 质量浓度较低,仅为1.3~1.9 mg/L,其设计进水水质指标见表 1,其中排放标准指《城镇污水处理厂污染物排放标准》(GB 18918—2002)一级A 标准。

2 废水处理工艺及设备2.1 工艺流程该厂采用图 1 所示工艺流程。

图 1 污水处理工艺流程污水首先经过粗格栅去除较大的漂浮物,再经泵房将污水提升,经过细格栅和沉砂池去除部分漂浮物及泥沙等易沉物质后进入水解酸化池中,其中的大分子有机物经水解酸化后,降解成小分子的有机物,提高了污水的可生化性。

之后污水进入氧化沟,在氧化沟的厌氧池内部分COD 被去除,污水的可生化性得到提高。

经厌氧处理的污水进入缺氧池完成反硝化脱氮过程。

从缺氧池出来的污水,与从二沉池回流的污泥一并进入好氧池,在好氧池内完成去除COD、硝化及吸磷过程。

从氧化沟出来的污水进入二沉池进行固液分离,上清液流入纤维转盘滤池做进一步处理,在纤维转盘滤池中,污水中大部分的SS、部分COD 被除去,出水在接触池内与二氧化氯充分混合,杀灭水中可能含有的细菌和病毒后排放。

二沉池内排出的污泥一部分回流至好氧池,另一部分则进行浓缩脱水处理,加工成肥料再利用。

2.2 主要建(构)筑物及设备(1)格栅间及提升泵房1 座,钢筋混凝土结构,尺寸60.7 m×18.0 m×13.5 m,内设自动高链式格栅 3 台,2 用1 备,单台Q=0.54 m3/s,B=1 000 mm,b= 15 mm,α=75°,N=0.75 kW;潜污泵3 台,2 用1 备,单台Q=1 303 m3/h,H=16 m,N=75 kW;螺旋格栅2 台,单机过栅流量Q=1 954 m3/h,D=1 600 mm,b=5 mm,N=1.5 kW,B=1 600 mm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

污水处理 A2O 工艺调试详解1、培养与驯化由于调试阶段进水量较少,进水变化幅度较大。

为确保污泥培养效果,缩短调试周期,普通采用外接碳源方式接种培养活性污泥。

外接菌种首选进水质相近,运行较好的同类型工艺污水厂重力浓缩后污泥或者脱水污泥。

1、污泥接种驯化时间表在污泥接种期间,每天间歇进水四次,为污泥增繁殖提供营养物质;同时减少排泥甚至不排泥。

污泥培养与驯化具体周期安排见下表:说明:以上运行方式均按设计参数确定,在实际操作中,生物池的污泥浓度可根据沉降比实时跟踪监测,不能浮现大幅度的波动。

2、接种及间歇进水闷曝阶段一次性投加外接干泥 45 吨(含水率 80%)于生物池好养段,充满污水后(为提高初期营养物浓度,可投加一些浓质粪便或者米泔水等) 闷曝(即曝气而不进污水)数小时,潜水搅拌机运行保持连续性,确保污泥处于悬浮状态,闷曝数小时之后住手曝气并沉淀换水,每天重复操作,该阶段周期时间初定为 7 天摆布。

由于污泥尚未大量形成,产生的污泥也处于离散状态,于是曝气量一定不能太大,控制在设计正常曝气量的 1/2,否则污泥絮体不易形成。

此时污泥结构虽然松散,但若菌胶团开始形成,镜检开始浮现较多游离细菌,例如鞭毛虫和变形虫,则认为初期培养效果满意。

期间作 SV30 量筒沉淀物的观察和 DO 测定,作报表记录。

时间:七天摆布。

运行方式:接种、进水、闷曝、间歇进水、沉淀、换水。

注意:当预处理区域设立的 24 小时水质监视记录数据发现进水水质蓦地变化(酸水侵袭造成 PH 偏低、进水水质浓度、毒性及色度等) 对活性污泥培养有很大的冲击,此时应该考虑启动应急预案,对污水实施旁通排放,减小对活性污泥的冲击。

3、连续进水培养与驯化阶段进入连续进水培养阶段后,活性污泥工艺的正常运行模式已初步呈现,此时应根据正常运行工艺参数调整处理流程,水量和空气量的平衡依据 DO 值的变化作适时调整,开启外回流泵,控制在 100%。

监测污泥及水质各项指标,包括污泥浓度,污泥指数,沉降性能,BOD,COD,通过显微镜观察污泥活性。

至 MLSS 超过 3000mg/L 时,当 SV30 达到 30%以上时,活性污泥培养即告成功,此时镜检污泥中原生生物应以鞭毛虫和游动性纤毛虫为主。

培养达到设计浓度后,开始对硝化菌的驯化阶段。

硝化菌种的培养和驯化实质既是通过控制微生物的生长环境,配合目标菌种的生长周期对生物群落的发展进行外部干预,使得硝化菌成为活性污泥生物群落中的优势种群。

普通来讲,硝化菌种的培养周期为其泥龄的 3 倍摆布。

时间:共 60 天摆布。

运行方式:生物池和二沉池,污泥回流系统连续运行。

注:按照气水比值来确定投用风机的组合数量,但是就单台的风量的调节可以参照风机的压力和流量调节来实现。

4、稳定运行阶段此时全面确定各项工艺参数,以工艺参数作为实际运行指导,根据实际进水水量和水质情况来来确定合适的工艺控制参数,以保证运行的正常进行和使出水水质达标的的同时尽可能降低能耗。

并通过驯化实现使硝化菌与聚磷菌共存的生态系统达到平衡,确保出水水质。

时间: 30 天摆布。

运行方式:生物池和二沉池,污泥回流系统连续运行。

注:风量可根据反馈的 DO 值由风机按程序自动控制,在活性污泥形成后,可以按照像应的要求逐步运行 A/O 池的除磷脱氮功能。

2、AAO 工艺控制参数1、影响脱氮效果的主要因素1.1 对硝化细菌的影响因素a.温度:适宜硝化菌硝化的温度为30℃~35℃,低温12℃~14℃时硝化反应速度下降,亚硝酸盐积累。

b.溶解氧: 0.5mg/l~0.7mg/l 是硝化菌的忍受极限,通常硝化段溶解氧应保持在 2mg/l 摆布。

c.PH 值:硝化菌对 PH 值的变化非常敏感,最佳范围在 7.5~8.5 之间,硝化反应中碱度偏高较好。

d.有毒物质:过高浓度的 NH3-N 与重金属等会干扰细胞的新陈代谢,破坏细菌的氧化能力,抑制硝化过程。

e.污泥龄:应根据亚硝酸菌的世代期来确定较长的污泥龄可增加硝化反映能力。

1.2 对反硝化细菌的影响因素a.温度:适宜反硝化菌的最佳温度为35℃~45℃,当温度下降可适当提高水力停留时间。

b.溶解氧:应严格控制在 0.5mg/l 以下。

c.PH 值:最佳范围在 6.5~7.5 之间,反硝化过程可补充硝化过程中损失的一部份碱度。

d.碳源有机物:当源水中 C/N 比值过低,如 BOD/TKN<3~6,需外加碳源,普通选择甲醇或者粪便水。

2、影响除磷效果的主要因素a.温度:5℃~30℃范围内均可正常除磷。

b.溶解氧:厌氧段应严格控制在 0.2mg/l 以下;好氧段应控制在2.0mg/l 摆布。

c.PH 值:当PH<6.5 时生物池除磷效果会明显下降。

d.碳源有机物:源水中的 BOD 负荷需满足BOD/TP>15。

e.污泥泥龄:污泥龄越短,污泥含磷量就越高,排放的剩余污泥量越多,除磷效果越好。

3、活性污泥处理系统运行效果的检测日常活性污泥处理系统检测项目如下。

1. 反映处理效果的项目:进出水总的 BOD5、CODcr、SS。

2. 反映污泥情况的项目:污泥沉降比(SV%)、MLSS、MLVSS、SVI、溶解氧(DO)、微生物镜检。

3. 反映污泥营养和环境条件的项目:氮、磷、 PH 值、水温等。

4、AAO 工艺的试运行在试运行管理中,时常要进行运行调度,对一定水质、水量的污水,确定各项工艺控制参数,其中比较重要的有鼓风机开启数及空气量的控制,回流比、污泥浓度和排污量的控制。

1、确定水量和水质即准确测定污水流量,入流污水的 BOD5 及有机污染物的大体组成。

2、确定 BOD 负荷 F/M应结合本厂的运行实践,借助一些实验手段,选择最佳的 F/M 值。

普通来说,污水温度较高时,F/M 可高一些。

反之,温度较低时,F/M 应低一些。

对出水水质要求较高时,F/M 应低一些,反之,可高一些。

堡镇污水处理系统一期工程设计 F/M 不大于 0.10kgBOD5/kgMLSS.d。

为有利于磷在厌氧段的释放,控制厌氧段F/M>0.1KgBOD5/(KgMLSS.d),而在好氧段为提高出水水质,尽可能多的降解水中的 BOD5,控制好氧段 F/M<0.18KgBOD5/(KgMLSS.d)。

3、确定混合液污泥浓度 MLSSMLSS 值取决于曝气系统的供氧能力,以及二沉淀池的泥水分离能力。

从降解污染物质的角度来看, MLSS 应尽量高一些,但当 MLSS 太高时,要求混合液的 DO 值也就越高。

在同样的供氧能力时,维持较高的 DO 值需要较多的空气量。

此外,当MLSS 太高时,要求二沉淀池有较强的泥水分离能力。

因此,应根据处理厂的实际情况,确定一个最大的 MLSS 值,普通在(3000-4000)mg/L 之间。

堡镇污水处理系统一期工程设计污泥浓度为 3300mg/L。

4、控制溶解氧厌氧段 DO≤0.2;缺氧段DO≤0.5 mg/l;好氧段 DO=2.0 mg/l,每天根据在线仪表,便携式 DO 测定仪或者实验室取样获取生物池各处理段的 DO 数据,结合进水水质、污泥浓度、污泥龄、微生物镜检和天气等因素综合分析后调节鼓风机供气量。

5、核算曝气时间Ta曝气时间,即污水在曝气池内的名义停留时间,不能太短,否则,难以保证处理效果。

对于一定水质水量的污水,当控制 F/M 在某一定值时,采用较高的 MLVSS 运行,往往会浮现 Ta 太短的现象。

如 Ta 太短,即污水没有充足的曝气时间,污水中的污染物质没有充足的时间被活性污泥吸附降解,即使 F/M 很低,MLVSS 很高,也不会得到很好的处理效果。

因此,运算中应核算 Ta 值,使其大于允许的最小值。

当 Ta 太小时,可以降低 MLVSS 值,增加投运池数。

6、确定鼓风机投运台数风机输出风量作为主控信号, DO 及 NH3-N 浓度为辅助信号,控制鼓风机开启台数与变频,具体风量可根据天气、水量、池中溶解氧来确定,普通情况下可视微生物镜检和MLSS 及 30min沉降比来确定。

7、确定二沉池的水力表面负荷 QHQH 越小,泥水分离效果越好,普通控制 QH 不大于 1.5m3/(m2h),堡镇污水处理系统一期第一阶段工程亦控制在 1.0 m3/(m2h)以下。

8、确定回流比 R回流比 R 是运行过程中的一个调节参数, R 应在运行过程中根据需要加以调节,但R 的最大值受二沉池泥水分离能力的限制,此外,R 太大,会增大二沉池的底流流速,干扰沉降。

在运行调度中,应确定一个最大回流比 R,以此作为调度的基础。

堡镇厂设计污泥回流比为 100%, 混合液回流比为 100%~200%。

9、核算二沉池的固体表面负荷 qs在运行中,当固体表面负荷超过最大允许值时,将会使二沉池泥水分离艰难,也难以得到较好的浓缩效果。

10、计算污泥指数 SVISVI值能较好地反映出活性污泥的松散程度和凝结沉降性能,SVI 值过小,活性污泥泥粒细小,无机物含量高,缺乏活性; SVI 值过大,污泥沉降性能不好,容易发生污泥膨胀。

SVI 值普通控制在 70~150 为宜。

11、积累运行数据某镇污水处理系统一期工程的上述工艺参数,有大部份已经在设计文件中列出了(流量、污泥浓度、污泥回流比等)。

从实际运行情况看,几乎所有建成后污水厂的进水都和设计的进水情况有所出入,个别的水质数据相差极大。

因此,堡镇污水处理系统一期工程的上述工艺参数应该在工艺试运行包括正常运行中去逐步的积累和完善。

4、异常及对策1、污泥膨胀现象:污泥不易沉降, SVI 值增高、污泥的结构较散,体积膨胀,含水率上升,上清液希少,颜色也有变异,这就是污泥膨胀。

原因:丝状细菌大量增值所引起的,也有由污泥中结合水异常增多引起的污泥膨胀;水中碳水化合物较多,缺乏 N、P、Fe 等养料;溶解氧不足;水温高或者 PH 值较低等易引起丝状菌的大量繁殖;超负荷,污泥龄过长引起丝状菌的大量繁殖。

措施:加大曝气量;及时排泥;加大回流污泥量。

2、解体表现:处理水质浑浊、污泥絮体细碎化、处理效果变坏等是污泥解体的现象。

原因:运行不当,如曝气过量活性污泥中生物(营养)的平衡遭到破坏,使微生物量减少而失去活性,吸附能力降低,絮体体积缩小,质密;存在有毒性物质时,微生物会受到抑制或者伤害,净化功能下降或者彻底住手,使污泥失去活性。

措施:普通可通过显微镜观察来判别产生的原因。

当鉴别出是运行方面的问题时,应对污水量、回流污泥量、空气量和排泥状态以及SV、MLSS、DO、NS 等多项指标进行检查,加以调整。

当确定是污水中混入有毒物质时,应考虑这是新的工业废水混入的结果,需查明来源,按国家排放标准加以处理。

3、污泥上浮现象:污泥在二沉池成块状上浮。

原因:曝气池内污泥泥龄过长;硝化进程较高,在池底发生反硝化,污泥相对密度降低,整块上浮。

相关文档
最新文档