频数分布直方图组距

合集下载

频率分布直方图125.45130.45160.45身高频率组距0.036

频率分布直方图125.45130.45160.45身高频率组距0.036
数学第三册(选修I)
总体分布的估计
张家港市后塍高级中学 周明
统计学中的两个核心问题: ① 如何从总体中抽取样本? ② 如何用样本估计总体?
总体分布:总体 __取__值__的__概__率_分__布__规__律___ 叫做总体分布;
总体分布反映了总体在各个范围内取值的 _概__率__,通常用样本的 _频__率__ 分布去估计总 体分布,一般说来,样本的容量越大,这种 估计就越 精__确___.
[30, 33) 10 0.10 0.95
[33, 36) 5 0.05 1.00 合计 100 1.00
频率分布的直方图
频率 组距
0.10 0.08 0.06 0.04 0.02
分组 [12, 15) [15, 18) [18, 21) [21, 24) [24, 27) [27, 30) [30, 33) [33, 36)

[24, 27) 0.69
0.6

[27, 30) 0.85
0.4
[30, 33) 0.95

0.2

[33, 36) 1.00
样本数据
12 15 18 21 24 27 30 33 36
例2、一个容量为100的样本,数据的分组和
各组的一些相关信息如下:
分 组 频数 频率 累积频率 ③ 根椐累
合计
55
55
频率
0.109 0.127 0.255 0.309 0.091 0.073 0.036 1.00
频率分布直方图
频率
0.06
组距
0.05
0.04
0.03
0.02
0.01
125.45 130.45
分组 [125.45, 130.45) [130.45, 135.45) [135.45, 140.45) [140.45, 145.45) [145.45, 150.45) [150.45, 155.45) [155.45, 160.45)

6.1频数、频率与频数分布直方图

6.1频数、频率与频数分布直方图
一组数据中的最大值与最小值的差叫做这组数据的极差
学习目标
1.会根据数据列出频数、频率分布表,画出频
数分布直方图,能从图中读取信息,提高读图 能力和数据分析能力。 2.通过小组合作、展示质疑,学会数据分析的 方法。 3.积极投入,全力以赴,加强理论联系实际的 意识。
具体要求: 1. 如何对一组数据进行分组,组数和组距如何确定?重 点讨论自主学习,例1、例2、巩固2 2.先一对一讨论,再组内、组间讨论; 3.错误的题目要改错,找出错因,明确每个题目考查的知 识点及背后承载的能力,总结题目的规律、方法和易错 点,注重多角度考虑问题。
课堂评价
学科班长:1.回扣目标 总结收获 2.评出优秀小组和个人
展示小组
1组 2组 4组 5组 7组
要求:⑴口头展示,声音洪亮、清楚;书面展示要分 层次、要点化,书写要认真、 规范。 ⑵非展示同学巩固基础知识、整理落实学案,做 好拓展。不浪费一分钟,小组长做好安排和检查。
精彩点评
展示内容
前黑板:自主学习1、2 前黑板:自主学习3 前黑板:例1 后黑板:例2 后黑板:巩固练习2
亚洲 北美洲 欧洲 拉美/加勒比 非洲
条形统计图 可以清楚地 表示出每个 项目的具体 数目.
折线统计图 可以清楚地 反映事物变 化的情况.
扇形统计图 可以清楚地 表示各部分 在总体中所 占1. 什么是频数?
某个数据在一组数据中重复出现的次数叫做这个数据的频数
2. 什么是极差?
当堂检测
某区七年级有 3000 名学生参加“安全伴我行 知识竞赛”活动。为了了解本次知识竞赛的成 绩分布情况,从中抽取了 200 名学生的得分 (得分取正整数,满分为 100 分)进行统计。
0.05 40 0.31

(课件)频数分布表和频数分布直方图

(课件)频数分布表和频数分布直方图

直方图,根据图形提供的信息,回答下列问题:
(1)该单位职工有多少? 解:该单位职工有50人 (2)不小于38岁但小于44的职工人 数占职工总人数的百分比是多少? 不小于38岁但小于44的职工 人数占职工总人数的60% (3)如果42岁职工有4人,那么 年龄42岁以上的职工有多少?
年龄(岁) 34 36 38 40 42 44 46 48
第4 组 第5 组
视力
5.15
5.45
下表是从场口镇中学随机抽取的部 分同学的视力情况频数分布表
视力 3.95~4.25
4.25~4.55
频数 2
频率 0.04
6
23
18
0.12
0.46 0.36
4.55~4.85 4.85~5.15
5.15~5.45
合计
1
50
0.02
1.00
(1)、请你把上表补充完整; (2)、请你根据频数分布表,画出频数分布直方图
40
20
49.5 59.5 69.5 79.5 89.5 99.5
分 数
下面请同学们总结一下直方图的特点:
下表是从新星中学随机抽出的部分同学的视力情况频数分布表。
(1)请你把下表补充完整(每一组含最小值,但不含最大值);
学 以 致 用
视力
3.92~4.25 4.25 ~ 4.55 4.55~4.85 4.85~5.15
分组 22.5~ 24.5 2 24.5~ 26.5 3 26.5~ 28.5 8 28.5~ 30.5 4 30.5~ 合计 32.5
解: (4)列频数分布表:
频数记录
频数
3
20
例题:已知一个样本:27,23,25,27,29,

频数直方图的概念、作用和作法-掌门1对1

频数直方图的概念、作用和作法-掌门1对1

频数直方图-掌门1对1一、频数直方图概念1.频数:数字出现的次数有的多有的少,或者说它们出现的频繁程度不同,我们称每个对象出现的次数为频数。

注:在统计频数多少的时候,我们一般通过数“正”字的方法累计.2.频率:每个对象出现次数与总次数的比值为频率。

3.组数:把全体样本分成的组的个数称为组数.4.组距:把所有数据分成若干个组,每个小组的两个端点的距离。

5.极差:是指一组数据中最大数据与最小数据的差。

组距=极差除以组数二、列频数分布表的注意事项运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数×各组的频率=相应组的频数。

画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出来,其中组距、组数起关键作用,分组过少,数据就非常集中;分组过多,数据就非常分散,这就掩盖了分布的特征,当数据在100以内时,一般分5~12组。

三、直方图的特点通过长方形的高代表对应组的频数与组距的比(因为组距是一个常数,为了画图和看图方便,通常直接用高表示频数),这样的统计图称为频数分布直方图.它能:①清楚显示各组频数分布情况;②易于显示各组之间频数的差别.四、制作频数分布直方图的步骤1.找出所有数据中的最大值和最小值,并算出它们的差.2.决定组距和组数.3.确定分点4.列出频数分布表.5.画频数分布直方图.五、频数分布折线图的制作我们可以在直方图的基础上来画,先取直方图各矩形上边的中点,然后在横轴上取两个频数为0的点,这两点分别与直方图左右两端的两个长方形的组中值(矩形宽的中点)相距一个组距,将这些点用线段依次联结起来,就得到了频数分布折线图.六、条形图和直方图的区别1.条形图是用条形的高度表示频数的大小,而直方图实际上是用长方形的面积表示频数,当长方形的宽相等的时候,把组距看成“1”,用矩形的的高表示频数;2.条形图中,横轴上的数据是孤立的,是一个具体的数据,而直方图中,横轴上的数据是连续的,是一个范围;3.条形图中,各长方形之间有空隙,而直方图中,各长方形是靠在一起的,中间无空隙七、与统计图有关的数学思想方法1.数形结合:从统计图中,能看出各组数据的特点,可进一步应用这些数据特点解决实际问题.通过整理数据,根据要求绘制统计图,可进一步分析数据、做出决策.2.类比:绘制频数分布直方图和绘制条形图类似,如果长方形的宽一样,那么长方形的高度之比就是各组内数据个数之比.。

频数分布表和频数分布直方图

频数分布表和频数分布直方图

在列频数分布表时,如果组距为2,
那么应分成___组,32.5~34.5这组的频数为_____
2、对某班同学的身高进行统计(单位:厘 米),频数分布表中165.5~170.5这一组学 生人数是12,频率是0.25,则该班共有____名 学生.
随堂练习
江涛同学统计了他家10月份的长途电话清单,并按通话 时间画出直方图: 通话次数 25 25
扇形统计图的优点是什么? 什么是频数?
某班一次数学测验成绩如下:
63 84 91 53 69 81 61 69 91 78 75 81
81 67 76 81 79 94 61 69 89 70 70 87
88 86 90 88 85 67 71 82 87 75 53 65 74 77 87 95
(2)通话时间不足10分钟的有多少次?
(3)哪个时间范围的通话最多?哪个时间范围的通话少?
3、 2003年中考结束后,某市从参加中考的12000名 学生中抽取200名学生的数学成绩(考生得分均为整数, 满分120分)进行统计,评估数学考试情况,经过整理 得到如下频数分布直方图, 60 学生人数 60 请回答下列问题: 50 (1)此次抽样调查 40 的样本容量是_____
视力 3.95~4.25
4.25~4.55
频数 2
频率 0.04
6
23
18
0.12
0.46 0.36
4.55~4.85 4.85~5.15
5.15~5.45
合计
1
50
0.02
1.00
(1)、请你把上表补充完整; (2)、请你根据频数分布表,画出频数分布直方图
如果视力在4.85以下就属于不正常范围,
如何制作频数分布表?

第二课时 频数分布直方图与频率分布直方图

第二课时 频数分布直方图与频率分布直方图

12
课前预习
课堂互动
素养达成
@《创新设计》
[微思考] 1.为什么要对样本数据进行分组?
提示 不分组很难看出样本中的数字所包含的信息,分组后,计算出频率,从 而可估计总体的分布特征. 2.频数、频率分布直方图有什么优缺点? 提示 (1)优点:可以直观、形象地反映样本的分布规律,清楚地看出数据分布 的总体趋势. (2)缺点:从频数、频率分布直方图得不出原始的数据内容,把数据绘制成频率 (或频数)分布直方图后,原有的具体数据信息就抹掉了.
13
课前预习
课堂互动
素养达成
@《创新设计》
3.在柱形图中,若纵轴表示频数(或频率),这种柱形图与频数(或频率)分布直方 图有什么本质区别? 提示 柱形图中,纵轴表示原始数据的频数或频率,频数分布直方图的纵轴表 示区间对应的频数,频率分布直方图的纵轴表示的不是频率,而是区间对应的 频率与区间宽度之比.
课堂互动
素养达成
@《创新设计》
拓展深化 [微判断]
频数 1.在频率分布直方图中,相应的频率=样本容量.( √ ) 2.在频数或频率分布折线图中,折线图与横轴的左右两个交点是没有实际意义
的.( √ ) 3.上节所学的统计图没有丢失原始数据,频数或频率分布直方图看不出原始数
据.( √ )
9
课前预习
课堂互动
@《创新设计》
4
课前预习
课堂互动
素养达成
@《创新设计》
问题 1.直接用前面提到过的统计图来表示上述数据,方便可行吗? 2.怎样才能直观地表示出上述数据的大致分布情况(比如指出哪个区间的数据比 较多,哪个区间的数据比较少)? 提示 1.由于数据太多,直接用前面提到的统计图表示太麻烦也无必要. 2.将数据按照一定的方式进行“压缩”,然后再用图来直观地表示压缩后的数据. 因为我们关心的是数据的大致分布情况,因此可以事先确定出几个区间,然后统 计落在每一个区间内的数的个数,最后将统计的结果用图示表示.

人教版数学七年级下册第十章:10.2直方图学案(解析版)

人教版数学七年级下册第十章:10.2直方图学案(解析版)

直方图知识集结知识元频数分布表——组数、组距知识讲解频数分布表1.组距:把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距。

2.组数:分成组的个数叫做组数。

例题精讲频数分布表——组数、组距例1.一组数据有若干个,最大值为125,最小值103,取组距为3,则可以分成().A.6组B.7组C.8组D.9组【解析】题干解析:解:由题意可得,极差为:125﹣103=22,∵组距为3,22÷3=7…1,∴可以分成8组,故选C.例2.小欢为一组数据制作频数分布表,他了解到这组数据的最大值是40,最小值是16,准备分组时取组距为4.为了使数据不落在边界上,他应将这组数据分成().A.6组B.7组C.8组D.9组【解析】题干解析:解:∵这组数据的最大值是40,最小值是16,分组时取组距为4.∴极差=40﹣16=24.∵24÷4=6,又∵数据不落在边界上,∴这组数据的组数=6+1=7组.故选B.频数分布表——频数知识讲解频数:各小组内的数据的个数叫做频数。

例题精讲频数分布表——频数例1.在频数分布直方图中,各小长方形的高等于相应组的().A.组距B.组数C.频数D.频率【解析】题干解析:解:在频数分布直方图中,各小长方形的高等于相应组的频数;故选C.例2.在全国初中数学竞赛中,某市有40名同学进入复赛,把他们的成绩分为六组,第一组至第四组的频数分别为10,5,7,6,第五组的频数所占的百分比是20%,则第六组的频数是.【答案】12050【解析】题干解析:解:第五组的频数:40×20%=8,第六组的频数是:40﹣10﹣5﹣6﹣7﹣8=4,故答案为:4.频数分布表的应用知识讲解频数分布表数据的频数分布表反映了在一组数据中各数据的分布情况。

要全面的掌握一组数据,必须分析这组数据中各个数据的分布情况。

例题精讲频数分布表的应用例1.在我校政教处“学习先进人物,树立远大理想优秀论文评比”活动中,对收集到的60篇论文进行评比,将评比成绩分成五组画出如图所示的频数分布直方图.由频数直方图可得,这次评比中被评为优秀的论文(第四、五组)共有篇.【答案】30【解析】题干解析:解:由频数分布直方图知第一、二、三、四组的论文篇数分别为:3、6、21、12,所以第五组的论文篇数为:60﹣3﹣6﹣21﹣12=18.第四、五组的论文篇数和为:12+18=30.故填30.例2.为了了解中学生的身体发育情况,对某中学同龄的50名男生的身高进行了测量,结果如下(单位:cm):162、166、163、174、175、172、177、161、171、172、172、175、169、157、173、173、166、174、166、169、160、158、159、166、167、182、166、175、167、174、179、173、180、172、173、174、165、172、163、165、170、175、170、171、176、169、171、167、165、177如果按照3cm的组距分组,可以分成9组:156.5~159.5、159.5~162.5、162.5~165.5、165.5~168.5、168.5~171.5、171.5~174.5、174.5~177.5、177.5~180.5、180.5~183.5(1)落在哪个小组的人数最多?是多少?(2)落在哪个小组的人数最少?是多少?【答案】解:如图所示:分组频数156.5~159.5 3159.5~162.5 3162.5~165.5 5165.5~168.5 8168.5~171.5 8171.5~174.5 12174.5~177.5 8177.5~180.5 2180.5~183.5 1171.5~174.5小组的人数最多,是12人;(2)落在180.5~183.5小组的人数最少,是1人.【解析】题干解析:根据已知数据,绘制频数分布表,进而分析各组人数情况即可.频数分布直方图的应用——选择、填空知识讲解考查读频数分布直方图的能力和利用统计图获取信息的能力.例题精讲频数分布直方图的应用——选择、填空例1.如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是().A.5~10元B.10~15元C.15~20元D.20~25元【解析】题干解析:解:根据图形所给出的数据可得:捐款额为15~20元的有20人,人数最多,则捐款人数最多的一组是15﹣20元.故选:C.例2.如图是统计学生跳绳情况的频数分布直方图,如果跳 75次以上(含75次)为达标,则达标学生所占比例为.【答案】90%【解析】题干解析:解:达标学生所占比例为(15+20+10)÷(15+20+10+5)=90%,故答案为:90%赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有人.【答案】27【解析】题干解析:直方图一共分为5组,明显知道第一、二、三组的分数都低于90分;其中第四组89.5~109.5有24人,第五组109.5~129.5有3人,这两组的分数都不低于90分,所以成绩不低于90分的有24+3=27(人).频数分布直方图的应用——应用题知识讲解考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.例题精讲频数分布直方图的应用——应用题某校为了解八年级学生的视力情况,对八年级的学生进行了一次视力调查,并将调查数据进行统计整理,绘制出如下频数分布表和频数分布直方图的一部分.(1)在频数分布表中,a= ,b= ;(2)将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,求视力正常的人数占被调查人数的百分比是多少?【答案】解:(1)总人数=20÷10%=200.∴a=200×30%=60,b=1﹣10%﹣20%﹣35%﹣30%=5%,故答案为60, 5%.(2)频数分布直方图如图所示,(3)视力正常的人数占被调查人数的百分比是140200×100%=70%.【解析】题干解析:(1)根据百分比=所占人数总人数,每组百分比之和为1即可解决问题;(2)根据a=60,画出条形图即可解决问题;(3)根据百分比=所占人数总人数,求出力正常的人数即可解决问题例2.某校为了了解本校初三学生一天中在家里做作业所用的时间,对本校初三学生进行抽样调查,并把调查所得的数据(时间)进行整理,分成5组,绘制了统计图,请结合图中信息,回答:(1)被调查的学生有多少人?(2)在被调查的学生中,做作业的时间超过150分钟的人数占被调查学生数的百分之几?【答案】解:(1)3+4+6+8+9=30(人).即被调查的学生有30人.(2)1230×100%=40%,即做作业的时间超过150分钟的人数占被调查学生数的40%.【解析】题干解析:(1)把统计图中给出的所有人数相加既得被调查的学生数;(2)用做作业的时间超过150分钟的人数÷被调查学生数=所占百分数.例3.某校初三年级共有学生540人,张老师对该年级学生的升学志愿进行了一次抽样调查,他对随机抽取的一个样本进行了数据整理,绘制了两幅不完整的统计图(图甲和图乙)如下.请根据图中提供的信息解答下列问题:(1)求张老师抽取的样本容量;(2)把图甲和图乙都补充绘制完整;(3)请估计全年级填报就读职高的学生人数.【答案】(1)普高人数为30,占50%,所以样本容量为60;(2)普高人数为30,占50%,对应的圆心角=360×50%=180°,这60人中25人报考职高的人数为25人,占2560≈42%,对应的圆心角=360×42%=151.2°,其他约占8%,其他人数=60×8%=5人,对应的圆心角=360×8%=28.8°;如图:(3)∵三年级共有学生540人,按照直方图可知有2560的人报考职高,∴全年级约有540×2560=225人.【解析】题干解析:根据扇形图和条形图综合分析可得普高人数为30,占50%,所以样本容量=频数÷所占百分比;计算出这60人中25人报考职高占的比例及其他的比例,占2560≈42%,据此可补全扇形图和条形图;按照职高生所占的比例可估计出全年级报考职高人数=总人数×所占比例.当堂练习单选题练习1.某个样本的频数分布直方图中一共有4组,从左至右的组别中,处于中间的值依次为5,8,11,14(每一组包括前一个边界值,不包括后一个边界值),频数依次为5,4,6,5.则频数为4的一组为().A.6.5﹣9.5B.9.5﹣12.5练习2.在频数分布直方图中,各小长方形的高等于相应组的().练习3.小欢为一组数据制作频数分布表,他了解到这组数据的最大值是40,最小值是16,准备分组时取组距为4.为了使数据不落在边界上,他应将这组数据分成().练习4.列频数分布表考查50名学生年龄时,这些学生的年龄落在5个小组中,第一、二、三、五组的数据个数分别是1,9,15,5,则第四组的频数是().练习5.下列说法不正确的是().练习1.某班数学期中测试情况的统计图如图所示,可知这个班有人,分数在段的人数最多.练习 3.在频数分布直方图中,已知123≤x<133和133≤x<143两组的频数和是24,且它们对应的条形高之比是1:3,则在123≤x<133中的数据个数是.在样本频数分布直方图中,有11个小长方形,若中间的小长方形的面积等于其他10个小长方形面积和的14,且样本数据有160个,则中间一组的频数为.解答题练习1.练习1:某学校为了解学生的课外阅读情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t(单位:min),然后利用所得数据绘制成如图不完整的统计图表.课外阅读时间频数分布表课外阅读时间t 频数百分比10≤t<30 4 8%30≤t<50 8 16%50≤t<70 a40%70≤t<90 16 b90≤t<110 2 4%合计50 100%(1)a= ,b= ;(2)若全校有900名学生,估计该校有多少学生平均每天的课外阅读时间不少于50min?练习2:26名学生的身高分别为(身高:cm):160;162;160;162;160;159;159;169;172;160;161;150;166;165;159;154;155;158;174;161;170;156;167;168;163;162.现要列出频数分布表,请你确定起点和分点数据.练习3:某中学对八年级学生进行了一次“你最喜欢的课堂教学方式”问卷调查.根据收回的问卷,绘制了“频数分布表”和“频数分布直方图”,请你根据图表中提供的信息,解答下列问题.频数分布表①补全“频数分布表”;②在“频数分布直方图”中,将代号为“C”,“D”的部分补充完整;③这次对八年级的问卷调查是普查还是抽样调查?④这所中学八年级共有多少学生?⑤你最喜欢上述哪种教学方式(若你喜欢的教学方式表中没列举,可以将你喜欢的方式列举出来)?练习4.练习4:某中学七年级(3)班体育委员统计了全班同学60秒跳绳的次数,并列出下列下面的频数分布表:次数 80≤x≤100 100≤x≤120 120≤x≤140 140≤x≤160 160≤x≤180频数 5 10 13 18 4(1)根据图中的信息填空:全班同学共有人;跳绳的次数x在100≤x≤140范围内的同学有人.(2)在备用图中画出频数分布直方图表示上面的信息;(3)若七年级学生60秒跳绳次数(x)达标要求是:x<120为不合格;120≤x≤140合格;140≤x≤160为良;x≥160为优,根据以上信息,请你给学校或七年级同学提一条合理化建议七年级同学应该加强体育锻炼.练习5.练习5:某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1000米及女生800米测试成绩整理、绘制成如图不完整的统计图(图①、图②),请根据统计图提供的信息,回答下列问题:(1)该校毕业生中男生有人,女生有人;(2)扇形统计图中a= ,b= ;(3)补全条形统计图(不必写出计算过程).单选题:ACBDD填空题:50 90-99 6 32 练习1:【答案】解:(1)∵总人数=50人,∴a=50×40%=20,b=1650×100%=32%,故答案为20,32%.(3)900×2016250++=684(名),答:估计该校有684名学生平均每天的课外阅读时间不少于50min.【解析】题干解析:(1)利用百分比=所占人数总人数,计算即可;(2)用一般估计总体的思想思考问题即可.练习2:【答案】起点为149.5,分五组:149.5﹣154.5,154.5﹣159.5,159.5﹣164.5,164.5﹣169.5,169.5﹣174.5.【解析】题干解析:该数据中最小值为150,最大值为174,相差24,可取区间为[149.5,174.5],并分为5个区间即可.练习3:【答案】①总人数为20÷10%=200人,代号为B的百分数:80÷200=40%,代号为C、D的频数:200×15%=30人,200×25%=50人;代号为E的百分数:20÷200=10%,②③答:普查④20+80+30+50+20=200(人).故八年级共有学生200人.⑤我最喜欢“老师提出问题,学生探索思考”这种教学方式.因为这种教学方式更能增强我的自学探究能力.【解析】题干解析:①②总人数为20÷0.10=200人,则代号为C、D的人数为200×0.15=30人;200×0.25=50人;补全图即可;所查的人数为总人数,故为普查;将这五种情况加起来即可;我最喜欢“老师提出问题,学生探索思考”这种教学方式练习4:【答案】(1)总人数=5+10+13+18+4=50;跳绳的次数x在100≤x≤140范围内的同学有23人;(2)图如右边所示:(3)七年级同学应该加强体育锻炼(只要合理即可).【解析】题干解析:由图可知:全班同学共有5+10+13+18+4=50人;跳绳的次数x在100≤x≤140范围内的同学有10+13=23人;七年级同学应该加强体育锻炼(只要合理即可).练习5:【答案】(1) 300,200;(2)12,62(3)补图如图所示:【解析】题干解析:(1)男生人数为20+40+60+180=300,女生人数为500-300=200,故答案为:300,200;(2)8分对应百分数为(40+20)÷500=12%,10分对应百分数为1-10%-12%-16%=62%,故答案为:a=12,b=62.(3)由扇形图可知8分以下的占10%,所以8分的人数为500×10%=50人,由条形图可知8分以下的男生为20人,所以可求出8分的女生人数为30人;由(2)可知10分的学生占62%,所以10分的学生共有500×62%=310人,由条形图可看出10分的男生有180人,所以10分的女生为310-180=130人,故可补全条形图。

《频率分布直方图》示范公开课教学课件【高中数学北师大版】

《频率分布直方图》示范公开课教学课件【高中数学北师大版】
146 141 139 140 145 141 142 131 142 140 144 140138 139 147 139 141 137 141 132 140 140 141 143134 146 134 142 133 149 140 140 143 143 149 136141 143 143 141 138 136 138 144 136 145 143 137142 146 140 148 140 140 139 139 144 138 146 153148 152 143 140 141 145 148 139 136 141 140 139158 135 132 148 142 145 145 121 129 143 148 138149 146 141 142 144 137 153 148 144 138 150 148138 145 145 142 143 143 148 141 145 141
宽度的最大值是158mm,最小值是121mm.
计算极差:mm.
这说明样本观测数据的变化范围是37mm.
146 141 139 140 145 141 142 131 142 140 144 140138 139 147 139 141 137 141 132 140 140 141 143134 146 134 142 133 149 140 140 143 143 149 136141 143 143 141 138 136 138 144 136 145 143 137142 146 140 148 140 140 139 139 144 138 146 153148 152 143 140 141 145 148 139 136 141 140 139158 135 132 148 142 145 145 121 129 143 148 138149 146 141 142 144 137 153 148 144 138 150 148138 145 145 142 143 143 148 141 145 141
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

频数分布直方图组距
频数分布直方图既是一种分类数据的可视化表示,也是统计数据分析方法中使
用得最为普遍的一种手段。直方图有助于描绘出变量在不同组距之间的值的分布情
形。经由这一图形,研究者可以清晰地查看到各个组距之间频数的形态变化,从而
对变量本身的研究对象作出各种类型的判断。

频数分布直方图一般可以根据数据的类别划分,例如以性别、年龄、地区以及
特定行业的分布为例。根据不同的情况,研究者可以设置不同的组距,以表示变量
的范围,例如变量值在20和30之间可以设定一个组距,20-29,用来统计数据,
研究者可以根据频数分布直方图确定组距的大小和形式,以保证所分组的容量适度。

频数分布直方图的另一个独特之处在于可以将统计的结果进行定性分析,并使
用多种图形来表示,例如栢线图或柱状图等,研究者只需把相应的变量的频数数据
输入图形,就可以一览无余地比较和分析变量的分布情形。值得注意的是,统计数
据的分析结果受到组距设置数量的影响,如果组距设置不当,会产生类似组距中频
数太多而无法显示出变量的具体分布特征等问题。因此,当进行问题分析或研究工
作时,要综合考虑问题本身的特点,合理设置组距,以便得到有用的分布信息。

综上所述,频数分布直方图可为大量统计数据提供一种可视而便捷的表示方法,
对不同的行业有着十分重要的应用价值。此外,由于组距的设置会影响分析结果,
它是分析变量频数分布的关键,因此,研究者在进行统计分析时要充分考虑组距的
选择问题,才能使所得到的统计结果准确可靠。

相关文档
最新文档