2020人教版八年级数学下册 课时作业本《一次函数--用函数观点解决实际问题》(含答案)
八年级数学(下)第十九章《一次函数》同步练习题(含答案)

八年级数学(下)第十九章《一次函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数中,y 是x 的一次函数的是①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x .A .①②③B .①③④C .①②③④D .②③④ 【答案】C【解析】根据一次函数的定义,可知是一次函数的有①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x ,故选C . 2.如果23(2)2my m x -=-+是一次函数,那么m 的值是 A .2B .-2C .±2D .±1 【答案】B【解析】由题意得:22031m m -≠⎧⎨-=⎩,解得m =-2,故选B . 3.下列说法中正确的是A .一次函数是正比例函数B .正比例函数不是一次函数C .不是正比例函数就不是一次函数D .不是一次函数就不是正比例函数 【答案】D【解析】A .一次函数不一定是正比例函数,故本选项说法错误;B .正比例函数是一次函数,故本选项说法错误;C .不是正比例函数,但有可能是一次函数,故本选项说法错误;C .不是一次函数就不是正比例函数,故本选项说法正确,故选D .4.一次函数y =-2x +1的图象经过A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】B【解析】在一次函数y =-2x +1中,k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,故选B .5.把直线3y x =-+向上平移m 个单位后,与直线24y x =+的交点在第一象限,则m 的取值范围是A .1<m <7B .3<m <4C .m >1D .m <4【答案】C 【解析】直线3y x =-+向上平移m 个单位后可得:3y x m =-++,联立两直线解析式得:324y x m y x =-++⎧⎨=+⎩,解得132103m x m y -⎧=⎪⎪⎨+⎪=⎪⎩,∴交点坐标为1210()33m m -+,, ∵交点在第一象限,∴10321003m m -⎧>⎪⎪⎨+⎪>⎪⎩,解得m >1,故选C . 6.如果函数y =3x +m 的图象一定经过第二象限,那么m 的取值范围是A .m >0B .m ≥0C .m <0D .m ≤0【答案】A【解析】图象一定经过第二象限,则函数一定与y 轴的正半轴相交,因而0m >,故选A . 7.关于函数y =-x +1,下列结论正确的是A .图象必经过点(-1,1)B .y 随x 的减小而减小C .当x >1时,y <0D .图象经过第二、三、四象限 【答案】C【解析】选项A ,∵当x =-1时,y =2,∴图象不经过点(-1,1),选项A 错误;选项B ,∵k =-1<0,∴y 随x 的增大而减小,选项B 错误;选项C ,∵y 随x 的增大而减小,当x =1时,y =0,∴当x >1时,y <0,选项C 正确;选项D ,∵k =-1<0,b =1>0,∴图象经过第一、二、四象限,选项D 错误.故选C .8.一次函数y =kx +b 的图象如图所示,则k 、b 的值分别为A .k =−12,b =1B .k =-2,b=1C.k=12,b=1 D.k=2,b=1【答案】B【解析】由图象可知:过点(0,1),(12,0),代入一次函数的解析式得:112bk b=⎧⎪⎨=+⎪⎩,解得:k=−2,b=1,故选B.二、填空题:请将答案填在题中横线上.9.已知一次函数y=(m-3)x-2的图象经过一、三、四象限,则m的取值范围为__________.【答案】m>3【解析】∵y=(m-3)x-2的图象经过一、三、四象限,∴m-3>0,解得m>3.故答案为:m>3.10.点(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1__________y2(填“>”或“=”或“<”).【答案】<【解析】∵k=2>0,y将随x的增大而增大,2>−1,∴y1<y2,故y1与y2的大小关系是:y1<y2,故答案为:<.11.已知一次函数的图象与直线y=12x+3平行,并且经过点(-2,-4),则这个一次函数的解析式为__________.【答案】y=12x-3【解析】∵一次函数的图象与直线y=12x+3平行,∴设一次函数的解析式为y=12x+b.∵一次函数经过点(-2,-4),∴12×(-2)+b=-4,解得b=-3,所以这个一次函数的表达式是:y=1 2x-3.故答案为:y=12x-3.12.若点M(x1,y1)在函数y=kx+b(k≠0)的图象上,当-1≤x1≤2时,-2≤y1≤1,则这条直线的函数解析式为__________.【答案】y=x-1或y=-x【解析】∵点M(x1,y1)在在直线y=kx+b上,-1≤x1≤2时,-2≤y1≤1,∴点(-1,-2)、(2,1)或(-1,1)、(2,-2)都在直线上,则有:221k bk b-+=-⎧⎨+=⎩,或122k bk b-+=⎧⎨+=-⎩,解得11kb=⎧⎨=-⎩或1kb=-⎧⎨=⎩,∴y=x-1或y=-x,故答案为:y=x-1或y=-x.三、解答题:解答应写出文字说明、证明过程或演算步骤.13.已知一次函数经过点A(3,5)和点B(-4,-9).(1)求此一次函数的解析式;(2)若点C(m,2)是该函数上一点,求C点坐标.【解析】(1)设其解析式为y=kx+b(k、b是常数,且k≠0),则5394k bk b=+⎧⎨-=-+⎩,∴k=2,b=−1.∴其解析式为y=2x-1,(2)∵点C(m,2)在y=2x-1上,∴2=2m-1,∴m=32,∴点C的坐标为(32,2).14.已知一次函数的图象经过点A(2,1),B(-1,-3).(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.【解析】(1)根据一次函数解析式的特点,可得出方程组213 k bk b+=⎧⎨-+=-⎩,解得4353 kb⎧=⎪⎪⎨⎪=-⎪⎩,则得到y=43x-53.(2)根据一次函数的解析式y=43x-53,得到当y=0,x=54;当x=0时,y=-53.所以与x轴的交点坐标(54,0),与y轴的交点坐标(0,-53).(3)在y=43x-53中,令x=0,解得:y=-53,在y=43x-53中,令y=0,解得:x=54.因而此一次函数的图象与两坐标轴所围成的三角形面积是:15525 23424⨯⨯=.15.已知一次函数y=(4-k)x-2k2+32.(1)k为何值时,它的图象经过原点;(2)k为何值时,它的图象经过点(0,-2);(3)k为何值时,它的图象平行于直线y=-x;(4)k为何值时,y随x的增大而减小.【解析】(1)∵一次函数y=(4-k)x-2k2+32的图象经过原点,∴-2k2+32=0,解得:k=±4,∵4-k≠0,∴k=-4.(2)∵一次函数y=(4-k)x-2k2+32的图象经过(0,-2),∴-2k2+32=-2,解得:k.(3)∵一次函数y=(4-k)x-2k2+32的图象平行于直线y=-x,∴4-k=-1,∴k=5.(4)∵一次函数y=(4-k)x-2k2+32中y随x的增大而减小,∴4-k<0,∴k>4.16.已知一次函数图象经过(-4,-9)和(3,5)两点.(1)求一次函数解析式.(2)求图象和坐标轴交点坐标.并画出图象.(3)求图象和坐标轴围成三角形的面积.(4)若点(2,a)在函数图象上,求a的值.【解析】(1)设一次函数解析式为y=kx+b,把点(3,5),(-4,-9)分别代入解析式,则3549 k bk b+=⎧⎨-+=-⎩,解得21 kb=⎧⎨=-⎩,∴一次函数解析式为y=2x-1.(2)当x=0时,y=-1,当y=0时,2x-1=0,解得:x=0.5,∴与坐标轴的交点为A(0,-1)、B(0.5,0),图象如图,(3)S△AOB1122=⨯⨯|-1|=0.25.(4)∵点(2,a)在图象上,∴a=2×2-1=3,∴a=3.。
2020-2021学年 八年级数学人教版 下册 19.2 一次函数 课时训练(含答案)

人教版 八年级||数学 19.2 一次函数 课时训练一、选择题1. 如果每盒羽毛球有20个 ,每盒售价为24元 ,那么羽毛球的售价y (元 )与羽毛球个数x (个 )之间的关系式为 ( ) A .24y x =B .20y x = C .65y x =D .56y x =2. 函数y =kx +b 的图象如图 ,那么当y <0时 ,x 的取值范围是( )A .x <-2B .x >-2C .x <-1D .x >-13. (2021•辽阳)假设0ab <且a b > ,那么函数y ax b =+的图象可能是A .B .C .D .4. 函数y =kx +b 的图象如图 ,那么y =2kx +b 的图象可能是( )5. 假设函数y =2x +( -3 -m )是关于x 的正比例函数 ,那么m 的值是 ()A . -3B .1C . -7D .36. 正比例函数y=2(m -1)x 的图象上两点A (x 1 ,y 1) ,B (x 2 ,y 2) ,当x 1<x 2时 ,有y1>y 2,那么m 的取值范围是 ()A .m<1B .m>1C .m<2D .m>07. 甲、乙两车同时从A 地出发 ,沿同一路线各自匀速向B 地行驶 ,甲到达B 地停留1小时后按原路以另一个速度匀速返回 ,直到与乙车相遇.乙车的速度为每小时60千米 ,两车之间的距离y (千米)与乙车行驶时间x (时)之间的函数图象如下列图 ,那么以下结论错误的选项是 () A .行驶3小时后 ,两车相距120千米 B .甲车从A 地到B 地的速度为100千米/时 C .甲车返回时行驶的速度为95千米/时 D .A ,B 两地之间的距离为300千米8. (2021•辽阳)一条公路旁依次有,,A B C 三个村庄,甲乙两人骑自行车分别从A村、B 村同时出发前往C 村 ,甲乙之间的距离(km)s 与骑行时间t(h)之间的函数关系如下列图 ,以下结论:①A B ,两村相距10km ;②出发1.25 h 后两人相遇;③甲每小时比乙多骑行8 km ;④相遇后 ,乙又骑行了15min 或65min 时两人相距2 km .其中正确的个数是 A .1个 B .2个 C .3个D .4个二、填空题9. 函数()2211m y m x mn -=-+在条件下 ,y 是x 的一次函数;在条件下 ,y 与x 成正比例函数.10. y 是x 一次函数,11. 假设一次函数y =-2x +b ,那么b 的值可以是________(写出一个即可).12. 如果直线y ax b =+经过第|一、二、三象限 ,那么ab 0 (填 ">〞、 "<〞、 "=〞 ).13. 如图,直线()0y kx b k =+<经过点()3,1A ,当13kx b x +<时 ,x 的取值范围为__________.14. 如图,在x 轴上有五个点 ,它们的横坐标依次为12345,,,,.分别过这些点作x 轴的垂线与三条直线y ax = ,()1y a x =+ ,()2y a x =+相交 ,其中0a > ,那么图中阴影局部的面积是_________.15. 将函数y =2x +b (b 为常数)的图象位于x 轴下方的局部沿x 轴翻折至||其上方后 ,所得的折线是函数y =|2x +b |(b 为常数)的图象 ,假设该图象在直线y =2下方的点的横坐标x 满足0<x <3 ,那么b 的取值范围为____________.16. 一个一次函数的图象与直线59544y x =+平行 ,与x 轴 ,y 轴分别交于A ,B 两点 ,并且通过()125--, ,那么在线段AB 上 (包括端点A ,B 两点 ) ,横纵坐标都是整数的点有_______个.三、解答题17. 一次函数y =kx +b (k ≠0)的图象交x 轴于点A (2 ,0) ,交y 轴于点B ,且△AO B 的面积为3 ,求此一次函数的解析式.18. 如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1 ,b ).(1)求b 的值.(2)不解关于x ,y 的方程组1,,y x y mx n =+⎧⎨=+⎩请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.19. (2021•徐州)如图① ,将南北向的中山路与东西向的北京路看成两条直线 ,十字路口记作点A .甲从中山路上点B 出发 ,骑车向北匀速直行;与此同时 ,乙从点A 出发 ,沿北京路步行向东匀速直行.设出发min x 时 ,甲、乙两人与点A 的距离分别为1m y 、2m y .1y 、2y 与x 之间的函数关系如图②所示. (1)求甲、乙两人的速度;(2)当x 取何值时 ,甲、乙两人之间的距离最||短 ?20. 作函数31y x x =-+-的图象,并根据图象求出函数的最||小值.人教版 八年级||数学 19.2 一次函数 课时训练-答案一、选择题 1. 【答案】C【解析】624205÷= ,确定函数解析式2. 【答案】B3. 【答案】A【解析】∵0ab < ,且a b > , ∴a>0 ,b<0. ∴函数y ax b =+的图象经过第|一、三、四象限.应选A .4. 【答案】C【解析】由一次函数经过(0 ,1) ,可求得k >0 ,b =1 ,那么画出图象草图 ,应选C. 5. 【答案】A6. 【答案】A7. 【答案】C[解析]由图象可得行驶3小时后 ,两车相距120千米 ,∴甲车从A 地到B 地的速度 ==100(千米/时).∴A ,B 两地的距离为3×100 =300(千米).甲车在B 地停留1小时后 ,两车相距120 -60×1 =60(千米).∴甲车返回的速度 = =90(千米/时).应选C .8. 【答案】D【解析】由图象可知A 村、B 村相离10 km ,故①正确; 当1.25 h 时 ,甲、乙相距为0 km ,故在此时相遇 ,故②正确;当0 1.25t ≤≤时 ,易得一次函数的解析式为810s t =-+ ,故甲的速度比乙的速度快8 km/h .故③正确;当1.252t ≤≤时 ,函数图象经过点(1.25,0)(2,6)设一次函数的解析式为s kt b =+ ,代入得0 1.2562k b k b =+⎧⎨=+⎩ ,解得810k b =⎧⎨=-⎩ , ∴810s t =+ ,当2s =时.得2810t =- ,解得 1.5h t = , 由1.5 1.250.25h 15min -== ,同理当2 2.5t ≤≤时 ,设函数解析式为s kt b =+ , 将点(2,6)(2.5,0)代入得 ,0 2.562k b k b =+⎧⎨=+⎩ ,解得1230k b =-⎧⎨=⎩ , ∴1230s t =-+ ,当2s =时 ,得21230t =-+ ,解得73t =, 由7131.25h 65min 312-== , 故相遇后 ,乙又骑行了15min 或65min 时两人相距2 km ,④正确. 应选D . 二、填空题9. 【答案】1m =-;1m =-且0n =【解析】1m =-时该函数为一次函数;1m =-且0n =时该函数为正比例函数; 10. 【答案】1m =11. 【答案】-1(答案不唯一 ,满足b <0即可) 【解析】∵一次函数y =-2x +b 的图象经过第二、三、四象限 ,∴b <0 ,故b 的值可以是-1. 12. 【答案】>【解析】先画草图 ,根据得y 随x 的增大而增大 ,可知0a >;图象与y 轴交点在x 轴上方 ,知0b > ,故0ab >. 13. 【答案】3x >【解析】∵正比例函数13y x =也经过点A ,∴13kx b x +<的解集为3x > ,故答案为:3x >.14. 【答案】12.515. 【答案】-4<b<-2 【解析】先求出直线y =2与y =|2x +b|的交点的横坐标 ,再由条件列出关于b 的不等式组 ,便可求出结果.由⎩⎨⎧y =2y =|2x +b| ,得⎩⎨⎧y =2y =2x +b 或⎩⎨⎧y =2y =-2x -b,解得x =2-b 2或x =-2+b2 ,∵0<x<3 ,∴⎩⎪⎨⎪⎧2-b 2<3-b +22>0 ,解得-4<b<-2.16. 【答案】5【解析】依题意可求出这个一次函数的解析式为:59544y x =-,于是可求得()190A , ,9504B ⎛⎫- ⎪⎝⎭,. ∴x 的取值范围为019x ≤≤的整数 ,y 的取值范围为:9504y -≤≤的整数. ∴求线段AB 上的整点坐标可转化为方程()5194x y -=在上述条件下的整数解. ∴当19x =时 ,0y =;当15x =时 ,5y =-;当11x =时 ,10y =-;当7x =时 ,15y =-;当3x =时 ,20y =- ,故可知线段AB 上有5个整点.三、解答题17. 【答案】解:因为A (2 ,0) ,S △AOB =3 , 所以OB =3 , 所以B (0 ,3)或(0 , -3).①当B (0 ,3)时 ,把A (2 ,0) ,B (0 ,3)代入y =kx +b 中 ,得解得所以一次函数的解析式为y = -x +3.②当B (0 , -3)时 ,把A (2 ,0) ,B (0 , -3)代入y =kx +b 中 ,得解得所以y =x -3.综上所述 ,该一次函数的解析式为y = -x +3或y =x -3.18. 【答案】解:(1)当x =1时 ,y =1+1=2 ,∴b =2. (2)⎩⎪⎨⎪⎧x =1 y =2.(3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1 ,b ) ,∴当x =1时 ,y =m +n =b =2.∴ 当x =1时 ,y =n +m =2 ,∴直线l 3:y =nx +m 也经过点P .19. 【答案】(1)设甲、乙两人的速度分别为m /min a ,m /min b ,甲从B 到A 用时为p 分钟 ,那么:11200(0)1200()ax x p y ax x p -≤≤⎧=⎨->⎩ ,2y bx = ,由图②知: 3.75x =或7.5时 ,12y y = ,那么有1200 3.75 3.757.512007.5a b a b -=⎧⎨-=⎩ ,解得24080a b =⎧⎨=⎩ , p =1200÷240 =5 ,答:甲的速度为240m /min ,乙的速度为80m /min . (2)设甲、乙之间距离为d ,那么222(1200240)(80)d x x =-+2964000()1440002x =-+ ,∴当92x =时 ,2d 的最||小值为144000 ,即d 的最||小值为12010, 答:当92x =时 ,甲、乙两人之间的距离最||短. 20. 【答案】如图 ,函数的最||小值为2.【解析】24(3)2(13)24(1)x x y x x x -≥⎧⎪=≤≤⎨⎪-+<⎩,,,根据表达式作图如下:由图象可知 ,当13x ≤≤时 ,函数的最||小值为2.。
2020年春人教版八年级数学下册同步练习课件:课时作业(三十)

(2)y=2x+4或y=2x-4
图K-30-5
课时作业(三十) 11.依据给定的条件,求一次函数的解析式. (1)当-1≤x≤1 时,-2≤y≤4; (2)y-1 与 x 成正比例,且当 x=2 时,y=4; (3)正比例函数的图象与一次函数的图象交于点(3,4),两图象与 y 轴围成的三角形的面积为125,求这两个函数的解析式.
第十九章 一次函数
课时作业(三十)
第十九章 一次函数
课时作业(三十)
[19.2.2 第3课时 用待定系数法求一次函数的解析式]
课堂达标 素养提升
课时作业(三十)
课堂达标
一、选择题
1.如图 K-30-1,直线 AB 对应的函数解析式是( A )
A.y=-32x+3
B.y=32x+3
C.y=-23x+3
3 线 AC 的解析式为 y=- 3 x+4.
课时作业(三十)
9.若一次函数 y=kx+b(k≠0)与 y=2x+1 的图象关于 y 轴对称,
则 k,b 的值分别等于_-__2_,___1_.
1 [解析] 直线 y=2x+1 经过点(0,1),(-2,0),这两点关于 y 轴 的对称点分别是(0,1),(12,0),由此求得 k=-2,b=1.
BC
的解析式为
3 y=2x-2.令
3 y=0,得2x-2
=0,解得 x=43,所以所求点 P 的坐标为(43,0).
课时作业(三十)
素养提升
建模思想如图 K-30-8 所示是一个家用温度表的表盘.其左 边为摄氏温度的刻度和读数(单位:℃),右边为华氏温度的刻度和 读数(单位: ).左边的摄氏温度每格表示 1 ℃,而右边的华氏 温度每格表示 2 .已知表示-40 ℃与-40 的刻度线恰好对 齐(在一条水平线上),而表示 50 ℃与 122 的刻度线也恰好对齐.
第19章 一次函数 实际应用题专练(二) 2020—2021学年人教版八年级数学下册

人教版八年级数学下册第19章一次函数实际应用题专练(二)1.某生态体验园推出了甲、乙两种消费卡(最多50次),设入园次数为x时所需费用为y元,选择这两种卡消费时y与x之间的函数关系如图所示,解答下列问题:(1)分别写出选择这两种卡消费时y关于x的函数表达式(不用写x的取值范围),;(2)请根据入园次数确定选择哪种消费卡比较合算.2.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象进行以下探究:(1)甲、乙两地之间的距离为km;(2)两车经过h相遇;(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围.3.某医药研究所开发了一种新药,在实际验药时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(小时)的变化情况如图所示,当成年人按规定剂量服药后.(1)当x≤2时,y与x之间的函数关系式是;(2)当x≥2时,y与x之间的函数关系式是;(3)如果每毫升血液中含药量3毫克或3毫克以上时,治疗疾病最有效,那么这个有效时间范围是小时.4.甲、乙两辆汽车沿同一公路从A地出发前往路程为100千米的B地,乙车比甲车晚出发15分钟,行驶过程中所行驶的路程分别用y1、y2(千米)表示,它们与甲车行驶的时间x(分钟)之间的函数关系如图所示.(1)分别求出y1、y2关于x的函数解析式并写出定义域;(2)乙车行驶多长时间追上甲车?5.某天早晨,王老师从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是王老师从家到学校这一过程中的所走路程s(米)与时间t(分)之间的关系.(1)学校离他家米,从出发到学校,王老师共用了分钟;王老师吃早餐用了分钟?(2)观察图形直接回答王老师吃早餐以前的速度快还是吃完早餐以后的速度快?(3)求出王老师吃完早餐后的平均速度是多少?6.如图表示的是汽车在行驶的过程中,速度随时间变化而变化的情况.(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2)汽车在那些时间段保持匀速行驶?时速分别是多少?(3)出发后8分到10分之间发生了什么情况?(4)用自己的语言大致描述这辆汽车的行驶情况.7.甲、乙两地之间有一条笔直的公路,小明从甲地出发步行前往乙地,同时小亮从乙地出发骑自行车前往甲地,小亮到达甲地没有停留,按原路原速返回,追上小明后两人一起步行到乙地.如图,线段OA表示小明与甲地的距离y1(米)与行走的时间x(分钟)之间的函数关系:折线BCDA表示小亮与甲地的距离y2(米)与行走的时间x(分钟)之间的函数关系.请根据图象解答下列问题:(1)小明步行的速度是米/分钟,小亮骑自行车的速度是米/分钟;(2)线段OA与BC相交于点E,求点E坐标;(3)请直接写出小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值.8.甲、乙两车分别从A,B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地,乙车匀速前往A地.设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(小时),y与x之间的函数图象如图所示.(1)图中,m=,n=;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)在甲车返回到A地的过程中,当x为何值时,甲、乙两车相距190千米?9.2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?②游轮与货轮何时相距12km?10.某超市在疫情期间购进一批含75%酒精的消毒湿巾投放市场,刚开始,由于消费者对此类产品认识不足,前几天的销量每况愈下;为了打开市场,提高销量,超市决定对该消毒湿巾打折销售,日销量每日增加,时间每增加1天,则日销量增加20包.超市工作人员对一个月(30天)销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ABC表示该消毒湿巾日销量y(包)与销售时间x(天)之间的函数关系.(1)第28天的日销售量是包;(2)求y与x之间的函数关系式,并写出x的取值范围;(3)若该产品进价为5元/包,AB段售价为15元/包,BC段在15元/包的基础上打a折销售,并且在30天中利润不低于3400元的天数有且只有10天,试确定a的最小值.11.图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.(1)甲水槽中水的下降速度为厘米/分钟,铁块高度为厘米;(2)求出注水第几分钟时,甲、乙水槽中水的深度相同?(3)若甲、乙槽底面积均为48平方厘米(壁厚不计),乙槽中铁块的体积多少立方厘米?12.小明某天离家,先在A处办事后,再到B处购物,购物后回家.下图描述了他离家的距离s(米)与离家后的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)A处与小明家的距离是米,小明在从家到A处过程中的速度是米/分;(2)小明在B处购物所用的时间是分钟,他从B处回家过程中的速度是米/分;(3)如果小明家、A处和B处在一条直线上,那么小明从离家到回家这一过程(包括停留时间)的平均速度是米/分.13.小明家所在地的供电公司实行“峰谷电价”,峰时(8:00~21:00)电价为0.5元/度,谷时(21:00~8:00)电价为0.3元/度.为了解空调制暖的耗能情况,小明记录了家里某天0时~24时内空调制暖的用电量,其用电量y(度)与时间x(h)的函数关系如图所示.(1)小明家白天不开空调的时间共h;(2)求小明家该天空调制暖所用的电费;(3)设空调制暖所用电费为w元,请画出该天0时~24时内w与x的函数图象.(标注必要数据)14.小明家距离学校8千米,今天早晨小明骑车上学途中,自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到校.我们根据小明的这段经历画了一幅图象,该图描绘了小明行驶路程s与所用时间t之间的函数关系,请根据图象回答下列问题:(1)小明骑车行驶了千米时,自行车“爆胎”,修车用了分钟.(2)修车后小明骑车的速度为每小时千米.(3)小明离家分钟距家6千米.(4)如果自行车未“爆胎”,小明一直按修车前速度行驶,那么他比实际情况早到或晚到多少分钟?15.一个周末上午8:00,小张自驾小汽车从家出发,带全家人去一个4A级景区游玩,小张驾驶的小汽车离家的距离y(千米)与时间t(时)之间的关系如图所示,请结合图象解决下列问题:(1)小张家距离景区千米,全家人在景区游玩了小时;(2)在去景区的路上,汽车进行了一次加油,之后平均速度比原来增加了20千米/时,试求他加油共用了多少小时?(3)如果汽车油箱中原来有油25升,平均每小时耗油10升,问小张在加油站至少加多少油才能开回家?参考答案1.解:(1)设y甲=k1x,根据题意得5k1=100,解得k1=20,∴y甲=20x;设y乙=k2x+100,根据题意得:20k2+100=300,解得k2=10,∴y乙=10x+100;故答案为:y甲=20x,y乙=10x+100;(2)①y甲<y乙,即20x<10x+100,解得x<10,当入园次数小于10次时,选择甲消费卡比较合算;②y甲=y乙,即20x=10x+100,解得x=10,当入园次数等于10次时,选择两种消费卡费用一样;③y甲>y乙,即20x>10x+100,解得x>10,∵乙两种消费卡(最多50次),∴当入园次数大于10次小于50次时,选择乙消费卡比较合算.2.解:(1)由题意,得甲、乙两地之间的距为900km.故答案为:900;(2)由函数图象,当慢车行驶4h时,慢车和快车相遇.故答案为:4;(3)由题意,得快车与慢车的速度和为:900÷4=225(km/h),慢车的速度为:900÷12=75(km/h),快车的速度为:225﹣75=150 (km/h).答:快车的速度为150km/h,慢车的速度为75km/h;(4)由题意,得快车走完全程的时间按为:900÷150=6(h),6h时两车之间的距离为:225×(6﹣4)=450km.则C(6,450).设线段BC的解析式为y=kx+b,由题意,得,解得:,则y=225x﹣900,自变量x的取值范围是4≤x≤6.3.解:(1)当x≤2时,设y与x之间的函数关系式是y=kx,2k=6,得k=3,即当x≤2时,y与x之间的函数关系式是y=3x,故答案为:y=3x;(2)当x≥2时,设y与x之间的函数关系式是y=ax+b,,得,即当x≥2时,y与x之间的函数关系式是y=﹣x+8,故答案为:y=﹣x+8;(3)当x≤2时,令3x≥3,得x≥1,当x≥2时,令﹣x+8≥3,得x≤5,由上可得,如果每毫升血液中含药量3毫克或3毫克以上时,治疗疾病最有效,那么这个有效时间范围是5﹣1=4(小时),故答案为:4.4.解:(1)设y1关于x的函数解析为y1=kx,120k=100,得k=,即y1关于x的函数解析为y1=x(0≤x≤120),设y2关于x的函数解析为y2=ax+b,,得,即y2关于x的函数解析为y2=x﹣20(15≤x≤90);(2)令x=x﹣20,得x=40,40﹣15=25(分钟),即乙车行驶25分钟追上甲车.5.解:(1)学校离他家1000米,从出发到学校,王老师共用了25分钟;王老师吃早餐用了20﹣10=10分钟故答案为:1000,25,10;(2)根据图象可得:,所以吃完早餐以后速度快;(3)(1000﹣500)÷(25﹣20)=100(米/分)答:吃完早餐后的平均速度是100米/分.6.解:(1)汽车从出发到最后停止共经过了24min,它的最高时速是75km/h;(2)汽车大约在第2分钟到第6分钟和第18分钟到第22分种之间保持匀速行驶,时速分别是25km/h和75km/h;(3)出发后(8分)到(10分)速度为0,所以汽车是处于静止的.可能遇到了红灯或者障碍(或者遇到了朋友或者休息);(4)该汽车出发2分钟后以25km/h的速度匀速行驶了4分钟,又减速行驶了2分钟,又停止了2分钟,后加速了8分钟到75km/h的速度匀速行驶了4分钟,最后2分钟在减速行驶,直到速度减为0.7.解:(1)由图可知,小明步行的速度为1500÷30=50(米/分钟),小亮骑车的速度为1500×10=150(米/分钟),故答案为:50,150;(2)点E的横坐标为:1500÷(50+150)=7.5,纵坐标为:50×7.5=375,即点E的坐标为(7.5,375);(3)小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值是7,8或14.理由:两人相遇前,(50+150)x+100=1500,得x=7,两人相遇后,(50+150)x﹣100=1500,得x=8,小亮从甲地到追上小明时,50x﹣100=150(x﹣10),得x=14,即小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值是7,8或14.8.解:(1)m=300÷(180÷1.5)=2.5,n=300÷[(300﹣180)÷1.5]=3.75,故答案为:2.5;3.75;(2)设甲车返回时y与x之间的函数关系式为y=kx+b,根据题意得:,解得,∴甲车返回时y与x之间的函数关系式是y=﹣100x+550(2.5≤x≤5.5);(3)乙车的速度为:(300﹣180)÷1.5=80(千米/时),甲车返回时的速度为:300÷(5.5﹣2.5)=100(千米/时),根据题意得:80x﹣100(x﹣2.5)=190,解得x=3.答:当x=3时,甲、乙两车相距190千米.9.解:(1)C点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h.∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h).(2)①280÷20=14h,∴点A(14,280),点B(16,280),∵36÷60=0.6(h),23﹣0.6=22.4,∴点E(22.4,420),设BC的解析式为s=20t+b,把B(16,280)代入s=20t+b,可得b=﹣40,∴s=20t﹣40(16≤t≤23),同理由D(14,0),E(22.4,420)可得DE的解析式为s=50t﹣700(14≤t≤22.4),由题意:20t﹣40=50t﹣700,解得t=22,∵22﹣14=8(h),∴货轮出发后8小时追上游轮.②相遇之前相距12km时,20t﹣40﹣(50t﹣700)=12,解得t=21.6.相遇之后相距12km时,50t﹣700﹣(20t﹣40)=12,解得t=22.4,当游轮在刚离开杭州12km时,此时根据图象可知货轮就在杭州,游轮距离杭州12km,所以此时两船应该也是想距12km,即在0.6h的时候,两船也相距12km∴0.6h或21.6h或22.4h时游轮与货轮相距12km.10.解:(1)第28天的日销售量是:300+(28﹣22)×20=420(包),故答案为:420;(2)设AB段函数解析式为y=kx+b.由图知:当x=1时,y=390,当x=10时,y=300,∴,解得:,∴AB段函数解析式为y=﹣10x+400,设BC段对应的函数解析式为y=mx+n,由图象可知,BC段函数中,当x=22时,y=300,当x=28时,y=420,,解得,,即BC段对应的函数解析式为y=20x﹣140,当﹣10x+400=20x﹣140时,得x=18;由上可得,y与x之间的函数关系式是y=;(3)当1≤x≤18时,由(15﹣5)y≥3400,得10(﹣10x+400)≥3400,解得,x≤6,∴1≤x≤6,x=1,2,3,4,5,6,共6天,∵日销售利润不低于3400元的天数有且只有10天,∴当18<x≤30时,有4天日销售利润不低于3400元,由y=20x﹣140(18<x≤30),得y随x的增大而增大,∵x为整数,∴当x=27,28,29,30时,日销售利润不低于3600元,且当x=27时,利润最低,由题意得,(15×0.1a﹣5)(20×27﹣140)≥3400,解得,a≥9,∴a的最小值为9.11.解:(1)根据题意得,甲水槽的下降速度为:12÷6=2(厘米/分钟),∵折线ABC上,B(4,14)点前后变化不同,∴铁块高度是14cm.故答案为:2;14;(2)设线段AB、DE的解析式分别为:y1=k1x+b1,y2=k2x+b2,∵AB经过点(0,2)和(4,14),DE经过(0,12)和(6,0)∴,,解得,,∴解析式为y=3x+2和y=﹣2x+12,令3x+2=﹣2x+12,解得x=2,∴当2分钟时两个水槽水面一样高.(3)设铁块的底面积为acm2,则乙水槽中4分钟内乙水槽中上升的水体积为:12(48﹣a)cm3,根据题意得,12(48﹣a)=48×(12÷6×4),解得,a=16∴铁块的休积为:16×14=224(cm3).答:槽中铁块的体积为224立方厘米.12.解:(1)由图可知,x=5时小明到达A处,A处离家距离为200米;200÷5=40(米/分).(2)10﹣5=5(分);800÷(25﹣20)=160(米/分).(3)小明往返所走路程为800×2=1600(米),往返所用时间为25分.∴1600÷25=64(米/分).故答案为:(1)200,40;(2)5,160;(3)64.13.解:(1)小明家白天不开空调的时间为:18﹣8=10(h),故答案为:10;(2)峰时所用电费为:3×3×0.5=4.5(元),谷时所用电费为:11×3×0.3=9.9(元),所以小明家该天空调制暖所用的电费为:4.5+9.9=14.4(元);(3)根据题意,可得该天0时~24时内w与x的函数图象如下:14.解:(1)小明骑车行驶了3千米时,自行车“爆胎”,修车用了5分钟.故答案为:3;5;(2)修车后小明骑车的速度为每小时千米.故答案为:20;(3)当s=6时,t=24,所以小明离家后24分钟距家6千米.故答案为:24;(4)当s=8时,先前速度需要分钟,30﹣=,即早到分钟;15.解:(1)由图示信息可知,小张家距离景区200千米,在景区停留了15﹣10.5=4.5(小时),所以游玩了4.5小时.故答案为:200;4.5;(2)120÷(9.5﹣8)=80(千米/时)=0.8(小时),10.5﹣9.5﹣0.8=0.2(小时).故他加油共用了0.2小时;(3)200÷=2.5(小时),9.5﹣8+0.8+2.5=4.8(小时),10×4.8﹣25=23(升).故小张在加油站至少加23升油才能开回家.。
(人教版)宁波八年级数学下册第十九章《一次函数》(含答案解析)

一、选择题1.若关于x 的不等式组20210x x a ->⎧⎨-+<⎩有解,则一次函数()32y a x =-+的图象一定不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限D 解析:D【分析】先解不等式组,根据不等式组有解,求得a 的取值范围,即可判断一次函数()32y a x =-+的图象一定不经过的象限.【详解】∵20210x x a ->⎧⎨-+<⎩, ∴212x a x >⎧⎪⎨-<⎪⎩, ∵不等式组有解, ∴122->a , ∴5a >,∴30a ->,∴()32y a x =-+经过第一、二、三象限,不经过第四象限,故选:D .【点睛】本题考查了一次函数的性质、解一元一次不等式组,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.2.如图,直线y =-2x +2与x 轴和y 轴分别交与A 、B 两点,射线AP ⊥AB 于点A .若点C 是射线AP 上的一个动点,点D 是x 轴上的一个动点,且以C 、D 、A 为顶点的三角形与△AOB 全等,则OD 的长为( )A.25B.35C.25D.35D解析:D【分析】利用一次函数与坐标轴的交点求出△AOB的两条直角边,并运用勾股定理求出AB.根据已知可得∠CAD=∠OBA,分别从∠ACD=90°或∠ADC=90°时,即当△ACD≌△BOA时,AD =AB,或△ACD≌△BAO时,AD=OB,分别求得AD的值,即可得出结论.【详解】解:∵直线y=-2x+2与x轴和y轴分别交与A、B两点,当y=0时,x=1,当x=0时,y=2,∴A(1,0),B(0,2).∴OA=1,OB=2.∴AB2222+=+=.OA OB125∵AP⊥AB,点C是射线AP上,∴∠BAC=90°,即∠OAB+∠CAD=90°,∵∠OAB+∠OBA=90°,∴∠CAD=∠OBA,若以C、D、A为顶点的三角形与△AOB全等,则∠ACD=90°或∠ADC=90°,即△ACD≌△BOA或△ACD≌△BAO.如图1所示,当△ACD≌△BOA时,∠ACD=∠AOB=90°,AD=AB,∴OD =AD +OA =5+1; 如图2所示,当△ACD ≌△BAO 时,∠ADC =∠AOB =90°,AD =OB =2,∴OD =OA +AD =1+2=3.综上所述,OD 的长为3或5+1.故选:D .【点睛】此题考查了一次函数的应用、全等三角形的判定和性质以及勾股定理等知识,掌握一次函数的图象与性质是解题的关键.3.若实数k 、b 满足0k b +=,且k b >,则一次函数y kx b =+的图象可能是( ) A . B . C . D .A 解析:A【分析】根据0k b +=,且k b >确定k ,b 的符号,从而求解.【详解】解:因为实数k 、b 满足k+b=0,且k >b ,所以k >0,b <0,所以它的图象经过一、三、四象限,故选:A .【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.4.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .D解析:D【分析】分k >0、k <0两种情况找出函数y=kx 及函数y=kx+x-k 的图象经过的象限,以及图象的变化趋势对照四个选项即可得出结论.【详解】解:设过原点的直线为l 1:y=kx ,另一条为l 2:y=kx+x-k ,当k <0时,-k >0,|k|>|k+1|,l 1的图象比l 2的图象陡,当k <0,k+1>0时,l 1:y kx =的图象经过二、四象限,l 2:y=kx+x-k 的图象经过一、二、三象限,故选项A正确,不符合题意;当k<0,k+1<0时,l1:y kx=的图象经过二、四象限,l2:y=kx+x-k的图象经过一、二、四象限,故选项B正确,不符合题意;当k>0,k+1>0,-k<0时,l1:y kx=的图象经过一、三象限,l2:y=kx+x-k的图象经过一、三、四象限,l1的图象比l2的图象缓,故选项C正确,不符合题意;而选项D中,,l1的图象比l2的图象陡,故选项D错误,符合题意;故选:D【点睛】本题考查了正比例函数的图象及一次函数的图象,分k>0、k<0两种情况找出两函数图象经过的象限以及|k|的大小与函数图象的缓陡的关系是解答此题的关键.5.在直角坐标系中,点P在直线x+y-4=0上,O为原点,则OP的最小值为()A.22B.2 C.6D.10A解析:A【分析】当OP垂直于直线x+y-4=0时,|OP|取最小值.根据直线方程得到该直线与坐标轴的交点坐标,则易得△AOB为等腰直角三角形,等腰直角三角形斜边上的中线等于斜边的一半,据此求得线段OP的长度.【详解】解:由直线x+y-4=0得到该直线与坐标轴的两交点坐标是A(0,4)、B(4,0),则△AOB是等腰直角三角形,如图,∴22224442OA OB+=+=当OP⊥AB时,线段OP最短.此时OP=12AB=22故选:A.【点睛】本题考查了一次函数图象上点的坐标特征,垂线段最短.解题时,利用了直角三角形斜边上的中线等于斜边的一半求得OP的长度.6.若点(-2,y1),(3,y2)都在函数y=-2x+b的图像上,则y1与y2的大小关系是()A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法确定A解析:A【分析】 根据一次函数的性质得出y 随x 的增大而减小,进而求解.【详解】由一次函数y=-2x+b 可知,k=-2<0,y 随x 的增大而减小,∵-2<3,∴12y y >,故选:A .【点睛】本题考查一次函数的性质,熟知一次函数y=kx+b (k≠0),当k <0时,y 随x 的增大而减小是解题的关键.7.如图,直线y =kx (k≠0)与y =23x+2在第二象限交于A ,y =23x+2交x 轴,y 轴分别于B 、C 两点.3S △ABO =S △BOC ,则方程组0236kx y x y -=⎧⎨-=-⎩的解为( )A .143x y =-⎧⎪⎨=⎪⎩B .321x y ⎧=-⎪⎨⎪=⎩C .223x y =-⎧⎪⎨=⎪⎩D .3432x y ⎧=-⎪⎪⎨⎪=⎪⎩C 解析:C【分析】先根据223y x =+可得B 、C 的坐标,进而确定OB 、OC 的长,然后根据3S △ABO =S △BOC 结合点A 在第二象限确定A 点的纵坐标,然后再根据点A 在y =23x+2上,可确定点A 的横坐标即可解答.【详解】 解:由223y x =+可得B (﹣3,0),C (0,2), ∴BO =3,OC =2,∵3S △ABO =S △BOC ,∴3×12×3×|yA|=12×3×2, 解得y A =±23, 又∵点A 在第二象限,∴y A =23, 当y =23时,23=23x+2,解得x =﹣2, ∴方程组0236kx y x y -=⎧⎨-=-⎩的解为223x y =-⎧⎪⎨=⎪⎩. 故答案为C .【点睛】本题主要考查了一次函数与二元一次方程组,理解方程组的解就是两个相应的一次函数图象的交点坐标成为解答本题的关键.8.对函数22y x =-+的描述错误是( )A .y 随x 的增大而减小B .图象经过第一、三、四象限C .图象与x 轴的交点坐标为(1,0) D.图象与坐标轴交点的连线段长度等于解析:B【分析】根据一次函数的图象与性质即可判断A 、B 两项,求出直线与x 轴的交点即可判断C 项,求出直线与y 轴的交点,再根据勾股定理即可求出图象与坐标轴交点的连线段长度,进而可判断D 项,于是可得答案.【详解】解:A 、因为﹣2<0,所以y 随x 的增大而减小,故本选项说法正确,不符合题意; B 、函数22y x =-+的图象经过第一、二、四象限,故本选项说法错误,符合题意; C 、当y=0时,220x -+=,所以x=1,所以图象与x 轴的交点坐标为(1,0),故本选项说法正确,不符合题意;D 、图象与x 轴的交点坐标为(1,0),与y 轴的交点坐标为(0,2),所以图象与坐标轴交=故选:B .【点睛】本题考查了一次函数的图象与性质、一次函数与坐标轴的交点以及勾股定理等知识,属于基础题目,熟练掌握一次函数的基本知识是解题的关键.9.已知,整数x 满足1266,1,24x y x y x -≤≤=+=-+,对任意一个x ,p 都取12,y y 中的大值,则p 的最小值是( )A .4B .1C .2D .-5C解析:C【分析】 先画出两个函数的图象,然后联立解析式即可求出两个函数的交点坐标,然后根据图象对x 分类讨论,分别求出对应p 的取值范围,即可求出p 的最小值.【详解】11y x =+,224y x =-+的图象如图所示联立124y x y x =+⎧⎨=-+⎩,解得:12x y =⎧⎨=⎩∴直线11y x =+与直线224y x =-+的交点坐标为(1,2),∵对任意一个x ,p 都取1,y 2y 中的较大值由图象可知:当61x -≤<时,1y <2y ,2y >2∴此时p=2y >2;当x=1时,1y =2y =2,∴此时p=1y =2y =2;当16x <≤时,1y >2y ,1y >2∴此时p=1y >2.综上所述:p≥2∴p 的最小值是2.故选:C .【点睛】此题考查的是画一次函数的图象、求两个一次函数的交点坐标和比较函数值的大小,掌握一次函数的图象的画法、联立函数解析式求交点坐标、根据图象比较函数值大小是解决此题的关键.10.如图,在平面直角坐标系中,已知A(1,1),B(3,5),要在x 轴上找一点P ,使得△PAB 的周长最小,则点P 的坐标为( )A .(0,1)B .(0,2)C .(43,0)D .(43,0)或(0,2)C 解析:C【分析】要使得△PAB 的周长最小,实则在x 轴上找到P 点,使得PA PB +最小即可,从而将A 沿x 轴对称至A 1,求解A 1B 的解析式,其与x 轴的交点坐标即为所求.【详解】∵要使得△PAB 的周长最小,A ,B 为固定点,∴在x 轴上找到P 点,使得PA PB +最小即可,∴将A 沿x 轴对称至A 1,则()11,1A -,设直线A 1B 的解析式为:y kx b =+, 将()11,1A -,B(3,5),代入求解得:34k b =⎧⎨=-⎩,则解析式为:34y x =-, 令0y =,解得:43x =, 即4,03P ⎛⎫ ⎪⎝⎭时,△PAB 的周长最小, 故选:C .【点睛】本题考查轴对称最短路径问题,及一次函数与坐标轴得交点问题,能够对题意进行准确分析,建立合适的最短路径模型是解题关键.二、填空题11.已知关于x ,y 的二元一次方程组1,mx y y nx -=⎧⎨=⎩的解是1,2x y =⎧⎨=⎩则直线1y mx =-与直线y nx =的交点坐标是______;(12)【分析】根据二元一次方程组的解对应的x 和y 值就是对应函数交点的横纵坐标即可得解【详解】解:由可得它的解为故直线与直线的交点坐标是(12)故答案为:(12)【点睛】本题考查一次函数与二元一次方解析:(1,2)【分析】根据二元一次方程组的解对应的x 和y 值,就是对应函数交点的横纵坐标即可得解.【详解】解:由1mx y y nx -=⎧⎨=⎩可得1y mx y nx =-⎧⎨=⎩,它的解为12x y =⎧⎨=⎩, 故直线1y mx =-与直线y nx =的交点坐标是(1,2),故答案为:(1,2).【点睛】本题考查一次函数与二元一次方程组.理解二元一次方程组与一次函数的关系是解题关键.12.函数1y x =-中自变量x 的取值范围是________.且【分析】根据二次根式的性质和分式的意义被开方数大于或等于0分母不等于0可以求出x 的范围【详解】根据题意得:x≥0解得:且故答案为:且【点睛】本题考查了函数自变量的取值范围问题函数自变量的范围一般从解析:0x ≥且1x ≠【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】y =,根据题意得:x≥0 10≠,解得:0x ≥且1x ≠.故答案为:0x ≥且1x ≠.【点睛】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.已知一次函数y kx b =+的图象与直线1y x =-+平行,且经过点(8,2),那么b 的值是________.10【分析】根据两条直线平行比例系数k 相同求出k=-1把点代入即可求b 【详解】解:因为一次函数的图象与直线平行所以k=-1把点代入得解得b=10故答案为:10【点睛】本题考查了一次函数图象互相平行时解析:10【分析】根据两条直线平行,比例系数k 相同,求出k=-1,把点(8,2)代入即可求b .【详解】解:因为一次函数y kx b =+的图象与直线1y x =-+平行,所以k=-1,把点(8,2)代入y x b =-+,得28b =-+,解得,b=10,故答案为:10.【点睛】本题考查了一次函数图象互相平行时,比例系数的关系和待定系数法求解析式,解题关键是知道两条直线平行时比例系数k 相同.14.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a b y x c c =+的一次函数称为“勾股一次函数”;若点351,5P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.【分析】依据题意得到三个关系式:a+b=cab=10a2+b2=c2运用完全平方公式即可得到c 的值【详解】解:∵点在勾股一次函数的图象上把代入得:即∵分别是的三条边长的面积为10∴故∴∴故解得:故答解析:52【分析】依据题意得到三个关系式:a+b=355c ,ab=10,a 2+b 2=c 2,运用完全平方公式即可得到c 的值.【详解】解:∵点35(15P ,在“勾股一次函数”a b y x c c =+的图象上,把35(1)5P ,代入得: 35a b c c=+,即35a b +=, ∵,,a b c 分别是Rt ABC 的三条边长,90C ∠=︒,Rt ABC 的面积为10,∴1102ab =,222+=a b c ,故20ab =, ∴22()2a b ab c +-=, ∴2235220c ⎫-⨯=⎪⎪⎝⎭,故24405c =, 解得:52c =.故答案为:52【点睛】此类考查了一次函数图象上点的坐标特征以及勾股定理的应用,根据题目中所给的材料结合勾股定理和乘法公式是解答此题的关键.15.已知:一次函数()21y a x =-+的图象不经过第三象限,化简224496a a a a -+-+=_________.【分析】首先根据一次函数y=(a-2)x+1的图象不经过第三象限可得a-2<0进而得到a <2再根据二次根式的性质进行计算即可【详解】解:∵一次函数的图象不经过第三象限∴解得:故答案为:【点睛】本题考解析:52a -【分析】首先根据一次函数y=(a-2)x+1的图象不经过第三象限,可得a-2<0,进而得到a <2,再根据二次根式的性质进行计算即可.【详解】解:∵一次函数()21y a x =-+的图象不经过第三象限,∴20a -<,解得:2a <,=23a a =-+-23a a =-+-52a =-,故答案为:52a -.【点睛】本题考查了一次函数图象与系数的关系,以及二次根式的化简,关键是掌握:①k >0,b>0⇔y=kx+b 的图象在一、二、三象限;②k >0,b <0⇔y=kx+b 的图象在一、三、四象限;③k <0,b >0⇔y=kx+b 的图象在一、二、四象限;④k <0,b <0⇔y=kx+b 的图象在二、三、四象限.16.在平面直角坐标系中,直线2y x =+和直线2y x b =-+的交点的横坐标为m .若13m -≤<,则实数b 的取值范围为____.【分析】求出两直线交点的横坐标m 代入求出b 的取值范围即可【详解】解:根据题意得解得∴∵∴∴故答案为:【点睛】此题主要考查了直线交点问题构造方程求交点是解答本题的关键 解析:111b -≤<【分析】求出两直线交点的横坐标m ,代入13m -≤<,求出b 的取值范围即可.【详解】解:根据题意得,22x x b +=-+,解得,23b x -=, ∴23b m -= ∵13m -≤<∴2133b --≤< ∴111b -≤< 故答案为:111b -≤<【点睛】此题主要考查了直线交点问题,构造方程求交点是解答本题的关键.17.正方形A 1B 1C 1A 2,A 2B 2C 2A 3,A 3B 3C 3A 4,…,按如图所示的方式放置,点A 1A 2A 3,…和点B 1B 2B 3,…分别在直线y =x +1和x 轴上.则点C 2020的纵坐标是____.22019【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出点A1A2A3的坐标即可根据正方形的性质得出C1C2C3的纵坐标根据点的坐标的变化可找出变化规律:点Cn 的纵坐标为2n-1再代入n 解析:22019【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出点A 1,A 2,A 3的坐标,即可根据正方形的性质得出C 1,C 2,C 3的纵坐标,根据点的坐标的变化可找出变化规律:点C n 的纵坐标为2n-1,再代入n=2020即可得出结论.【详解】解:作1C D ⊥x 轴于D ,当x=0时,y=x+1=1,当y=0时,x=-1,∴点A 1的坐标为(0,1),点A 的坐标为(-1,0),∵四边形A 1B 1C 1A 2为正方形,∴∠111A AO A B A ∠==∠1145C B D =︒,∴11111A A A B C B ==,∴Rt △1A AO ≅Rt △11C B D ,∴11A O C D =,∴点C 1的纵坐标与点A 1的纵坐标相同,都为1,当x=1时,y=x+1=2,∴点A 2的坐标为(1,2).同理,点C 2的纵坐标为2.同理,可知:点A 3的坐标为(3,4),点C 3的纵坐标为4.……,∴点C n 的纵坐标为2n-1,∴点C 2020的纵坐标为22019.故答案为:22019.【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律:点C n 的纵坐标为2n-1是解题的关键.18.一次函数2y x b =+的图象过点()0,2,将函数2y x b =+的图象向下平移5个单位长度,所得图象的函数表达式为______.【分析】根据待定系数法求得b 然后根据函数图象平移的法则上加下减就可以求出平移以后函数的解析式【详解】解:∵一次函数y=2x+b 的图象过点(02)∴b=2∴一次函数为y=2x+2将函数y=2x+2的图解析:23y x =-【分析】根据待定系数法求得b ,然后根据函数图象平移的法则“上加下减”,就可以求出平移以后函数的解析式.【详解】解:∵一次函数y=2x+b 的图象过点(0,2),∴b=2,∴一次函数为y=2x+2,将函数y=2x+2的图象向下平移5个单位长度,所得函数的解析式为y=2x+2-5,即y=2x-3. 故答案为:y=2x-3.【点睛】本题考查了一次函数图象与几何变换,利用函数图象平移的规律是解题关键,注意求直线平移后的解析式时要注意平移时k 的值不变.19.如图,函数20y x =和40y ax =-的图象相交于点P ,点P 的纵坐标为40,则关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是______.【分析】由点P 的纵坐标为40代入求得点P 的坐标再利用两图象的交点坐标满足方程组方程组的解就是交点坐标据此求解即可【详解】∵点P 的纵坐标为40∴解得:∴点P 的坐标为()∴方程组即的解为故答案为:【点睛解析:240x y =⎧⎨=⎩【分析】由点P 的纵坐标为40,代入20y x =求得点P 的坐标,再利用两图象的交点坐标满足方程组,方程组的解就是交点坐标,据此求解即可.【详解】∵点P 的纵坐标为40,∴4020x =,解得:2x =,∴点P 的坐标为(2,40),∴方程组2040y x y ax =⎧⎨=-⎩即20040x y ax y -=⎧⎨-=⎩的解为, 故答案为:240x y =⎧⎨=⎩. 【点睛】本题主要考查了一次函数与二元一次方程(组)的关系,函数图象交点坐标为两函数解析式组成的方程组的解,利用了数形结合思想.20.已知一次函数y kx b =+的图象经过点(4,3)A 且与直线2y x =平行,则此函数的表达式为____.【分析】先求出k 再求出b 即可得到解答【详解】解:由题意可得k=2∴有y=2x+b ∵y=2x+b 的图象经过A (43)∴有2×4+b=3解之可得:b=-5∴所求的函数表达式为y=2x-5故答案为y=2x解析:25y x =-【分析】先求出k ,再求出b ,即可得到解答.【详解】解:由题意可得k=2,∴有y=2x+b ,∵y=2x+b 的图象经过A (4,3),∴有2×4+b=3,解之可得:b= -5,∴所求的函数表达式为y=2x-5,故答案为y=2x-5 .【点睛】本题考查一次函数的图象与性质,熟练掌握一次函数图象的平移是解题关键.三、解答题21.小明用的练习本在甲、乙两个商店都能买到,两个商店的标价都是每本1元,甲商店的优惠条件是:购买10本及以上,从第11本开始按标价的七折销售;乙商店的优惠条件是从第1本开始就按标价的八五折销售.(1)求在甲、乙两个商店购买这种练习本分别应付的金额y 甲元、y 乙元与购买本数x (x >10)本之间的函数关系式;(2)小明现有24元,最多可以买多少本练习本?解析:(1)y 甲=0.7x+3(x >10),y 乙=0.85x (x >10);(2)30本【分析】(1)根据题意,可以分别写出y 甲元、y 乙元与购买本数x (x >10)本之间的函数关系式; (2)将y=24分别代入甲和乙的函数解析式,求出相应的x 的值,然后比较大小,即可得到最多可以买多少本练习本.【详解】解:(1)由题意可得,y 甲=10×1+(x ﹣10)×1×0.7=0.7x+3,y 乙=x×1×0.85=0.85x ,即y 甲=0.7x+3(x >10),y 乙=0.85x (x >10);(2)当y 甲=24时,24=0.7x+3,解得x =30,当y 乙=24时,24=0.85x ,解得x≈28,∵30>28,∴小明现有24元,最多可以买30本练习本.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答. 22.我市全民健身中心面向学生推出假期游泳优惠活动,活动方案如下.方案一:购买一张学生卡,每次游泳费用按六折优惠;方案二:不购买学生卡,每次游泳费用按八折优惠.设某学生假期游泳x (次),按照方案一所需费用为1y (元),且11y k x b =+;按照方案二所需费用为2y (元),且22y k x =.其函数图象如图所示.(1)求y 1关于x 的函数关系式,并直接写出单独购买一张学生卡的费用和购买学生卡后每次游泳的费用;(2)求打折前的每次游泳费用和k 2的值;(3)八年级学生小明计划假期前往全民健身中心游泳8次,应选择哪种方案所需费用更少?说明理由.解析:(1)1530y x =+,单独购买一张学生卡的费用为30元,购买学生卡后每次游泳的费用为15元;(2)打折前的每次健身费用为25元,k 2=20;(3)选择方案一所需费用更少,理由见解析【分析】(1)把点(0,30),(10,180)代入11y k x b =+,得到关于1k 和b 的二元一次方程组,求解即可,再利用1k 的含义可得答案;(2)根据方案一每次健身费用按六折优惠,可得打折前的每次健身费用,再根据方案二每次健身费用按八折优惠,求出2k 的值;(3)将x=8分别代入12,y y 关于x 的函数解析式,比较即可.【详解】解:(1)∵11y k x b =+过点(0,30),(10,180),∴13010180b k b =⎧⎨+=⎩, 解得:11530k b =⎧⎨=⎩, 11530,y x ∴=+由115k =可得:购买一张学生卡后每次健身费用为15元,b =30可得:购买一张学生卡的费用为30元;(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元),则2250.820k =⨯=;220y x ∴=.(3)选择方案一所需费用更少.理由如下:由题意可知,11530y x =+,220y x =.当健身8次时,选择方案一所需费用:115830150y =⨯+=(元),选择方案二所需费用:2208160y =⨯=(元),∵150<160,∴选择方案一所需费用更少.【点睛】本题考查了一次函数的应用,解题的关键是理解两种优惠活动方案,求出12,y y 关于x 的函数解析式.23.已知如图,直线113:4l y x m =-+与y 轴交于A(0,6),直线22:1l y kx =+分别与x 轴交于点B(-2,0),与y 轴交于点C .两条直线相交于点D ,连接AB .求:(1)直线12l l 、的解析式;(2)求△ABD 的面积;(3)在x 轴上是否存在一点P ,使得43ABP ABD S S =△△,若存在,求出点P 的坐标;若不存在,说明理由.解析:(1)1364y x =-+,21y 12x =+;(2)15;(3)存在,理由见解析. 【分析】(1)直接把点A (0,6)代入l 1解析式中,求出m 的值;把点B (-2,0)代入直线l 2,求出k 的值即可;(2)首先求出点C 的坐标,然后求出点D 坐标,进而根据S △ABD =S △ACB +S △ACB 求出答案; (3)分点P 在点B 的左边和右边两种情况进行讨论,利用三角形面积公式求出点P 的坐标.【详解】解:(1)∵直线113:4l y x m =-+与y 轴交于A (0,6), ∴m =6,∴1364y x =-+, ∵22:1l y kx =+分别与x 轴交于点B (−2,0),∴−2k +1=0,∴k =12,∴21y 12x =+; (2)令21y 12x =+中x =0,求出y =1, ∴点C 坐标为(0,1), 联立364112y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩ , 解得x =4,y =3∴点D 的坐标为(4,3), ∴11(61)2522ACB S AC BO =⨯=⨯-⨯=△ 154102ACD S =⨯⨯=△ ∴51015ABD ACD ACD S S S =+=+=△△△;(3)设点P 坐标为(m ,0),当点P 在B 点的右侧时,BP =m +2,114(2)615223ABP S BP AO m =⨯=⨯+⨯=⨯△, 解得m =143, 则点P 坐标为(143,0), 当点P 在B 点的左侧时,BP =−2−m , 114(2)615223ABP S BP AO m =⨯=⨯--⨯=⨯△, 解得m =−263, 则点P 坐标为(−263,0), 综上点P 的坐标为(143,0)或(−263,0). 【点睛】本题考查了一次函数综合题的知识,本题涉及到求一次函数解析式、两直线交点问题,三角形面积等知识,解本题(2)的关键是求出D 点的坐标,解答(3)的关键是进行分类讨论.24.小东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地走去,1y ,2y 分别表示小东、小明离B 地的距离()y km 与所用时间()x h 的关系,如图所示,根据图象提供的信息,回答下列问题:(1)试用文字说明交点P 所表示的实际意义;(2)求1y 与x 的函数关系式;(3)求小明到达A 地所需的时间.解析:(1)交点P 表示小东和小明出发2.5小时在距离B 地7.5km 处相遇;(2)1520y x =-+;(3)263h 【分析】(1)根据相遇问题的等量关系结合函数图象的表示的量,可知点P 横纵坐标表示两人相遇时的时间和两人离B 地的距离;(2)代入两个已知点坐标列出方程组,用待定系数法求出解析式即可;(3)根据时间等于路程除以速度,用小明走的路程除以小明走的速度即可得到结果.【详解】解:(1)交点P 表示小东和小明出发2.5小时在距离B 地7.5km 处相遇.(2)设1y 与x 的函数关系式为1y kx b =+(k ,b 为常数,且0k ≠),因为函数图象经过点()020,,()40,,所以20b =,①40k b +=,②解得5k =- 所以1y 与x 的函数关系式为1520y x =-+.(3)小明的速度为()7.5 2.53/km h ÷=,小明到达A 地所需的时间为()220363h ÷=. 【点睛】本题考查一次函数的应用、待定系数法求解析式和读懂函数图象的能力,熟练运用相遇问题的数量关系解决相关问题是解题的关键.25.如图,一次函数y kx b =+的图象与x 轴、y 轴分别相交于E ,F 两点,点E 的坐标为()6,0-,3OF =,其中P 是直线EF 上的一个动点.(1)求k 与b 的值;(2)若POE △的面积为6,求点P 的坐标.解析:(1)12k =,3b =;(2)点P 的坐标为()2,2-,()10,2--. 【分析】 (1)求出F 的坐标,将E ,F 代入解析式求解即可;(2)确定直线关系式,根据POE △的面积为6,得到点P 的纵坐标,代入关系式即可求解;【详解】(1)∵3OF =,∴点()0,3F ,将点()6,0E -,点()0,3F 分别代入到3y kx =+中,得:3b =,60k b -+=,解得:12k =,3b =, (2)∵12k =, ∴直线EF 的解析式为:132y x =+. ∵点E 的坐标为()6,0-, ∴6OE =, ∴116622OPE p p S OE y y =⋅=⨯⨯=△, ∴2p y =. 令132y x =+中2y =,则1232x =+, 解得:2x =-.∴点P 的坐标为()2,2-, 令132y x =+中2y =-,则1232x -=+, 解得:10x =-.∴点P 的坐标为()2,2-,()10,2--.【点睛】本题主要考查了一次函数图像上点的坐标特征,准确分析计算是解题的关键.26.综合与探究如图1,一次函数162y x =-+的图象交x 轴、y 轴于点A ,B ,正比例函数12y x =的图象与直线AB 交于点(),3C m .(1)求m 的值并直接写出线段OC 的长;(2)如图2,点D 在线段OC 上,且与O ,C 不重合,过点D 作DE x ⊥轴于点E ,交线段CB 于点F .请从A ,B 两题中任选一题作答.我选择题____题.A .若点D 的横坐标为4,解答下列问题:①求线段DF 的长;②点P 是x 轴上的一点,若PDF 的面积为CDF 面积的2倍,直接写出点P 的坐标; B .设点D 的横坐标为a ,解答下列问题: ①求线段DF 的长,用含a 的代数式表示;②连接CE ,当线段CD 把CEF △的面积分成1:2的两部分时,直接写出a 的值. 解析:(1)6m =,35OC =2)A 或B ;A①2DF =;②()0,0P 或()8,0;B①6FD a =-+,②3a =或245【分析】 (1)将(),3m 代入12y x =求解即可,根据勾股定理即可得出OC ; (2)若选择A 题:①先求出D 和F 的坐标,然后即可求出DF ; ②先求出CDF 的面积,然后可求出PDF S △,可求出EP 即可得出答案; 若选择B 题:①过程如下:先求出D 和F 的坐标,即可求出FD ;②先求出D ,F 的坐标,然后得出FD ,DE ,分当12CDF CDE S S =△△时和当21CDF CDE S S =△△时两种情况求解即可.【详解】(1)将(),3m 代入12y x =得132m =,解得6m =,OC ==(2)若选A 题:①过程如下:将4x =代入162y x =-+得1462y =-⨯+=4, ∴()4,4F ;将4x =代入12y x =得142y =⨯=2, ∴()4,2D ,∴422DF =-=.②过程如下:易得CDF 的面积1S 2222CDF =⨯⨯=△, ∴224PDF S =⨯=△, 又∵12PDF S DF EP =⨯⨯△,易得4EP =, ∵P 点是x 轴上动点,E 的坐标为(4,0) ∴P 点坐标()0,0或()8,0;若选B 题:①过程如下:将x a =代入162y x =-+,易得1,62F a a ⎛⎫-+ ⎪⎝⎭;将x a =代入12y x =,易得1,2D a a ⎛⎫ ⎪⎝⎭. 116622F D FD y y a a a ⎛⎫=-=-+-=-+ ⎪⎝⎭. ②过程如下:将x a =代入162y x =-+,易得1,62F a a ⎛⎫-+ ⎪⎝⎭; 将x a =代入12y x =,易得1,2D a a ⎛⎫ ⎪⎝⎭. D 点在C 点左侧,116622F D FD y y a a a ⎛⎫=-=-+-=-+ ⎪⎝⎭. 12D E DE y y a =-=, 当12CDF CDE S S =△△时,12DF DE =,∴61 122aa-+=,解得245a=,当21CDFCDESS=△△时,21DFDE=,∴62 112aa-+=,解得3a=.【点睛】本题考查了一次函数的综合,充分理解题意是解题关键.27.某商店需要购进甲、乙两种商品共200件,其进价和售价如表:件?(2)若商店计划投入资金小于5320元,且销售完这批商品后获利大于1660元,请问有几种购货方案?并求出其中获利最大的购货方案.解析:(1)甲种商品购进80件,乙种商品购进120件;(2)共有4种购货方案,甲种商品购进81件、乙种商品购进119件时,获利最大【分析】(1)设甲种商品购进x件,乙种商品购进y件,根据该商品购进两种商品共200件且销售完这批商品后能获利1680元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设甲种商品购进m件,则乙种商品购进(200﹣m)件,根据“该商店计划投入资金小于5320元,且销售完这批商品后获利大于1660元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为非负整数即可得出购货方案的数量,设销售完这批商品后获利w元,根据总利润=每件的利润×销售数量(购进数量),即可得出w 关于m的函数关系式,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设甲种商品购进x件,乙种商品购进y件,依题意得:200(2014)(4535)1680 x yx y+=⎧⎨-+-=⎩,解得:80120x y =⎧⎨=⎩. 答:甲种商品购进80件,乙种商品购进120件.(2)设甲种商品购进m 件,则乙种商品购进(200)m -件,依题意得:1435(200)5320(2014)(4535)(200)1660m m m m +-<⎧⎨-+-->⎩, 解得:8085m <<,又m 为非负整数,m ∴可以为81,82,83,84,∴该商店共有4种购货方案.设销售完这批商品后获利w 元,则(2014)(4535)(200)42000w m m m =-+--=-+, 40-<,w ∴随m 的增大而减小,∴当81m =时,w 取得最大值,即甲种商品购进81件、乙种商品购进119件时,该商店销售完这批商品后获利最大.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.28.如图直线:x 6=+l y k 与x 轴、y 轴分别交于点B C 、两点,点B 的坐标是()8,0-,点A 的坐标为()6,0-.(1)求k 的值.(2)若点P 是直线l 上的一个动点且在第二象限,当PAC ∆的面积为3时,求出此时点P 的坐标.(3)在x 轴上是否存在点M ,使得BCM ∆为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.解析:(1)34k =;(2)点P 的坐标为(-4,3);(3)点M 的坐标为(-18,0),7(,0)4-,(2,0)或(8,0). 【分析】(1)由点B 的坐标,利用一次函数图象上点的坐标特征可求出k 值;。
人教版八年级数学下19.2.2一次函数(4)课时作业同步练习含答案

19.2.2 一次函数第9课时【巩固提优】1.为增强居民的节水意识,某市自2014年实施“阶梯水价”.按照“阶梯水价”的收费标准,居民家庭每年应缴水费y(元)与用水量x(立方米)的函数关系的图象如图所示.如果某个家庭2014年全年上缴水费1180元,那么该家庭2014年用水的总量是()A.240立方米B.236立方米C.220立方米D.200立方米2.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元B.0.45 元C.约0.47元D.0.5元第1题图第2题图第5题图第7题图3.在一条笔直的公路上有A,B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A 地,到达A地后立即按原路返回B地.如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象.下列说法中正确的个数为()①A,B两地距离是30千米;②甲的速度为15千米/时;③点M的坐标为(,20);④当甲、乙两人相距10千米时,他们的行驶时间是小时或小时.A.1个B.2个C.3个D.4个4.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第()秒A.80 B.105 C.120 D.1505.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要s能把小水杯注满.6.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中数据信息,解答下列问题(1)求摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式为;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是cm.7.某日上午,甲,乙两车先后从A地出发沿同一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是.8.一辆警车在高速公路的A处加满油,以每小时60千米的速度匀速行驶.已知警车一次加满油后,油箱内的余油量y(升)与行驶时间x(小时)的函数关系的图象如图所示的直线l上的一部分.(1)求直线l的函数关系式;(2)如果警车要回到A处,且要求警车中的余油量不能少于10升,那么警车可以行驶到离A处的最远距离是多少?9.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为m,小玲步行的速度为m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.【能力拔高】10.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为千米;(2)求快车和慢车的速度;(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.11.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系.根据图象解决下列问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)求线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围;(3)当x取何值时,两车之间的距离为300km?12.一水果店是A酒店某种水果的唯一供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了2600kg的这种水果.已知水果店每售出1kg该水果可获利润10元,未售出的部分每1kg将亏损6元,以x(单位:kg,2000≤x≤3000)表示A酒店本月对这种水果的需求量,y(元)表示水果店销售这批水果所获得的利润.(1)求y关于x的函数表达式;(2)问:当A酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22000元?参考答案1.C;2.A;3.C;4.C;5.5;6.y=1.5x+4.5(x是正整数),21;7.60≤v≤80;8.(1)y=﹣6x+60;(2)250千米;9.(1)4000,100;(2)0≤x(3)8分钟;10.(1)560;(2)快车的速度是80km/h,慢车的速度是60km/h.(3)y=﹣60x+540(8≤x≤9).11.(1)80,120;(2)y=200x﹣540(2.7≤x≤4.5);(3)x=1.2 h或4.2 h;12.(1)当2 000≤x≤2 600时,y=16x﹣15600;当2 600<x≤3 000时,y=2600×10=26000;(2)2 350≤x≤3000。
上海市2020〖人教版〗八年级数学下册专训1用一次函数巧解实际中方案设计的应用
上海市2020年〖人教版〗八年级数学下册专训1用一次函数巧解实际中方案设计的应用创作人:百里安娜创作日期:202X.04.01审核人:北堂王会创作单位:明德智语学校名师点金:做一件事情,有时有不同的方案,比较这些方案,从中选择最佳方案作为行动计划,是非常必要的.解决这些问题时,先要弄清题意,根据题意构建恰当的函数模型,求出自变量的取值范围,然后再结合实际问题确定最佳方案.合理决策问题1.某商场计划投入一笔资金采购一批紧俏商品,经市场调研发现,如果本月初出售,可获利10%,然后将本利再投资其他商品,到下月初又可获利10%;如果下月初出售可获利25%,但要支付仓储费8 000元.设商场投入资金x元,请你根据商场的资金情况,向商场提出合理化建议,说明何时出售获利较多.选择方案问题2.某教育行政部门计划今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案.甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.如果你是这个部门的负责人,你应选择哪家宾馆更实惠些?最佳效益问题3.(中考·包头)甲、乙两个商场出售相同的某种商品,每件售价均为 3 000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式.(2)当甲、乙两个商场的收费相同时,所买商品为多少件?(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.专训2 反比例函数与一次函数的综合应用名师点金:反比例函数单独考查的时候很少,与一次函数综合考查的情况较多,有时也与二次函数(以后会学到)综合考查.其考查形式有:两种函数图象在同一坐标系中的情况,两种函数的图象与性质,两种函数图象的交点情况、交点坐标,用待定系数法求函数表达式及求与函数图象有关的几何图形的面积等.反比例函数图象与一次函数图象的位置判断1.如图,函数y=k(x-10)和函数y=k(其中k是不等于0x的常数)在同一平面直角坐标系中的大致图象可能为( )(第1题)A.①③B.①④C.②③D.②④(k≠0)在同一平面2.一次函数y=kx+b与反比例函数y=kx直角坐标系中的大致图象如图所示,则k,b的取值范围是( ) A.k>0,b>0 B.k<0,b>0C.k<0,b<0 D.k>0,b<0(第2题)(第3题)(第4题)反比例函数与一次函数的图象与性质3.(中考·仙桃)如图,正比例函数y1=k1x和反比例函数y2的图象交于A(1,2),B两点,给出下列结论:=k2x①k1<k2;②当x<-1时,y1<y2;③当y1>y2时,x>1;④当x<0时,y2随x的增大而减小.其中正确的有( )A.0个B.1个C.2个D.3个(x>0)的图象如图所示,则4.已知函数y1=x(x≥0),y2=4x以下结论:①两函数图象的交点A的坐标为(2,2);②当x>2时,y1>y2;③图中BC=2;④两函数图象构成的图形是轴对称图形;⑤当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是____________.反比例函数与一次函数的有关计算类型1求函数表达式5.如图,已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=m的图象的两个交点,直线AB与y轴交于x点C.(1)求反比例函数和一次函数的表达式;(2)求△AOC的面积.(第5题)6.已知反比例函数y=k(k≠0)和一次函数y=mx+n(m≠0)x的图象的一个交点A的坐标为(-3,4),且一次函数的图象与x 轴的交点到原点的距离为5,求这两个函数的表达式.类型2求面积7.如图,在平面直角坐标系xOy中,直线y=2x+n与x 轴、y轴分别交于点A,B,与双曲线y=4在第一象限内交于点xC(1,m).【导学号:71412034】(1)求m和n的值;(2)过x轴上的点D(3,0)作平行于y轴的直线l,分别与直线AB和双曲线y=4x交于点P,Q,求△APQ的面积.(第7题)类型3求点的坐标8.如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=6x (x>0)和y=kx(x<0)的图象交于点P、点Q.(1)求点P的坐标;(第8题)(2)若△POQ的面积为8,求k的值.类型4有关最值的计算题9.如图,一次函数y=mx+5的图象与反比例函数y=kx (k≠0)在第一象限的图象交于A(1,n)和B(4,1)两点,过点A作y轴的垂线,垂足为M.(1)求一次函数和反比例函数的表达式;(2)求△OAM的面积S;(3)在y轴上求一点P,使PA+PB最小.(第9题)专训3 全章热门考点整合应用名师点金:本章内容是中考的必考内容,是历年来中考的热点,主要考查一次函数与反比例函数的图象与性质,求函数的表达式,建立一次函数模型解决利润、方案等实际问题,利用反比例函数解决学科内、学科间的综合问题.题型涉及选择题、填空题与解答题.其热门考点可概括为:四个概念、三个图象、两个性质、三个关系、一个方法、两个应用、一个技巧.四个概念概念1变量与常量1.(1)设圆柱的底面半径R不变,圆柱的体积V与圆柱的高h的关系式是V=πR2h,在这个变化过程中常量和变量分别是什么?(2)设圆柱的高h不变,在圆柱的体积V与圆柱的底面半径R 的关系式V=πR2h中,常量和变量分别又是什么?概念2函数2.两个变量之间存在的关系式是y2=x+1(其中x是非负整数),y是不是x的函数?如果变为用含y的代数式表示x的形式,x是不是y的函数?请说明原因.概念3一次函数3.当m,n为何值时,y=(5m-3)x2-n+(m+n)是关于x的一次函数?当m,n为何值时,y是关于x的正比例函数?概念4反比例函数4.若y=(m-1)x|m|-2是反比例函数,则m的取值为( ) A.1 B.-1 C.±1 D.任意实数5.判断下面哪些式子表示y是x的反比例函数:①xy=-13;②y=5-x;③y=-25x;④y=2ax(a为常数且a≠0).其中________是反比例函数.(填序号)三个图象图象1函数的图象6.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折.设购买量为x千克,付款金额为y元,则y与x的函数关系的图象大致是( )图象2一次函数的图象7.若实数a,b,c满足a+b+c=0,且a<b<c,则函数y =ax+c的图象可能是( )图象3反比例函数的图象8.如图,已知A(-4,n),B(2,-4)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点.求:(1)反比例函数和一次函数的表达式;(2)直线AB与x轴的交点C的坐标及△AOB的面积;(3)方程kx+b-mx=0的解(请直接写出答案);(4)不等式kx+b-mx<0的解集(请直接写出答案).(第8题)两个性质性质1一次函数的性质9.已知一次函数的表达式是y=(k-2)x+12-3k.(1)当图象与y轴的交点位于原点下方时,判断函数值随着自变量的增大而变化的趋势;(2)如果函数值随着自变量的增大而增大,且函数图象与y轴的交点位于原点上方,确定满足条件的正整数k的值.性质2反比例函数的性质10.画出反比例函数y=6x的图象,并根据图象回答问题:(1)根据图象指出当y=-2时x的值;(2)根据图象指出当-2<x<1且x≠0时y的取值范围;(3)根据图象指出当-3<y<2且y≠0时x的取值范围.三个关系关系1一次函数与一元一次方程的关系11.如图,在平面直角坐标系xOy中,直线y=x+1与y=-34x+3交于点A⎝⎛⎭⎪⎫87,157,两直线分别交x轴于点B和点C.(1)求点B,C的坐标;(2)求△ABC的面积.(第11题)关系2 一次函数与二元一次方程(组)的关系12.如图,一次函数y =k 1x +b 1的图象l 1与y =k 2x +b 2的图象l 2相交于点P ,则方程组⎩⎨⎧y =k1x +b1,y =k2x +b2的解是( )(第12题)A .⎩⎨⎧x =-3,y =2 B .⎩⎨⎧x =2,y =-3C .⎩⎨⎧x =3,y =2 D .⎩⎨⎧x =-3,y =-2关系3 一次函数与不等式(组)的关系13.(中考·武汉)已知一次函数y =kx +3的图象经过点(1,4).(1)求这个一次函数的表达式;(2)求关于x 的不等式kx +3≤6的解集.一个方法——待定系数法14.如图,一个正比例函数的图象与一个一次函数的图象交于点A(3,4),且一次函数的图象与y 轴相交于点B(0,-5).(1)求这两个函数的表达式;(2)求三角形AOB 的面积.(第14题)15.已知反比例函数y=k的图象与一次函数y=x+b的图象x在第一象限内相交于点A(1,-k+4).试确定这两个函数的表达式.两个应用应用1利用一次函数解实际问题16.(中考·河南)某游泳馆普通票价20元/张,暑期为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元.暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A,B,C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.(第16题)应用2利用反比例函数解实际问题17.某厂仓库储存了部分原料,按原计划每小时消耗2吨,可用60小时.由于技术革新,实际生产能力有所提高,即每小时消耗的原料量大于计划消耗的原料量.设现在每小时消耗原料x(单位:吨),库存的原料可使用的时间为y(单位:小时).(1)写出y关于x的函数表达式,并求出自变量的取值范围.(2)若恰好经过24小时才有新的原料进厂,为了使机器不停止运转,则x应控制在什么范围内?一个技巧:用k的几何性质巧求图形的面积18.如图,A,B是双曲线y=kx(k≠0)上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.过B点作BE⊥x轴,垂足为E.若△ADO的面积为1,S△BOE=4S△DOC,则k的值为( )A.43B.83C.3 D.4(第18题)(第19题)19.如图,过x轴正半轴上的任意一点P作y轴的平行线交反比例函数y=2x 和y=-4x的图象于A,B两点,C是y轴上任意一点,则△ABC的面积为________.答案专训11.解:设如果商场本月初出售,下月初可获利y1元,则y1=10%x+(1+10%)x·10%=0.1x+0.11x=0.21x,设如果商场下月初出售,可获利y2元,则y2=25%x-8 000=0.25x-8 000.当y1=y2时,0.21x=0.25x-8 000,解得x=200 000;当y1>y2时,0.21x>0.25x-8 000,解得x<200 000;当y1<y2时,0.21x<0.25x-8 000,解得x>200 000.所以若商场投入资金为20万元,两种出售方式获利相同;若商场投入资金少于20万元,本月初出售获利较多;若投入资金多于20万元,下月初出售获利较多.2.分析:设总人数是x人,当x≤35时,选择两家宾馆是一样的;当35<x≤45时,选择甲宾馆比较实惠;当x>45时,两家宾馆的收费可以表示成人数x的函数,比较两个函数值的大小即可.解:设总人数是x人,甲宾馆的收费为y甲元,乙宾馆的收费为y乙元,当x≤35时,两家宾馆的费用是一样的;当35<x≤45时,选择甲宾馆比较实惠;当x>45时,甲宾馆的收费y甲=35×120+0.9×120×(x-35),即y甲=108x+420,乙宾馆的收费y乙=45×120+0.8×120(x-45)=96x+1 080.当y甲=y乙时,108x+420=96x+1 080,解得x=55;当y甲>y乙时,108x+420>96x+1 080,解得x>55;当y甲<y乙时,108x+420<96x+1 080,解得x<55.综上可得,当x≤35或x=55时,两家宾馆的费用是一样的;当35<x<55时,选择甲宾馆比较实惠;当x>55时,选择乙宾馆比较实惠.3.解:(1)当x =1时,y 1=3 000;当x >1时,y 1=3 000+3 000(x -1)×(1-30%)=2 100x +900.所以y 1=⎩⎨⎧3 000(x =1),2 100x +900(x >1,x 为整数).y 2=3 000x (1-25%)=2 250x (x 为正整数).(2)当甲、乙两个商场的收费相同时,2 100x +900=2 250x ,解得x =6.故甲、乙两个商场的收费相同时,所买商品为6件.(3)应选择乙商场更优惠,理由如下:当x =5时,y 1=2 100x +900=2 100×5+900=11 400,y 2=2 250x =2 250×5=11 250,因为11 400>11 250,所以当所买商品为5件时,应选择乙商场更优惠.专训21.C 2.C 3.C4.①②④⑤5.解:(1)将B(1,4)的坐标代入y =m x 中,得m =4,所以y =4x .将A(n ,-2)的坐标代入y =4x 中,得n =-2.将A(-2,-2),B(1,4)的坐标分别代入y =kx +b 中, 得⎩⎨⎧-2k +b =-2,k +b =4,解得⎩⎨⎧k =2,b =2.所以y =2x +2.(2)对于y =2x +2,令x =0,则y =2,所以OC =2,所以S △AOC =12×2×2=2.6.解:∵函数y =k x 的图象经过点A(-3,4), ∴4=k -3.∴k =-12.∴反比例函数的表达式为y =-12x .又由题意知,一次函数y =mx +n 的图象与x 轴的交点坐标为(5,0)或(-5,0).当直线y =mx +n 经过点(-3,4)和(5,0)时,有⎩⎨⎧4=-3m +n ,0=5m +n ,解得⎩⎪⎨⎪⎧m =-12,n =52,∴y =-12x +52;当直线y =mx +n 经过点(-3,4)和(-5,0)时,有⎩⎨⎧4=-3m +n ,0=-5m +n ,解得⎩⎨⎧m =2,n =10,∴y =2x +10.∴一次函数的表达式为y =-12x +52或y =2x +10.技巧点拨:此题是一次函数和反比例函数相结合的小型综合题,要特别注意距离与坐标的关系,考虑问题要全面.7.解:(1)把(1,m)代入y =4x ,得m =41,∴m =4.∴点C 的坐标为(1,4).把(1,4)代入y =2x +n ,得4=2×1+n ,解得n =2.(2)对于y =2x +2,令x =3,则y =2×3+2=8,∴点P 的坐标为(3,8).令y =0,则2x +2=0,得x =-1,∴点A 的坐标为(-1,0).对于y =4x ,令x =3,则y =43. ∴点Q 的坐标为⎝ ⎛⎭⎪⎫3,43.∴△APQ 的面积=12AD·P Q =12×(3+1)×⎝ ⎛⎭⎪⎫8-43=403. 点拨:注意反比例函数与一次函数图象的交点坐标满足两个函数的表达式,解答这类题通常运用方程思想.8.解:(1)∵PQ ∥x 轴,∴点P 的纵坐标为2.把y =2代入y =6x 得x =3,∴点P 的坐标为(3,2).(2)∵S △POQ =S △OMQ +S △OMP ,∴12|k|+12×|6|=8,∴|k|=10.又∵k<0,∴k =-10.9.解:(1)将B(4,1)的坐标代入y =k x ,得1=k 4,∴k =4.∴y =4x .将B(4,1)的坐标代入y =mx +5,得1=4m +5,∴m =-1.∴y =-x +5.(2)对于y =4x ,令x =1,则y =4,∴A(1,4).∴S =12×1×4=2.(第9题)(3)如图,作点A 关于y 轴的对称点N ,则N(-1,4),作直线BN ,交y 轴于点P ,点P 即为所求.设直线BN 对应的函数表达式为y =ax +b ,将B(4,1),N(-1,4)的坐标分别代入y =ax +b ,得⎩⎨⎧4a +b =1,-a +b =4,解得⎩⎪⎨⎪⎧a =-35,b =175, ∴y =-35x +175.∴P ⎝ ⎛⎭⎪⎫0,175.专训3 1.解:(1)常量是π和R ,变量是V 和h.(2)常量是π和h ,变量是V 和R.2.解:在y 2=x +1中,当x 的值是0时,y 的值为±1,此时y 的值有两个,并不是唯一确定的,因此y 不是x 的函数.y 2=x +1变形为x =y 2-1后,对于y 的每一个值,另一个变量x 都有唯一确定的值与其对应,因此x 是y 的函数.3.解:若y =(5m -3)x 2-n +(m +n)是关于x 的一次函数,则有⎩⎨⎧5m -3≠0,2-n =1,解得⎩⎨⎧m ≠35,n =1.所以当m ≠35且n =1时,y =(5m -3)x2-n +(m +n)是关于x 的一次函数.若y =(5m -3)x 2-n +(m +n)是关于x 的正比例函数,则有⎩⎨⎧5m -3≠0,2-n =1,m +n =0,解得⎩⎨⎧m =-1,n =1. 所以当m =-1且n =1时,y =(5m -3)x2-n +(m +n)是关于x 的正比例函数.4.B 5.①③④6.B 7.A8.解:(1)将B(2,-4)的坐标代入y =m x ,得-4=m 2,解得m=-8.∴反比例函数的表达式为y =-8x .∵点A(-4,n)在双曲线y =-8x 上,∴n =2.∴A(-4,2).把A(-4,2),B(2,-4)的坐标分别代入y =kx +b ,得 ⎩⎨⎧-4k +b =2,2k +b =-4,解得⎩⎨⎧k =-1,b =-2. ∴一次函数的表达式为y =-x -2.(2)对于y=-x-2,令y=0,则-x-2=0,解得x=-2.∴C(-2,0).∴OC=2.∴S△AOB=S△AOC+S△BOC=12×2×2+12×2×4=6.(3)x1=-4,x2=2.(4)-4<x<0或x>2.9.解:(1)因为图象与y轴的交点位于原点下方,即点(0,12-3k)位于原点下方,所以12-3k<0,解得k>4.所以k-2>4-2>0,所以函数值随着自变量的增大而增大.(2)因为函数值随着自变量的增大而增大,所以k-2>0,解得k>2.因为函数图象与y轴的交点位于原点上方,所以12-3k>0,解得k<4.所以k的取值范围为2<k<4.所以满足条件的正整数k的值为3.10.解:如图,由观察可知:(1)当y=-2时,x=-3;(2)当-2<x<1且x≠0时,y<-3或y>6;(3)当-3<y<2且y≠0时,x<-2或x>3.(第10题)点拨:解决问题时,画出函数图象.由图象观察得知结果.由图象解决相关问题,一定要注意数形结合,学会看图.11.解:(1)由x+1=0,解得x=-1,所以点B的坐标是(-1,0).由-34x+3=0,解得x=4,所以点C的坐标是(4,0).(2)因为BC=4-(-1)=5,点A到x轴的距离为157,所以S△ABC=12×5×157=7514.12.A13.解:(1)把点(1,4)的坐标代入y=kx+3中,得4=k+3.∴k=1.∴一次函数的表达式为y=x+3.(2)由(1)知k=1,∴原不等式为x+3≤6.∴x≤3.点拨:(1)把点(1,4)的坐标代入y=kx+3中,用待定系数法求出k的值.(2)把求出的k值代入不等式kx+3≤6中,求出不等式的解集.14.解:(1)设正比例函数的表达式为y=k1x,一次函数的表达式为y=k2x+b,把A(3,4)的坐标代入y=k1x得k1=43,把A(3,4),B(0,-5)的坐标分别代入y=k2x+b,解得k2=3,b=-5,故正比例函数的表达式为y=43x,一次函数的表达式为y=3x -5.(2)因为A 点横坐标为3,所以A 点到OB 的距离为3.又因为B 点纵坐标为-5,所以OB =5.所以三角形AOB 的面积为12×5×3=7.5.15.解:∵反比例函数y =k x 的图象经过点A(1,-k +4), ∴-k +4=k 1,即-k +4=k ,∴k =2,∴A(1,2).∵一次函数y =x +b 的图象经过点A(1,2),∴2=1+b ,∴b =1.∴反比例函数的表达式为y =2x ,一次函数的表达式为y =x +1.16.解:(1)银卡:y =10x +150;普通票:y =20x.(2)把x =0代入y =10x +150,得y =150,∴A(0,150).∵⎩⎨⎧y =20x ,y =10x +150,∴⎩⎨⎧x =15,y =300. ∴B(15,300).把y =600代入y =10x +150,得x =45.∴C(45,600).(3)当0<x<15时,选择购买普通票更合算;(注:若写成0≤x <15,也正确)创作人:百里安娜 创作日期:202X.04.01创作人:百里安娜 创作日期:202X.04.01 当x =15时,选择购买银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,选择购买银卡更合算;当x =45时,选择购买金卡、银卡的总费用相同,均比普通票合算;当x>45时,选择购买金卡更合算.17.解:(1)库存的原料为2×60=120(吨),根据题意可知y 关于x 的函数表达式为y =120x .由于生产能力提高,每小时消耗的原料量大于计划消耗的原料量,所以自变量的取值范围是x>2.(2)根据题意,得y ≥24,所以120x ≥24. 解不等式,得x ≤5,即每小时消耗的原料量应控制在大于2吨且不大于5吨的范围内.点拨:(1)由“每小时消耗的原料量×可使用的时间=原料总量”可得y 关于x 的函数表达式.(2)要使机器不停止运转,需y ≥24,解不等式即可.18.B 19.3。
19.2 一次函数(第1课时)-2020-2021学年八年级数学下册课时同步练(人教版)(解析版)
第十九章一次函数专题19.2 一次函数(第1课时)基础巩固一、单选题(共10小题)1.一个正比例函数的图象经过点(1,﹣2),它的表达式为()A.B.C.y=﹣2x D.y=2x【答案】C【分析】利用待定系数法求正比例函数解析式即可.【解答】解:设正比例函数解析式为y=kx(k≠0),把(1,﹣2)代入得﹣2=k×1,解得k=﹣2,所以正比例函数解析式为y=﹣2x.故选:C.【知识点】一次函数图象上点的坐标特征、待定系数法求正比例函数解析式2.一次函数y=kx+b的图象经过点A(2,3),每当x增加1个单位时,y增加3个单位,则此函数表达式是()A.y=x+3B.y=2x﹣3C.y=3x﹣3D.y=4x﹣4【答案】C【分析】根据题意得出一次函数y=kx+b的图象也经过点(3,6),进而根据待定系数法即可求得.【解答】解;由题意可知一次函数y=kx+b的图象也经过点(3,6),∴,解得∴此函数表达式是y=3x﹣3,故选:C.【知识点】待定系数法求一次函数解析式3.一次函数y=kx+b的图象如图所示,则下列结论正确的是()A.k<0B.b=﹣1C.y随x的增大而减小D.当x>2时,kx+b<0【答案】B【分析】直接利用一次函数的性质结合函数图象上点的坐标特点得出答案.【解答】解:如图所示:A、图象经过第一、三、四象限,则k>0,故此选项错误;B、图象与y轴交于点(0,﹣1),故b=﹣1,正确;C、k>0,y随x的增大而增大,故此选项错误;D、当x>2时,kx+b>0,故此选项错误;故选:B.【知识点】一次函数与一元一次不等式4.下列函数:①y=;②y=﹣;③y=3﹣x;④y=3x2﹣2.其中是一次函数的有()A.4个B.3个C.2个D.1个【答案】C【分析】一次函数解析式为y=kx+b(k≠0,k、b是常数)的形式.一次函数解析式的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.【解答】解:由题可得,是一次函数的有:①y=;③y=3﹣x,∴一次函数有2个,故选:C.【知识点】一次函数的定义5.若函数y=x k﹣2+4是一次函数,则k的值是()A.1B.2C.3D.4【答案】C【分析】根据一次函数的定义得到k﹣2=1,然后解方程即可.【解答】解:根据题意得k﹣2=1,解得k=3.故选:C.【知识点】一次函数的定义6.如图,直线y=kx+b与x轴,y轴分别相交于点A(﹣3,0),B(0,2),则不等式kx+b>2的解集是()A.x>﹣3B.x<2C.x>0D.x<2【答案】C【分析】根据图象和B的坐标得出即可.【解答】解:∵直线y=kx+b和y轴的交点是B(0,2),∴不等式kx+b>2的解集是x>0,故选:C.【知识点】一次函数的性质、一次函数与一元一次不等式7.将6×6的正方形网格如图所示的放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD的顶点都在格点上,若直线y=kx(k≠0)与正方形ABCD有公共点,则k的值不可能是()A.B.1C.D.【答案】D【分析】求得直线经过A和C点时的k的值,根据图象即可求得当时,直线y=kx(k≠0)与正方形ABCD有公共点,即可判断k的值不可能是D.【解答】解:由图象可知A(1,2),C(2,1),把A的坐标代入y=kx中,求得k=2,把C的坐标代入y=kx中,求得k=,根据图象,当时,直线y=kx(k≠0)与正方形ABCD有公共点,所以,k的值不可能是D,故选:D.【知识点】一次函数图象与系数的关系、一次函数图象上点的坐标特征8.直线y=mx+b与y=kx在同一平面直角坐标系中的图象如图所示,则关于x的不等式mx+b<kx的解集为()A.x>﹣3B.x<﹣3C.x>﹣1D.x<﹣1【答案】C【分析】根据图象可得,直线y=mx+b与y=kx的交点坐标为:(﹣1,3),所以当x>﹣1时,直线y=mx+b,落在直线y=kx的下方,可得关于x的不等式mx+b<kx.即可得结论.【解答】解:根据图象可知:直线y=mx+b与y=kx的交点坐标为:(﹣1,3),则关于x的不等式mx+b<kx的解集为x>﹣1.故选:C.【知识点】一次函数的图象、一次函数与一元一次不等式9.同一平面直角坐标系中,一次函数y=x+1与y=ax+3的图象如图所示,则满足x+1>ax+3的x取值范围是()A.x>1B.x<1C.x<﹣2D.x>﹣2【答案】A【分析】观察函数图象得到当x>1时,直线y=x+1都在直线y=ax+3的上方,即x+1>ax+3.【解答】解:如图所示,当直线y=x+1都在直线y=ax+3的上方,即x+1>ax+3时,x取值范围是x>1.故选:A.【知识点】一次函数的图象、一次函数与一元一次不等式10.如图,直线y=﹣x+2与x轴、y轴分别交于A,B两点,点D在线段AB上,点E在线段OB上,沿着DE对折,使点B落在线段OA上的点C处,则AD的最大值为()A.B.C.2D.4【答案】A【分析】由AB=AD+BD,若要使AD最大,只要使BD最小即可,连接CD,则BD=CD,据此即可得解.【解答】解:如图,连接CD,当DC⊥OA时,CD最短,则AD最长,∵直线y=﹣x+2与x轴、y轴分别交于A,B两点,∴A(2,0),B(0,2),∴OA=2,OB=2,∴AB=4,∴∠OAB=30°,设AD=x,则BD=4﹣x,由对折性质知,BD=CD=4﹣x,∵∠CAD=30°,CD⊥OA,∴2CD=AD,即2(4﹣x)=x,解得,x=,∴AD的最大值为,故选:A.【知识点】一次函数图象上点的坐标特征、一次函数的性质、翻折变换(折叠问题)二、填空题(共6小题)11.如果正比例函数y=kx的图象经过第一、三象限,那么y的值随着x的值增大而.(填“增大”或“减小”)【答案】增大【分析】根据正比例函数的性质进行解答即可.【解答】解:函数y=kx(k≠0)的图象经过第一、三象限,那么y的值随x的值增大而增大,故答案为:增大.【知识点】正比例函数的性质12.把直线y=2x﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为.【答案】y=2x+3【分析】直接利用一次函数的平移规律进而得出答案.【解答】解:把直线y=2x﹣1向左平移1个单位长度,得到y=2(x+1)﹣1=2x+1,再向上平移2个单位长度,得到y=2x+3.故答案为:y=2x+3.【知识点】一次函数图象与几何变换13.若点P(﹣1,y1)和点Q(﹣2,y2)是一次函数y=﹣x+b的图象上的两点,则y1,y2的大小关系是:y1y2(填“>,<或=”).【答案】<【分析】由k=﹣1<0,利用一次函数的性质可得出y随x的增大而减小,再结合﹣1>﹣2,即可得出y1<y2.【解答】解:∵k=﹣1<0,∴y随x的增大而减小,又∵﹣1>﹣2,∴y1<y2.故答案为:<.【知识点】一次函数的性质14.已知一次函数y=﹣x+3,当﹣1≤x≤4时,y的最大值是.【分析】由﹣<0,利用一次函数的性质可得出y随x的增大而减小,结合﹣1≤x≤4,即可求出y的最大值.【解答】解:∵﹣<0,∴y随x的增大而减小,又∵﹣1≤x≤4,∴当x=﹣1时,y取得最大值,最大值=﹣×(﹣1)+3=.故答案为:.【知识点】一次函数的性质15.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为.【分析】根据一次函数图象上点的坐标特征可求出点A、B的坐标,由BC=OC利用等腰三角形的性质可得出OC、OE的值,再利用勾股定理可求出CE的长度,此题得解.【解答】解:∵直线y=﹣x+4与x轴、y轴分别交于A、B两点,∴点A的坐标为(3,0),点B的坐标为(0,4).过点C作CE⊥y轴于点E,如图所示.∵BC=OC=OA,∴OC=3,OE=2,∴CE==,∴点C的坐标为(﹣,2).故答案为:(﹣,2).【知识点】一次函数图象上点的坐标特征16.在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则P A+PB的最小值为.【分析】作A点关于直线y=x的对称点A′,连接A′B,交直线y=x于点P,此时P A+PB最小,利用一次函数图象上点的坐标性质得出OA′=1,进而利用勾股定理得出即可.【解答】解:如图所示:作A点关于直线y=x的对称点A′,连接A′B,交直线y=x于点P,此时P A+PB最小,由题意可得出:OA′=1,BO=2,P A′=P A,∴P A+PB=A′B==.故答案为:.【知识点】一次函数图象上点的坐标特征、轴对称-最短路线问题拓展提升三、解答题(共6小题)17.已知y=(m﹣2)x+|m|﹣2.(1)m满足什么条件时,y=(m﹣2)x+|m|﹣2是一次函数?(2)m满足什么条件时,y=(m﹣2)x+|m|﹣2是正比例函数?【分析】(1)利用一次函数定义可得m﹣2≠0,再解不等式即可;(2)利用正比例函数定义可得:|m|﹣2=0,且m﹣2≠0,再解方程可得m的值.【解答】解:(1)由题意得:m﹣2≠0,解得:m≠2;(2)由题意得:|m|﹣2=0,且m﹣2≠0,解得:m=﹣2.【知识点】一次函数的定义、正比例函数的定义18.已知y与x+2成正比例,且当x=1时,y=6;(1)求出y与x之间的函数关系式;(2)当x=﹣3时,求y的值.【分析】(1)根据正比例函数的定义,设y=k(x+2),然后把已知的对应值代入求出k即可;(2)把x=﹣3代入(1)中的解析式中可计算出对应的函数值.【解答】解:(1)设y=k(x+2),把x=1,y=6代入得6=3k,解得k=2,∴y=2(x+2)=2x+4,即y与x之间的函数关系式为y=2x+4;(2)当x=﹣3时,y=2×(﹣3)+4=﹣2.【知识点】一次函数的性质、待定系数法求一次函数解析式19.已知:函数y=(m+1)x+2m﹣6,(1)若函数图象过(﹣1,2),求此函数的解析式;(2)若函数图象与直线y=2x+5平行,求其函数的解析式.【分析】(1)根据一次函数图象上点的坐标特征,把(﹣1,2)代入y=(m+1)x+2m﹣6求出m的值即可得到一次函数解析式;(2)根据两直线平行的问题得到m+1=2,解出m=1,从而可确定一次函数解析式.【解答】解:(1)把(﹣1,2)代入y=(m+1)x+2m﹣6得﹣(m+1)+2m﹣6=2,解得m=9,所以一次函数解析式为y=10x+12;(2)因为函数y=(m+1)x+2m﹣6的图象与直线y=2x+5平行,所以m+1=2,解得m=1,所以一次函数解析式为y=2x﹣4.【知识点】待定系数法求一次函数解析式、两条直线相交或平行问题20.已知一次函数y=kx+5的图象经过点A(2,﹣1).(1)求k的值;(2)在图中画出这个函数的图象;(3)若该图象与x轴交于点B,与y轴交于点C,试确定△OBC的面积.【分析】(1)将点A的坐标代入一次函数解析式中,即可求出k的值;(2)利用一次函数图象上点的坐标特征可求出点B,C的坐标,连接点A,C并双向延长,即可画出一次函数y=kx+5的图象;(3)由点B,C的坐标可得出OB,OC的长,再利用三角形的面积公式即可求出△OBC的面积.【解答】解:(1)∵一次函数y=kx+5的图象经过点A(2,﹣1),∴2k+5=﹣1,∴k=﹣3.(2)当x=0时,y=﹣3x+5=5,∴点C的坐标为(0,5);当y=0时,﹣3x+5=0,解得:x=,∴点B的坐标为(,0).由点A,C可画出一次函数y=kx+5的图象,如图所示.(3)∵点B的坐标为(,0),点C的坐标为(0,5),∴OB=,OC=5,∴S△OBC=OB•OC=.【知识点】一次函数的图象、一次函数图象上点的坐标特征21.已知:如图,直线y=x+3与x轴,y轴分别交于点A和点B.(1)点A坐标是,点B的坐标是;(2)△AOB的面积=;(3)当y>0时,x的取值范围是.【答案】【第1空】(-6,0)【第2空】(0,3)【第3空】9【第4空】x>-6【分析】(1)根据坐标轴上点的坐标特征求A点和B点坐标;(2)根据三角形面积公式求解;(3)根据图象直接求解.【解答】解:(1)当y=0时,x+3=0,解得x=﹣6,则A(﹣6,0);当x=0时,y=x+3=3,则B(0,3);故答案为(﹣6,0),(0,3);(2)△AOB的面积=×6×3=9,故答案为9;(3)由图象得:当y>0时,x的取值范围是x>﹣6,故答案为x>﹣6.【知识点】一次函数图象上点的坐标特征、一次函数的性质22.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的解析式;(2)判定点C(4,﹣2)是否在该函数图象上?说明理由;(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.【分析】(1)首先求得B的坐标,然后利用待定系数法即可求得函数的解析式;(2)把C的坐标代入一次函数的解析式进行检验即可;(3)首先求得D的坐标,然后利用三角形的面积公式求解.【解答】解:(1)在y=2x中,令x=1,解得y=2,则B的坐标是(1,2),设一次函数的解析式是y=kx+b,则,解得:.则一次函数的解析式是y=﹣x+3;(2)当a=4时,y=﹣1,则C(4,﹣2)不在函数的图象上;(3)一次函数的解析式y=﹣x+3中令y=0,解得:x=3,则D的坐标是(3,0).则S△BOD=OD×2=×3×2=3.【知识点】待定系数法求一次函数解析式、一次函数图象上点的坐标特征。
八年级数学(下)第十九章《一次函数》同步练习(含答案)
八年级数学(下)第十九章《一次函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.足球比赛时,守门员大脚踢出去的球的高度h随时间t变化而变化,下列各图中,能刻画h与t的关系的是A.B.C.D.【答案】A【解析】A、足球受力的作用后会升高,并向前运动,当足球动能减小后,足球不再升高,而逐渐下落.正确;B、球在飞行过程中,受重力的影响,不会一直保持同一高度,所以错误;C、球在飞行过程中,总是先上后下,不会一开始就往下,所以错误;D、受重力影响,球不会一味的上升,所以错误.故选A.2.某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快走了一段时间,最后他以较快的速度匀速前进达到学校.小明走路的速度v(米/分钟)是时间t(分钟)的函数,能正确反映这一函数关系的大致图象是A.B.C.D.【答案】A【解析】纵坐标表示的是速度、横坐标表示的是时间,由题意知:小明走路去学校应分为三个阶段:①匀速前进的一段时间,此时的函数是平行于横坐标的一条线段,可排除C、D选项;②加速前进的一段时间,此时的函数是一段斜率大于0的一次函数;③最后匀速前进到达学校,此时的函数是平行于横坐标的一条线段,可排除B选项,故选A.3.如图所示的是水滴入一个玻璃容器的示意图(滴水速度保持不变),下列图象能正确反映容器中水的高度(h)与时间(t)之间的关系的是A.B.C.D.【答案】C【解析】由于容器的形状是下宽上窄,所以水的深度上升是先慢后快.表现出的函数图形为先缓,后陡.故选C.4.某市春天经常刮风,给人们的出行带来很多不便,小明观测了4月6日连续12个小时风力变化的情况,并画出了风力随时间变化的图象如图所示,则下列说法正确的是A.在8时至14时,风力不断增大B.在8时至12时,风力最大为7级C.8时风力最小D.20时风力最小【答案】D【解析】A、11时至12时风力减小,选项A错误;B、在8时至12时,风力最大不超过4级,选项B错误;C、20时风力最小,选项C错误;D、20时风力最小,选项D正确.故选D.5.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走路程为s(米),s与t之间的函数关系如图所示,则下列说法中,错误的是A.小明中途休息用了20分钟B.小明休息前爬山的速度为每分钟60米C.小明在上述过程中所走路程为7200米D.小明休息前后爬山的平均速度相等【答案】C【解析】A、小明中途休息的时间是:60-40=20分钟,故本选项正确;B、小明休息前爬山的速度为240040=60(米/分钟),故本选项正确;C、小明在上述过程中所走路程为4800米,故本选项错误;D、因为小明休息后爬山的速度是4800240010060--=60(米/分钟),所以小明休息前后爬山的平均速度相等,故本选项正确,故选C.6.小明从家里出发到超市进行购物后返回,小明离开家的路程y(米)与所用时间x(分)之间的关系如图,则下列说法不正确的是A.小明家到超市的距离是1000米B.小明在超市的购物时间为30分钟C.小明离开家的时间共55分钟D.小明返回的速度比去时的速度快【答案】D【解析】A.观察图象发现:小明家距离超市1000米,故正确;B.小明在超市逗留了40−10=30分钟,故正确;C.小明离开家的时间共55分钟,故正确;D.小明去时用了10分钟,回时用了15分钟,所以小明从超市返回的速度慢,故错误,故选D.二、填空题:请将答案填在题中横线上.7.某型号汽油的数量与相应金额的关系如图所示,那么这种汽油的单价是每升__________元.【答案】5.22【解析】单价=522÷100=5.22元,故答案为:5.22.8.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是__________.【答案】-1<x<1或x>2【解析】y<0时,即x轴下方的部分,∴自变量x的取值范围分两个部分是−1<x<1或x>2,故答案为:-1<x<1或x>2.9.已知A、B两地相距4千米.上午8:00,甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A 地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为__________.【答案】8点40【解析】因为甲60分走完全程4千米,所以甲的速度是4千米/时,由图中看出两人在走了2千米时相遇,那么甲此时用了0.5小时,则乙用了(0.5−13)小时,所以乙的速度为:2÷16=12,所以乙走完全程需要时间为:4÷12=13(时)=20分,此时的时间应加上乙先前迟出发的20分,现在的时间为8点40,故答案为:8点40.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的平面直角坐标系中,画出符合他们行驶的路程S(千米)与行驶时间t(时)之间的函数图象.【解析】如图,11.如图所示是某港口从8 h到20 h的水深情况,根据图象回答下列问题:(1)在8 h到20 h,这段时间内大约什么时间港口的水位最深,深度是多少米?(2)大约什么时候港口的水位最浅,是多少?(3)在这段时间里,水深是如何变化的?【解析】(1)根据函数图象可得:13时港口的水最深,深度约是7.5 m.(2)根据函数图象可得:8时港口的水最浅,深度约是2 m.(3)根据函数图象可得:8 h~13 h,水位不断上升;13 h~15 h,水位不断下降;15 h~20 h,水位又开始上升.12.一游泳池长90 m,甲、乙两人分别从两对边同时向所对的另一边游去,到达对边后,再返回,这样往复数次.图中的实线和虚线分别表示甲、乙与游泳池固定一边的距离随游泳时间变化的情况,根据图形回答:(1)甲、乙两人分别游了几个来回?(2)甲游了多长时间?游泳的速度是多少?(3)在整个游泳过程中,甲、乙两人相遇了几次?【解析】(1)观察图形甲游了三个来回,乙游了两个来回.(2)观察图形可得甲游了180 s,游泳的速度是90×6÷180=3米/秒.(3)在整个游泳过程中,两个图象共有5个交点,所以甲、乙两人相遇了5次.13.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s甲,s乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距__________千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为__________小时;(3)乙从出发起,经过__________小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?【解析】(1)由图象可知,乙出发时,乙与甲相距10千米.故答案为:10.(2)由图象可知,走了一段路程后,乙的自行车发生故障,停下来修车的时间为=1.5-0.5=1小时,故答案为:1.(3)图图象可知,乙从出发起,经过3小时与甲相遇.故答案为:3.(4)乙骑自行车出故障前的速度与修车后的速度不一样,理由如下:乙骑自行车出故障前的速度7.50.5=15千米/小时.与修车后的速度22.57.53 1.5--=10千米/小时.因为15>10,所以乙骑自行车出故障前的速度与修车后的速度不一样.。
人教版八年级数学下册_《第4课时_一次函数与实际问题》习题课件
9.公式L=L0+KP表示当重力为P时的物体作用在弹簧上 时弹簧的长度,L0代表弹簧的初始长度,单位为厘米,K 表示单位重力物体作用在弹簧上时弹簧拉伸的长度,单位
为厘米.下面给出的四个公式中,表明这是一个短而硬的
弹簧的是( A )
A.L=10+0.5P
B.L=10+5P
C.L=80+0.5P
D.L=80+5P
第4课时 一次函数与实际问题
知识点 一次函数与实际问题
1.小明的父亲从家走了20分钟到一个离家900米的书 店,在书店看了10分钟书后,用15分钟返回家.下列 图中表示小明的父亲离家的距离y(米)与时间x(分钟)
的函数图象是【方法12】( B )
2.园林队在某公园进行绿化,中间休息了一段时间, 已知绿化面积S(m2)与工作时间t(h)的函数关系的图象 如图所示,则休息后园林队每小时绿化面积为( B )
(1)根据图象,直接写出汽车行驶400千米时,油箱内的 剩余油量,并计算加满油时油箱的油量; 解:(1)由图象可知:汽车行驶400 千米,剩余油量30升. ∵行驶时的耗油量为0.1升/千米, 则汽车行驶400千米,耗油400×0.1=40(升). ∴加满油时油箱的油量是40+30=70(升).
(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升 时,已行驶的路程. 解:(2)设y=kx+b(k≠0), 把(0,70),(400,30)代入可 得:k=-0.1,b=70, ∴y=-0.1x+70. 当y=5时,x=650. 即汽车剩余油量为5升时,已行驶的路程为650千米.
6.小明到超市买练习本,超市正在打折促销:购买 10本以上,从第11本开始按标价打折优惠,买练习本 所花费的钱数y(元)与练习本的数量x(本)之间的函数关 系如图所示,那么在这个超市 买10本以上的练习本的优惠折 扣是 七 折.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020人教版八年级数学下册课时作业本
《一次函数--用函数观点解决实际问题》
一、选择题
1.某种型号的计算器单价为40元,商家为了扩大销售量,现按八折销售,如果卖出x台这种计
算器,共卖得y元,则用x表示y的关系式为( )
A.y=40x
B.y=32x
C.y=8x
D.y=48x
2.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千
米)与甲车行驶的时间t(小时)之间的函数关系如图所示.
则下列结论:
①A,B两城相距300千米;
②乙车比甲车晚出发1小时,却早到1小时;
③乙车出发后2.5小时追上甲车;
④当甲、乙两车相距50千米时,t=或.
其中正确的结论有()
A.1个
B.2个
C.3个
D.4个
3.某市乘出租车需付车费y(元)与行车里程x(千米)之间函数关系的图象如图所示,那么该
市乘出租车超过3千米后,每千米的费用是()
A.0.71元
B.2.3元
C.1.75元
D.1.4元
4..某数学课外活动小组利用一个有进水管与出水管的容器模拟水池蓄水情况:从某时刻开始,
5分钟内只进水不出水,在随后的10分钟内既进水又出水,每分钟的进水量和出水量是两个常数.容器内的蓄水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则第12分钟容器内的蓄水量为()
A.22
B.25
C.27
D.28
5.如图,一次函数的图象与两坐标轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),
过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长是()
A.5
B.7.5
C.10
D.25
6.甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶,甲车先到达B地后,立即按原
路以相同速度匀速返回(停留时间不作考虑),直到两车相遇.若甲、乙两车之间的距离y(km)与两车行驶的时间x(h)之间的函数图象如图所示,则A,B两地之间的距离为( )
A.150 km
B.300 km
C.350 km
D.450 km
7.甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行.图中l1,l2分别表示甲、乙
两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是()
A.乙摩托车的速度较快
B.经过0.3小时甲摩托车行驶到A,B两地的中点
C.经过0.25小时两摩托车相遇
D.当乙摩托车到达A地时,甲摩托车距离A地km
8.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后
停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:
①出发1小时时,甲、乙在途中相遇;
②出发1.5小时时,乙比甲多行驶了60千米;
③出发3小时时,甲、乙同时到达终点;
④甲的速度是乙速度的一半.
其中,正确结论的个数是()
A.4
B.3
C.2
D.1
二、填空题
9.已知等腰三角形的周长是20cm,求底边长y与腰长x之间的函数关系式,并写出自变量的取
值范围。
10.如图,直线:y=x+1与直线
:y=mx+n相交于点P(a,2),则关于x的不等式=x+1≥=mx+n的解集为.
11.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)
之间的关系如图所示,
则下列说法中:
①甲队每天挖100米;
②乙队开挖两天后,每天挖50米;
③甲队比乙队提前3天完成任务;
④当x=2或6时,甲乙两队所挖管道长度都相差100米.
正确的有 .(在横线上填写正确的序号)
12.如图是某汽车行驶的路程s(km)与时间t(m/n)的函数关系图,
观察图中所提供的信息,解答下列问题:
(1)汽车在前9分钟内的平均速度是 km/min;
(2)汽车在中途停了 min;
(3)当16≤t≤30时,s与t的函数关系式: .
三、解答题
13.某果园苹果丰收,首批采摘46吨,计划租用A,B两种型号的汽车共10辆,一次性运往外
A型汽车B型汽车
满载量(吨) 5 4
费用(元)/次800 600
(1)求y与x之间的函数关系式;
(2)总租车费用最少是多少元?并说明此时的租车方案.
14.某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图所
示.
(1)第20天的总用水量为多少米3?
(2)当x≥20时,求y与x之间的函数关系式;
(3)种植时间为多少天时,总用水量达到7000米3?
15.为了提高天然气使用效率,保障居民的本机用气需求,某地积极推进阶梯式气价改革,若一户
居民的年用气量不超过300m3,价格为2.5元/m3,若年用气量超过300m3,超出部分的价格为3元/m3,
(1)根据题意,填写下表:
(2)设一户居民的年用气量为xm3,付款金额为y元,求y关于x的解析式;
(3)若某户居民一年使用天然气所付的金额为870元,求该户居民的年用气量.
16.某商场购进一种每件价格为100元的商品,在商场试销发现:销售单价x(元/件)(100≤x
≤160)与每天销售量y(件)之间满足如图所示的关系:
(1)求出y与x之间的函数关系式;
(2)当销售单价定为多少元时,每天可获得700元的利润.
参考答案
1.B
2.B.
3.D.
4.C.
5.C.
6.D
7.C
8.B.
9.y=20-2x 5<x<10
10.x≥1
11.答案为:①②④
12.答案为:,7,S=2t﹣20.
13.解:(1)y与x之间的函数关系式为:y=800x+600(10﹣x)=200x+6000;
(2)由题意可得:5x+4(10﹣x)≥46,∴x≥6,
∵y=200x+6000,∴当x=6时,y有最小值=7200(元),
此时租车的方案为:A型车6辆,B型车4辆.
14.解:(1)第20天的总用水量为1000米3
(2)当x≥20时,设y=kx+b∵函数图象经过点(20,1000),(30,4000)
∴解得
∴y与x之间的函数关系式为:y=300x﹣
5000.
(3)当y=7000时,由7000=300x﹣5000,解得x=40
答:种植时间为40天时,总用水量达到7000米3.
15.
16.解:(1)设y与x之间的函数关系式为y=kx+b(k≠0).
由所给函数图象可知,,解得,故y与x的函数关系式为y=﹣x+180;
(2)∵y=﹣x+180,依题意得∴(x﹣100)(﹣x+180)=700,x2﹣280x+18700=0,
解得x1=110,x2=170.∵100≤x≤160,∴取x=110.
答:售价定为110元/件时,每天可获利润700元.。