物理选修35课后习题答案
最新人教版选修3-5高中物理过关习题19及答案

第十九章过关习题本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分,时间90分钟。
第Ⅰ卷(选择题共40分)一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,第1~6小题只有一个选项符合题目要求,第7~10小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分) 1.某种元素具有多种同位素,下面四幅图中能反映这些同位素的质量A与中子N关系的是( )答案:B解析:设这些同位素的质子为,由A=N+可知,当中子N增大时,质量A 也增大,选项A、D均错误;而元素的质子不可能为零,故当中子N为零时,质量A并不为零,选项B正确,错误。
2.(河北衡水中2015~2016年高二上期调研)如图中曲线、b、c、d为气泡室中某放射物发生衰变放出的部分粒子的径迹,气泡室中磁感应强度方向垂直于纸面向里。
以下判断可能正确的是( )A.、b为β粒子的径迹B.、b为γ粒子的径迹.c、d为α粒子的径迹D.c、d为β粒子的径迹答案:D解析:γ射线是不带电的光子,在磁场中不偏转,选项B错误。
α粒子为氦核带正电,由左手定则知向上偏转,选项A、错误;β粒子是带负电的电子,应向下偏转,选项D正确。
3.(黄石市有色一中2015~2016年高二下期期中)一质量为M的矿石中含有放射性元素钚,其中钚238的质量为,已知钚的半衰期为88年,那么下列说法中正确的是( )A.经过176年后,这块矿石中基本不再含有钚B.经过176年后,原含有钚元素的原子核有发生了衰变.经过264年后,钚元素的质量还剩D.经过88年后该矿石的质量剩下答案:解析:半衰期表示有一半原子核发生衰变的时间,经过176年后,也就是2个半衰期,则还剩质量的原子核没有发生衰变,故A、B错误;经过264年后,也就是3个半衰期,钚元素的质量还剩,故正确;经过88年后该矿石的质量不变,只是其中钚238的质量变成,故D错误。
故选。
4.若用大写字母代表原子核,E经α衰变成为F,再经β衰变成为G,再经α衰变成为H。
人教版高中物理(选修3-5)能量量子化同步练习题(含答案)

课时作业6 能量量子化1.关于对黑体的认识,下列说法正确的是( )A.黑体只吸收电磁波,不反射电磁波,看上去是黑的B.黑体辐射电磁波的强度按波长的分布除与温度有关外,还与材料的种类及表面状况有关C.黑体辐射电磁波的强度按波长的分布只与温度有关,与材料的种类及表面状况无关D.如果在一个空腔壁上开一个很小的孔,射入小孔的电磁波在空腔内表面经多次反射和吸收,最终不能从小孔射出,这个空腔就成了一个黑体解析:黑体自身辐射电磁波,不一定是黑的,故A错误;黑体辐射电磁波的强度按波长的分布只与黑体的温度有关,故B错、C对;小孔只吸收电磁波,不反射电磁波,因此是小孔成了一个黑体,而不是空腔,故D错误。
答案:C2.关于对热辐射的认识,下列说法中正确的是( )A.热的物体向外辐射电磁波,冷的物体只吸收电磁波B.温度越高,物体辐射的电磁波越强C.辐射强度按波长的分布情况只与物体的温度有关,与材料种类及表面状况无关D.常温下我们看到的物体的颜色就是物体辐射电磁波的颜色解析:一切物体都不停地向外辐射电磁波,且温度越高,辐射的电磁波越强,A错误,B正确;选项C是黑体辐射的特性,C 错误;常温下看到的物体的颜色是反射光的颜色,D错误。
答案:B3.关于对普朗克能量子假说的认识,下列说法正确的是( )A.振动着的带电微粒的能量只能是某一能量值εB.带电微粒辐射或吸收的能量只能是某一最小能量值的整数倍C.能量子与电磁波的频率成正比D.这一假说与现实世界相矛盾,因而是错误的解析:根据普朗克能量子假说知,A错误,B、C正确;普朗克能量子假说反映的是微观世界的特征,不同于宏观世界,D错误。
答案:B、C4.红、橙、黄、绿四种单色光中,光子能量最小的是( ) A.红光B.橙光C.黄光D.绿光解析:在四种颜色的光中,红光的波长最长而频率最小,由光子的能量ε=hν可知红光光子能量最小。
答案:A5.某种光的光子能量为E,这种光在某一种介质中传播时的波长为λ,则这种介质的折射率为( )A.λE hB.λE chC.ch λED.h λE解析:这种光的频率为ν=E h,则这种光在介质中的传播速度为v =νλ=λE h。
《好题》人教版高中物理选修3-第5章解答题专项(含答案)

一、解答题1.原来静止的铀238和钍234同时在同一匀速磁场中,由于衰变而开始做匀速圆周运动。
铀238发生了一次α衰变,钍234发生了一次β衰变。
(1)试画出铀238发生一次α衰变时所产生的新核及α粒子在磁场中的运动轨迹的示意图。
(2)试画出钍234发生一次β衰变时所产生的新核及β粒子在磁场中的运动轨迹的示意图。
解析:(1);(2)(1)铀238发生衰变时,由于放出α粒子而产生了新核,根据动量守恒定律它们的总动量为零,即11220m v m v +=因为它们都带正电,衰变时的速度正好相反,所以受到的洛伦兹力方向也相反,又因决定了它们做圆周运动的向心力由洛伦兹力提供。
即2v m Bqv R= 所以mv R Bq=又因为1122m v m v =所以2221R q R q = 由于12q =,292290q =-=因而12451R R = 如图甲所示,其中轨道a 为α粒子的轨迹,轨道半径为1R ,轨道b 为新核的轨迹,其轨道半径为2R 。
(12R R >)(2)同理,钍234发生一次β衰变时放出β粒子时与产生的新核的动量大小相等,方向相反,即总动量为零。
可是,β粒子带负电,新核带正电,它们衰变时的速度方向相反,但受洛伦兹力方向相同,所以,它们的两个轨迹圆是内切的,且β粒子的轨道半径大于新核的轨道半径,它们的轨迹示意图如图乙所示,其中,c 为β粒子的轨迹,d 为新核的轨迹。
2.α粒子以初速度v 0轰击静止的氮14原子核打出一种新的粒子,同时产生原子核氧17,新的粒子速度为3v 0,且方向与α粒子初速度相同,反应过程中释放的能量完全转化为系统的动能。
已知中子质量为m ,质子质量和中子质量相等,质量数为A 的原子核的质量为m 的A 倍,光速为c ,求: (1)写出该反应的核反应方程式; (2)计算此反应过程中的质量亏损。
解析:(1)4141712781He N O H +→+;(2)224317mv m c∆= 【分析】本题考察核反应方程的书写和动量守恒定律的应用。
2021-2022高二物理人教版选修3-5学案:第十六章 5 反冲运动 Word版含答案

5反冲运动火箭[目标定位] 1.生疏反冲运动,能举出几个反冲运动的实例.2.结合动量守恒定律对反冲现象做出解释;进一步提高运用动量守恒定律分析和解决实际问题的力量.3.了解火箭的飞行原理及打算火箭最终速度大小的因素.一、反冲运动1.反冲:依据动量守恒定律,假如一个静止的物体在内力的作用下分裂为两个部分,一部分向某个方向运动,另一部分必定向相反的方向运动.2.反冲现象的应用及防止(1)应用:农田、园林的喷灌装置是利用反冲使水从喷口喷出时,一边喷水一边旋转,可以自动转变喷水的方向.(2)防止:用枪射击时,由于枪身的反冲会影响射击的精确性,所以用步枪射击时要把枪身抵在肩部,以削减反冲的影响.想一想为什么反冲运动系统动量守恒?答案反冲运动是系统内力作用的结果,虽然有时系统所受的合外力不为零,但由于系统内力远远大于外力,所以系统的总动量是守恒的.二、火箭1.工作原理:火箭的工作原理是反冲运动,其反冲过程动量守恒.它靠向后喷出的气流的反冲作用而获得向前的速度.2.影响火箭获得速度大小的因素(1)喷气速度:现代液体燃料火箭的喷气速度约为2__000~4__000 m/s.(2)火箭的质量比:指火箭起飞时的质量与火箭除燃料外的箭体质量之比,打算于火箭的结构和材料.现代火箭的质量比一般小于10.喷气速度越大,质量比越大,火箭获得的速度越大.一、对反冲运动的理解1.反冲运动的特点及遵循的规律(1)特点:是物体之间的作用力与反作用力产生的效果.(2)条件:①系统不受外力或所受外力之和为零;②内力远大于外力;③系统在某一方向上不受外力或外力分力之和为零;(3)反冲运动遵循动量守恒定律.2.争辩反冲运动应留意的两个问题(1)速度的反向性对于原来静止的整体,抛出部分具有速度时,剩余部分的反冲与抛出部分必定相反.(2)速度的相对性一般都指对地速度.例1图16-5-1质量相等的A、B两球之间压缩一根轻质弹簧,静置于光滑水平桌面上,当用板拦住小球A而只释放B球时,B球被弹出落到距桌边水平距离为s的地面上,如图16-5-1所示.若再次以相同力压缩该弹簧,取走A左边的挡板,将A、B同时释放,则B球的落地点距桌边()A.s2 B.2s C.s D.22s答案D解析挡板拦住A球时,弹簧的弹性势能全部转化为B球的动能,有E p=12m v2B,挡板撤走后,弹性势能被两球平分,则有E p=2×12m v B′2,由以上两式解得v B′=22v B,由于B球抛出后做平抛运动,s=v0t=v02hg所以D对.针对训练图16-5-2如图16-5-2所示是一门旧式大炮,炮车和炮弹的质量分别是M 和m ,炮筒与地面的夹角为α,炮弹出口时相对于地面的速度为v 0.不计炮车与地面的摩擦,求炮身向后反冲的速度v 为________.答案 m v 0cos αM解析 取炮弹与炮车组成的系统为争辩对象,因不计炮车与地面的摩擦,所以水平方向动量守恒.炮弹放射前,系统的总动量为零,炮弹放射后,炮弹的水平分速度为v 0cos α,依据动量守恒定律有:m v 0cos α-M v =0所以炮车向后反冲的速度为v =m v 0cos αM .二、火箭的原理1.火箭燃料燃尽时火箭获得的最大速度由喷气速度v 和质量比Mm (火箭起飞时的质量与火箭除燃料外的箭体质量之比)两个因素打算.2.火箭喷气属于反冲类问题,是动量守恒定律的重要应用.在火箭运动的过程中,随着燃料的消耗,火箭本身的质量不断减小,对于这一类的问题,可选取火箭本身和在相互作用的时间内喷出的全部气体为争辩对象,取相互作用的整个过程为争辩过程,运用动量守恒的观点解决问题.例2 一火箭喷气发动机每次喷出m =200 g 的气体,气体离开发动机喷出时的速度v =1 000 m/s.设火箭质量M =300 kg ,发动机每秒钟喷气20次. (1)当第三次喷出气体后,火箭的速度多大? (2)运动第1 s 末,火箭的速度多大? 答案 (1)2 m/s (2)13.5 m/s解析 火箭喷气属反冲现象,火箭和气体组成的系统动量守恒,运用动量守恒定律求解. (1)选取整体为争辩对象,运用动量守恒定律求解. 设喷出三次气体后火箭的速度为v 3,以火箭和喷出的三次气体为争辩对象,据动量守恒定律得:(M -3m )v 3-3m v =0,故v 3=3m v M -3m=2 m/s(2)发动机每秒钟喷气20次,以火箭和喷出的20次气体为争辩对象,依据动量守恒定律得:(M -20m )v 20-20m v=0,故v 20=20m vM -20m=13.5 m/s.借题发挥 分析火箭类问题应留意的三个问题(1)火箭在运动过程中,随着燃料的燃烧,火箭本身的质量不断减小,故在应用动量守恒定律时,必需取在同一相互作用时间内的火箭和喷出的气体为争辩对象.留意反冲前、后各物体质量的变化.(2)明确两部分物体初、末状态的速度的参考系是否为同一参考系,假如不是同一参考系要设法予以调整,一般状况要转换成对地的速度.(3)列方程时要留意初、末状态动量的方向.反冲物体速度的方向与原物体的运动方向是相反的. 三、反冲运动的应用——“人船模型” 1.“人船模型”问题两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题. 2.人船模型的特点(1)两物体满足动量守恒定律:m 1v 1-m 2v 2=0.(2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1.(3)应用此关系时要留意一个问题:即公式v 1、v 2和x 一般都是相对地面而言的. 例3图16-5-3如图16-5-3所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开头从船头走到船尾,不计水的阻力,求船和人相对地面的位移各为多少?。
河南省商城高中人教版高中物理选修3-第5章解答题专项经典练习题(含答案解析)

一、解答题1.一个验电器带正电,因为空气干燥,验电器金属箔的张角能维持很长的时间。
现有一束α射线射向这个验电器上端的金属球,验电器金属箔的张角将会怎样变化?为什么? 解析:张角变小,原因见详解验电器金箔的张角将变小。
因为α射线具有一定的电离作用,它能使所经过的路径中空气分子电离,使空气变成导体,从而使带正电的验电器上的正电荷发生转移、中和,所以验电器金属箔的张角将变小。
2.在微观领域,动量守恒定律和能量守恒定律依然适用。
在轻核聚变的核反应中,两个氘核(21H )以相同的动能 E K 0=0.35 MeV 做对心碰撞,假设该反应中释放的核能全部转化为氦核(32He )和中子(10 n )的动能。
已知氘核的质量 m D =2.014 1u ,中子的质量 m n =1.008 7u ,氦核的质量 m He =3.016 0u ,其中 1u 相当于 931 MeV :(1)在上述轻核聚变的核反应中释放的核能为多少 MeV ?(结果保留2 位有效数字) (2)生成的氦核和中子的动能各是多少 MeV ?(结果保留 1 位有效数字) 解析:(1)3.3MeV ;(2)kHe 1MeV E =,kn 3MeV E = (1)核反应方程式为2311202H H n →+亏损的质量为2 2.0141u 3.0160u 1.0087u 0.0035u m ∆=⨯--=释放的核能0.0035931MeV 3.3MeV E =⨯≈(2)根据核反应中系统的能量守恒kHe kn k02E E E E +=+∆根据核反应中系统的动量守恒,有He n 0p p -=可知kHe n kn He 13E m E m == 解得kHe 01(2)1MeV 4E E E =+∆=kn 03(2)3MeV 4E E E =+∆=3.在微观领域,动量守恒定律和能量守恒定律依然适用.在轻核聚变的核反应中,两个氘核(21H)以相同的动能E 0=0.35MeV 做对心碰撞,假设该反应中释放的核能全部转化为氦核(32He)和中子(10n)的动能.已知氘核的质量m D =2.0141u ,中子的质量m n =1.008 7 u ,氦核的质量m He =3.0160u ,其中1 u 相当于931MeV.在上述轻核聚变的核反应中生成的氦核和中子的动能各是多少MeV ?(结果保留一位有效数字) 解析:He 1MeV E =,n 3MeV E = 该反应的核反应方程为2311202H He n →+由质能方程可知,该反应放出的核能为()2D He n 2 3.2585MeV E m m m c =--=核反应前后,能量守恒,故0He n 2E E E E +=+核反应前后由动量守恒He n 0P P -=由22k p E m=,可得He n n He 13E m E m =≈ 联立,解得He 1MeV E = n 3MeV E =4.已知质量为m 1的静止137N 衰变为质量为m 2的126C ,放出质量为m 3的某种粒子,并伴有一个γ光子辐射,求: (1)写出核反应方程式; (2)反应放出的核能△E ;(3)若放出粒子动量大小是p 1,γ光子动量大小为p 2,它们方向相同,求126C 动量大小。
2021-2022高二物理教科版选修3-5学案:第一章 1、2 碰撞 动量 Word版含答案

学案1 碰撞 学案2 动量[目标定位] 1.知道什么是碰撞,把握弹性碰撞和非弹性碰撞的区分.2.理解动量、冲量的概念,知道动量的转变量,并会求动量的转变量.3.理解动量定理的物理意义和表达式,能用动量定理解释现象和解决实际问题.一、碰撞中的动能变化及碰撞分类 [问题设计]某试验小组用课本中“探究碰撞前后物体动能的变化”的试验方案,探究碰撞前后动能的变化.争辩中分别得到了两组数据,如下表所示: m 1与静止的m 2碰撞,碰后分开(表一)m 1与静止的m 2碰撞,碰后粘合在一起(表二)答案 计算结果:①0.016 5 ②0.014 6 ③0.008 8 ④0.004 5从表一的数据可以看出:在试验误差允许范围内,两滑块碰撞前后的总动能几乎相等. 从表二的数据可以看出,两滑块碰撞前后的总动能并不相等,碰撞后总动能削减了.[要点提炼] 1.碰撞的定义做相对运动的两个(或几个)物体相遇而发生相互作用,在很短的时间内,它们的运动状态会发生显著变化,这一过程叫做碰撞. 2.碰撞的分类(1)弹性碰撞:碰撞前后两滑块的总动能不变. (2)非弹性碰撞:碰撞后两滑块的总动能削减了.(3)完全非弹性碰撞:两物体碰后粘在一起,以相同的速度运动. 3.弹性碰撞和非弹性碰撞的区分(1)从形变的角度:发生弹性碰撞的两物体碰后能够恢复原状,而发生非弹性碰撞的两物体碰后不能恢复原状.(2)从动能的角度:弹性碰撞的两物体碰撞前后动能守恒,非弹性碰撞的两物体碰撞后的动能削减,完全非弹性碰撞中动能损失最多. 二、动量 1.动量的概念(1)概念:物体的质量和速度的乘积定义为该物体的动量. (2)公式:p =m v .(3)单位:国际单位制为千克·米/秒(kg·m/s) 2.对动量的理解(1)动量的矢量性:动量是矢量,它的方向与速度v 的方向相同. (2)动量是相对量:由于速度与参考系的选择有关.一般以地面为参考系. 3.对动量变化Δp =p ′-p 的理解 (1)矢量性:与速度变化的方向相同.(2)若p ′、p 不在一条直线上,要用平行四边形定则求矢量差;若p ′、p 在一条直线上,先规定正方向,再用正、负表示p ′、p ,则可用Δp =p ′-p =m v ′-m v 进行代数运算. 4.动量p =m v 与动能E k =12m v 2的区分动量和动能表达式分别为p =m v 和E k =12m v 2.动量是矢量,而动能是标量.当速度发生变化时,物体的动量发生变化,而动能不肯定(填“肯定”或“不肯定”)发生变化. 三、动量定理 [问题设计]如图1所示,一个质量为m 的物体在碰撞时受到另一个物体对它的力是恒力F ,在F 的作用下,经过时间t ,速度从v 变为v ′,应用牛顿其次定律和运动学公式推导物体的动量转变量Δp 与恒力F 及作用时间t 的关系.图1答案 这个物体在碰撞过程的加速度a =v ′-vt ①依据牛顿其次定律F =ma ② 由①②得F =m v ′-vt整理得:Ft =m (v '-v )=m v ′-m v 即Ft =m v ′-m v =Δp [要点提炼] 1.冲量(1)冲量的定义式:I =Ft .(2)冲量是过程(填“过程”或“状态”)量,反映的是力在一段时间内的积累效果. (3)冲量是矢量,冲量的方向与力F 的方向相同. 2.动量定理(1)内容:物体在一个过程始末,所受合力与作用时间的乘积等于物体的动量变化. (2)数学表达式:Ft =m v ′-m v ,其中F 为物体受到的合外力. (3)对动量定理的理解①动量定理反映了合外力的冲量是动量变化的缘由.②动量定理的表达式是矢量式,运用动量定理解题时,要留意规定正方向.③公式中的F 是物体所受的合外力,若合外力是变力,则F 应是合外力在作用时间内的平均值.一、碰撞的分类及其特点例1 一个质量为2 kg 的小球A 以v 0=3 m/s 的速度与一个静止的、质量为1 kg 的小球B 正碰.试依据以下数据,分析碰撞性质.(1)碰后A 、B 的速度均为2 m/s.(2)碰后A 的速度为1 m /s ,B 的速度为4 m/s. 解析 碰前系统的动能E k0=12m A v 0 2=9 J. (1)当碰后A 、B 速度均为2 m/s 时,碰后系统的动能 E k =12m A v A 2+12m B v B2 =(12×2×22+12×1×22) J =6 J<E k0 故碰撞为非弹性碰撞.(2)当碰后v A =1 m /s ,v B =4 m/s 时,碰后系统的动能 E k ′=12m A v 2A +12m B v B2 =(12×2×12+12×1×42) J =9 J =E k0 故碰撞为弹性碰撞.答案 (1)非弹性碰撞 (2)弹性碰撞 二、对动量及变化量的理解例2 羽毛球是速度较快的球类运动之一,运动员扣杀羽毛球的速度可达到100 m /s ,假设球飞来的速度为50 m/s ,运动员将球以100 m/s 的速度反向击回.设羽毛球的质量为10 g ,试求: (1)羽毛球的动量变化量; (2)羽毛球的动能变化量.解析 (1)以羽毛球飞来的方向为正方向,则羽毛球的初速度:v =50 m /s ,羽毛球的末速度:v ′=-100 m/s p 1=m v 1=10×10-3×50 kg·m /s =0.5 kg·m/s. p 2=m v 2=-10×10-3×100 kg·m /s =-1 kg·m/s所以动量的变化量Δp =p 2-p 1=-1 kg·m /s -0.5 kg·m/s =-1.5 kg·m/s. 即羽毛球的动量变化量大小为1.5 kg·m/s ,方向与羽毛球飞来的方向相反.(2)羽毛球的初动能:E k =12m v 2=12.5 J ,羽毛球的末动能:E k ′=12m v ′2=50 J.所以ΔE k =E k ′-E k =37.5 J.答案 (1)1.5 kg·m/s ,方向与羽毛球飞来的方向相反 (2)37.5 J三、对动量定理的理解和应用例3 质量为0.5 kg 的弹性小球,从1.25 m 高处自由下落,与地板碰撞后回跳高度为0.8 m ,g 取10 m/s 2. (1)若地板对小球的平均冲力大小为100 N ,求小球与地板的碰撞时间;(2)若小球与地板碰撞无机械能损失,碰撞时间为0.1 s ,求小球对地板的平均冲力.。
高中物理教科版选修3-5教学案:第三章 章末盘点 Word版含答案
专题三
半衰期的计组成的放射性样品中,放射性元素的原子核有一半发生衰变所需的时间。
2、计算公式
N′=N0( )n或m′=m0( )n,其中n=t/T。(式中N′、m′为衰变后剩余的原子数量和质量,N0、m0为衰变前原子数量和质量,n为半衰期个数,t是所用时间)。
(4)在写核反应方程时,应先将已知原子核和已知粒子的符号填入核反应方程一般形式的适当位置上;然后根据质量数守恒和电荷数守恒规律计算出未知核(或未知粒子)的电荷数和质量数;最后根据未知核(或未知粒子)的电荷数确定它们是哪种元素(或哪种粒子),并在核反应方程一般形式中的适当位置填写上它们的符号。
[例1]关于核衰变和核反应的类型,下列表述正确的有()
详细解析:选ACE密立根通过油滴实验测出了元电荷即基本电荷的数值,A项正确;贝克勒尔发现了天然放射现象,说明原子核具有复杂的结构,卢瑟福通过α粒子散射实验确定了原子的核式结构模型,B项错误;居里夫妇从沥青铀矿中分离出了钋和镭两种新元素,C项正确;卢瑟福用镭放射出的α粒子轰击氮的原子核,从中找出了新的粒子,通过测定其质量和电荷,确定该粒子为氢的原子核,证实了原子核内部存在质子,D项错误;汤姆孙根据阴极射线在电场和磁场中的偏转情况确定了阴极射线的本质是带电的粒子流,并测出了这种粒子的比荷,E项正确。
5、太阳能是由于太阳内部高温高压条件下的聚变反应产生的,下列核反应属于聚变反应的是()
图1
A. H+ H―→ He+ n
B. 7N+ He―→ 8O+ H
C. 92U+ n―→ 54Xe+ Sr+10 n
D. 92U―→ 90Th+ He
详细解析:选AA是聚变反应,B是人工转变的核反应,C是裂变反应,D是α衰变反应,故选项A是正确的。
人教版物理选修3-5 第十六章 动量守恒定律16.2 动量和动量定理 同步练习题(含解析)
人教版物理选修3-5第16章第2节动量和动量定理同步练习一、单选题(本大题共13小题,共52.0分)1.下列说法正确的是()A. 速度大的物体,它的动量一定也大B. 动量大的物体,它的速度一定也大C. 只要物体的运动速度大小不变,则物体的动量也保持不变D. 物体的动量变化越大则该物体的速度变化一定越大2.下面关于冲量的说法正确的是( )A. 只要力恒定,不管物体运动状态如何,其冲量就等于该力与时间的乘积B. 当力与位移垂直时,该力的冲量一定为零C. 物体静止时,其重力的冲量一定为零D. 物体受到很大的力时,其冲量一定很大3.古时有“守株待兔”的寓言.设兔子的头部受到大小等于自身体重的打击力即可致死,并设兔子与树桩作用时间为0.3 s,则被撞死的兔子其奔跑的速度可能为(g取10 m/s2)A. 1m/sB. 1.5m/sC. 2m/sD. 3m/s4.如果一物体在任意相等的时间内受到的冲量相等,则此物体的运动不可能是()A. 匀速圆周运动B. 自由落体运动C. 平抛运动D. 竖直上抛运动5.质量为m的物体以初速v0做竖直上抛运动,不计空气阻力,从抛出到落回抛出点这段时间内,以下说法正确的是( )A. 物体动量变化大小是零B. 物体动量变化大小是2mv0C. 物体动量变化大小是mv0D. 重力的冲量为零6.对于力的冲量,下列说法正确的是()A. 力越大,力的冲量就越大B. 作用在物体上的力大,力的冲量不一定大C. 竖直上抛运动中,上升和下降过程时间相等,则重力在整个过程中的冲量等于零D. 竖直上抛运动中,上升和下降过程时间相等,则上升和下降过程中重力的冲量等大、反向7.如图所示,光滑水平面上有质量均为m的物块A和B,B上固定一轻质弹簧,B静止,A以速度v0水平向右运动,从A与弹簧接触至弹簧被压缩到最短的过程中( )A. A,B的动量变化量相同B. A,B的动量变化率相同C. A,B系统的总动能保持不变D. A,B系统的总动量保持不变8.如图所示,质量为m P=2 kg的小球P从离水平面高度为h=0.8 m的光滑斜面上滚下,与静止在光滑水平面上质量为m Q=2 kg的带有轻弹簧的滑块Q碰撞,g=10 m/s2,下列说法正确的是( )A. P球与滑块Q碰撞前的速度为5m/sB. P球与滑块Q碰撞前的动量为16kg·m/sC. 它们碰撞后轻弹簧压缩至最短时的速度为2m/sD. 当轻弹簧压缩至最短时其弹性势能为16 J9.如图所示,斜面和水平面之间通过小圆弧平滑连接,质量为m的物体(可视为质点)从斜面上h高处的A点由静止开始沿斜面下滑,最后停在水平地面上的B点.要使物体能原路返回A点,在B点物体需要的最小瞬时冲量是()A. 12m√gℎ B. m√gℎ C. 2m√gℎ D. 4m√gℎ10.如图所示,一段不可伸长的轻质细绳长为L,一端固定在O点,另一端系一个质量为m的小球(可以视为质点),保持细绳处于伸直状态,把小球拉到跟O点等高的位置由静止释放,在小球摆到最低点的过程中,不计空气阻力,重力加速度大小为g,则()A. 合力做的功为0B. 合力做的冲量为0C. 重力做的功为mgLD. 重力的冲量为m√2gL11.质量为m的小球被水平抛出,经过一段时间后小球的速度大小为v,若此过程中重力的冲量大小为Ⅰ,重力加速度为g,不计空气阻力的大小,则小球抛出时的初速度大小为()A. v−Im B. v−ImgC. √v2−I2m2D. √v2−I2m2g212.质量为1 kg的小球从空中自由下落,与水平地面相碰后弹到空中某一高度,其速度—时间图像如图所示,以竖直向上为正,重力加速度g取10 m/s2。
学年高二物理教科版选修3-5教案:第二章第1节 电子 Word版含答案
第二章原子结构一、电子的发现教学目标1、了解人类认识物质组成的一个重要历史过程——电子的发现2、知道如何确定阴极射线粒子流的电荷的性质,知道如何确定电子的电荷量和质量,知道电子质量和电荷量的大小重点难点重点:阴极射线的研究、电子发现过程蕴含的科学方法难点:汤姆孙发现电子的理论推导设计思想本节由阴极射线和电子的发现两部分内容。
重点是电子的发现过程蕴含的科学方法。
首先通过实验说明阴极射线的存在,然后介绍英国物理学家J.J汤姆孙的两个实验来确定射线的带电性质,最后通过比荷的测定确认电子是原子的组成部分,原子并不是组成物质的最小微粒。
设计时注重物理史实的介绍和研究,突出前人研究的思路和方法。
但由于条件的限制,几乎不可能在课堂上还原相关的实验。
但教师应当通过适当的方式帮助学生理解实验的原理和方法,训练学生科学的思维品质。
教学资源多媒体课件教学设计【课堂引入】很早以来,人们一直认为构成物质的最小粒子是原子,原子是一种不可再分割的粒子。
这种认识一直统治了人类思想近两千年。
直到19世纪末,科学家对实验中的阴极射线深入研究时,发现了电子,使人类对微观世界有了新的认识。
电子的发现是19世纪末、20世纪初物理学三大发现之一。
【课堂学习】学习活动一:阴极射线的研究问题一:射线从何而来的?气体分子在高压电场下可以发生电离,使本来不带电的空气分子变成具有等量正、负电荷的带电粒子,使不导电的空气变成导体。
史料:1858年德国物理学家普吕克尔较早发现了气体导电时的辉光放电现象。
德国物理学家戈德斯坦研究辉光放电现象时认为这是从阴极发出的某种射线引起的。
所以他把这种未知射线称之为阴极射线。
问题二:射线是粒子还是电磁波?带电吗?对于阴极射线的本质,有大量的科学家作出大量的科学研究,主要形成了两种观点。
(1)电磁波说:代表人物,赫兹。
认为这种射线的本质是一种电磁波的传播过程。
(2)粒子说:代表人物,汤姆孙。
认为这种射线的本质是一种高速粒子流。
(必考题)人教版高中物理选修3-第5章解答题专项经典练习题(答案解析)(1)
一、解答题1.用放射源钋放出的α射线轰击铍94Be 时,能放出一种穿透力极强的中性射线,这就是所谓的铍“辐射”。
1932年,英国物理学家查德威克用铍“辐射”分别照射(轰击)氢和氮(氢和氮可视为静止),测得照射后沿铍“辐射”方向高速运动的氢核和氮核的速度之比为7∶1.查德威克假设铍“辐射”是由一种质量不为零的中性粒子构成的,从而通过上述实验在历史上首次发现了中子,为人类确定原子核的结构做出了重要贡献。
若已知α粒子的质量为4.001509u ,中子的质量为1.008665u ,铍核的质量为9.01219u ,碳核的质量为12.00000u ,试写出发现中子的核反应方程,并确定核反应中所释放的核能为多少?(1u 的质量相当于931.5MeV 的能量) 解析:42He +94Be→126C +10n ,4.7MeV 根据题意可写出发现中子的核反应方程为42He +94Be→126C +10n可得核反应过程中的质量亏损为He Be C n 0.005034m m m m m u ∆=+--=根据质能方程ΔE =Δmc 2得该核反应所释放的核能为931.5Mev0.005034 4.7Mev 1E u u∆=⨯≈ 2.两个动能均为1MeV 的氘核发生正面碰撞,引起如下反应:22311111H H H H +→+试求:(1)此核反应中放出的能量E ∆为多少?(2)若放出的能量全部变为新生核的动能,则新生的氢核具有的动能是多少?(21H )的质量为2.0136u ,31H 的质量为3.0156u 。
11H 的质量为1.0073u 。
1u=931.5MeV ) 解析:(1)4.005MeV ;(2)4.5MeV(1)此核反应中的质量亏损和放出的能量分别为2 2.0136 3.0156 1.0073u 0.004()3u m ∆=⨯--=20.004931.5MeV 4.005MeV 3E mc ∆=∆=⨯= (2)因碰前两氘核动能相同,相向正碰,故碰前的总动量为零,因核反应中的动量守恒,故碰后质子和氚核的总动量也为零,设其动量分别为1p 和1p -必有12p p =-设碰后质子和氚核的动能分别为E k1和E k2,质量分别为m 1和m 2,则212k11112222k2221231p E m v m m p E m v m m ====故新生的氢核的动能为()1k033(4.0052) 4.5MeV 44k E E E MeV =∆+=+= 3.在微观领域,动量守恒定律和能量守恒定律依然适用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理选修3-5课后习题答案冲量与动量1.答案:0详解:4*20 - 5*16,减号是因为两个冲量反向。
2.答案:A详解:因为二者动量都是正,于是速度方向相同,要保证二者相碰,左边那个要去追右边的,于是左球速度大,因为B质量大,于是B速度小,于是右球是B.碰后A动量是2 kg?m/s 据动量守恒,B动量是10 kg?m/s.动量除以质量得到速度比。
3.答案:B详解:因为A在B后方嘛,碰后A会减速,B会加速,于是A动量必然减小,根据动量守恒,C不可能,B才对。
4.答案:BD详解:冲量大小肯定是一样的。
因为这就是作用力和反作用力的冲量。
然而人质量小,于是速度改变量大,于是人走得快。
D说得很明确了,就是因为动量守恒,船必停。
5.答案:3588N详解:先算落地速度,从1.28米高度落地,根据自由落体公式,速度是5.0m/s (g取9.8)然后落地速度减为0,根据Ft = m△v,F = 3000N。
然后加上重力588N即可6.答案:D详解:冲量表征的是动量变化量。
D就是按定义判断的。
A错,冲量和速度没什么关系。
B错,力作用时间未知。
C错,力作用时间和物体质量都未知。
7.答案:D详解:重物动量改变量不少,但是动量改变的时间大大延长了。
不拉皮筋,动量瞬间变为0,有了皮筋,动量要过一会儿才减为0.动量改变量不少,也就是受到的冲量不变。
这么看,只有D对。
8.答案:BD详解:二者位移一样,然而上升过程阻力和重力都同向,下降过程阻力和重力反向,于是上升过程加速度大,时间短,重力冲量小。
比较速度改变量,因为回到抛出点速度必然小于初速度,于是上升过程改变量大,上升过程合外力冲量大。
C项,重力方向不变,重力冲量方向也不变,都是竖直向下。
D项空气阻力反向,于是冲量方向也是反向。
动量守恒定律及其应用1. 答案:2.9m/s详解,由系统动量守恒得:MV0 - m v′= mv 于是V0可以算出是2.9m/s2.答案:D详解:机械能必然不守恒,因为子弹和木块之间的作用摩擦生热。
动量也不守恒,因为水平方向系统是受到墙壁的作用力的。
3. 答案:ABD详解:AB严格符合动量守恒的条件。
C不行,因为系统水平方向受到墙的作用力。
D可以,爆炸瞬间作用力极大,这一瞬间可以忽略其他比较小的力(比如重力),动量爆炸瞬间动量守恒。
4.答案:CD详解:t1时刻弹簧压缩,这点很明显,t3时刻之前,B速度大于A速度,因此这段时间B和A之间的距离越拉越大,t3时刻弹簧是拉伸的。
AB不对。
至于质量比,因为t1时刻二者速度都是1m/s。
于是可以根据动量守恒和初始条件,轻松求得C对。
质量比由C项求出,t2时刻速度比由图得出,于是动能比好算了,D正确。
5.答案:BC详解:a未离开墙壁时,系统受到墙壁的水平力作用,动量不守恒。
A离开墙后,系统水平方向不受外力,动量守恒很显然。
6. 答案:B详解:列车原来做匀速直线运动,牵引力F等于摩擦力f,f=k(m+M)g(k为比例系数),因此,整个列车所受的合外力等于零.尾部车厢脱钩后,每一部分所受摩擦力仍正比于它们的重力.因此,如果把整个列车作为研究对象,脱钩前后所受合外力始终为零,在尾部车厢停止前的任何一个瞬间,整个列车(前部+尾部)的动量应该守恒.考虑刚脱钩和尾部车厢刚停止这两个瞬间,由(m+M)v0=0+Mv得此时前部列车的速度为7.答案:B详解:全部的车和人,以及那个球,是一个系统,动量守恒。
现在系统分成了两部分,A车和人,B车和人和球。
现在两部分速度方向相反,在相互远离。
明显前者质量小,于是根据动量守恒,前者速率大。
相互作用过程中的能量转化1.答案:BC详解:B明显对,速度变化量就是6 -(-6)= 12m/s。
小球动能不变,因此W是0.2. 答案:详解:(1)设C球与B球碰撞结成D时,D的速度为v1,由动量守恒定律有mv0=2mv1当弹簧压至最低时,D与A有共同速度,设此速度为v2,由动量守恒定律有2mv1=3mv2两式联立求得A的速度v2= v0(2)设弹簧长度被锁定后,储存在弹簧中的弹性势能为Ep,由能量守恒有Ep= ?2mv12- ?3mv22撞击P后,A、D均静止.解除锁定后,当弹簧刚恢复到原长时,弹性势能全部转为D球的动能,设此时D的速度为v3,由能量守恒有2mv32=Ep以后弹簧伸长,A球离开挡板P,当A、D速度相等时,弹簧伸长到最长,设此时A、D速度为v4,由动量守恒定律有2mv3=3mv4当弹簧最长时,弹性势能最大,设其为Ep′,由能量守恒有Ep′= ?2mv32- ?3mv42联立以上各式,可得Ep′= mv023. 答案:①详解:炮艇(包括那个发出去的炮弹)作为一个系统动量守恒,在地面参考系中看,动量守恒方程就是①4.答案:(1)0.67m/s,向后(2)40N详解:(1)用动量守恒:因为是在水面上,可以看成是在在水平方向上动量守恒.0=(M-m)V-mv将M=120Kg,m=0.01Kg,v=800m/s代入,求得V≈0.67m/s.(2)由冲量的表达式:F*t=ΔP=MV-0.将M=120Kg,V=0.67m/s,t=2s代入,求得F=40N(因为子弹的质量相对120kg太小了,打掉子弹后质量的那一点儿损耗忽略不计)5. 答案:D详解:自由下落,那么二者相对静止。
于是整个系统状态不变。
6. 答案:碰后球1、球2的速度为零,球3速度为v0.详解:根据动量守恒中"速度交换"的结论,也就是当完全弹性碰撞的两个物体质量相同时,一个物体碰后速度等于碰前另一个物体的速度,这就是速度交换。
然后容易得出,第一次碰撞,1静止,2速度是v0,然后2立马和3碰撞,2停下,3速度是v07.答案:BC详解:根据动量守恒,可见最终子弹和木块速度都是v/2。
子弹克服阻力会做功,它等于子弹动能的减少,这是根据动能定理。
容易算,这个数是系统机械能损失量,也就是系统内能增量,容易得出,是木块动能增量,也就是冲击力对木块的功,是于是BC正确光的波粒二象性1.答案:C详解:光电子的最大初动能等于入射光的能量减去逸出功,是一种线性关系,但不是正比关系,AB错;C正确;D绿光频率虽然比黄光高,但不能说明,黄光不能发生光电效应;2.答案:C详解:对比光的双缝干涉可以得出结论,微观粒子具有波动性;3.答案:AD详解:紫光频率比蓝光高,红光频率比蓝光低,A正确,B错误;锌版发生光电效应后,有光电子飞出,锌版缺少电子,从而带上正电荷,锌版又与验电器相连使验电器也带上正电荷,C错误,D正确;4.答:0.99×10-19J详解:逸出功,光电子的最大初动能5. 答案:2×10-4 s 5×1015个6.答案:C详解:增加绿光的照射强度,光电子的逸出效率提高,但是光电子的最大初动能取决于光子能量和逸出功的差,还是绿光,这个能量不会发生变化,如果换成是紫光则,最大初动能增大,但是光电子数目是否增加取决于照射强度;7.答案:C详解:激光切割是利用经聚焦的高功率密度激光束照射工件,使被照射的材料迅速熔化、汽化、烧蚀或达到燃点,同时借助与光束同轴的高速气流吹除熔融物质,从而实现将工件割开。
8.答案:C详解:光的波动性主要表现在干涉衍射上,波长越长,现象越明显;而光的波动性主要由光电效应体现,波长越短,频率越高,粒子性越显著;原子结构1.答案:ACD详解:卢瑟福的原子结构是核式结构。
在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间里绕着核旋转,因为α粒子散射实验发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,少数α粒子发生较大偏转,极少数α粒子偏转角超过了90度,有的甚至被弹回。
所以卢瑟福才提出原子核式结构模型2.答案:AB详解:理论的三条基本假设是:①定态假设:原子只能处于一系列不连续的能量的状态中,在这些状态中原子是稳定的,这些状态叫定态。
原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应,原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的,电子在这些可能的轨道上的运动是一种驻波形式的振动。
②跃迁假设:原子系统从一个定态过渡到另一个定态,伴随着光辐射量子的发射和吸收。
辐射或吸收的光子的能量由这两种定态的能量差来决定,即hν=|E初-E末|③轨道量子化:电子绕核运动,其轨道半径不是任意的,只有电子在轨道上的角动量满足下列条件的轨道才是可能的:mvr=nh/(2π)(n=1,2,3...)式中的n是正整数,称为量子数。
3. 答案:10.2、-1.514答案:ABE详解:根据光谱产生的机制可分为发射光谱(原子从高能级向低能级跃迁时,向外辐射的光波)和吸收光谱(原子从低能级向高能级跃迁时,吸收某种频率的光波);由光谱的外观特点又可分为连续光谱和线状光谱。
其中线状光谱反映了物质对应的化学成分,因此可用于光谱分析.炽热的固体、液体或高压气体产生的发射光谱是连续光谱,而稀薄气体发光产生的发射光谱是不连续的明线状光谱,可用于进行光谱分析AB正确;吸收光谱是连续光谱中某些波长的光被吸收后产生的暗线状光谱,也属于线状光谱,可用于光谱分析;煤气灯火焰中燃烧的钠蒸汽产生的光谱为明线状的发射光谱。
吸收光谱中的谱线(暗线),也是原子的特征谱线,只是通常在吸收光谱中看到的特征谱线比明线光谱中的少.C错;5. 答案:A详解:碰撞后,汞的核外电子可能跃迁到高能级,根据能量守恒,跃迁到第二能级时吸收4.9eV的能量剩余4.1eV;依次类推可知,跃迁到第三能级,剩余1.3eV,跃迁到第四能级,剩余0.2eV,选A6.答案:C7.答案:C详解:根据波尔理论,量子数n越大,所处的能级越高,挣脱原子核束缚的能力也越强,能量也越大。
8. 答案:6,12.75详解:4到3,4到2,4到1,3到2,3到1,2到1,一共六种,能量最高的光子是有4到1产生的,。