八年级(下)期中考试数学试题(08.4.26)

合集下载

八年级数学下册期中测试卷及答案【可打印】

八年级数学下册期中测试卷及答案【可打印】

八年级数学下册期中测试卷及答案【可打印】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中,最简二次根式的是()A.15B.0.5C.5D.502.若关于x的方程3m(x+1)+5=m(3x-1)-5x的解是负数,则m的取值范围是()A.m>-54B.m<-54C.m>54D.m<543.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.若45a =5(b为整数),则a的值可以是()A.15B.27 C.24 D.206.下列二次根式中能与3)A8B 13C18D97.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人8.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形9.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P 3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个10.下列图形具有稳定性的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.若2x=5,2y=3,则22x+y=________.21a 8a=__________.3.若一个正数的两个平方根分别是a+3和2﹣2a,则这个正数的立方根是________.4.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 _________.5.如图,已知函数y =2x +b 与函数y =kx -3的图象交于点P (4,-6),则不等式kx -3>2x +b 的解集是__________.6.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =6,BC =8,则EF 的长为______.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:2361693x x x x -⎛⎫÷- ⎪+++⎝⎭,其中23x .3.已知关于x 的分式方程311(1)(2)x k x x x -+=++-的解为非负数,求k 的取值范围.4.如图,在▱ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,且BE=DF(1)求证:▱ABCD 是菱形;(2)若AB=5,AC=6,求▱ABCD 的面积.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、,台,其中每台乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x y的价格、销售获利如下表:甲型乙型丙型价格(元/台)1000800500销售获利(元/台)260190120(1)购买丙型设备台(用含,x y的代数式表示) ;(2)若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?(3)在第(2)题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、D4、B5、D6、B7、D8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、752、13、44、180°5、x <46、1三、解答题(本大题共6小题,共72分)1、(1)2x 3=;(2)10x 9=.2、13x +,2.3、8k ≥-且0k ≠.4、(1)略;(2)S 平行四边形ABCD =245、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1) 60x y --; (2) 购进方案有三种,分别为:方案一:甲型49台,乙型5台,丙型6台;方案二:甲型46台,乙型10台,丙型4台;方案三:甲型43台,乙型15台,丙型2台;(3) 购进甲型49台,乙型5台,丙型6台,获利最多,为14410元。

2023-2024学年上海市奉贤区八年级下学期期中考数学试卷 含答案

2023-2024学年上海市奉贤区八年级下学期期中考数学试卷 含答案

上海市奉贤区2023-2024学年八年级下学期期中数学试卷一、选择题(本大题共6题,每题3分,满分18分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号1.以下函数中,属于一次函数的是()A.B.y=kx+b(k、b为常数)C.y=c(c为常数)D.2.在下列关于x的方程中,不是二项方程的是()A.81x4﹣16=0B.x3﹣1=0C.x2=8D.x3﹣x=13.用换元法解方程时,如果设,那么原方程可化为关于y的方程是()A.y2+3y﹣1=0B.y2﹣3y﹣1=0C.y2﹣3y+1=0D.y2+3y+1=0(多选)4.下列方程有实数解的是()A.+1=0B.+2=0C.=D.=﹣x5.下列命题错误的是()A.四条边相等的四边形是菱形B.两组对角分别相等的四边形是平行四边形C.一组对角相等且一组对边相等的四边形是平行四边形D.一组对角相等且一组对边平行的四边形是平行四边形6.如图,矩形ABCD的对角线AC和BD相交于点O,AE平分∠BAD交BC于点E,那么∠BOE的度数为()A.55°B.65°C.75°D.67.5°二、填空题(本大题共12题,每题2分,满分24分)7.(2分)直线在y轴上的截距是.8.(2分)已知一次函数y=(k+1)x﹣3的函数值y随着自变量x的值的增大而增大,则k的取值范围是.9.(2分)一次函数y=2x+b的图象沿y轴向上平移3个单位后得到一次函数y=2x+1的图象,则b值为.10.(2分)方程组二元二次方程组.(填“是”或“不是”)11.(2分)方程x4﹣16=0的根是.12.(2分)方程﹣x=0的解是.13.(2分)一个多边形的内角和为720°,那么从这个多边形的一个顶点出发共有条对角线.14.(2分)已知一个菱形的周长为24,一个锐角为60°,则这个菱形的面积为.15.(2分)矩形ABCD的两条对角线交于点O,∠AOD=120°,AC+AB=12.16.(2分)已知某汽车油箱中的剩余油量y(升)与该汽车行驶里程数x(千米)是一次函数关系.当汽车加满油后,油箱中还剩油138升;行驶150千米,当这辆汽车行驶350千米时,油箱中还剩油升.17.(2分)已知:线段AB,BC.求作:平行四边形ABCD.以下是甲同学的作业.①联结AC,作线段AC的垂直平分线,交AC于点M;②联结BM并延长,在延长线上取一点D,使MD=MB,CD.四边形ABCD即为所求平行四边形.如图,甲同学的作图依据是:.18.(2分)在全民健身环城越野赛中,甲、乙两选手的行程y(千米)随时间(时)(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法的序号是.三、解答题(本大题共8题,满分58分)19.(6分)解方程:.20.(6分)解方程组:.21.(6分)解关于y的方程:by2﹣1=y2+2.22.(6分)如图是某辆汽车加满油后,油箱剩油量y(升)关于已行驶路程x(千米)(由两条线段构成).(1)根据图象,当油箱剩油量为26升时,汽车已行驶的路程为千米;当0≤x≤240时,消耗一升油汽车能行驶的路程为千米.(2)当240≤x≤420时,求y关于x的函数表达式,并计算当汽车已行驶300千米时油箱的剩油量.23.(8分)某口罩厂计划在一定时间内生产240万个口罩,后因为防控需要,不但需要增产50%,每天需要多生产8万个口罩.问原计划每天生产多少万个口罩?24.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,延长AE至点G,使EG=AE (1)求证:AE∥CF;(2)当AC=2AB时,求证:四边形EGCF是矩形.25.(8分)已知一次函数y=kx+b(k≠0)的图象经过A(0,2)、B(2,0),点C关于x轴的对称点为C′,把线段CC'以点C为旋转中心,点C′的对应点为D.(1)求一次函数y=kx+b(k≠0)的解析式.(2)求点D的坐标.(3)若点C、C′、D、M为顶点的四边形是平行四边形,且CC′是平行四边形的一条边,求点M的坐标.26.(10分)已知:如图,在矩形ABCD中,AB=4,且AE=AC,联结CE,联结BF、DF.(1)求证:DF⊥BF;(2)设AC=x,DF=y,求y与x之间的函数关系式;(3)当DF=2BF时,求BC的长.上海市奉贤区2023-2024学年八年级下学期期中数学试卷参考答案一、选择题(本大题共6题,每题3分,满分18分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号1.以下函数中,属于一次函数的是()A.B.y=kx+b(k、b为常数)C.y=c(c为常数)D.【分析】根据一次函数的定义回答即可.【解答】解:A、是一次函数;B、k=0时,故B错误;C、不含一次项,故C错误;D、未知数x的次数为﹣1,故D错误.故选:A.【点评】本题主要考查的是一次函数的定义,掌握一次函数的定义是解题的关键.2.在下列关于x的方程中,不是二项方程的是()A.81x4﹣16=0B.x3﹣1=0C.x2=8D.x3﹣x=1【分析】根据二项方程的定义逐个判断得结论.【解答】解:把各方程移项,使等号右边为0、B、C,由于方程D移项后左边是三项,故选项D不是二项方程.故选:D.【点评】本题考查了二项方程的定义,二项方程的左边只有两项,其中一项含未知数x,这项的次数就是方程的次数;另一项是常数项;方程的右边是0.3.用换元法解方程时,如果设,那么原方程可化为关于y的方程是()A.y2+3y﹣1=0B.y2﹣3y﹣1=0C.y2﹣3y+1=0D.y2+3y+1=0【分析】由设出的y,将方程左边两项代换,得到关于y的方程,整理后即可得到结果.【解答】解:设,方程化为y﹣,整理得:y5﹣3y﹣1=6.故选:B.【点评】此题考查了换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.(多选)4.下列方程有实数解的是()A.+1=0B.+2=0C.=D.=﹣x【分析】移项后根据偶次方的非负性即可判断选项A;移项后根据算术平方根的非负性即可判断选项B;方程两边都乘x﹣2,求出x=﹣2,再进行检验,即可判断选项C;方程两边皮肤得出x+2=x2,求出方程的解,再进行检验,即可判断选项D.【解答】解:A.∵x2≥0,∴x2+1>0,∴>4,∴+1=0无实数根;B.∵不论x为何值,,∴+2=3无实数根;C.方程两边都乘x﹣2,解得:x=﹣2,经检验x=﹣4是原方程的根,∴原方程有实数根,故本选项符合题意;D.方程两边平方2,解得:x=2或﹣7,经检验x=2不是原方程的解,x=﹣1是原方程的解,∴原方程有实数根,故本选项符合题意;故选:CD.【点评】本题考查了解无理方程和解分式方程,掌握解无理方程和解分式方程的方法是解此题的关键.5.下列命题错误的是()A.四条边相等的四边形是菱形B.两组对角分别相等的四边形是平行四边形C.一组对角相等且一组对边相等的四边形是平行四边形D.一组对角相等且一组对边平行的四边形是平行四边形【分析】判断一个命题的真假,需要分析该命题的条件能否推导出结论.【解答】解:A选项:四条边相等的四边形是菱形,本选项说法正确;B选项:两组对角分别相等的四边形是平行四边形,本选项说法正确;C选项:一组对角相等且一组对边相等的四边形不一定是平行四边形,所以本选项说法错误;D选项:一组对角相等且一组对边平行的四边形是平行四边形,本选项说法正确;故选:C.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.如图,矩形ABCD的对角线AC和BD相交于点O,AE平分∠BAD交BC于点E,那么∠BOE的度数为()A.55°B.65°C.75°D.67.5°【分析】根据矩形的性质和全等三角形的判定、性质,可以计算出BO=BE,∠OBE的度数,然后即可计算出∠BOE的度数.【解答】解:∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°,AC=BD,∵AE平分∠BAD,∴∠BAE=∠DAE=45°,∴∠BAE=∠BEA=45°,∴AB=BE,∵∠CAE=15°,∴∠CAD=∠DAE﹣∠CAE=30°,∴AC=2CD,∴BD=2AB,∴BO=BE,∴∠BOE=∠BEO,∵OA=OC,OB=OD,∴△AOB≌△COB(SAS),∴∠OAD=∠OBC=30°,∴∠OBE=30°,∴∠BOE=∠BEO==75°,故选:C.【点评】本题考查矩形的性质、等腰三角形的性质、全等三角形的判定与性质,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共12题,每题2分,满分24分)7.(2分)直线在y轴上的截距是﹣1.【分析】令x=0,求得y的值,即可判断.【解答】解:令x=0,,直线在y轴上的截距是﹣1故答案为:﹣5.【点评】本题考查一次函数图象上点的坐标特征,考查运算求解能力,属于基础题.8.(2分)已知一次函数y=(k+1)x﹣3的函数值y随着自变量x的值的增大而增大,则k的取值范围是k>﹣1.【分析】根据一次函数的性质,若y随x的增大而增大,则比例系数大于0.【解答】解:∵一次函数y=(k+1)x﹣3的函数值y随着自变量x的值的增大而增大,∴k+4>0,∴k>﹣1,故答案为:k>﹣2.【点评】本题考查了一次函数图象与系数的关系,一次函数的性质,要知道,在直线y=kx+b中,当k>0时,y 随x的增大而增大;当k<0时,y随x的增大而减小.9.(2分)一次函数y=2x+b的图象沿y轴向上平移3个单位后得到一次函数y=2x+1的图象,则b值为﹣2.【分析】根据平移法则上加下减可得出平移后的解析式,对应得到b+3=1,解得即可.【解答】解:由题意得:平移后的解析式为:y=2x+b+3=2x+1.∴b+3=8,∴b=﹣2,故答案为:﹣2.【点评】本题考查了一次函数图象的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.10.(2分)方程组是二元二次方程组.(填“是”或“不是”)【分析】根据二元二次方程组的定义得出答案即可.【解答】解:方程组是二元二次方程组,【点评】本题考查了高次方程和二元二次方程组的定义,能熟记二元二次方程组的定义是解此题的关键,注意:方程组中共含有两个不同的未知数,并且所含未知数的项的最高次数是2的整式方程组,叫二元二次方程组.11.(2分)方程x4﹣16=0的根是±2.【分析】方程的左边因式分解可得(x2+4)(x+2)(x﹣2)=0,由此即可解决问题.【解答】解:∵x4﹣16=0,∴(x5+4)(x+2)(x﹣3)=0,∴x=±2,∴方程x6﹣16=0的根是±2,故答案为±6.【点评】本题考查高次方程的解,解题的关键是学会应用因式分解法解方程,把高次方程转化为一次方程,属于中考常考题型.12.(2分)方程﹣x=0的解是x=4.【分析】根据题意可化为,=x,两边同时平方可得2x+8=x2,x2﹣2x﹣8=0,解方程得x=4,x=﹣2,由二次根式的性质可得,即可得出答案.【解答】解:﹣x=5,=x,2x+8=x2,x2﹣2x﹣8=5,(x﹣4)(x+2)=4,x=4,x=﹣2,∵,∴x=﹣3(舍去),故答案为:x=4.【点评】本题主要考查了无理方程及二次根式的性质,熟练掌握无理方程及二次根式的性质进行求解是解决本题的关键.13.(2分)一个多边形的内角和为720°,那么从这个多边形的一个顶点出发共有3条对角线.【分析】根据n边形的内角和是(n﹣2)•180°,可以先求出多边形的边数.再根据过多边形的一个顶点的对角线的条数与边数的关系,即可得到过这个多边形的一个顶点的对角线的条数.【解答】解:根据题意,得(n﹣2)•180=720,解得:n=6.那么从这个多边形的一个顶点出发共有4条对角线.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,过多边形的一个顶点的对角线的条数=边数﹣3.14.(2分)已知一个菱形的周长为24,一个锐角为60°,则这个菱形的面积为18.【分析】如图,根据菱形的性质得到AB=BC=AD=CD=6,∠D=∠B=60°,则可判断△ABC和△ADC都为等边三角形,然后根据等边三角形的面积公式可计算出菱形ABCD的面积.【解答】解:如图,四边形ABCD为菱形,∵菱形的周长为24,∴AB=BC=AD=CD=6,∠D=∠B=60°,∴△ABC和△ADC都为等边三角形,=7××62=18.∴菱形ABCD的面积=2S△ABC故答案为:18.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了全等三角形的判定与性质.15.(2分)矩形ABCD的两条对角线交于点O,∠AOD=120°,AC+AB=128.【分析】根据矩形的对角线互相平分且相等可得OA=OB=AC,根据邻补角的定义求出∠AOB,然后判断出△AOB是等边三角形,根据等边三角形的性质可得OA=AB,然后求解即可.【解答】解:如图,∵矩形ABCD的两条对角线交于点O,∴OA=OB=AC,∵∠AOD=120°,∴∠AOB=180°﹣∠AOD=180°﹣120°=60°,∴△AOB是等边三角形,∴OA=AB,∵AC+AB=12,∴AC+AC=12,解得:AC=8,∴BD=AC=8,故答案为:8.【点评】本题考查了矩形的性质,等边三角形的判定与性质,熟记矩形的对角线互相平分且相等是解题的关键.16.(2分)已知某汽车油箱中的剩余油量y(升)与该汽车行驶里程数x(千米)是一次函数关系.当汽车加满油后,油箱中还剩油138升;行驶150千米,当这辆汽车行驶350千米时,油箱中还剩油108升.【分析】设剩余油量y(升)与该汽车行驶里程数x(千米)的函数关系为y=kx+b,根据当汽车加满油后,行驶100千米,油箱中还剩油138升;行驶150千米,油箱中还剩油132升,可得y=﹣x+150,即可求出汽车行驶350千米时,油箱中还剩油108升.【解答】解:设剩余油量y(升)与该汽车行驶里程数x(千米)的函数关系为y=kx+b,∵当汽车加满油后,行驶100千米;行驶150千米,∴,解得,∴y=﹣x+150,当x=350时,y=﹣×350+150=﹣42+150=108(升),故答案为:108.【点评】本题考查一次函数的应用,解题的关键是用待定系数法求出y与x的函数关系式.17.(2分)已知:线段AB,BC.求作:平行四边形ABCD.以下是甲同学的作业.①联结AC,作线段AC的垂直平分线,交AC于点M;②联结BM并延长,在延长线上取一点D,使MD=MB,CD.四边形ABCD即为所求平行四边形.如图,甲同学的作图依据是:对角线互相平分的四边形是平行四边形.【分析】根据对角线互相平分的四边形是平行四边形解决问题即可.【解答】解:由作图可知,AM=MC,∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形),故答案为:对角线互相平分的四边形是平行四边形.【点评】本题考查作图﹣复杂作图,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.(2分)在全民健身环城越野赛中,甲、乙两选手的行程y(千米)随时间(时)(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法的序号是①②④.【分析】根据0≤x≤1时的函数图象判断出①正确;根据x=1时的y值判断出②正确;根据y=20时的x的值判断出③错误;根据函数图象y的值判断出④正确.【解答】解:①由图可知,0≤x≤1时,所以,起跑后4小时内,故本小题正确;②x=1时,甲、乙都是y=10千米,故本小题正确;③由图可知,x=2时,甲没有到达终点,乙比甲先到达终点;④两人都跑了20千米正确;综上所述,正确的说法是①②④.故答案为:①②④.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.三、解答题(本大题共8题,满分58分)19.(6分)解方程:.【分析】应用解分式方程的方法进行计算即可得出答案.【解答】解:两边同时乘以(x+4)(x﹣4),得x+7﹣8=x2﹣16,化简得,x2﹣x﹣12=0,解得,x=﹣3或x=7,经检验,x=﹣3是原方程的根,舍去;所以,原方程的根为x=﹣3.【点评】本题主要考查了解分式方程,熟练掌握解分式方程的方法进行求解是解决本题的关键.20.(6分)解方程组:.【分析】先将第二个方程变形为x﹣y=1或x﹣y=﹣1,再和第一个方程组合得到两个二元一次方程组,再分别解这两个二元一次方程组即可.【解答】解:,由②得(x﹣y)2=1,∴x﹣y=5或x﹣y=﹣1,与方程①组成新的方程组得:,解这两个新方程组,得原方程组的解为:.【点评】本题考查的是二元二次方程组的解法,通过因式分解,将原方程组转化为两个二元一次方程组,从而求解.21.(6分)解关于y的方程:by2﹣1=y2+2.【分析】把b看作常数根据解方程的步骤:先移项,再合并同类项,系数化为1,即可得出答案.【解答】解:移项得:by2﹣y2=3+1,合并同类项得:(b﹣1)y8=3,当b=1时,原方程无解;当b>5时,原方程的解为y=±;当b<1时,原方程无实数解.【点评】此题主要考查解一元二次方程.解题的关键是掌握解一元二次方程的方法,方程两边都除以b﹣1时注意讨论是否为0这一前提条件,是易错点.22.(6分)如图是某辆汽车加满油后,油箱剩油量y(升)关于已行驶路程x(千米)(由两条线段构成).(1)根据图象,当油箱剩油量为26升时,汽车已行驶的路程为240千米;当0≤x≤240时,消耗一升油汽车能行驶的路程为10千米.(2)当240≤x≤420时,求y关于x的函数表达式,并计算当汽车已行驶300千米时油箱的剩油量.【分析】(1)根据图象可得汽车已行驶的路程,根据50升时行程为0千米和26升时行程为240千米可得汽车的耗油量;(2)利用待定系数法得到函数关系式,再把x=300代入可得剩余量.【解答】解:(1)由图象可得,当油箱剩油量为26升时汽车已行驶的路程为240千米,∵240÷(50﹣26)=10(千米/升),∴消耗一升油汽车能行驶的路程为10千米.故答案为:240,10;(2)设y=kx+b,把(240,11)代入可得,,解得,∴函数表达式为y=﹣x+46,当x=300时,y=﹣,答:y关于x的函数表达式为y=﹣x+46.【点评】本题考查一次函数的实际应用,熟练掌握待定系数法求关系式是解题关键.23.(8分)某口罩厂计划在一定时间内生产240万个口罩,后因为防控需要,不但需要增产50%,每天需要多生产8万个口罩.问原计划每天生产多少万个口罩?【分析】可设原计划每天生产x万个口罩,根据时间=生产总量÷每天生产的效率,结合前后的时间相差4天,可列方程求解.【解答】解:设原计划每天生产x万个口罩,依题意得:,化简得:x2+38x﹣480=0,解得:x8=10,x2=﹣48(不符合题意舍去),经检验:x1=10是原方程的解.答:原计划每天生产10万个口罩.【点评】本题主要考查分式方程的应用,解答的关键是理解清楚题意找到相应的等量关系.24.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,延长AE至点G,使EG=AE (1)求证:AE∥CF;(2)当AC=2AB时,求证:四边形EGCF是矩形.【分析】(1)根据平行四边形的性质得到OB=OD,OA=OC,根据三角形中位线定理得到EO=OB,FO=OD,求得EO=FO,由全等三角形的性质得到∠AEO=∠CFO,根据平行线的判定定理即可得到结论;(2)根据三角形中位线定理得到EO∥GC,推出四边形EGCF是平行四边形,求得AB=AO,根据等腰三角形的性质得到AE⊥OB,求得∠OEG=90°,于是得到结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴OB=OD,OA=OC,∵点E、F分别为OB,∴EO=OB OD,∴EO=FO,在△AEO和△CFO中,,∴△AEO≌△CFO(SAS),∴∠AEO=∠CFO,∴AE∥CF;(2)∵EA=EG,OA=OC,∴EO是△AGC的中位线,∴EO∥GC,∵AE∥CF,∴四边形EGCF是平行四边形,∵AC=2AB,AC=5AO,∴AB=AO,∵E是OB的中点,∴AE⊥OB,∴∠OEG=90°,∴四边形EGCF是矩形.【点评】本题考查了矩形的判定,平行四边形的判定和性质,全等三角形的判定和性质,三角形的中位线定理,正确的识别图形是解题的关键.25.(8分)已知一次函数y=kx+b(k≠0)的图象经过A(0,2)、B(2,0),点C关于x轴的对称点为C′,把线段CC'以点C为旋转中心,点C′的对应点为D.(1)求一次函数y=kx+b(k≠0)的解析式.(2)求点D的坐标.(3)若点C、C′、D、M为顶点的四边形是平行四边形,且CC′是平行四边形的一条边,求点M的坐标.【分析】(1)待定系数法求解.(2)作出旋转后的图象,通过勾股定理求解.(3)讨论D所在位置分别求解.【解答】解:(1)由一次函数y=kx+b(k≠0)的图象经过A(0,4),0)得:,解得.∴一次函数的解析式为:y=﹣x+2.(2)∵点C,P分别是线段AB,∴CP∥y轴,CP⊥x轴.∴点P坐标为(1,2),把x=1代入y=﹣x+2得y=6,∴点C坐标为(1,1).∵点C关于x轴的对称点C',∴C'坐标为(5,﹣1).CC'以点C为旋转中心,顺时针旋转45°,CD=CC'=2.作DH⊥CC'于点H,则DH=CH.∵DH4+CH2=CD2,∴DH=CH=.∴点D的坐标为(1﹣,3﹣).(3)∵CC'是平行四边形的一条边,∴CC'∥DM且CC'=DM=2.∵CC'∥y轴,∴DM∥y轴.∴M点的坐标为(8﹣,3﹣,﹣1﹣).【点评】本题考查一次函数与图形结合的综合问题,解题关键是通过题干作出所对应图象求解.26.(10分)已知:如图,在矩形ABCD中,AB=4,且AE=AC,联结CE,联结BF、DF.(1)求证:DF⊥BF;(2)设AC=x,DF=y,求y与x之间的函数关系式;(3)当DF=2BF时,求BC的长.【分析】(1)方法一:如图1中,连接AF,只要证明△ABF≌DCF即可.方法二:如图2中,连接BD,与AC 相交于点O,联结OF,只要证明OB=OF=OD即可.(2)由y=DF=即可解决问题.(3)首先证明CE=DF=AF,列出方程即可解决.【解答】(1)证明:方法一:如图1中,连接AF,∵AE=AC,点F为CE的中点,∴AF⊥CE,即∠AFC=90°,∵在矩形ABCD中,AB=CD,∴∠CBE=180°﹣∠ABC=90°,∴EF=BF=CF=,∴∠FBC=∠FCB,即∠ABC+∠FBC=∠DCB+∠FCB,∴∠ABF=∠DCF,在△ABF和△DCF中,,∴△ABF≌DCF(SAS),∴∠AFB=∠DFC,∴∠BFD=∠AFB+∠AFD=∠AFD+∠DFC=∠AFC=90°,即DF⊥BF;方法二:如图2中,连接BD,联结OF,∵在矩形ABCD中,AC=BD,OB=OD,∴OA=OC=OB=OD=AC=,∵点F是CE的中点,∴OF=AE,∵AE=AC,∴OF=AC=,∴OF=OB=OD,∴∠OBF=∠OFB,∠OFD=∠ODF,∵∠OBF+∠OFB+∠OFD+∠ODF=180°,∴3∠OFB+2∠OFD=180°,∴∠OFB+∠OFD=90°,即∠BFD=90°,∴DF⊥BF;(2)解:在Rt△ABC中,BC2=AC4﹣AB2=x2﹣16,∵AE=AC=x,∴BE=x﹣7,∴EC===,∴BF==,∴y=DF===,∴y=(x>8).(3)∵△ABF≌DCF,∴AF=DF,∵在Rt△ABC中,CE=2BF,又∵DF=2BF,∴CE=DF=AF,∴=,∴x1=0,x6=.经检验,x1=7,x2=都是方程的根.∴BC==.【点评】本题考查四边形综合题、矩形的性质、全等三角形的判定和性质勾股定理等知识,解题的关键是灵活应用这些知识解决问题,学会构建方程解决问题,属于中考压轴题.。

参考答案2024-2025学年度第二学期初二数学期中阶段质量检测试题参考答案

参考答案2024-2025学年度第二学期初二数学期中阶段质量检测试题参考答案

2024-2025学年度第一学期初二数学学科期中阶段质量反馈参考答案一、单项选择(30分,每题3分)1-5 CADBD 6-10ABBAA二、填空题(18分,每题3分)11.±312.三角形的稳定性13.814.815.16.4三、解答题(72分)17.(1) (1)53(共10分,每问5分,第一步化简乘方、开方正确2分)18. (共12分,(1)每空1分,(2)8分)(1)①;②;③;④.(2)延长至点,使得,连接,延长至点,使得,连接,,...................................................................................................辅助线1分,在△和△中,,△△,,..............................................................................................................................3分同理△△,3-52B B '∠=∠12BD BC =12B D BC ''''=SAS ADE DE DA =BE A D ''E 'D E D A ''''=B E ''AD A D ='' AE A E ∴=''ADC EDB AD ED ADC EDB CD BD =⎧⎪∠=∠⎨⎪=⎩∴ADC ≅()EDB SAS AC BE ∴=A D C '''≅()E D B SAS ''',,,............................................................................................................................4分在△和△中,,△△,,同理,,.................................................................................................................6分在△和△中,,△△.............................................................................. .....................8分19. (共4)分方法一:如图,连接并延长,.......................................................... .....................1分在中,,在中,,, (2)分A CB E ''''∴=AC A C '=' BE B E ''∴=BAE B A E '''AB A B BE B E EA E A ''=⎧⎪''=⎨⎪''=⎩∴BAE ≅()B A E SSS '''BAD B A D ∴∠=∠'''CAD C A D ∠=∠'''BAC B A C ∴∠=∠'''ABC A B C '''AB A B BAC B A C AC A C ''=⎧⎪'''∠=∠⎨⎪''=⎩∴ABC ≅()A B C SAS '''AC ADC ∆1D DAC ∠=∠+∠ABC ∆2B BAC ∠=∠+∠12140BCD D B BAC DAC D B A ∴∠=∠+∠=∠+∠+∠+∠=∠+∠+∠=︒李叔叔量得,就可以断定这个零件不合格......................................1分方法二:如图,延长交于,,,,,李叔叔量得,就可以断定这个零件不合格.20. (共10分,(1)4分,(2)6分)(1)如图,点即为所求;(2)连接,由作图可知,为的垂直平分线,则,设 ,则,..............................................1分,在中,由勾股定理得:,..............................................2分即......................................................................................................5分解得:,答:深圳号驱逐舰行驶的航程的长为. (6)分∴142BCD ∠=︒DC AB M 180180903060AMD A D ∠=︒-∠-∠=︒-︒-︒=︒ 180********CMB AMD ∴∠=︒-∠=︒-︒=︒1801802012040MCB B CMB ∴∠=︒-∠-∠=︒-︒-︒=︒180********DCB MCB ∴∠=︒-∠=︒-︒=︒∴142BCD ∠=︒C BC CD AB BC AC =BC AC x ==nmile (90)OC x nmile =-OA OB⊥ 90O ∴∠=︒Rt OBC ∆222BO OC BC +=22230(90)x x +-=50x =BC 50nmile21. (共9分,(1)3分,(2)3分,点描对1个给1分(3)3分)22.(共5分)解:如图,设C ′D 与AC 交于点O ,∵∠C=35°,∴由折叠可得∠C ′=∠C=35°,.....................................................................................1分∵∠1=∠DOC+∠C ,∠1=106°,∴∠DOC=∠1-∠C=106°-35°=71°, (3)分∵∠DOC=∠2+∠C ′,∴∠2=∠DOC-∠C ′=71°-35°=36°..............................................................................5分23.(共10分,(1)6分,(2)4分)(1)截取AC=CE 给2分;平行尺规作图:利用角的关系或做全等,有痕迹作对都可给4分(2)解:,,............................................................................................................1分在和中,,,............................................................................................................3分,即的长就是、之间的距离...............................................................4分//DE AB A E ∴∠=∠ABC ∆EDC ∆A E ACB ECD BC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABC EDC AAS ∴∆≅∆DE AB ∴=DE A B24.(共12分,(1)2分,(2)8分,(3)2分)解:(2)结论成立............................................................................1分证明:四边形是正方形,,............................................................................2分在和中,,..,即....................................................................................................................5分在和中,,.,...............................................................................................7分,,,.(8分).........................................................................................................8分 ABCD BA AD DC ∴==90BAD ADC ∠=∠=︒EAD ∆FDC ∆EA FD ED FC AD DC =⎧⎪=⎨⎪=⎩EAD FDC ∴∆≅∆EAD FDC ∴∠=∠EAD DAB FDC CDA ∴∠+∠=∠+∠BAE ADF ∠=∠BAE ∆ADF ∆BA AD BAE ADF AE DF =⎧⎪∠=∠⎨⎪=⎩BAE ADF ∴∆≅∆BE AF ∴=ABE DAF ∠=∠⋯90DAF BAF ∠+∠=︒ 90ABE BAF ∴∠+∠=︒90AMB ∴∠=︒AF BE ∴⊥⋯。

八年级(下册)期中数学试卷+参考答案与试题解析(苏科版)

八年级(下册)期中数学试卷+参考答案与试题解析(苏科版)

八年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分,每小题给出的四个选项中只有一个选项是符合题目要求的,将此选项的代号填入答题纸上.)1.下列调查中,适宜采用普查方式的是()A.调查市场上牛奶的质量情况B.调查全国中小学生的视力情况C.调查某品牌灯泡的使用寿命D.调查航天飞机零部件是否合格2.正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是()A.正三角形 B.正方形C.等腰直角三角形D.平行四边形3.下列命题中,真命题是()A.连接矩形各边中点的四边形是菱形B.对角线垂直的四边形是菱形C.三个角相等的四边形是矩形D.两条对角线相等的四边形是矩形4.要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤25.关于频率与概率有下列几种说法:①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,正确的说法是()A.①④B.②③C.②④D.①③6.下列运算正确的是()A.=B.=C.=D.=7.分式﹣可变形为()A.﹣B. C.﹣D.8.如图,□ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24cm,△OAB的周长是18cm,则EF的长为()A.6 B.4 C.3 D.29.一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的是()A.①B.②C.③D.④10.一副三角板按图1所示的位置摆放,将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=8cm,则两个三角形重叠(阴影)部分的面积为()A.16+16cm2B.16+cm2 C.16+cm2 D.48cm2二、填空题(本大题共10小题,每空2分,共24分,答案填入答题纸上)11.已知分式无意义,则x_________;当x_________时,分式的值为零.12.□ABCD中,∠A+∠C=100゜,则∠B=_________.13.若分式的值是负数,则x的取值范围是_________.14.一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有_________个数.15.已知菱形两条对角线的长分别为12和16,则这个菱形的周长为_________,面积为_________.16.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A逆时针旋转50°到△AB′C′的位置,则∠CAB′=_________度.17.若顺次连接四边形ABCD四边中点形成的四边形为矩形,则四边形ABCD满足的条件为_________.18.如图,在长方形ABCD中,E是AD的中点,F是CE的中点,若△BDF的面积为6平方厘米,则长方形ABCD的面积是_________平方厘米.19.已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示)把线段AE绕点A 旋转,使点E落在直线BC上的点F处,则F、C两点的距离为_________.20.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有_________次.三、解答题(本大题共7小题,共46分.解答需写出必要的文字说明或演算步骤)21.计算或化简(1)(2)计算:﹣.22.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x 值代入求值.23.已知3x+2y=0,求(1+)(1﹣)的值.24.中学生骑电动车上学的现象越来越受到社会的关注.某市记者随机调查了一些家长对这种现象的态度(A:无所谓;B:反对;C:赞成),并将调査结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)在图①中,C部分所占扇形的圆心角度数为_________°;选择图①进行统计的优点是_________;(2)将图②补充完整;(3)根据抽样调查结果,请你估计该市50000名中学生家长中有多少名家长持赞成态度?25.如图,A、B、C为一个平行四边形的三个顶点,且A、B、C三点的坐标分别为(3,3)、(6,4)、(4,6).(1)请直接写出这个平行四边形第四个顶点的坐标;(2)求这个平行四边形的面积.26.如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.27.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).(1)当t为何值时,四边形PQDC是平行四边形.(2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2?(3)是否存在点P,使△PQD是等腰三角形(不考虑QD=PD)?若存在,请求出所有满足要求的t的值,若不存在,请说明理由.八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,每小题给出的四个选项中只有一个选项是符合题目要求的,将此选项的代号填入答题纸上.)1.下列调查中,适宜采用普查方式的是()A.调查市场上牛奶的质量情况B.调查全国中小学生的视力情况C.调查某品牌灯泡的使用寿命D.调查航天飞机零部件是否合格【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:调查市场上牛奶的质量情况适宜采用抽样调查方式,A错误;调查全国中小学生的视力情况适宜采用抽样调查方式,B错误;调查某品牌灯泡的使用寿命适宜采用抽样调查方式,C错误;调查航天飞机零部件是否合格适宜采用普查方式,D正确,故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是()A.正三角形 B.正方形C.等腰直角三角形D.平行四边形【考点】中心对称图形;轴对称图形.【分析】根据正多边形的性质和轴对称图形与中心对称图形的定义解答.【解答】解:正三角形,等腰直角三角形是轴对称图形,平行四边形是中心对称图形,既是轴对称图形又是中心对称图形的是:正方形,故选:B.【点评】此题主要考查了轴对称图形与中心对称图形.关键要记住偶数边的正多边形既是轴对称图形,又是中心对称图形,奇数边的正多边形只是轴对称图形.3.下列命题中,真命题是()A.连接矩形各边中点的四边形是菱形B.对角线垂直的四边形是菱形C.三个角相等的四边形是矩形D.两条对角线相等的四边形是矩形【考点】命题与定理.【分析】根据三角形中位线性质、矩形的性质和菱形的判定方法对A进行判断;根据菱形的判定方法对B进行判断;根据矩形的判定方法对C、D进行判断.【解答】解:A、连接矩形各边中点的四边形是菱形,所以A正确;B、对角线垂直的平行四边形是菱形,所以B错误;C、四个角相等的四边形是矩形,所以C错误;D、两条对角线相等的平行四边形是矩形,所以D错误.故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,2﹣x≥0,解得x≤2.故选D.【点评】本题考查的知识点为:二次根式的被开方数是非负数.5.关于频率与概率有下列几种说法:①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,正确的说法是()A.①④B.②③C.②④D.①③【考点】概率的意义.【分析】分别利用概率的意义分析得出答案.【解答】解:①“明天下雨的概率是90%”表示明天下雨的可能性很大;正确;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;错误;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;错误;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,正确.故选:A.【点评】此题主要考查了概率的意义,正确理解概率的意义是解题关键.6.下列运算正确的是()A.=B.=C.=D.=【考点】约分.【分析】根据分式的约分,先把分子与分母因式分解,再约分,进行选择即可.【解答】解:A、=,故A选项错误;B、==,故B选项错误;C、==﹣,故C选项错误;D、==,个D选项正确,故选D.【点评】本题考查了分式的约分,是中考常见题型,因式分解是解题的关键.7.分式﹣可变形为()A.﹣B. C.﹣D.【考点】分式的基本性质.【分析】根据分式的基本性质进行解答即可.【解答】解:把分式和分式的分母同时乘以﹣1得,(﹣1)×(﹣)=.故选D.【点评】本题考查的是分式的基本性质,熟知分子、分母、分式本身同时改变两处的符号,分式的值不变是解答此题的关键.8.如图,□ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24cm,△OAB的周长是18cm,则EF的长为()A.6 B.4 C.3 D.2【考点】三角形中位线定理;平行四边形的性质.【分析】根据AC+BD=24厘米,可得出出OA+OB=12cm,继而求出AB,判断EF是△OAB 的中位线即可得出EF的长度.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12cm,∵△OAB的周长是18厘米,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3cm.故选C.【点评】本题考查了三角形的中位线定理,解答本题需要用到:平行四边形的对角线互相平分,三角形中位线的判定定理及性质.9.一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的是()A.①B.②C.③D.④【考点】平行四边形的判定.【分析】一组对边平行,一组对角相等可推出两组对角分别相等,可判定为平行四边形一组对边平行,一条对角线被另一条对角线平分,可利用全等得出这组对边也相等,可判定为平行四边形一组对边相等,一条对角线被另一条对角线平分,所在的三角形不能得出一定全等,所以能判定为平行四边形.【解答】解:根据平行四边形的判定,能满足是平行四边形条件的有:①,②、④,而③无法判定.故选:C.【点评】本题考查了平行四边形的判定,平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.10.一副三角板按图1所示的位置摆放,将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=8cm,则两个三角形重叠(阴影)部分的面积为()A.16+16cm2B.16+cm2 C.16+cm2 D.48cm2【考点】解直角三角形.【分析】过G点作GH⊥AC于H,则∠GAC=60°,∠GCA=45°,GC=8cm,先在Rt△GCH 中根据等腰直角三角形三边的关系得到GH与CH的值,然后在Rt△AGH中根据含30°的直角三角形三边的关系求得AH,最后利用三角形的面积公式进行计算即可.【解答】解:过G点作GH⊥AC于H,如图,∠GAC=60°,∠GCA=45°,GC=8cm,在Rt△GCH中,GH=CH=GC=4cm,在Rt△AGH中,AH=GH=cm,∴AC=AH+CH=+4(cm).∴两个三角形重叠(阴影)部分的面积=AC•GH=×(+4)×4=16+cm2故选:B.【点评】本题考查了解直角三角形:求直角三角形中未知的边和角的过程叫解直角三角形.也考查了含30°的直角三角形和等腰直角三角形三边的关系以及旋转的性质.二、填空题(本大题共10小题,每空2分,共24分,答案填入答题纸上)11.已知分式无意义,则x=﹣1;当x=2时,分式的值为零.【考点】分式的值为零的条件;分式有意义的条件.【分析】直接利用分式无意义则其分母为0,再利用分式的值为0,则其分子为零,进而求出答案.【解答】解:分式无意义,则x=﹣1;当x=2时,分式的值为零故答案为:=﹣1,=2.【点评】此题主要考查了分式的值为0以及分式分式有无意义,正确把握相关定义是解题关键.12.□ABCD中,∠A+∠C=100゜,则∠B=130°.【考点】平行四边形的性质.【分析】根据平行四边形的性质可得∠A=∠C,又有∠A+∠C=100°,可求∠A=∠C=50°.又因为平行四边形的邻角互补,所以,∠B+∠A=180°,可求∠B.【解答】解:∵四边形ABCD为平行四边形,∴∠A=∠C,又∠A+∠C=100°,∴∠A=∠C=50°,又∵AD∥BC,∴∠B=180°﹣∠A=180°﹣50°=130°.故答案为:130°.【点评】此题考查了平行四边形的性质.此题比较简单,熟练掌握平行四边形的性质定理是解题的关键.13.若分式的值是负数,则x的取值范围是x>.【考点】分式的值.【专题】计算题.【分析】根据分式的分母的最小值为1,值为负数,即为分子为负数,列出关于x的不等式,求出不等式的解集即可得到x的范围.【解答】解:∵<0,x2+1≥1>0,∴2﹣3x<0,解得:x>.故答案为:x>【点评】此题考查了分式的值,涉及的知识有:非负数的性质,以及解一元一次不等式,列出关于x的方程是解本题的关键.14.一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有200个数.【考点】频数与频率.【分析】根据频数=频率×数据总和求解即可.【解答】解:数据总和==200.故答案为;200.【点评】本题考查了频数和频率的知识,解答本题的关键是掌握频数=频率×数据总和.15.已知菱形两条对角线的长分别为12和16,则这个菱形的周长为40,面积为96.【考点】菱形的性质.【分析】如图四边形ABCD是菱形,AC=12,BD=16,利用菱形的性质先求出AB,根据菱形的面积公式即可解决问题.【解答】解:如图四边形ABCD是菱形,AC=12,BD=16,∴AC⊥BD,AO=AC=6,BO=BD=8,∴AB===10,∴菱形的周长为40,菱形的面积为×12×16=96.故答案分别为40,96.【点评】本题考查菱形的性质、解题的关键是记住菱形的面积公式,记住菱形的对角线互相垂直,属于中考常考题型.16.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A逆时针旋转50°到△AB′C′的位置,则∠CAB′=20度.【考点】旋转的性质.【分析】根据旋转的性质找到对应点、对应角进行解答.【解答】解:∵△ABC绕点A逆时针旋转85°得到△AB′C′,∴∠BAB′=50°,又∵∠BAC=70°,∴∠CAB′=∠BAC﹣∠BAB′=20°.故答案是:20.【点评】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点﹣﹣旋转中心;②旋转方向;③旋转角度.17.若顺次连接四边形ABCD四边中点形成的四边形为矩形,则四边形ABCD满足的条件为对角线垂直.【考点】中点四边形;矩形的性质.【分析】这个四边形ABCD的对角线AC和BD的关系是互相垂直.理由为:根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【解答】解:顺次连接四边形ABCD四边中点形成的四边形为矩形,则四边形ABCD满足的条件为对角线垂直,理由:∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB、各边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,则AC⊥BD,故四边形ABCD满足的条件为对角线垂直.故答案为:对角线垂直.【点评】此题考查了矩形的性质、三角形的中位线定理以及平行线的性质.这类题的一般解法是:借助图形,充分抓住已知条件,找准问题的突破口,由浅入深多角度,多侧面探寻,联想符合题设的有关知识,合理组合发现的新结论,围绕所探结论环环相加,步步逼近,所探结论便会被“逼出来”.18.如图,在长方形ABCD中,E是AD的中点,F是CE的中点,若△BDF的面积为6平方厘米,则长方形ABCD的面积是48平方厘米.【考点】矩形的性质;三角形的面积;全等三角形的判定与性质.【专题】计算题.【分析】延长DF交BC于G,证出△DEF≌△GCF,根据全等得出DE=CG=BG,DF=GF,=4S△BDG,代入求出即可.即可求出S△BDG=2S△BDF,S长方形ABCD【解答】解:延长DF交BC于G,∵E是AD的中点,F是CE的中点,∴EF=FC,AE=DE,∵四边形ABCD是长方形,∴BC=AD=2DE,AD∥BC,∴∠DEF=∠FCG,在△DEF和△GCF中∴△DEF≌△GCF(ASA),∴DE=CG=BG,DF=GF,∴S△BDG=2S△BDF=12平方厘米,=4S△BDG=48平方厘米,∴S长方形ABCD∴长方形ABCD的面积是48平方厘米.故答案为:48.【点评】本题主要考查了矩形的性质,全等三角形的性质和判定,三角形的面积等知识点,根据求出△DEF≌△GCF是解此题的关键.19.已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示)把线段AE绕点A 旋转,使点E落在直线BC上的点F处,则F、C两点的距离为1或5.【考点】旋转的性质;正方形的性质.【专题】压轴题.【分析】题目里只说“旋转”,并没有说顺时针还是逆时针,而且说的是“直线BC上的点”,所以有两种情况,即一个是逆时针旋转,一个顺时针旋转,根据旋转的性质可知.【解答】解:旋转得到F1点,∵AE=AF1,AD=AB,∠D=∠ABC=90°,∴△ADE≌△ABF1,∴F1C=1;旋转得到F2点,同理可得△ABF2≌△ADE,∴F2B=DE=2,F2C=F2B+BC=5.【点评】本题主要考查了旋转的性质.20.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次.【考点】平行四边形的判定与性质.【专题】动点型.【分析】首先设经过t秒,根据平行四边形的判定可得当DP=BQ时,以点P、D、Q、B为顶点组成平行四边形,然后分情况讨论,再列出方程,求出方程的解即可.【解答】解:设经过t秒,以点P、D、Q、B为顶点组成平行四边形,∵以点P、D、Q、B为顶点组成平行四边形,∴DP=BQ,分为以下情况:①点Q的运动路线是C﹣B,方程为12﹣4t=12﹣t,此时方程t=0,此时不符合题意;②点Q的运动路线是C﹣B﹣C,方程为4t﹣12=12﹣t,解得:t=4.8;③点Q的运动路线是C﹣B﹣C﹣B,方程为12﹣(4t﹣24)=12﹣t,解得:t=8;④点Q的运动路线是C﹣B﹣C﹣B﹣C,方程为4t﹣36=12﹣t,解得:t=9.6;⑤点Q的运动路线是C﹣B﹣C﹣B﹣C﹣B,方程为12﹣(4t﹣48)=12﹣t,解得:t=16,此时P点走的路程为16>AD,此时不符合题意.∴共3次.故答案为:3.【点评】此题考查了平行四边形的判定.注意能求出符合条件的所有情况是解此题的关键,注意掌握分类讨论思想的应用.三、解答题(本大题共7小题,共46分.解答需写出必要的文字说明或演算步骤)21.计算或化简(1)(2)计算:﹣.【考点】分式的混合运算.【专题】计算题;分式.【分析】(1)原式通分并利用同分母分式的加法法则计算,约分即可得到结果;(2)原式第一项利用除法法则变形,约分后利用同分母分式的减法法则计算即可得到结果.【解答】解:(1)原式=+===;(2)原式=•﹣=﹣=.【点评】此题考查了分式的混合运算,以及分式的加减,熟练掌握运算法则是解本题的关键.22.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x 值代入求值.【考点】分式的化简求值.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出x的值,代入计算即可求出值.【解答】解:原式=÷=•=,当x=2时,原式=4(x≠﹣1,0,1).【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.已知3x+2y=0,求(1+)(1﹣)的值.【考点】分式的化简求值.【专题】计算题.【分析】先括号内通分化简,再计算乘法,由条件得出3x=﹣2y,设x=﹣2k,y=3k代入即可解决问题.【解答】解:原式=•=由3x+2y=0得出3x=﹣2y,设x=﹣2k,y=3k则原式==13.【点评】本题考查分式的化简求值,熟练掌握分式的混合运算法则是解决问题的关键,学会设参数解决问题,属于中考常考题型.24.中学生骑电动车上学的现象越来越受到社会的关注.某市记者随机调查了一些家长对这种现象的态度(A:无所谓;B:反对;C:赞成),并将调査结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)在图①中,C部分所占扇形的圆心角度数为54°;选择图①进行统计的优点是扇形统计图能够清晰的反映出各部分占总数的百分比;(2)将图②补充完整;(3)根据抽样调查结果,请你估计该市50000名中学生家长中有多少名家长持赞成态度?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】计算题.【分析】(1)由家长反对的人数除以所占的百分比求出调查的总人数,求出家长赞成占得百分比,乘以360即可求出C部分占得度数;选择图①进行统计的优点是扇形统计图能够清晰的反映出各部分占总数的百分比;(2)求出家长无所谓的人数,补全统计图即可;(3)由样本中家长赞成的百分比乘以50000即可得到结果.【解答】解:(1)由题意得:C部分所占扇形的圆心角度数为36÷(144÷60%)×360°=54°;选择图①进行统计的优点是扇形统计图能够清晰的反映出各部分占总数的百分比;(2)家长无所谓的人数为144÷60%﹣144﹣36=60(人),补全统计图如下:(3)根据题意得:50000×=7500(人),则该市50000名中学生家长中约有7500名家长持赞成态度.故答案为:(1)54;扇形统计图能够清晰的反映出各部分占总数的百分比【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.25.如图,A、B、C为一个平行四边形的三个顶点,且A、B、C三点的坐标分别为(3,3)、(6,4)、(4,6).(1)请直接写出这个平行四边形第四个顶点的坐标;(2)求这个平行四边形的面积.【考点】坐标与图形性质;平行四边形的性质.【分析】(1)本题应从BC为对角线、AC为对角线、AB为对角线三种情况入手讨论,即可得出第四个点的坐标.(2)解本题时应将三角形进行分化,化为几个直角三角形的和,解出面积和,乘以2即为平行四边形的面积.【解答】解:(1)BC为对角线时,第四个点坐标为(7,7);AB为对角线时,第四个点为(5,1);当AC为对角线时,第四个点坐标为(1,5).(2)图中△ABC面积=3×3﹣(1×3+1×3+2×2)=4,所以平行四边形面积=2×△ABC 面积=8.【点评】此题主要考查了平行四边形的性质和判定,难易程度适中.26.如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.【考点】平行四边形的判定与性质;全等三角形的判定与性质;矩形的判定.【专题】证明题.【分析】(1)先由已知平行四边形ABCD得出AB∥DC,AB=DC,⇒∠ABF=∠ECF,从而证得△ABF≌△ECF;(2)由(1)得的结论先证得四边形ABEC是平行四边形,通过角的关系得出FA=FE=FB=FC,AE=BC,得证.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠ABF=∠ECF,∵EC=DC,∴AB=EC,在△ABF和△ECF中,∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,∴△ABF≌△ECF(AAS).(2)∵AB=EC,AB∥EC,∴四边形ABEC是平行四边形,∴FA=FE,FB=FC,∵四边形ABCD是平行四边形,∴∠ABC=∠D,又∵∠AFC=2∠D,∴∠AFC=2∠ABC,∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四边形ABEC是矩形.【点评】此题考查的知识点是平行四边形的判定与性质,全等三角形的判定和性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形通过角的关系证矩形.27.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).(1)当t为何值时,四边形PQDC是平行四边形.(2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2?(3)是否存在点P,使△PQD是等腰三角形(不考虑QD=PD)?若存在,请求出所有满足要求的t的值,若不存在,请说明理由.。

八年级下学期期中考试数学试题含答案(人教版)

八年级下学期期中考试数学试题含答案(人教版)

八年级第二学期期中考试试卷数学(考试时间100分钟满分100分)班级__________ 姓名_____________ 学号_____________ 一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个。

1. 如图,若a、b、c是Rt△ABC的三边,∠A=90°,则下列说法正确的是()A. B.C. D.2.如图,菱形花坛ABCD的面积为12平方米,其中沿对角线AC修建的小路长为4米,则沿对角线BD修建的小路长为()A.6米 B.3米 C.8米 D.10米3.在□ABCD中,∠A=40°,则∠C的度数为()A. 50°B.140°C. 40°D.130°4.下列关于□ABCD的叙述,正确的是()A.若AC=BD,则□ABCD是矩形B.若AB=AD,则□ABCD是正方形C.若AB⊥BC,则□ABCD是菱形D.若AC⊥BD,则□ABCD是正方形5.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C•顺时针方向旋转90°得到△DCF,连接EF.若∠BEC=60°,则∠EFD的度数为()A.10°B.15°C.20°D.25°6.用下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A. B.1, C.6,7,8 D.2,3,47.若直角三角形的三边长分别为2,4,x,则x的值为().A.3B.C.2D.或28.如图,在正方形ABCD中,E是CD上的点,若BE=3,CE=1,则正方形ABCD的对角线的长为()A.8 B . C.6 D. 4 A B CDA DCB FE二、填空题(本题共16分,每小题2分)9.已知在□ABCD 中,AB=4,BC=7,则这个平行四边形的周长为_____.10.如图是由边长为1m 的正方形地砖铺设的地面示意图,小明沿图中所示的折线 从A→B→C 所走的路程为________.11.在直线上依次摆着七个正方形(如图),已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积是S 1,S 2,S 3,S 4,则S 1+S 2-S 3-S 4=_________.12.命题“对顶角相等”的逆命题是_________________,该命题是__________命题(填“真”或“假”). 13.已知三角形各边长分别为8、10、12,则各边中点所成的三角形的周长为__________. 14.如图,在矩形ABCD 中,两条对角线AC 、BD 相交于点O,∠AOB=60°, AB=4,则BD 的长为_________,AD 的长为_____________. 15. 根据特殊四边形的判定方法,在下图的括号内填写相应的内容:16. 用硬纸板剪一个平行四边形ABCD ,作出它的对角线的交点O ,我们可以做如下操作: 用大头针把一根平放在平行四边形上的直细木条固定在点O 处,并使细木条可以 绕点O 转动,拨动细木条,它可以停留在任意位置. 如果设细木条与一组对边AB ,CD 的交点分别为点E ,F ,则下列结论:①O E=OF ;②A E=CF ;③B E=DF ;④△AOE ≌△COF , 其中一定成立的是_________________________(填写序号即可).三、解答题(本题共68分,17-22每小题5分,23-26每小题6分,27-28题每小题7分)17.如图,在ABC 中,AD ⊥BC ,垂足为D ,∠B=60°,∠C=45°, (1)求∠BAC 的度数; (2)若BD=2,求CD 的长.18.已知:如图,ABCD 中,E 、F 分别是AD 、BC 上的点,且AE=CF ,求证四边形BFDE 是平行四边形.O DCB A19.已知:如图,AB=4,BD=12,CD=13,AC=3,AB ⊥AC ,求证:BC ⊥BD .20.如图,O 是矩形ABCD 的对角线的交点,DE ∥AC ,CE ∥BD ,DE 和CE 相交于E , 求证:四边形OCED 是菱形。

浙教版数学八年级下学期《期中检测试题》含答案

浙教版数学八年级下学期《期中检测试题》含答案

浙 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列根式中,属于最简二次根式的是( ) A .21x +B .27C .2a bD .122.下列各式正确的是( ) A .235+=B .2(3)3-=C .114293=⨯ D .4499--=-- 3.下列图形中,既是中心对称图形又是轴对称图形的是( )4.用配方法将方程2440x x --=化成2()x m n +=的形式,则m ,n 的值是( ) A .2-,0B .2,0C .2-,8D .2,85.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x (单位:环),下列说法中正确的个数是( ) ①若这5次成绩的平均数是8,则8x =; ②若这5次成绩的中位数为8,则8x =; ③若这5次成绩的众数为8,则8:x = ④若这5次成绩的方差为8,则8x = A .1个B .2个C .3个D .4个6.利用反证法证明“直角三角形至少有一个锐角不小于45︒”,应先假设( ) A .直角三角形的每个锐角都小于45︒ B .直角三角形有一个锐角大于45︒C .直角三角形的每个锐角都大于45︒D .直角三角形有一个锐角小于45︒7.如图,ABC ∆中,D 是AB 的中点,E 在AC 上,且1902AED C ∠=︒+∠,则2BC AE +等于( )A .ABB .ACC .32ABD .32AC 8.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为xm ,则下面所列方程正确的是( )A .322203220570x x +⨯=⨯-B .(322)(20)570x x --=C .(32)(20)3220570x x --=⨯-D .2322202570x x x +⨯-=9.下列图形中有大小不同的平行四边形,第一幅图中有1个平行四边形,第二幅图中有3个平行四边形,第三幅图中有5个平行四边形,则第6幅和第7幅图中合计有( )个平行四边形.A .22B .24C .26D .2810.如图,在ABCD 中,4AB =,BAD ∠的平分线与BC 的延长线交于点E ,与DC 交于点F ,且F 恰好为DC 的中点,DG AE ⊥,垂足为G .若1DG =,则AE 的长为( )A .23B .4C .3D .8二.填空题(共8小题) 11.计算:16(1)3⨯-= .12.某学生数学学科课堂表现为95分,平时作业为92分,期末考试为90分,若这三项成绩分别按30%,30%,40%的比例计入总评成绩,则该学生数学学科总评成绩是 分.13.若关于x 的方程2(2)(23)10a x a x a -+-++=有两个不相等的实数根,则a 的取值范围是 . 14.设a 、b 是方程22020x x l +-=的两个实数根,则(1)(1)a b --的值为 .15.跳远运动员李阳对训练效果进行测试.6次跳远的成绩如下:7.5,7.7,7.6,7.7,7.9,7.8(单位:)m 这六次成绩的平均数为7.7m ,方差为160.如果李阳再跳一次,成绩为7.7m .则李阳这7次跳远成绩的方差______(填“变大”、“不变”或“变小” ).16.某公司前年缴税200万元,今年缴税338万元,则该公司这两年缴税的年均增长率为 .17.如图,在ABCD 中,100D ∠=︒,DAB ∠的平分线AE 交DC 于点E ,连接BE .若AE AB =,则EBC ∠的度数为 .18.如图,在ABC ∆中,90BAC ∠=︒,4AB =,6AC =,点D 、E 分别是BC 、AD 的中点,//AF BC 交CE 的延长线于F .则四边形AFBD 的面积为 .三.解答题(共8小题) 19.计算: (1)121263483(2)21(23)2323+20.解方程(1)23520x x -+= (2)(1)(3)8x x ++=21.已知关于x 的一元二次方程2(8)80x k x k -++= (1)求证:无论k 取任何实数,方程总有实数根;(2)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.22.某校要从小王和小李两名同学中挑选一人参加全国数学竞赛.在最近的五次选拔测试中,他俩的成绩分别如下表:12345小王 60 75 100 90 75 小李7090808080根据上表解答下列问题: (1)完成下表: 姓名 平均成绩(分)中位数(分)众数(分) 方差 小王 75 75 190 小李8080(2)在这五次测试中,哪位同学的成绩比较稳定?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获一等奖,那么你认为应选谁参赛比较合适?说明你的理由.23.如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:(画出图形,把截去的部分打上阴影)①新多边形内角和比原多边形的内角和增加了180︒. ②新多边形的内角和与原多边形的内角和相等. ③新多边形的内角和比原多边形的内角和减少了180︒.(2)将多边形只截去一个角,截后形成的多边形的内角和为2520︒,求原多边形的边数.24.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示: (1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?25.如图1,在OAB ∆中,90OAB ∠=︒,30AOB ∠=︒,8OB =.以OB 为边,在OAB ∆外作等边OBC ∆,D 是OB 的中点,连接AD 并延长交OC 于E . (1)求证:四边形ABCE 是平行四边形;(2)如图2,将图1中的四边形ABCO 折叠,使点C 与点A 重合,折痕为FG ,求OG 的长.26.在四边形ABCD 中,//AB CD ,90BCD ∠=︒,10AB AD cm ==,8BC cm =,点P 从点A 出发,沿折线ABCD 方向以3/cm s 的速度匀速运动;点Q 从点D 出发,沿线段DC 方向以2/cm s 的速度匀速运动.已知两点同时出发,当一个点到达终点时,另一点也停止运动,设运动时间为()t s . (1)求CD 的长;(2)当四边形PBQD 为平行四边形时,求四边形PBQD 的周长;(3)在点P 、Q 的运动过程中,是否存在某一时刻,使得BPQ ∆的面积为220cm ?若存在,请求出所有满足条件的t 的值;若不存在,请说明理由.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列根式中,属于最简二次根式的是()A.B.C.D.[分析]找到被开方数中不含分母的,不含能开得尽方的因数或因式的式子即可.[解析]A、,被开方数中不含分母,不含能开得尽方的因数或因式,属于最简二次根式,符合题意;B、3,被开方数能继续开方,不属于最简二次根式,不符合题意;C、,被开方数能继续开方,不属于最简二次根式,不符合题意;D、,被开方数中包含分母,不属于最简二次根式,不符合题意;故选:A.2.下列各式正确的是()A.B.C.D.[分析]直接利用二次根式的性质分别化简得出答案.[解析]A、无法合并,故此选项错误;B、3,正确;C、,故此选项错误;D、,故此选项错误;故选:B.3.下列图形中,既是中心对称图形又是轴对称图形的是()[分析]结合中心对称图形和轴对称图形的概念求解即可.[解析]A、既是中心对称图形,又是轴对称图形.故本选项正确;B、不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、不是轴对称图形,是中心对称图形.故本选项错误;故选:A.4.用配方法将方程x2﹣4x﹣4=0化成(x+m)2=n的形式,则m,n的值是()A.﹣2,0 B.2,0 C.﹣2,8 D.2,8[分析]将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后可得答案.[解析]∵x2﹣4x﹣4=0,∴x2﹣4x=4,则x2﹣4x+4=4+4,即(x﹣2)2=8,∴m=﹣2,n=8,故选:C.5.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环),下列说法中正确的个数是()①若这5次成绩的平均数是8,则x=8;②若这5次成绩的中位数为8,则x=8;③若这5次成绩的众数为8,则x=8:④若这5次成绩的方差为8,则x=8A.1个B.2个C.3个D.4个[分析]根据平均数的定义判断①,根据中位数的定义判断②;根据众数的定义判断③;根据方差的定义判断④.[解析]①若这5次成绩的平均成绩是8,则(8+9+7+8+x)=8,解得x=8,故本选项正确;②若这5次成绩的中位数为8,则x为任意实数,故本选项错误;③若这5次成绩的众数是8,则x为不是7与9的任意实数,故本选项错误;④如果x=8,则平均数为(8+9+7+8+8)=8,方差为[3×(8﹣8)2+(9﹣8)2+(7﹣8)2]=0.4,故本选项错误.故选:A.6.利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°[分析]熟记反证法的步骤,从命题的反面出发假设出结论,直接得出答案即可.[解析]用反证法证明命题“在直角三角形中,至少有一个锐角不小于45°”时,应先假设直角三角形的每个锐角都小于45°.故选:A.7.如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°∠C,则BC+2AE等于()A.AB B.AC C.AB D.AC[分析]如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.由三角形中位线的性质得到EF=AE.则由平行线的性质和邻补角的定义得到∠DEF=∠BFC=90°∠C,即∠FBC=∠BFC,等角对等边得到BC=FC,故BC+2AE=AC.[解析]如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.又∵点D是AB的中点,∴EF=AE.∵∠DEF=∠BFC=180°﹣∠AED=180°﹣(90°∠C)=90°∠C,∴∠FBC=∠BFC,∴BC=FC,∴BC+2AE=AC.故选:B.8.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.32x+2×20x=32×20﹣570B.(32﹣2x)(20﹣x)=570C.(32﹣x)(20﹣x)=32×20﹣570D.32x+2×20x﹣2x2=570[分析]六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.[解析]设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:B.9.下列图形中有大小不同的平行四边形,第一幅图中有1个平行四边形,第二幅图中有3个平行四边形,第三幅图中有5个平行四边形,则第6幅和第7幅图中合计有()个平行四边形.A.22 B.24 C.26 D.28[分析]第1幅可看作2×1﹣1=1,第2幅可看作2×2﹣1=3,第3幅可看作2×3﹣1=5,第4幅可看作2×4﹣1=7;从而求得第n幅图共有的平行四边形数,即可求得答案.[解析]根据图形分析可知:第1幅时,有2×1﹣1=1个平行四边形;第2幅时,有2×2﹣1=3个平行四边形;第3幅时,有2×3﹣1=5个平行四边形;第4幅时,有2×4﹣1=7个平行四边形;…;第n幅时,有2×n﹣1=2n﹣1个平行四边形;∴第6幅图时,有2×6﹣1=11个平行四边形,第7幅图,有2×7﹣1=13个平行四边形,∴第6幅和第7幅图中合计有11+13=24个平行四边形;故选:B.10.如图,在▱ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且F恰好为DC的中点,DG⊥AE,垂足为G.若DG=1,则AE的长为()A.2B.4 C.4D.8[分析]由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.[解析]∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DF A,∴∠DAE=∠DF A,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF DC AB=2,在Rt△ADG中,根据勾股定理得:AG,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:C.二.填空题(共8小题,每题3分,满分24分)11.计算:(1)=.[分析]根据二次根式的乘除法则运算.[解析]原式.故答案为.12.某学生数学学科课堂表现为95分,平时作业为92分,期末考试为90分,若这三项成绩分别按30%,30%,40%的比例计入总评成绩,则该学生数学学科总评成绩是分.[分析]根据加权平均数的定义,将各成绩乘以其所占权重,即可计算出加权平均数.[解析]根据题意得:95×30%+92×30%+90×40%=92.1(分),答:该学生数学学科总评成绩是92.1分;故答案为:92.1.13.若关于x的方程(a﹣2)x2+(2a﹣3)x+a+1=0有两个不相等的实数根,则a的取值范围是.[分析]根据二次项系数非零结合根的判别式△>0,即可得出关于a的一元一次不等式组,解之即可得出结论.[解析]∵关于x的一元二次方程(a﹣2)x2+2ax+a﹣1=0有两个不相等的实数根,∴,解得a≠2.故a的取值范围是a≠2.故答案为:a≠2.14.设a、b是方程x2+x﹣202l=0的两个实数根,则(a﹣1)(b﹣1)的值为.[分析]根据根与系数的关系得出a+b=﹣1,ab=﹣2021,再代入计算即可.[解析]∵a、b是方程x2+x﹣2021=0的两个实数根,∴a+b=﹣1,ab=﹣2021,∴(a﹣1)(b﹣1)=ab﹣(a+b)+1=﹣2021+1+1=﹣2019,故答案为:﹣2019.15.跳远运动员李阳对训练效果进行测试.6次跳远的成绩如下:7.5,7.7,7.6,7.7,7.9,7.8(单位:m)这六次成绩的平均数为7.7m,方差为.如果李阳再跳一次,成绩为7.7m.则李阳这7次跳远成绩的方差(填“变大”、“不变”或“变小”).[分析]根据平均数的定义先求出这组数据的平均数,再根据方差公式求出这组数据的方差,然后进行比较即可求出答案.[解析]∵李阳再跳一次,成绩分别为7.7m,∴这组数据的平均数是7.7,∴这7次跳远成绩的方差是:S2[(7.5﹣7.7)2+(7.6﹣7.7)2+3×(7.7﹣7.7)2+(7.8﹣7.7)2+(7.9﹣7.7)2],∴方差变小;故答案为:变小.16.某公司前年缴税200万元,今年缴税338万元,则该公司这两年缴税的年均增长率为30%.[分析]增长率问题,一般用增长后的量=增长前的量×(1+增长率)2,如果设该公司这两年缴税的年平均增长率为x,首先表示出2006年的缴税额,然后表示出2007年的缴税额,即可列出方程.[解析]设该公司这两年缴税的年均增长率为x,依题意得:200(1+x)2=338,解得x=0.3=30%.故答案是:30%.17.如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为30°.[分析]由平行四边形的性质得出∠ABC=∠D=100°,AB∥CD,得出∠BAD=180°﹣∠D=80°,由等腰三角形的性质和三角形内角和定理求出∠ABE=70°,即可得出∠EBC的度数.[解析]∵四边形ABCD是平行四边形,∴∠ABC=∠D=100°,AB∥CD,∴∠BAD=180°﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC﹣∠ABE=30°;故答案为:30°.18.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为12.[分析]由于AF∥BC,从而易证△AEF≌△DEC(AAS),所以AF=CD,从而可证四边形AFBD是平行四边形,所以S四边形AFBD=2S△ABD,又因为BD=DC,所以S△ABC=2S△ABD,所以S四边形AFBD=S△ABC,从而求出答案.[解析]∵AF∥BC,∴∠AFC=∠FCD,在△AEF与△DEC中,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形,∴S四边形AFBD=2S△ABD,又∵BD=DC,∴S△ABC=2S△ABD,∴S四边形AFBD=S△ABC,∵∠BAC=90°,AB=4,AC=6,∴S△ABC AB•AC4×6=12,∴S四边形AFBD=12.故答案为:12三.解答题(共8小题)19.计算:(1)263(2)()2+23[分析](1)直接化简二次根式进而合并得出答案;(2)直接化简二次根式进而利用二次根式的乘除运算法则计算得出答案.[解析](1)263=4612=4212=14;(2)()2+23=2+3﹣23=2+3﹣22=5.20.解方程(1)3x2﹣5x+2=0(2)(x+1)(x+3)=8[分析](1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.[解析](1)分解因式得:(3x﹣2)(x﹣1)=0,3x﹣2=0,x﹣1=0,x1,x2=1;(2)整理得:x2+4x﹣5=0,(x+5)(x﹣1)=0,x+5=0,x﹣1=0,x1=﹣5,x2=1.21.已知关于x的一元二次方程x2﹣(8+k)x+8k=0(1)求证:无论k取任何实数,方程总有实数根;(2)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.[分析](1)先计算△=(8+k)2﹣4×8k,整理得到△=(k﹣8)2,根据非负数的性质得到△≥0,然后根据△的意义即可得到结论;(2)先解出原方程的解为x1=k,x2=8,然后分类讨论:腰长为5时,则k=5;当底边为5时,则x1=x2,得到k=8,然后分别计算三角形的周长.[解析](1)证明:∵△=(8+k)2﹣4×8k=(k﹣8)2,∵(k﹣8)2,≥0,∴△≥0,∴无论k取任何实数,方程总有实数根;(2)解方程x2﹣(8+k)x+8k=0得x1=k,x2=8,①当腰长为5时,则k=5,∴周长=5+5+8=18;②当底边为5时,∴x1=x2,∴k=8,∴周长=8+8+5=21.22.某校要从小王和小李两名同学中挑选一人参加全国数学竞赛.在最近的五次选拔测试中,他俩的成绩分别如下表:1 2 3 4 5小王60 75 100 90 75小李70 90 80 80 80根据上表解答下列问题:(1)完成下表:姓名平均成绩(分) 中位数(分) 众数(分) 方差小王8075 75 190小李80 8080 40(2)在这五次测试中,哪位同学的成绩比较稳定?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获一等奖,那么你认为应选谁参赛比较合适?说明你的理由.[分析](1)根据平均数、中位数、众数、方差的概念即公式即可得出答案;(2)根据方差的意义即方差反映数据的波动程度,得出方差越小越稳定,应此小李的成绩稳定;(3)选谁参加比赛的答案不唯一,小李的成绩稳定,所以获奖的几率大;小王的90分以上的成绩好,则小王获一等奖的机会大.[解析]小王的平均分80,小李的中位数=80,众数=80,方差40;(2)在这五次考试中,成绩比较稳定的是小李;(3)方案一:我选小李去参加比赛,因为小李的优秀率高,有4次得80分以上,成绩比较稳定,获奖机会大.方案二:我选小王去参加比赛,因为小王的成绩获得一等奖的机率较高,有2次90分以上(含90分),因此有可能获得一等奖.23.如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:(画出图形,把截去的部分打上阴影)①新多边形内角和比原多边形的内角和增加了180°.②新多边形的内角和与原多边形的内角和相等.③新多边形的内角和比原多边形的内角和减少了180°.(2)将多边形只截去一个角,截后形成的多边形的内角和为2520°,求原多边形的边数.[分析](1)①过相邻两边上的点作出直线即可求解;②过一个顶点和相邻边上的点作出直线即可求解;③过相邻两边非公共顶点作出直线即可求解;(2)根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论.[解析](1)如图所示:(2)设新多边形的边数为n,则(n﹣2)•180°=2520°,解得n=16,①若截去一个角后边数增加1,则原多边形边数为15,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为17,故原多边形的边数可以为15,16或17.24.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?[分析](1)设一次函数解析式为:y=kx+b由题意得出:当x=2,y=120;当x=4,y=140;得出方程组,解方程组解可;(2)由题意得出方程(60﹣40﹣x)(10 x+100)=2090,解方程即可.[解析](1)设一次函数解析式为:y=kx+b当x=2,y=120;当x=4,y=140;∴,解得:,∴y与x之间的函数关系式为y=10x+100;(2)由题意得:(60﹣40﹣x)(10 x+100)=2090,整理得:x2﹣10x+9=0,解得:x1=1.x2=9,∵让顾客得到更大的实惠,∴x=9,答:商贸公司要想获利2090元,则这种干果每千克应降价9元.25.如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB 的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.[分析](1)首先根据直角三角形中斜边上的中线等于斜边的一半可得DO=DA,再根据等边对等角可得∠DAO=∠DOA=30°,进而算出∠AEO=60°,再证明BC∥AE,CO∥AB,进而证出四边形ABCE是平行四边形;(2)设OG=x,由折叠可得:AG=GC=8﹣x,再利用三角函数可计算出AO,再利用勾股定理计算出OG的长即可.[解答](1)证明:∵Rt△OAB中,D为OB的中点,∴AD OB,OD=BD OB∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,在Rt△ABO中,∵∠OAB=90°,∠AOB=30°,BO=8,∴AO=BO•cos30°=84,在Rt△OAG中,OG2+OA2=AG2,x2+(4)2=(8﹣x)2,解得:x=1,∴OG=1.26.在四边形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,点P从点A出发,沿折线ABCD方向以3cm/s的速度匀速运动;点Q从点D出发,沿线段DC方向以2cm/s的速度匀速运动.已知两点同时出发,当一个点到达终点时,另一点也停止运动,设运动时间为t(s).(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.[分析](1)过A作AM⊥DC于M,得出平行四边形AMCB,求出AM,根据勾股定理求出DM即可;(2)根据平行四边形的对边相等得出方程,求出即可;(3)分为三种情况,根据题意画出符合条件的所有图形,根据三角形的面积得出方程,求出符合范围的数即可.[解析](1)如图1,过A作AM⊥DC于M,∵在四边形ABCD中,AB∥CD,∠BCD=90°,∴AM∥BC,∴四边形AMCB是矩形,∵AB=AD=10cm,BC=8cm,∴AM=BC=8cm,CM=AB=10cm,在Rt△AMD中,由勾股定理得:DM=6cm,CD=DM+CM=10cm+6cm=16cm;(2)如图2,当四边形PBQD是平行四边形时,PB=DQ,即10﹣3t=2t,解得t=2,此时DQ=4,CQ=12,BQ, 所以C▱PBQD=2(BQ+DQ);即四边形PBQD的周长是(8+8)cm;(3)当P在AB上时,如图3,即,S△BPQ BP•BC=4(10﹣3t)=20,解得;当P在BC上时,如图4,即,S△BPQ BP•CQ(3t﹣10)(16﹣2t)=20,、此方程没有实数解;当P在CD上时:若点P在点Q的右侧,如图5,即6<t,S△BPQ PQ•BC=4(34﹣5t)=20,解得,不合题意,应舍去;若P在Q的左侧,如图6,即,S△BPQ PQ•BC=4(5t﹣34)=20,解得;综上所述,当秒或秒时,△BPQ的面积为20cm2.。

八年级数学下册期中考试卷及答案【完美版】

八年级数学下册期中考试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是( )A .12B .10C .8或10D .6 3.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 46是同类二次根式的是( )A 12B 18C 23D 305.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x 甲=x 丙=13,x 乙=x 丁=15:s 甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁 6.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 7.下列说法中错误的是( )A.12是0.25的一个平方根B.正数a的两个平方根的和为0C.916的平方根是34D.当0x≠时,2x-没有平方根8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°9.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A.102B.104C.105D.510.如图,已知BD是ABC的角平分线,ED是BC的垂直平分线,90BAC∠=︒,3AD=,则CE的长为()A.6 B.5 C.4 D.33二、填空题(本大题共6小题,每小题3分,共18分)1.已知a、b为两个连续的整数,且11a b<<,则a b+=__________.2.若式子x1x+有意义,则x的取值范围是__________.3.分解因式:2x2﹣8=_______。

江苏苏州2024年八年级下学期期中数学试题+答案

初二年级调研试卷数学2024.04本卷由选择题、填空题和解答题组成,共27题,满分130分,调研时间120分钟. 注意事项:1.答题前,考生务必将学校、班级、姓名、调研号等信息填写在答题卡相应的位置上.2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效;如需作图,先用2B 铅笔画出图形,再用0.5毫米,黑色墨水签字笔描黑,不得用其他笔答题.3.考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效;一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将答案填涂在答题卡相应位置上)1.下面四个图形分别是苏州博物馆、苏州轨道交通、苏州银行和苏州电视台的标志,在这四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.从装有红球、白球、黑球的不透明袋子中任意摸出一个球,该球是红球,这个事件是( )A .必然事件B .随机事件C .不可能事件D .都有可能 3.若分式221x x ++有意义,则x 的取值范围是( ) A .2x >− B .12x >− C .2x ≠− D .12x ≠− 4.国际奥委会于2001年7月13日在莫斯科举行会议,通过投票确定2008年奥运会举办城市.在第二轮投票中,北京获得总计105张选票中的56票,得票率超过50%,取得了2008年奥运会举办权.在第二轮投票中,北京得票的频数是( )A .50%B .56105C .56D .105 5.1x =是关于x 的一元二次方程220x ax b ++=的解,则24a b +的值是( )A .1−B .1C .2−D .26.“孔子周游列国”是流传很广的故事.相传有一次他和学生到离他们住的驿站30里的书院参观,学生步行出发1小时后,孔子坐牛车出发,牛车的速度是步行的1.5倍,孔子和学生们同时到达书院.设学生步行的速度为每小时x 里,则可列方程为( )A .303011.5x x =+ B .30301.51x x =+ C .303011.5x x =− D .30301.51x x =−7.如果关于x 的一元二次方程210kx x −+=有实数根,则k 的取值范围是( ) A .14k >且0k ≠ B .14k <且0k ≠ C .14k ≤且0k ≠ D .14k < 8.如图,在矩形ABCD 中,点E 是CD 的中点,点F 在BD 上,3BF DF =,若4,3AB BC ==,则EF 的长为( )(第8题)A .1B .54C .32D .52二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上........) 9.根据市生态环境局发布的数据,2023年上半年,全市环境空气质量优良天数比率为80.7%.要调查市区环境空气质量状况,适合的调查方式是___________(填“普查”或“抽样调查”)。

人教版八年级数学下册期中试卷(共4套)(含答案)

人教版八年级数学下册期中试卷(共4套)(含答案)人教版八年级数学下册期中试卷(含答案)考试时间90分钟;满分120分)座号:______ 姓名:______ 成绩:______一、选择题(每题3分,共30分)1、下列运算中错误的是()A。

2+3=5B。

8-2=2C。

2×3=6D。

(-3)2=3改写:下列运算中错误的是()A。

2+3=5B。

8-2=2C。

2×3=6D。

(-3)2=32、如图,平行四边形ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是()A.XXXB.AO=ODC.AO⊥ABD.AO=OC改写:如图,平行四边形ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是()A.AO垂直于ODB.AO等于ODC.AO垂直于ABD.AO等于OC3、下列根式中,不能合并的是()A。

18B。

12C。

D。

27改写:下列根式中,不能合并的是()A。

18B。

12C。

D。

274、下列各组数中,以a、b、c为边长的三角形不是直角三角形的是()A.a=3,b=4,c=5。

B.a=0.6,b=0.8,c=1C.a=,b=2,c=3D.a=1,b=2,c=改写:下列各组数中,以a、b、c为边长的三角形不是直角三角形的是()A.a=3,b=4,c=5。

B.a=0.6,b=0.8,c=1C.a=,b=2,c=3D.a=1,b=2,c=5、如果x≥1,那么化简(1-x)1-x的结果是()A.x-1B.(x-1)1-xC.(1-x)x-1D.(x-1)1-x改写:如果x≥1,那么化简(1-x)1-x的结果是()A.x-1B.(x-1)1-xC.(1-x)x-1D.(x-1)1-x6、顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是()A.正方形B.矩形C.菱形D.梯形改写:顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是()A.正方形B.矩形C.菱形D.梯形7、如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M表示的实数为()A.5B.5C.10D.10-1改写:如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M表示的实数为()A.5B.5C.10D.10-18、如图,在平行四边形ABCD中,BM是∠ABC的平分线,交CD于点M,且MC=2,平行四边形ABCD的周长是14,则DM等于()A.1B.2C.3D.4改写:如图,在平行四边形ABCD中,BM是∠ABC的平分线,交CD于点M,且MC=2,平行四边形ABCD的周长是14,则DM等于()A.1B.2C.3D.49、如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连结EF.若EF=23,BD=8,则菱形ABCD的周长为()A.8B.8C.163D.87改写:如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连结EF.若EF=23,BD=8,则菱形ABCD的周长为()A.8B.8C.163D.8710、如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°③BE+DF=EF;④CE=3,其中正确的结论个数为()改写:如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°③BE+DF=EF;④CE=3,其中正确的结论个数为()二、填空题(每小题3分,共24分)11、在直角坐标系中,已知点A (0,2),B(1,3),则线段AB的长度是_________。

2024年最新人教版初二数学(下册)期中考卷及答案(各版本)

2024年最新人教版初二数学(下册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4 = 7x 2B. 2x 5 = 3x + 5C. 4x + 6 = 2x 8D. 5x 3 = 3x + 64. 下列各数中,绝对值最小的是()A. 3B. 0C. 2D. 55. 下列各数中,是正数的是()A. 4B. 0C. 3D. 76. 下列各数中,是整数的是()A. 2.5B. 0C. 3/4D. 4.67. 下列各数中,是分数的是()A. 2B. 0C. 3/4D. 58. 下列各数中,是负数的是()A. 2B. 0C. 3/4D. 49. 下列各数中,是偶数的是()A. 3B. 0C. 5D. 810. 下列各数中,是奇数的是()A. 2B. 0C. 3D. 4二、填空题(每题3分,共30分)1. 一个数的立方根是±2,这个数是________。

2. 下列各数中,不是有理数的是________。

3. 下列等式中,正确的是________。

4. 下列各数中,绝对值最小的是________。

5. 下列各数中,是正数的是________。

6. 下列各数中,是整数的是________。

7. 下列各数中,是分数的是________。

8. 下列各数中,是负数的是________。

9. 下列各数中,是偶数的是________。

10. 下列各数中,是奇数的是________。

三、解答题(每题10分,共30分)1. 解方程:3x + 4 = 7x 2。

2. 解方程:2x 5 = 3x + 5。

3. 解方程:4x + 6 = 2x 8。

四、证明题(每题10分,共20分)1. 证明:3x + 4 = 7x 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
八年级(下)期中考试数学试题
一、单项选择题
(每小题3分,共30分)

1.使分式23xx有意义的x的取值范围是( )。

A.32x B.32x C.32x D.全体实数
2.下列运算中正确的是( )。
A.cbacba B.3232nmnm

C.yxyxyx22 D.yxyxyx22
3.若正比例函数的图象过点(-2, 1),则该函数的解析式为( )。
A.xy2 B.xy2 C.xy21 D.xy21

4.直角坐标系中有六个点:A(1,5)、B(-5,-1)、C(-2, 25)、D(-3, 35)、E(35,3)、F(-2.5,-2),
其中有五个点在同一反比例函数的图象上,那么不在这个反比例函数图象上的点是
A.C B.D C.E D.F
5.如图,已知FCDACFAE,,补充下列条件中的
( )不能判定△ABE≌△CDF。
A.FE B.CDAB
C.DFBE// D.DFBE
6.如图,点E在正方形ABCD的边BC上,点F在AB的延
长线上,且BE=BF,若∠BAE=28°,则∠F=( )。
A.28° B.62° C.72° D.58°
7.如图,直线axy1与bkxy2的交点的横坐标
是3,下列判断:①0k;②0a;③当x=3时,

21yy;④当x>3时,12
yy
。正确的是

A.①② B.③④ C.①③ D.②④
8.下列判断中错误的是
A.有两角和一边对应相等的两个三角形全等
B.有一腰和底边分别对应相等的两个等腰三角形全等
C.有一边和一个锐角分别对应相等的两个直角三角形全等
D.有两边和其中一边的对角对应相等的两个三角形全等

9.化简xxx21)1(的结果是( )。

A.1x B.1x C.11x D.11x
10.如图所示,点C是BD上一点,CE,CABD,EDBD,AB
CE,CA且
若AB=a,DE=b,则AE2=( )。

A.2222ba B.22ba C.2)(ba D.44ba

E F
A C B D
D C
E

A B F
axy
1

bkxy
2

y
0 3

A
E

B C D
2

二、填空题
(每小题3分,共24分)

11.已知点)2,3(aaP,当点P在第一象限内时,a的取值范围是 ;当点P在
y轴上时,a= ;当点P在x轴上时,a= 。
12.如果1)1(0x,那么x的取值范围是 。如果42a,那么a= 。
13.ABC和DEF中,已知DADEAB,,要使△ABC≌△DEF,还需补充的一个条
件是 ,这时判定这两个三角形全等的根据是 。(用字母表示)
14.如果2,3abba,那么ba11= 。
15.已知反比例函数xky32,当0x时,y随x的增大而增大,则k的取值范围是
,这时函数的图象位于第 象限。
16.把命题“等腰三角形两腰上的高相等”改写成“如果„„,那么„„”的形式,应该是

这个命题是 命题。(填“真”或“假”)
17.方程2332xx的解是 。

18.如图,D、E是线段BC上的点,且ECAEDEADBD,
那么∠BAC= °,∠BAE= °。
三、解下列各题
(每小题4分,共16分)

19.计算:xxx122213。 20.计算:402)2()25(16)41(

21.如图,AB与CD相交于O,且AO=DO,BO=CO,AC=4cm,求BD的长。

A
B D E C

A C
O
D
B
3

22.已知反比例函数xky的图象与直线2xy交于点)1,(aA,求这个反比例函数的解析式。
四、解下列各题
(每小题5分,共10分)

23.如图,已知△ABC,求作△ABC的角平分线BE、高AD和BC的垂直平分线PQ。
要求:用尺规作图,不写作法,留下画痕。
注意:如果不是尺规作图,无画痕,那么本题不能得分。

24.先化简,再求值:224422xxx,其中22x。

五、解下列各题
(25、26题各6分,27题8分,共20分)

25.若关于x的方程423212xkxx的解是正数,求k的取值范围。

A
C B
4

26.如图,△ABC中,BD、CE是高,下列两个命题:
⑴若AB=AC,则BD=CE;
⑵若BD=CE,则AB=AC。
这两个命题之间的关系是 命题。
请选择其中一个命题进行证明。

27.课间休息时,同学们到饮水机旁依次每人接水0.25升,他们先打开了一个饮水管,后来
又打开了第二个饮水管。假设每根饮水管在接水过程中出水的程度是匀速的,在不关闭饮
水管的情况下,饮水机水桶内的存水量y(升)与接水时间x(分)的函数关系如图所示,请结
合图象回答下列问题:
⑴存水量y(升)与接水时间x(分)的函数关系式;
⑵如果接水的同学有28名,那么他们都接完水需要多少时间?

A
E D
B C

y(升)
10
9

4.5

0 2 5 x(分)

相关文档
最新文档