一元二次方程组
第1讲一元二次方程的根与解法学生版

初中数学联赛体系第1讲 一元二次方程的根与解法【知识要点与基本方法】 一、一元二次方程基本概念1、概念:只含有一个未知数x 的整式方程,并且都可以化为20ax bx c ++=(,,a b c 为常数,0a ≠)的形式的方程叫做一元二次方程.2、一元二次方程必须满足的三大条件 (1)整式方程(2)含有一个未知数(3)未知数的最高次数为2 3、一元二次方程的一般形式形如关于x 的一元二次方程:)0(02≠=++a c bx ax 的形式,(它的特征是方程左边是一个关于未知数的二次三项式,方程右边是零,其中2ax 叫二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项.注意b 、c 可以是任何实数,但a 绝对不能为零)二、一元二次方程的根与解法1、一元二次方程的根0x x =是方程20ax bx c ++=(,,a b c 为常数,0a ≠)的根的充要条件是0020=++c bx ax . 2、直接开平方法解一元二次方程:(1)把方程化成有一边是含有未知数的完全平方的形式,另一边是非负数的形式,即化成)0()(2≥=±a a b x 的形式(2)直接开平方,解得a b x a b x -=+= 21,3、配方法的定义:通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法.【注】、用配方法解一元二次方程的步骤:(1)利用配方法解一元二次方程时,如果02=++c bx ax 中a 不等于1,必须两边同时除以a ,使得二次项系数为1.(2)移项,方程的一边为二次项和一次项,另一边为常数项。
(3)方程两边同时加上一次项系数一半的平方。
(4)用直接开平方法求出方程的根. 4、公式法解一元二次方程(1)对于一元二次方程02=++c bx ax 其中0≠a ,由配方法有22244)2(aacb a b x -=+, ①当042≥-ac b 时,得aacb b x 242-±-=;②当042<-ac b 时,一元二次方程无实数解.(2)公式法的定义:利用求根公式接一元二次方程的方法叫做公式法.(3)运用求根公式求一元二次方程的根的一般步骤:①必须把一元二次方程化成一般式02=++c bx ax ,以明确a 、b 、c 的值; ②再计算ac b 42-的值:当04Δ2≥-=ac b 时,方程有实数解,其解为:aacb b x 242-±-=;当04Δ2<-=ac b 时,方程无实数解. 5、因式分解解一元二次方程(1)分解因式法解一元二次方程:当一元二次方程的一边为0,而另一边易于分解成两个一次因式的积时,可用解两个一元一次方程的方法来求得一元二次方程的解,这种解一元二次方程的方法称为分解因式法.(2)分解因式法的理论依据是:若0=⋅b a ,则0=a 或0=b (3)用分解因式法解一元二次方程的一般步骤: ①将方程的右边化为零;②将方程的左边分解为两个一次因式的乘积; ③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,他们的解就是一元一次方程的解.6、含字母系数一元二次方程的解法解关于含字母系数的方程,要求对每个参数允许值回答:方程是否有解?若有解,写出解集.特别地,当二次项系数含有字母系数时,如果题目本身没有指明时一元二次方程,则必须对二次项系数讨论是否为零.【例1】 1、若一元二次方程222(2)3(15)40m x m x m -+++-=的常数项为零,则m 的值为_________. 2、若方程()112=⋅+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 . 【例2】1、用分解因式法解下列方程(1)01032=--x x (2)01762=+-x x (3)0625412=-+x x (4)021)1(4)1(2=----x x . 2、利用求根公式求解下列方程(1) 0222=--x x (2)010342=+-x x(3)()()()()5211313+-=+-x x x x (4)061054422=--++-p x p px x【对应训练】:1、用公式法解下列方程(1)0232=+-x x (2)2212x x -=- (3)x x 3)1(2-=+(4)1(61)432(2)2x x x x ++-=+ (5)023222=--+-n mn m mx x【例3】解下列方程(1)42200x x --=;(2)06)13(2)32(2=----x x ;(3).02)23()21(2=++-+x x【例4】解下列方程 (1)4122+-=x x(2)112432--=-+x x x【例5】解关于x 的方程 (1);0)(222=++-ab x b a abx(2).)1()1()232(22222b x x ab a x x -=+---【例6】1、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 .2、设b a 、是整数,方程02=++b ax x 有一个根是347-,则=+b a .3、已知02=++c bx ax )0(≠ac 有一个根是3,则方程02=++a bx cx 一定有一个根是 ,方程02=+-a bx cx 一定有一个根是 .4、已知两数积1≠ab ,且03123456789022=++a a ,02123456789032=++b b ,则=ba【例7】已知方程p x x =--)97)(19(有实根21,r r ,试求方程p r x r x -=--))((21的最小实根.【例8】求k 的值,使得两个一元二次方程0)2(,0122=-++=-+k x x kx x 有公共根,并分别求出这两个方程的解集.【例9】对于任意实数,k 方程04)(2)1(2222=++++-+b k k x k a x k 都有实根1,试求另一个根的最大值与最小值.【例10】已知方程)0(2>=++a x c bx ax 的两根21x x 、满足ax x 1021<<<.当10x x <<时,证明:12x c bx ax x <++<.【例11】已知首项系数不相等的两个一元二次方程0)2()2()1(,0)2()2()1(222222=+++--=+++--b b x b x b a a x a x a 有公共根.(1)求证:.2++=b a ab(2)若b a ,为正整数,求ab ab ba b a --++的值. (3)设0x 为公共根,求证:.048403040>++-x x x【课后强化训练】A 组1、下列方程中,是一元二次方程的序号是①042=-y y ; ②0322=--x x ; ③312=x; ④bx ax =2; ⑤x x 322+=; ⑥043=+-x x ; ⑦22=t ; ⑧0332=-+xx x ; ⑨22=-x x ; ⑩)0(2≠=a bx ax2、已知方程3ax 2-bx -1=0和ax 2+2bx -5=0,有共同的根1-,则a = ,b = .3、已知a 2-5ab +6b 2=0,则abb a +等于 4、在实数范围内分解因式:=--12x x ;=++-223y xy x5、等腰三角形的两边的长是方程091202=+-x x 的两个根,则此三角形周长为 6、已知042=+-b x x 的一根的相反数为042=-+b x x 的根,则042=-+bx x 的根是 7、已知0132=+-a a ,那么=++--2219294a a a ___________. 8、方程019991997199822=⋅++x x 的解是 . 9、若1≠ab ,且07200552=++a a ,05200572=++b b ,则_________=ba. 10、已知方程(2011x)2-2010·2012x -1=0的较大根为a ,方程x2+2010x -2011=0的较小根为b ,则a -b =__________.11、方程0672=+-x x ,各根的和是 .12、若31028-是方程02=++b ax x 的一个根(其中b a 、是有理数),则ab 的值是 . 13、用公式法解下列各方程(1)x 2+6x +9=7 (2)017122=++x x(3)08242=+-x x (4)4)3)(12(=--x x(5)02)82(42=++-y y (6)02322=--x x(7))3)(21()12(5+-=-x x x14、用因式分解法解下列方程:(1)t (2t -1)=3(2t -1); (2)y 2+7y +6=0;(3)y 2-15=2y (4)(2x -1)(x -1)=1.(5))3)(21()12(5+-=-x x x (6)10x 2-x -3=015、解下列方程(1)0)34()45(22=---x x ; (2)06)23(2=++-x x ;(3)0154)35(222=----x x ; (4)02)32()347(2=----x x ;(5)629332+=-+++x x x x .16、已知两个二次方程02=++b ax x ,02=++d cx x 有一个公共根1,求证:二次方程0222=++++db xc a x 也有一个根为1.17、求方程072=--kx x 与()0162=+--k x x 的公共根.B 组1、已知c b 、为方程02=++c bx x 的两个根,且0≠c ,c b ≠.则c b 、的值分别是 、2、已知正实数a b c ,,满足方程组222229217226a b ac b c ab c a bc ⎧++=⎪++=⎨⎪++=⎩,则a b c ++的值是3、关于x 的方程1)12(62++-=m x m x 有一根α,满足不等式:19981998≤≤-α,且使得α53为整数,则m 可取 个值.4、已知02=++c bx ax 的两根和为1S ,两根平方和为2S ,两根立方根为3S ,则123cS bS aS ++的值是5、已知1=x 是方程02=++c bx ax 的根,0≠abc .则)111(32333222cb ac b a c b a +++++++的值是 .6、(2012湖北随州)设0122=-+a a ,01224=--b b ,且012≠-ab ,52213⎪⎪⎭⎫ ⎝⎛+-+a a b ab 的值是 .7、解下列关于x 的方程(1)03222=-+m x m x ; (2)0))()((=+++++++abc b a x a c x c b x ;(3))0(0)(33442≠=++-ab b a x b a abx ;(4)0)3(2)1(2=+--+m x m x m ;(5)02)5(522=--+-x m x m )(.8、已知下面三个方程有公共根.02=++c bx ax ,02=++a cx bx , 02=++b ax cx .求证:abc c b a 3333=++.9、设等腰三角形的一腰与底边长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,试求a 的取值范围.10、若21q q 、是方程02=++b ax x 的两个实根,且0,21≠≠b q q .又21c c 、是任意两个实数,则n n n q c q c x 2211+=是方程021=++--n n n bx ax x 的解.11、设2121,,,b b a a 都是实数,21a a ≠,且1))(())((22122111=++=++b a b a b a b a ,求证:1))(())((22211211-=++=++b a b a b a b a .初中数学联赛体系第2讲 可化为一元二次方程的方程(组)模块一、特殊高次方程的解法次数超过2的整式方程称为高次方程.一般地高次方程没有统一的求解方法.对于一些特殊的高次方程,可通过降次,转化为一元二次方程或一元一次方程求解.转化的方法有因式分解法、换元法、变换主元法等.【例1】解下列方程(1)13322)132(222+-=+-x x x x(2)222222)143()352()2(+-=+-+-+x x x x x x(3).3123=--x x x(4).022224223=-+++x x x(5)062536506650362562345678=+-+-+-+-x x x x x x x x【例2】解方程.02)65(2)11(2102234=++++---a a x a x a x x 其中a 是常数.【例3】方程02=++b ax x 有两个不同的实数根.求证:方程01)2(234=+--++ax x b ax x 有4个不同的实数根.模块二、特殊分式方程的解法分母中含有未知数的方程叫分式方程,求解分式方程总的原则是通过去分母或换元,时期转化为整式方程,然后再求解.在这个过程中离不开分式的恒等变形,如通分、约分及降低分子的次数等等,这就有可能使未知数的范围扩大(或缩小),从而使方程产生增根(或遗根),因此,当未知数的范围扩大时,需验根。
一元二次方程应用题分类总结

十位上的数个位上的数对应的两位数相等关系原两位数x y10x+y10x+y=x+y+9新两位数yx10y+x10y+x=10x+y+27二元一次方程组应用探索一、数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x,个位上的数为y,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组,得,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x,或只设十位上的数为x,那将很难或根本就想象不出关于x的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x元,进价为y元,则打九折时的卖出价为0.9x元,获利(0.9x-y)元,因此得方程0.9x-y=20%y;打八折时的卖出价为0.8x元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组,解得,点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得,解之,得.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即;(2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:.四、行程问题例4 在某条高速公路上依次排列着A、B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米.分别在A、C两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A、C两个加油站驶去,结果往B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x、y千米/时,则,整理,得,解得,点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x吨,乙种货物装y吨,则,整理,得,解得,点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x套,要求的期限是y天,依题意,得,解得.点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.2.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。
数学因式分解公式

ax^4 + bx^3 + cx^2 + dx + e = a(x+p)(x+q)(x+r)(x+s)
多项式因式分解定理:
任意一个n项多项式(x-r1)(x-r2)(x-r3)...(x-rn)的形式的表达。其中r1,r2,r3..rn为多项式的根。
因式分解是数学中数学中常用的求解多项式的方法之一,因式分解的好处是可以将复杂的多项式转化为若干个简单的多项式,方便进行后续的求解。
这些公式是在特定情况下使用的,例如一元二次方程因式分解公式适用于一元二次方程的求解,而二元一次方程组因式分解公式则适用于二元一次方程组的求解。多项式因式分解定理可以适用于任意n项多项式的分解,这些公式都是数学中重要的工具和方法。项式拆分成若干个简单的多项式的过程。常见的公式有下面几种:
一元二次方程因式分解公式:
ax^2 + bx + c = (ax + d)(ex + f)
二元一次方程组因式分解公式:
ax + by = a(x+b/a) + b(y-a/b)
三项式因式分解公式:
ax^3 + bx^2 + cx + d = a(x+r)(x+s)(x+t)
《一元二次方程》数学教案(优秀5篇)

《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一教学设计思想解一元二次方程有四种方法,直接开平方法、配方法、公式法、因式分解法,这四种方法各有千秋。
直接开平方法很简单,在这里不做过多的介绍。
为保证学生掌握基本的运算技能,教学中进行了一定量的训练,但要避免学生简单的模仿。
我们在探究一元二次方程解法的过程中,要加强思想方法的渗透,发展学生的思维能力。
在解一元二次方程的几种方法中,均需要用到转化的思想方法。
如配方法需要将方程转化为能直接开平方的形式,公式法能根据一元二次方程转化为两个一元一次方程,所有这些均体现了转化的思想。
在教学时老师引导学生在主动进行观察、思考核探究的基础上,体会数学思想方法在其中的作用,充分发展学生的思维能力。
教学目标知识与技能:1.会用配方法、公式法、因式分解法解简单数字系数的一元二次方程。
2.能够根据一元二次方程的特点,灵活选用解方程的方法,体会解决问题策略的多样性。
过程与方法:1.参与对一元二次方程解法的探索,体验数学发现的过程,对结果比较、验证、归纳、理清几种解法之间的关系,并能根据方程的特点灵活选择适当的方法解一元二次方程。
2.在探究一元二次方程的过程中体会转化、降次的数学思想。
情感态度价值观:在解一元二次方程的实践中,交流、总结经验和规律,体验数学活动乐趣。
教学重难点重点:掌握配方法、公式法、因式分解法解一元二次方程的步骤,并熟练运用上述方法解题。
难点:根据方程的特点灵活选择适当的方法解一元二次方程。
教学方法探索发现,讲练结合元二次方程教案篇二一、教学目标1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。
3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。
二、重点·难点·疑点及解决办法1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
一元二次方程知识点及典例分析

姓名老师学生姓名填写时间学科数学年级初三教材版本人教版阶段观察期□:第()周保护期□第()课时自己课时统计共()课时课题名称初中数学——九年级上数学课时计划第()课时上课时间共()课时授课知识容一元二次方程知识点、考点授课目的个性化学习问题解决经过典例讲解解析,加强对知识点的理解,有利于更好掌握相关容授课重点经典题型解析及习题加强授课过程教师活动一元二次方程一、知识结构:解与解法一元二次方程根的鉴识韦达定理二、考点精析考点一、看法(1)定义:①只含有一个未知数,并且②未知数的最高次数是 2,这样的③整式方程就是一元二......................次方程。
(2)一般表达式: ax 2 bx c 0(a 0)⑶难点:如何理解“未知数的最高次数是2”:①该项系数不为“ 0”;②未知数指数为“ 2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以谈论。
典型例题:例 1、以下方程中是关于x 的一元二次方程的是()11C ax2bx c0D x22x x 21变式:当 k时,关于 x 的方程kx22x x23是一元二次方程。
例 2、方程 m 2 x m3mx 1 0是关于 x 的一元二次方程,则 m 的值为。
针对练习:★1、方程8x27 的一次项系数是,常数项是。
★2、若方程 m 2 x m 10 是关于 x 的一元一次方程,⑴求 m 的值;⑵写出关于x 的一元一次方程。
★★ 3、若方程m 1 x 2m ? x 1 是关于x的一元二次方程,则m的取值围是。
★★★ 4、若方程 x m +x n -2x2 =0 是一元二次方程,则以下不能能的是()A.m=n=2B.m=2,n=1C.n=2,m=1D.m=n=1考点二、方程的解⑴看法:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的看法求代数式的值;典型例题:例 1、已知2y2y 3 的值为2,则 4y2 2 y 1 的值为。
一元二次方程(知识点-考点-题型总结)

一元二次方程专题复习考点一、概念①②③(1)定义:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程。
(2)一般表达式:ax +bx +c =0(a ≠0)⑶难点:如何理解“未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x 的一元二次方程的是()211+-2=02xx 222C ax +bx +c =0Dx +2x =x +122变式:当k 时,关于x 的方程kx +2x =x +3是一元二次方程。
A 3(x +1)=2(x +1)B2例2、方程(m +2)x m 2+3mx +1=0是关于x 的一元二次方程,则m 的值为。
针对练习:★1、方程8x =7的一次项系数是,常数项是。
★2、若方程(m -2)x m -1=0是关于x 的一元一次方程,2⑴求m 的值;⑵写出关于x 的一元一次方程。
★★3、若方程(m -1)x +m ∙x =1是关于x 的一元二次方程,则m 的取值范围是。
★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是()A.m=n=2B.m=2,n=1C.n=2,m=1D.m=n=1考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值;典型例题:例1、已知2y +y -3的值为2,则4y +2y +1的值为。
例2、关于x 的一元二次方程(a -2)x +x +a -4=0的一个根为0,则a 的值为。
2222例3、已知关于x 的一元二次方程ax +bx +c =0(a ≠0)的系数满足a +c=b ,则此方程必有一根为。
2例4、已知a ,b 是方程x -4x +m =0的两个根,b ,c 是方程y -8y +5m =0的两个根,则m 的值为。
针对练习:★1、已知方程x +kx -10=0的一根是2,则k 为,另一根是。
一元二次方程课件
归纳概括
(1)只含有一个未知数 ) (2) ) 未知数的最高次数是 整理后 未知数的最高次数是2 (3)整式方程 )
—— 一元二次方程
练习一: 练习一:
辨一辨
下列方程是一元二次方程吗,若不是,为什么? 下列方程是一元二次方程吗,若不是,为什么?
(1) − x 2 = 0 1
(3) x 2 = 5 − 4 x 9
整理得: a − b − 3 = 0, 即 a − b = 3 . 当 a − b = 3时, 3 a − 3b + 4 = ( a − b ) + 4 = 3 × 3 + 4 = 13 3
回顾总结: 回顾总结:
学习了本节课,你有什么收获? 学习了本节课,你有什么收获? 请说出来与大家分享。 请说出来与大家分享。
(m−2)x +(m−3)x+5=0
|m|
时是一元二次方程; 时是一元二次方程; 时是一元一次方程
课外拓展
已知关于x的一元二次方程 已知关于 的一元二次方程 ax2+bx+c=0 (a≠0)一个根为 求a+b+c的值 一个根为1, 的值. 一个根为 的值 变形: 你能通过观察,求出方程 变形 若a+b+c=0,你能通过观察 求出方程 你能通过观察 ax2+bx+c=0 (a≠0)一个根吗 一个根吗? 一个根吗 推广: 你能通过观察,求出方程 推广 若a-b+c=0, 你能通过观察 求出方程 ax2+bx+c=0 (a≠0)一个根吗 一个根吗? 一个根吗 若4a+2b+c=0呢? 呢
分类讨论思想
练习四: 练习四:
2.若关于 的方程 2+bx-3=0有一个根是 , 若关于x的方程 有一个根是-1, 若关于 的方程ax 有一个根是 的值。 求3a-3b+4的值。 的值
《一元二次方程》大单元教学设计
单元学习重难点 重点:
1.一元二次方程及其它有关的概念
2.用配方法、公式法、因式分解法降次解一元二次方 程
3利用实际问题建立一元二次方程的数学模型, 并解决 这个问题
单元学习重难点 难点: 1.一元二次方程配方法解题
2.用公式法解一元二次方程时的讨论 3.一元二次方程根的判别式 4.一元二次方程根与系数的关系 5.建立一元二次方程实际问题的数学模型;方程解 与实际问题解的区别
3
专题三
一元二次方程的应用
(4课时)
第一课时
第二课时
第三课时
第四课时
以目标为导向的”教—学—评“一体化活动设计
课 型 一元二次方程的应用
教学目标
1.能根据具体几何实际问题中的数量关系列出一元二次方程并求解. 2.体会方程建模思想,培养数形结合意识.
教学活动 创设几何类型的一元二次方程问题
学生找出等量关系探究设计方案
以目标为导向的”教—学—评“一体化活动设计
复习回顾配方法解一元二次方程的步骤
教学活动 点拨总结公式法解一元二次方程的步骤
达成评价 会用公式法解一元二次方程
探究推导一元二次方程求根公式 跟踪练习
讨论求根公式的条件
精讲
第一课时
第二课时
第三课时
题目
用公式法解一元二次方程
以目标为导向的”教—学—评“一体化活动设计
专题二主要讨论一元二次方程的基本解法, 为专题三提供方法支 持, 最后增加了选学内容“一元二次方程的根与系数的关系”, 学习这一内容可以进一步加深对一元二次方程及其根的认识。
专题三
专题三结合实际问题, 重点分析实际问题中的数量关系并以一元 二次方程的形式进行表示, 进而巩固专题二中一元二次方程的解 法。
一元二次方程求根
一元二次方程求根一、一元二次方程求根公式:当Δ=b2-4ac ≥0时, x =−b±√b 2−4ac 2a当Δ=b2-4ac<0时,x 无实数根,但有2个共轭复根只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。
它的标准形式为: ax 2+bx+c=0(a ≠0)二、一元二次方程解法(直接开平方法、配方法、公式法、因式分解法)1、开平方法形如(X -m )2=n(n ≥0),可以直接开平方法求解为n m X ±=(1)等号左边是一个数的平方的形式而等号右边是一个常数(2)降次的实质是由一个一元二次方程转化为两个一元一次方程(3)方法是根据平方根的意义开平方2、配方法(1)把原方程化为一般形式(2)方程两边同时除以二次项系数,使二次项系数为1,并把常项移到方程右边(3)方程两边同时加上一次项系数一半的平方(4)把左边配成一个完全平方式,右边化为一个常数(5)进一步直接开平方法求出方程的解3、因式分解法(一移、二分、三转化、四求根)(1)将方程右边化为0(2)方程左边分解为两个一次式的积,令这两个一次式分别为0,得到两个一元一次方程(3)求解这两个一元一次方程三、如何选择一元二次方程组的解法1、看是否可以直接开方解。
2、看是否能用因式分解法解(因式分解的解法中,先考虑提公因式法,再考虑平方公式法,最后考虑十字相乘法)。
3、使用公式法求解。
4、最后再考虑配方法(配方法虽然可以解全部一元二次方程,但有时候解题太麻烦)。
附:一元二次方程解法口诀含有一个未知数,最高指数是二次;整式方程最常见,一元二次方程式;左边二次三项式,右边是零一般式。
方程缺少常数项,求取提取公因式;方程没有一次项,直接开方最合适;方程如果合家欢,十字相乘先去试;分解二次常数项,叉乘求和凑中式;如能做到这一点,十字相乘根求之;否则可以去配方,自然能够套公式。
完整版一元二次方程知识点考点题型总结
元二次方程专题复习考点一、概念 (1)定义:①只含有一个未知数,并且②未知数的最高次数是.2,这样的③整式方程 就是一元二次方程。
⑵一般表达式:ax 2 bx c 0(a 0) ⑶难点:如何理解 “未知数的最高次数是 2”: ① 该项系数不为“ 0” ; ② 未知数指数为“ 2”; ③ 若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题: 例1、下列方程中是关于 x 的一元二次方程的是( 12) 1 —2 x C 变式:当 2ax 例2、方程m针对练习: ★ 1、方程8x 2时,关于2 X 冋 3mxbx 7的一次项系数是 - m 1 2 x D x 2的方程kx 2 2x x 21-2 x2x x 2 1 3是一元二次方程。
0是关于x 的一元二次方程,则 m 的值为,常数项是 ★ 2、若方程 m ⑴求m 的值;⑵写岀关于x ★★ 3、若方程 m 1 x 2 ★★★ 4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( 0是关于x 的一元一次方程, 的一元一次方程。
j m ? X 1是关于x 的一元二次方程,则 m 的取值范围是 ) A.m=n=2 B.m=2 ,n=1 C.n=2,m=1 D.m=n=1 考点二、方程的解 ⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值; 典型例题: 1、 已知2y 2 y 3的值为2,则4y 22、 关于x 的一元二次方程 a3、已知关于x 的一元二次方程2 2 x 2 x ax 2 bx 2y 2a 1的值为 例 则m 的值为 针对练习: 4、已知a,b 是方程x 4x m 0的两个根, 4 0的一个根为0,贝U a 的值为 ________________ 。
0 a 0的系数满足ac b ,则此方程必有一根为2b,c 是方程y 8y 5m 0的两个根,★ 1、已知方程 x 2kx 10 0的一根是2,则k 为 ★ 2、已知关于 x 的方程x 2 kx 2 0的一个解与方程 ______ ,另一根是 _ x 1 -3的解相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、(海淀)20.关于x的一元二次方程220axaxc.
(1)若方程有两个相等的实数根,请比较ac,的大小,并说明理由;
(2)若方程有一个根是0,求此时方程的另一个根.
2、(西城)20.已知关于x的一元二次方程20xbxc
(1)当2cb时,利用根的判别式判断方程根的情况;
(2)若方程有两个相等的非零实数根,写出一组满足条件的yxb的值,并求此时方程的根。
3、(东城)20.已知关于x的一元二次方程x2﹣3x+a﹣2=0有实数根.
(1)求a的取值范围;
(2)当a为符合条件的最大整数时,求此时方程的解.
4、(朝阳)20. 已知关于x的方程221100mxmxmm.
(1)求证:方程总有两个不相等的实数根;
(2)若方程的两个实数根都是整数,求整数m的值.
5、(门头沟)20.已知:关于x的方程2(3)30mxmx(m为实数,m≠0).
(1)求证:此方程总有两个实数根;
(2)如果此方程的两个实数根都为正整数,求整数m的值.
6、(通州)20.关于x的一元二次方程2210xxn有两个不相等的实数根.
(1)求n的取值范围;
(2)若n为取值范围内的最小整数,求此方程的根.
7、(延庆)21.已知,关于x的一元二次方程2(1)0xaxa.
(1)求证:方程总有两个实数根;
(2)若该方程有一个根是负数,求a的取值范围.
8、(燕山)20.关于x的一元二次方程2(3)30xmxm.
(1) 求证:方程总有两个实数根;
(2) 若方程的两个根都是整数,请写出一个满足条件的m的值,并求此时方程的根.
9、(丰台)19. 已知关于x的一元二次方程02)3(2mxmx.
(1)求证:方程总有两个实数根;
(2)若方程两个根的绝对值相等,求此时m的值.
10、(石景山)20.关于x的一元二次方程
2
320xmxm
.
(1)求证:方程总有两个实数根;
(2)若方程的两个实数根都是正整数,求m的最小值.
11、(怀柔)20.已知关于x的方程2220xxm有两个不相等的实数根.
(1)求m的取值范围;
(2)如果m为正整数,且该方程的根都是整数,求m的值.
12、(房山)20. 关于x的一元二次方程2(23)(1)0mxmxm有两个实数根.
(1)求m的取值范围;
(2)若m为正整数,求此时方程的根.
13、(平谷)20.已知关于x的一元二次方程2(1)20xkxk
(1)求证:方程总有两个实数根;
(2)若方程有一根为正数,求实数k的取值范围.
14、(顺义)
20.关于x的一元二次方程
2
410xxm
有两个不相等的实数根.
(1)求m的取值范围;
(2)若m为正整数,且该方程的根都是整数,求m的值.
15、(大兴)20. 已知关于x的一元二次方程.
(1)求证:方程总有两个实数根;
(2)请你给m赋一个值,并求此时方程的根.
2
230xmxm