解一元二次方程练习题(韦达定理)
一元二次方程-------韦达定理训练中考题

一元二次方程-------韦达定理训练中考题1.若x1、x2是一元二次方程x2-3x+2=0的两根,则x1+x2的值是( )A.-2 B.2 C.3 D.12.如果关于x的一元二次方程x2+4x+a=0的两个不相等实数根x1,x2满足x1x2﹣2x1﹣2x2﹣5=0,那么a的值为【】A.3 B.﹣3 C.13 D.﹣133.已知关于x的一元二次方程x2﹣bx+c=0的两根分别为x1=1,x2=﹣2,则b与c的值分别为【】A.b=﹣1,c=2B.b=1,c=﹣2C.b=1,c=2D.b=﹣1,c=﹣24.已知一元二次方程:x2﹣3x﹣1=0的两个根分别是x1、x2,则x12x2+x1x22的值为【】A.﹣3 B. 3 C.﹣6 D. 65.已知m、n是方程x2+2x+1=0的两根,则代数式的值为【】A.9 B.±3 C.3 D.56.下列一元二次方程两实数根和为﹣4的是【】A.x2+2x﹣4=0B.x2﹣4x+4=0C.x2+4x+10=0D.x2+4x ﹣5=07.已知:x1,x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,则a、b的值分别是【】A.a=﹣3,b=1 B.a=3,b=1 C.,b=﹣1 D.,b=18.关于x的一元二次方程的两个正实数根分别为x1,x2,且2x1+x2=7,则m的值是【】A.2 B. 6 C. 2或6 D . 79.设x1、x2是一元二次方程x2+5x-3=0的两个实根,且,则a=10.已知m和n是方程2x2﹣5x﹣3=0的两根,则= ▲ .11.设x1,x2是一元二次方程x2– 3x – 1 =0的两个实数根,则的值为12.已知x1、x2是方程2x2+14x-16=0的两实数根,那么的值为▲ .13.若关于x的方程的两根互为倒数,则a= ▲ .14.设a,b是方程x2+x-2013=0的两个不相等的实数根,则a2+2a+b 的值为▲15.关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2.(1)求m的取值范围.(2)若2(x1+x2)+ x1x2+10=0.求m的值.。
第二章 一元二次方程专题复习2-根的判别式与韦达定理(含答案)

专题复习二 根的判别式与韦达定理重点提示: (1)根的判别式ac b 42-主要应用于判断方程根的情况.利用判别式判断方程根的情况时要注意方程是不是一元二次方程,如果方程的类型不确定还要进行分类讨论.(2)韦达定理主要反映一元二次方程根与系数的关系,利用韦达定理的前提条件是方程有解,即042≥-ac b .【夯实基础巩固】1. 已知x 1,x 2是方程x 2+2x ﹣5=0的两根,则的值为( B )A .﹣B .C .D .﹣2.已知x 2+px +q =0的两根是3,﹣4,则代数式x 2+px +q 分解因式的结果是( C )A . (x +3)(x +4)B . (x ﹣3)(x ﹣4)C . (x ﹣3)(x +4)D . (x +3)(x ﹣4)3.关于x 的方程x 2﹣2mx ﹣m ﹣1=0的根的情况是( A )A . 有两个不相等的实数根B . 有两个相等的实数根C . 有两个实数根D . 没有实数根4.关于x 的方程x 2﹣(m ﹣1)x +m ﹣2=0的两根互为倒数,则m 的值是( C )A . 1B . 2C . 3D . 45.关于x 的方程x 2﹣(m ﹣3)x +m 2=0有两个不相等的实数根,则m 的最大整数值是( B )A . 2B . 1C . 0D . ﹣16.已知关于x 的一元二次方程x 2+kx +1=0有两个相等的实数根,则k = ±2 .7.已知x 1,x 2是方程的两根,则的值为 3 .8.已知a ,b 是一元二次方程x 2﹣2x ﹣1=0的两个实数根,则代数式(a ﹣b )(a +b ﹣2)+ab 的值等于 ﹣1 .9.已知关于x 的方程x 2+2mx +m 2﹣1=0.(1)不解方程,判别方程根的情况.(2)若方程有一个根为3,求m 的值.(1)∵∆=(2m )2﹣4×1×(m 2﹣1)=4>0,∴方程x 2+2mx +m 2﹣1=0有两个不相等的实数根.(2)∵x2+2mx+m2﹣1=0有一个根是3,∴32+2m×3+m2﹣1=0,解得m=﹣4或m=﹣2.10.已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)求实数m的最大整数值.(2)在(1)的条件下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.(1)∵x2﹣2x+m=0有两个不相等的实数根,∴ =8﹣4m>0,解得m<2,∴m的最大整数值为1.(2)∵m=1,∴此一元二次方程为x2﹣2x+1=0.∴x1+x2=2,x1x2=1.∴x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=8﹣3=5.【能力提升培优】11.若a,b,c为三角形三边,则关于x的一元二次方程x2+(a﹣b)x+c2=0的根的情况是(C)A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定12.已知一元二次方程ax2+bx+c=0(a≠0),给出下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+bx+c=0两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根.其中真命题有(C)A.1个B.2个C.3个D.0个13.设x1,x2是关于x的方程x2+px+q=0的两根,x1+1,x2+1是关于x的方程x2+qx+p=0的两根,则p,q的值分别为(A)A.﹣1,﹣3 B.1,3 C.1,﹣3 D.﹣1,3【解析】∵x1,x2是x2+px+q=0的两根,x1+1,x2+1是x2+qx+p=0的两根,∴x1+x2=-p,x1x2=q,x1+1+x2+1= x1+x2+2=-q,(x1+1)(x2+1)= x1x2+(x1+x2)+1=p.∴-p+2=-q,q-p+1=p.∴p=-1,q=-3.14.若一元二次方程x2﹣(a+2)x+2a=0的两个实数根分别是3,b,则a+b=5.15.已知m,n是方程x2﹣2x﹣1=0的两根,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于﹣9.16.已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1,x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③.则正确结论的序号是①②.17.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1x2,求k的值.(1)∵原方程有两个不相等的实数根,∴∆=(2k+1)2﹣4(k2+1)=4k2+4k+1﹣4k2﹣4=4k﹣3>0,解得k>.(2)∵k>,∴x1+x2=﹣(2k+1)<0.又∵x1x2=k2+1>0,∴x1<0,x2<0.∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=2k+1.∵|x1|+|x2|=x1x2,∴2k+1=k2+1.∴k1=0,k2=2.又∵k>,∴k=2.18.设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1,x2.(1)若+=1,求的值.(2)求+﹣m2的最大值.∵方程有两个不相等的实数根,∴∆= 4(m﹣2)2﹣4(m2﹣3m+3)=﹣4m+4>0,解得m<1.∴﹣1≤m<1.(1)∵x1+x2=﹣2(m﹣2),x1x2=m2﹣3m+3,∴+===1,解得m1=,m2=(不合题意,舍去).∴=﹣2.(2)+﹣m2=﹣m2=﹣2(m﹣1)﹣m2=﹣(m+1)2+3.当m=﹣1时,最大值为3.【中考实战演练】19.【烟台】等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为(B)A.9B.10 C.9或10 D.8或10【解析】∵a,b,2是等腰三角形的三边长,∴a=2,b<4或a<4,b=2或a=b>1. ∵a,b是x2-6x+n-1=0的两根,∴a+b=6.∴a=b=3.∴ab=n-1=9.∴n=10.20.已知m,n是关于x的一元二次方程x2﹣2ax+a2+a﹣2=0的两实根,那么m+n的最大值是4.【开放应用探究】21.若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,x2+3x﹣=0,x2+6x ﹣27=0,x2+4x+4=0,都是“偶系二次方程”.(1)判断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由.(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”?请说明理由.(1)不是.理由如下:解方程x2+x﹣12=0得x1=3,x2=﹣4.∴|x1|+|x2|=3+4=7=2×3.5.∵3.5不是整数,∴x2+x﹣12=0不是“偶系二次方程.(2)存在.理由如下:∵x2﹣6x﹣27=0和x2+6x﹣27=0是偶系二次方程,∴假设c=mb2+n.当b=﹣6,c=﹣27时,﹣27=36m+n.∵x2=0是偶系二次方程,∴n=0,m=﹣.∴c=﹣b2.∴可设c=﹣b2.对于任意一个整数b,c=﹣b2时, =b2﹣4c=4b2.∴x1=﹣b,x2=b.∴|x1|+|x2|=2|b|,∵b是整数,∴对于任何一个整数b,当c=﹣b2时,关于x的方程x2+bx+c=0是“偶系二次方程”.。
初中数学竞赛:韦达定理(附练习题及答案)

初中数学竞赛:韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。
韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在:运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等。
韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。
韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。
【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 。
思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2思路点拨:可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件。
注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式。
【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根。
(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x 。
思路点拨:对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手。
【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值。
根与系数的关系(韦达定理)练习题 (2)

一元二次方程根与系数的关系练习题一.选择题(共14小题)1.下列一元二次方程中,两根之和为2的是()A.x2﹣x+2=0 B.x2﹣2x+2=0 C.x2﹣x﹣2=0 D.2x2﹣4x+1=02.小明和小华解同一个一元二次方程时,小明看错一次项系数,解得两根为2,﹣3,而小华看错常数项,解错两根为﹣2,5,那么原方程为()A.x2﹣3x+6=0 B.x2﹣3x﹣6=0 C.x2+3x﹣6=0 D.x2+3x+6=03.(2011?锦江区模拟)若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6C.8D.124.(2007?泰安)若x1,x2是方程x2﹣2x﹣4=0的两个不相等的实数根,则2x12﹣2x1+x22+3的值是()A.19 B.15 C.11 D.35.(2006?贺州)已知a,b是一元二次方程x2+4x﹣3=0的两个实数根,则a2﹣ab+4a的值是()A.6B.0C.7D.﹣16.(1997?天津)若一元二次方程x2﹣ax﹣2a=0的两根之和为4a﹣3,则两根之积为()A.2B.﹣2 C.﹣6或2 D.6或﹣27.已知x的方程x2+mx+n=0的一个根是另一个根的3倍.则()A.3n2=16m2B.3m2=16n C.m=3n D.n=3m28.a、b是方程x2+(m﹣5)x+7=0的两个根,则(a2+ma+7)(b2+mb+7)=()A.365 B.245 C.210 D.1759.在斜边AB为5的Rt△ABC中,∠C=90°,两条直角边a、b是关于x的方程x2﹣(m﹣1)x+m+4=0的两个实数根,则m的值为()A.﹣4 B.4C.8或﹣4 D.810.设m、n是方程x2+x﹣2012=0的两个实数根,则m2+2m+n的值为()A.2008 B.2009 C.2010 D.201111.设x1、x2是二次方程x2+x﹣3=0的两个根,那么x13﹣4x22+19的值等于()A.﹣4 B.8C.6D.012.m,n是方程x2﹣2008x+2009=0的两根,则(m2﹣2007m+2009)(n2﹣2007n+2009)的值是()A.2007 B.2008 C.2009 D.201013.已知x1、x2是一元二次方程x2+x﹣1=0两个实数根,则(x12﹣x1﹣1)(x22﹣x2﹣1)的值为()A.0B.4C.﹣1 D.﹣414.设m,n是方程x2﹣x﹣2012=0的两个实数根,则m2+n的值为()A.1006 B.2011 C.2012 D.2013二.填空题(共5小题)15.若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为_________.16若关于x的一元二次方程x2+x﹣3=0的两根为x1,x2,则2x1+2x2+x1x2=_________.17.已知关于x的方程x2﹣2ax+a2﹣2a+2=0的两个实数根x1,x2,满足x12+x22=2,则a的值是_________.18.一元二次方程2x2+3x﹣1=0和x2﹣5x+7=0所有实数根的和为_________.19.已知m、n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为_________.三.解答题(共11小题)20.已知关于x的一元二次方程x2+(2m﹣3)x+m2=0的两个不相等的实数根α、β满足,求m 的值.21.是否存在实数m,使关于x的方程2x2+mx+5=0的两实根的平方的倒数和等于?若存在,求出m;若不存在,说明理由.22.已知关于x的方程kx2﹣2x+3=0有两个不相等的实数根x1、x2,则当k为何值时,方程两根之比为1:3?23.已知斜边为5的直角三角形的两条直角边a、b的长是方程x2﹣(2m﹣1)x+4(m﹣1)=0的两个根,求m的值.24.实数k为何值时,方程x2+(2k﹣1)x+1+k2=0的两实数根的平方和最小,并求出这两个实数根.25.已知关于x的方程x2+(2k﹣1)x﹣2k=0的两个实数根x1、x2满足x1﹣x2=2,试求k的值.26.已知x1、x2是方程x2﹣kx+k(k+4)=0的两个根,且满足(x1﹣1)(x2﹣1)=,求k的值.27.关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2.(1)求k的取值范围;(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.28.已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.29.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.30.已知x1、x2是一元二次方程2x2﹣2x+m+1=0的两个实根.(1)求实数m的取值范围;(2)如果m满足不等式7+4x1x2>x12+x22,且m为整数.求m的值.一元二次方程要与系数的关系练习题参考答案与试题解析一.选择题(共14小题)1.下列一元二次方程中,两根之和为2的是()A.x2﹣x+2=0 B.x2﹣2x+2=0 C.x2﹣x﹣2=0 D.2x2﹣4x+1=0考点:根与系数的关系.专题:方程思想.分析:利用一元二次方程的根与系数的关系x1+x2=﹣对以下选项进行一一验证并作出正确的选择.解答:解:A、∵x1+x2=1;故本选项错误;B、∵△=4﹣8=﹣4<0,所以本方程无根;故本选项错误;C、∵x1+x2=1;故本选项错误;D、∵x1+x2=2;故本选项正确;故选D.点评:本题考查了一元二次方程根与系数的关系.解答该题时,需注意,一元二次方程的根与系数的关系是在原方程有实数解的情况下成立的.2.小明和小华解同一个一元二次方程时,小明看错一次项系数,解得两根为2,﹣3,而小华看错常数项,解错两根为﹣2,5,那么原方程为()A.x2﹣3x+6=0 B.x2﹣3x﹣6=0 C.x2+3x﹣6=0 D.x2+3x+6=0考点:根与系数的关系.分析:利用根与系数的关系求解即可.解答:解:小明看错一次项系数,解得两根为2,﹣3,两根之积正确;小华看错常数项,解错两根为﹣2,5,两根之和正确,故设这个一元二次方程的两根是α、β,可得:α?β=﹣6,α+β=﹣3,那么以α、β为两根的一元二次方程就是x2﹣3x﹣6=0,故选:B.点评:此题主要考查了根与系数的关系,若x1、x2ax2+bx+c=0的两根,则有x1+x2=﹣,x1x2=.3.(2011?锦江区模拟)若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6C.8D.12考点:根与系数的关系.分析:根据(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4,根据一元二次方程根与系数的关系,即两根的和与积,代入数值计算即可.解答:解:∵x1、x2是方程x2﹣3x﹣2=0的两个实数根.∴x1+x2=3,x1?x2=﹣2.又∵(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4.将x1+x2=3、x1?x2=﹣2代(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4=(﹣2)+2×3+4=8.故选C点评:将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.4.(2007?泰安)若x1,x2是方程x2﹣2x﹣4=0的两个不相等的实数根,则代数式2x12﹣2x1+x22+3的值是()A.19 B.15 C.11 D.3考点:根与系数的关系;一元二次方程的解.专题:压轴题.分析:欲求2x12﹣2x1+x22+3的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.解答:解:∵x1,x2是方程x2﹣2x﹣4=0的两个不相等的实数根.∴x12﹣2x1=4,x1x2=﹣4,x1+x2=2.∴2x12﹣2x1+x22+3=x12﹣2x1+x12+x22+3=x12﹣2x1+(x1+x2)2﹣2x1x2+3=4+4+8+3=19.故选A.点评:将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.5.(2006?贺州)已知a,b是一元二次方程x2+4x﹣3=0的两个实数根,则a2﹣ab+4a的值是()A.6B.0C.7D.﹣1考点:根与系数的关系;一元二次方程的解.专题:压轴题.分析:由a,b是一元二次方程x2+4x﹣3=0的两个实数根,可以得到如下四个等式:a2+4a﹣3=0,b2+4b﹣3=0,a+b=﹣4,ab=﹣3;再根据问题的需要,灵活变形.解答:解:把a代入方程可得a2+4a=3,根据根与系数的关系可得ab=﹣3.∴a2﹣ab+4a=a2+4a﹣ab=3﹣(﹣3)=6.故选A点评:本题考查了一元二次方程根与系数的关系.解此类题目要利用解的定义找一个关于a、b的相等关系,再根据根与系数的关系求出ab的值,把所求的代数式化成已知条件的形式,代入数值计算即可.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1?x2=.6.(1997?天津)若一元二次方程x2﹣ax﹣2a=0的两根之和为4a﹣3,则两根之积为()A.2B.﹣2 C.﹣6或2 D.6或﹣2考点:根与系数的关系.专题:方程思想.分析:由两根之和的值建立关于a的方程,求出a的值后,再根据一元二次方程根与系数的关系求两根之积.解答:解;由题意知x1+x2=a=4a﹣3,∴a=1,∴x1x2=﹣2a=﹣2.故选B.点评:本题考查了一元二次方程根与系数的关系,在列方程时要注意各系数的数值与正负,避免出现错误.7.已知x的方程x2+mx+n=0的一个根是另一个根的3倍.则()A.3n2=16m2B.3m2=16n C.m=3n D.n=3m2考点:根与系数的关系.分析:设方程的一个根为a,则另一个根为3a,然后利用根与系数的关系得到两根与m、n之间的关系,整理即可得到正确的答案;解答:解:∵方程x2+mx+n=0的一个根是另一个根的3倍,∴设一根为a,则另一根为3a,由根与系数的关系,得:a?3a=n,a+3a=﹣m,整理得:3m2=16n,故选B.点评:本题考查了根与系数的关系,解题的关键是熟练记忆根与系数的关系,难度不大.8.a、b是方程x2+(m﹣5)x+7=0的两个根,则(a2+ma+7)(b2+mb+7)=()A.365 B.245 C.210 D.175考点:根与系数的关系;一元二次方程的解.专题:计算题.分析:根据一元二次方程的解的意义,知a、b满足方程x2+(m﹣5)x+7=0①,又由韦达定理知a?b=7②;所以,根据①②来求代数式(a2+ma+7)(b2+mb+7)的值,并作出选择即可.解答:解:∵a、b是方程x2+(m﹣5)x+7=0的两个根,∴a、b满足方程x2+(m﹣5)x+7=0,∴a2+ma+7﹣5a=0,即a2+ma+7=5a;b2+mb+7﹣5b=0,即b2+mb+7=5b;又由韦达定理,知a?b=7;∴(a2+ma+7)(b2+mb+7)=25a?b=25×7=175.故选D.点评:本题综合考查了一元二次方程的解、根与系数的关系.求代数式(a2+ma+7)(b2+mb+7)的值时,采用了根与系数的关系与代数式变形相结合的解题方法.9.在斜边AB为5的Rt△ABC中,∠C=90°,两条直角边a、b是关于x的方程x2﹣(m﹣1)x+m+4=0的两个实数根,则m的值为()A.﹣4 B.4C.8或﹣4 D.8考点:根与系数的关系;勾股定理.分析:根据勾股定理求的a2+b2=25,即a2+b2=(a+b)2﹣2ab①,然后根据根与系数的关系求的a+b=m﹣1②ab=m+4③;最后由①②③联立方程组,即可求得m的值.解答:解:∵斜边AB为5的Rt△ABC中,∠C=90°,两条直角边a、b,∴a2+b2=25,又∵a2+b2=(a+b)2﹣2ab,∴(a+b)2﹣2ab=25,①∵a、b是关于x的方程x2﹣(m﹣1)x+m+4=0的两个实数根,∴a+b=m﹣1,②ab=m+4,③由①②③,解得m=﹣4,或m=8;当m=﹣4时,ab=0,∴a=0或b=0,(不合题意)∴m=8;故选D.点评:本题综合考查了根与系数的关系、勾股定理的应用.解答此题时,需注意作为三角形的两边a、b均不为零这一条件.10.设m、n是方程x2+x﹣2012=0的两个实数根,则m2+2m+n的值为()A.2008 B.2009 C.2010 D.2011考点:根与系数的关系;一元二次方程的解.专题:计算题.分析:由于m、n是方程x2+x﹣2012=0的两个实数根,根据根与系数的关系可以得到m+n=﹣1,并且m2+m﹣2012=0,然后把m2+2m+n可以变为m2+m+m+n,把前面的值代入即可求出结果解答:解:∵m、n是方程x2+x﹣2012=0的两个实数根,∴m+n=﹣1,并且m2+m﹣2012=0,∴m2+m=2011,∴m2+2m+n=m2+m+m+n=2012﹣1=2011.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.11.设x1、x2是二次方程x2+x﹣3=0的两个根,那么x13﹣4x22+19的值等于()A.﹣4 B.8C.6D.0考点:根与系数的关系.专题:计算题.分析:首先利用根的定义使多项式降次,对代数式进行化简,然后根据根与系数的关系代入计算.解答:解:由题意有x12+x1﹣3=0,x22+x2﹣3=0,即x12=3﹣x1,x22=3﹣x2,所以x13﹣4x22+19=x1(3﹣x1)﹣4(3﹣x2)+19=3x1﹣=3x1﹣(3﹣x1)+4x2+7=4(x1+x2)+4,又根据根与系数的关系知道x1+x2=﹣1,所以原式=4×(﹣1)+4=0.故选D.点评:本题考查根与系数的关系和代数式的化简.求出x1、x2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如x12=3﹣x1,x22=3﹣x2.12.m,n是方程x2﹣2008x+2009=0的两根,则代数式(m2﹣2007m+2009)(n2﹣2007n+2009)的值是()A.2007 B.2008 C.2009 D.2010考点:根与系数的关系;一元二次方程的解.分析:首先根据方程的解的定义,得m2﹣2008m+2009=0,n2﹣2008n+2009=0,则有m2﹣2007m=m﹣2009,n2﹣2007n=n﹣2009,再根据根与系数的关系,得mn=2009,进行求解.解答:解:∵m,n是方程x2﹣2008x+2009=0的两根,∴m2﹣2008m+2009=0,n2﹣2008n+2009=0,mn=2009.∴(m2﹣2007m+2009)(n2﹣2007n+2009)=(m﹣2009+2009)(n﹣2009+2009)=mn=2009.故选C.点评:此题综合运用了方程的解的定义和根与系数的关系.13.已知x1、x2是一元二次方程x2+x﹣1=0两个实数根,则(x12﹣x1﹣1)(x22﹣x2﹣1)的值为()A.0B.4C.﹣1 D.﹣4考点:根与系数的关系.专题:计算题.分析:根据一元二次方程的解的定义,将x1、x2分别代入原方程,求得x12=﹣x1+1、x22=﹣x2+1;然后根据根与系数的关系求得x1x2=﹣1;最后将其代入所求的代数式求值即可.解答:解:∵x1、x2是一元二次方程x2+x﹣1=0两个实数根,∴x12+x1﹣1=0,即x12=﹣x1+1;x22+x2﹣1=0,即x22=﹣x2+1;又根据韦达定理知x1?x2=﹣1∴(x12﹣x1﹣1)(x22﹣x2﹣1)=﹣2x1?(﹣2x2)=4x1?x2=﹣4;故选D.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.14.设m,n是方程x2﹣x﹣2012=0的两个实数根,则m2+n的值为()A.1006 B.2011 C.2012 D.2013考点:根与系数的关系;一元二次方程的解.分析:利用一元二次方程解的定义,将x=m代入已知方程求得m2=m+2012;然后根据根与系数的关系知m+n=1;最后将m2、m+n的值代入所求的代数式求值即可.解答:解:∵m,n是方程x2﹣x﹣2012=0的两个实数根,∴m2﹣m﹣2012=0,即m2=m+2012;又由韦达定理知,m+n=1,∴m2+n=m+n+2012=1+2012=2013;故选D.点评:本题考查了根与系数的关系、一元二次方程的解.正确理解一元二次方程的解的定义是解题的关键.二.填空题(共5小题)15.(2014?广州)若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.考点:根与系数的关系;二次函数的最值.专题:判别式法.分析:由题意可得△=b2﹣4ac≥0,然后根据不等式的最小值计算即可得到结论.解答:解:由题意知,方程x2+2mx+m2+3m﹣2=0有两个实数根,则△=b2﹣4ac=4m2﹣4(m2+3m﹣2)=8﹣12m≥0,∴m≤,∵x1(x2+x1)+x22=(x2+x1)2﹣x1x2=(﹣2m)2﹣(m2+3m﹣2)=3m2﹣3m+2=3(m2﹣m+﹣)+2=3(m﹣)2+;∴当m=时,有最小值;∵<,∴m=成立;∴最小值为;故答案为:.点评:本题考查了一元二次方程根与系数关系,考查了一元二次不等式的最值问题.总结一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.16.(2013?江阴市一模)若关于x的一元二次方程x2+x﹣3=0的两根为x1,x2,则2x1+2x2+x1x2=﹣5.考点:根与系数的关系.分析:根据根与系数的关系列式计算即可求出x1+x2与x1?x2的值,再整体代入即可求解.解答:解:根据根与系数的关系可得,x1?x2=﹣1,x1+x2=﹣23.则2x1+2x2+x1x2=2(x1+x2)+x1x2=﹣2﹣3=﹣5.故答案为:﹣5.点评:本题主要考查了一元二次方程的解和根与系数的关系等知识,在利用根与系数的关系x1+x2=﹣、x1?x2=时,要注意等式中的a、b、c所表示的含义.17.已知关于x的方程x2﹣2ax+a2﹣2a+2=0的两个实数根x1,x2,满足x12+x22=2,则a的值是1.考点:根与系数的关系;根的判别式.分析:先根据根与系数的关系,根据x12+x22=(x1+x2)2﹣2x1x2,即可得到关于a的方程,求出a的值.解答:解:根据一元二次方程的根与系数的关系知:x1+x2=2a,x1x2=a2﹣2a+2.x12+x22=(x1+x2)2﹣2x1x2=(2a)2﹣2(a2﹣2a+2)=2a2+4a﹣4=2.解a2+2a﹣3=0,得a1=﹣3,a2=1.又方程有两实数根,△≥0即(2a)2﹣4(a2﹣2a+2)≥0.解得a≥1.∴a=﹣3舍去.∴a=1.点评:应用了根与系数的关系得到方程两根的和与两根的积,根据两根的平方和可以用两根的和与两根的积表示,即可把求a的值的问题转化为方程求解的问题.18.一元二次方程2x2+3x﹣1=0和x2﹣5x+7=0所有实数根的和为﹣.考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系可知,两根之和等于﹣,两根之积等于,由两个一元二次方程分别找出a,b和c的值,计算出两根之和,然后再把所有的根相加即可求出所求的值.解答:解:由2x2+3x﹣1=0,得到:a=2,b=3,c=﹣1,∵b2﹣4ac=9+8=17>0,即方程有两个不等的实数根,设两根分别为x1和x2,则x1+x2=﹣;由x2﹣5x+7=0,找出a=1,b=﹣5,c=7,∵b2﹣4ac=25﹣28=﹣3<0,∴此方程没有实数根.综上,两方程所有的实数根的和为﹣.故答案为:﹣点评:此题考查了一元二次方程的根与系数的关系,是一道基础题.学生必须掌握利用根与系数关系的前提是根的判别式大于等于0即方程有实数根.19.已知m、n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为﹣4.考点:根与系数的关系.分析:由m、n是关于x的一元二次方程x2﹣3x+a=0的两个解,得出m+n=3,mn=a,整理(m﹣1)(n﹣1)=﹣6,整体代入求得a的数值即可.解答:解:∵m、n是关于x的一元二次方程x2﹣3x+a=0的两个解,∴m+n=3,mn=a,∵(m﹣1)(n﹣1)=﹣6,∴mn﹣(m+n)+1=﹣6即a﹣3+1=﹣6解得a=﹣4.故答案为:﹣4.点评:此题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1?x2=.三.解答题(共11小题)20.(2004?重庆)已知关于x的一元二次方程x2+(2m﹣3)x+m2=0的两个不相等的实数根α、β满足,求m的值.考点:根与系数的关系;解一元二次方程-因式分解法;根的判别式.分析:首先根据根的判别式求出m的取值范围,利用根与系数的关系可以求得方程的根的和与积,将转化为关于m的方程,求出m的值并检验.解答:解:由判别式大于零,得(2m﹣3)2﹣4m2>0,解得m<.∵即.∴α+β=αβ.又α+β=﹣(2m﹣3),αβ=m2.代入上式得3﹣2m=m2.解之得m1=﹣3,m2=1.∵m2=1>,故舍去.∴m=﹣3.点评:本题主要考查一元二次方程根的判别式,根与系数的关系的综合运用.21.(1998?内江)是否存在实数m,使关于x的方程2x2+mx+5=0的两实根的平方的倒数和等于?若存在,求出m;若不存在,说明理由.考点:根与系数的关系;根的判别式.分析:根据根与系数的关系,两实根的平方的倒数和.即可确定m的取值情况.解答:解:设原方程的两根为x1、x2,则有:,∴.又∵,∴m2﹣20=29,解得m=±7,∴△=m2﹣4×2×5=m2﹣40=(±7)2﹣40=9>0∴存在实数±7,使关于原方程的两实根的平方的倒数和等于.点评:利用根与系数的关系和根的判别式来解决.容易出现的错误是忽视所求的m的值是否满足判别式△.22.已知关于x的方程kx2﹣2x+3=0有两个不相等的实数根x1、x2,则当k为何值时,方程两根之比为1:3?考点:根与系数的关系.分析:利用一元二次方程根与系数的关系可得:,不妨设x1:x2=1:3,则可得x2=3x1,分别代入两个式子,即可求出k的值,再利用一元二次方程根的判别式进行取舍即可.解答:解:由根与系数的关系可得:,不妨设x1:x2=1:3,则可得x2=3x1,分别代入上面两个式子,消去x1和x2,整理得:4k2﹣k=0,解得k=0或k=,当k=0时,显然不合题意,当k=时,其判别式△=1≥0,所以当k=时,方程两根之比为1:3.点评:本题主要考查一元二次方程根与系数的关系,解题的关键是利用一元二次方程根与系数的关系得到关于k的方程,注意检验是否满足判别式大于0.23.已知斜边为5的直角三角形的两条直角边a、b的长是方程x2﹣(2m﹣1)x+4(m﹣1)=0的两个根,求m的值.考点:根与系数的关系;勾股定理.分析:先利用一元二次方程根与系数的关系得:a+b=2m﹣1,ab=4(m﹣1),再由勾股定理可得a2+b2=52,即(a+b)2﹣2ab=25,把上面两个式子代入可得关于m的方程,解出m的值,再利用一元二次方程根的判别式满足大于或等于0及实际问题对所求m的值进行取舍即可.解答:解:由一元二次方程根与系数的关系得:a+b=2m﹣1,ab=4(m﹣1),再由勾股定理可得a2+b2=52,即(a+b)2﹣2ab=25,把上面两个式子代入可得关于m的方程:(2m﹣1)2﹣8(m﹣1)=25,整理可得:m2﹣3m﹣4=0,解得m=4或m=﹣1,当m=4或m=﹣1一元二次方程的判别式都大于0,但当m=﹣1时,ab=﹣8,不合题意(a,b为三角形的边长,所以不能为负数),所以m=4.点评:本题主要考查一元二次方程根与系数的关系及勾股定理的应用,解题的关键是得出关于m的方程进行求解,容易忽略实际问题所满足的条件而导致错误.24.实数k为何值时,方程x2+(2k﹣1)x+1+k2=0的两实数根的平方和最小,并求出这两个实数根.考点:根与系数的关系;根的判别式.分析:利用一元二次方程根与系数的关系表示出两实根的平方和,得到一个关于k的二次函数,求出取得最小值时k的值,再利用根的判别式进行验证.解答:解:设方程的两根分别为x1和x2,由一元二次方程根与系数的关系可得:,令y=,则y==(2k﹣1)2﹣2(1+k2)=2k2﹣4k﹣1=2(k﹣1)2﹣3,其为开口向上的二次函数,当k=1时,有最小值,但当k=1时,一元二次方程的判别式为△=﹣7<0,所以没有满足△≥0的k的值,所以该题目无解.点评:本题主要考查地一元二次方程根与系数的关系,解题时容易忽略还需要满足一元二次方程有实数根.25.已知关于x的方程x2+(2k﹣1)x﹣2k=0的两个实数根x1、x2满足x1﹣x2=2,试求k的值.考点:根与系数的关系;解一元二次方程-配方法;根的判别式.分析:先根据根与系数的关系,可求出x1+x2,x1?x2的值,再结合x1﹣x2=2,可求出k的值,再利用根的判别式,可求出k的取值范围,从而确定k的值.解答:解:根据题意得x1+x2=﹣=﹣(2k﹣1),x1?x2==﹣2k,又∵x1﹣x2=2,∴(x1﹣x2)2=22,∴(x1+x2)2﹣4x1x2=4,∴(2k﹣1)2﹣4(﹣2k)=4,∴(2k+1)2=4,∴k1=,k2=﹣,又∵△=(2k﹣1)2﹣4×1×(﹣2k)=(2k+1)2,方程有两个不等的实数根,∴(2k+1)2>0,∴k≠﹣,∴k1=,k2=﹣.点评:一元二次方程的两个根x1、x2具有这样的关系:x1+x2=﹣,x1?x2=.26.已知x1、x2是方程x2﹣kx+k(k+4)=0的两个根,且满足(x1﹣1)(x2﹣1)=,求k的值.考点:根与系数的关系;根的判别式.分析:(x1﹣1)(x2﹣1)=,即x1x2﹣(x1+x2)+1=,根据一元二次方程中根与系数的关系可以表示出两个根的和与积,代入x1x2﹣(x1+x2)+1=,即可得到一个关于k的方程,从而求得k的值.解答:解:∵x1+x2=k,x1x2=k(k+4),∵(x1﹣1)(x2﹣1)=,∴x1x2﹣(x1+x2)+1=,∴k(k+4)﹣k+1=,解得k=±3,当k=3时,方程为x2﹣3x+=0,△=9﹣21<0,不合题意舍去;当k=﹣3时,方程为x2+3x﹣=0,△=9+3>0,符合题意.故所求k的值为﹣3.点评:本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.注意运用根与系数的关系的前提条件是:一元二次方程ax2+bx+c=0的根的判别式△≥0.27.(2011?南充)关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2.(1)求k的取值范围;(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.考点:根与系数的关系;根的判别式;解一元一次不等式组.专题:代数综合题;压轴题.分析:(1)方程有两个实数根,必须满足△=b2﹣4ac≥0,从而求出实数k的取值范围;(2)先由一元二次方程根与系数的关系,得x1+x2=﹣2,x1x2=k+1.再代入不等式x1+x2﹣x1x2<﹣1,即可求得k的取值范围,然后根据k为整数,求出k的值.解答:解:(1)∵方程有实数根,∴△=22﹣4(k+1)≥0,(2分)解得k≤0.故K的取值范(4分)围是k≤0.(2)根据一元二次方程根与系数的关系,得x1+x2=﹣2,x1x2=k+1(5分)x1+x2﹣x1x2=﹣2﹣(k+1).由已知,得﹣2﹣(k+1)<﹣1,解得k>﹣2.(6分)又由(1)k≤0,∴﹣2<k≤0.(7分)∵k为整数,∴k的值为﹣1和0.(8分)点评:本题综合考查了根的判别式和根与系数的关系.在运用一元二次方程根与系数的关系解题时,一定要注意其前提是此方程的判别式△≥0.28.(2012?怀化)已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.考点:根与系数的关系;根的判别式.分析:根据根与系数的关系求得x1x2=,x1+x2=﹣;根据一元二次方程的根的判别式求得a的取值范围;(1)将已知等式变形为x1x2=4+(x2+x1),即=4+,通过解该关于a的方程即可求得a的值;(2)根据限制性条件“(x1+1)(x2+1)为负整数”求得a的取值范围,然后在取值范围内取a的整数值.解答:解:∵x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴由根与系数的关系可知,x1x2=,x1+x2=﹣;∵一元二次方程(a﹣6)x2+2ax+a=0有两个实数根,∴△=4a2﹣4(a﹣6)?a≥0,且a﹣6≠0,解得,a≥0,且a≠6;(1)∵﹣x1+x1x2=4+x2,∴x1x2=4+(x1+x2),即=4﹣,解得,a=24>0;∴存在实数a,使﹣x1+x1x2=4+x2成立,a的值是24;(2)∵(x1+1)(x2+1)=x1x2+(x1+x2)+1=﹣+1=﹣,∴当(x1+1)(x2+1)为负整数时,a﹣6>0,且a﹣6是6的约数,∴a﹣6=6,a﹣6=3,a﹣6=2,a ﹣6=1,∴a=12,9,8,7;∴使(x1+1)(x2+1)为负整数的实数a的整数值有12,9,8,7.点评:本题综合考查了根与系数的关系、根的判别式.注意:一元二次方程ax2+bx+c=0(a、b、c是常数)的二次项系数a≠0.29.(2010?东莞)已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.考点:根与系数的关系;根的判别式.专题:压轴题.分析:(1)一元二次方程x2﹣2x+m=0有两个实数根,△≥0,把系数代入可求m的范围;(2)利用两根关系,已知x1+x2=2结合x1+3x2=3,先求x1、x2,再求m.解答:解:(1)∵方程x2﹣2x+m=0有两个实数根,∴△=(﹣2)2﹣4m≥0,解得m≤1;(2)由两根关系可知,x1+x2=2,x1?x2=m,解方程组,解得,∴m=x1?x2=.点评:本题考查了一元二次方程根的判别式,两根关系的运用,要求熟练掌握.30.(2005?福州)已知x1、x2是一元二次方程2x2﹣2x+m+1=0的两个实根.(1)求实数m的取值范围;(2)如果m满足不等式7+4x1x2>x12+x22,且m为整数.求m的值.考点:根与系数的关系;根的判别式.分析:(1)方程有两个实数根,必须满足△=b2﹣4ac≥0,从而求出实数m的取值范围;(2)利用根与系数的关系,不等式7+4x1x2>x12+x22,即(x1+x2)2﹣6x1x2﹣7<0.由一元二次方程根与系数的关系,得x1+x2=1,x1x2=.代入整理后的不等式,即可求得m的值.解答:解:(1)∵a=2,b=﹣2,c=m+1.∴△=(﹣2)2﹣4×2×(m+1)=﹣4﹣8m.当﹣4﹣8m≥0,即m≤﹣时.方程有两个实数根.(2)整理不等式7+4x1x2>x12+x22,得(x1+x2)2﹣6x1x2﹣7<0.由一元二次方程根与系数的关系,得x1+x2=1,x1x2=.代入整理后的不等式得1﹣3(m+1)﹣7<0,解得m>﹣3.又∵m≤﹣,且m为整数.∴m的值为﹣2,﹣1.点评:一元二次方程ax2+bx+c=0(a,b,c为常数,且a≠0,b2﹣4ac≥0),根与系数的关系是:x1+x2=,x1x2=.。
解一元二次方程-公式法、因式分解、韦达定理

解一元二次方程-公式法、因式分解、韦达定理课前热身1、公式法解下列方程:(1);(2);2、因式分解解下列方程:(1);(2);(3);3.关于方程式 49x2﹣98x﹣1=0 的解,下列叙述何者正确( )A.无解B.有两正根C.有两负根 D.有一正根及一负根遗漏分析学科原因: 1、对一元二次方程的公式法和因式分解法没有掌握; 2、对一元二次方程根与系数的关系没理解.知识精讲知识点一、公式法 式子 b2-4ac 的值有以下三种情况:1(1)b2-4ac>0,方程有两个不等的实数根,x1= - b b2 4ac - b -,x2=b2 4ac;2a2a(2)b2-4ac=0,方程有两个相等的实数根,x1=x2= - b 2a(3)b2-4ac<0,方程无实数根。
一般地,式子 b2-4ac 叫做一元二次方程 ax2+bx+c=0 根的判别式,通常用希腊字母“△ ”表示b b2 4acx它,即△ =b2-4ac。
当△ ≥0 时,方程 ax2+bx+c=0(a≠0)的实数根可写为2a的形式,这个式子叫做一元二次方程 ax2+bx+c=0 的求根公式。
解一个具体的一元二次方程时,把各系数直接代入求根公式,可以避免配方过程而直接得出根,这种解一元二次方程的方法叫做公式法。
用求根公式法解一元二次方程的一般步骤为:①把方程化成一般形式 ax2 bx c 0a 0 ,确定 a,b,c 的值(注意符号);②求出判别式的值,判断根的情况:若>0,则方程有两个不同的实数根;若=0,则方程有两个相同的实数根;若<0,则方程没有实数根.③在的前提下,把 a、b、c 的值代入公式进行计算,求出方程的根。
例 1、用公式法解方程: 2 x2+4 3 x+6 2 =02变式 1、小明同学用配方法推导关于 x 的一元二次方程 ax2+bx+c=0 的求根公式时,对于 b2 ﹣4ac>0 的情况,他是这样做的:小明的解法从第 步开始出现错误;这一步的运算依据应是.知识点二、因式分解法 方程的左边是两个一次因式的乘积,右边是 0。
韦达定理在一元二次方程中的应用

例 :已知二次函数y=-x²+p x>β,求证:p+q>1.
(1)一元二次方程y=-x²+p x+q中,两根α、 β.利用韦达定理求得根与系数的关系式: α+β =p, αβ=-q. (2)求得等式关系 p +q= α+β - αβ. (3)要想p+q>1.相当于求α+β – αβ >1. 将α+β – αβ因式分解为-(α-1)(β -1)+1. (4)利用α、β的大小关系α>1>β得出结论.
韦达定理在一元二次方程中的应用
韦达定理最重要的贡献是对代数学的推进, 它最早系统地引入代数符号,推进了方程论 的发展,用字母代替未知数,指出了根与系 数之间的关系。韦达定理为数学中的一元方 程的研究奠定了基础,对一元方程的应用创 造和开拓了广泛的发展空间。利用韦达定理 可以快速求出两方程根的关系,韦达定理应 用广泛,在初等数学、解析几何、平面几何、 方程论中均有体现。
证明:由题意可知方程-x² +px+q=0的两根为
α 、 β. 由韦达定理得 α+β =p, αβ=-q. 于是 p +q= α+β - αβ, =-(αβ-α-β +1)+1 =-(α-1)(β -1)+1>1(因为α>1> β).
1.学会用韦达定理求代数式的值。 2.理解并掌握用韦达定理求待定系数。 3.理解并掌握应用韦达定理构建方程,解 方程。
一元二次不等式及其解法练习题

不等式的解法一、一元二次不等式及其解法:先找对应二次方程的根(可参考十字相乘或求根公式),若有两个不等实根,大于取两边小于取中间,若有两个等根或无根考虑恒成立问题。
例1.解下列不等式(1)x2-7x+12>0(2)-x2-2x+3≥0(3)x2-2x+1<0(4)x2-2x+2<0二、已知解集求参数值:可参考韦达定理,利用两根只和和两根之积。
3.一元二次方程ax2+bx+c=0的根为2,-1,则当a<0时,不等式ax2+bx+c≥0的解集为。
4.已知关于x的不等式ax2+bx+c>0的解集为{x|α<x<β},其中0<α<β,a<0,求cx2+bx+a>0的解集.三、含参数的不等式的解法:先讨论二次项系数,然后找对应二次方程的根(可参考十字相乘或求根公式),若有两个实根讨论根的大小,若无法确定讨论判别式。
5.解不等式21()10x a xa-++=6、解关于x的一元二次不等式:ax2+(a-1)x-1>0.四、恒成立问题,在R上利用判别式和在区间上利用二次函数的最值。
7、函数y = x 2+mx +m 2对一切x ∈R 恒成立,则实数m 的取值范围 8、.已知关于x 的不等式(a 2-4)x 2+(a +2)x -1≥0的解集是空集,则实数a 的取值范围9.已知不等式x 2+px +1>2x +p .(1)如果不等式当|p |≤2时恒成立,求x 的取值范围;(2)如果不等式当2≤x ≤4时恒成立,求p 的取值范围.五、解其他不等式(1).1<x 2-3x+3≤7(2)(x 2+4x-5)(x 2-2x+2)>0(3) (x 2+4x-5)(x 2-4x+4)>0(4)x 4-x 2-6≥0(5) +4-1x x >0(6)-3+7x x ≤0。
和韦达定理有关的练习题

和韦达定理有关的练习题一、选择题1. 若一元二次方程ax^2 + bx + c = 0的两根为x1和x2,则下列哪个选项正确地表示了韦达定理?()A. x1 + x2 = b/a,x1 x2 = c/aB. x1 + x2 = b/a,x1 x2 = c/aC. x1 + x2 = b/a,x1 x2 = c/aD. x1 + x2 = b/a,x1 x2 = c/a2. 已知一元二次方程2x^2 5x + 3 = 0的两根分别为x1和x2,则x1 x2的值为()。
A. 3B. 3C. 1.5D. 1.5二、填空题1. 若一元二次方程x^2 4x + 3 = 0的两根为x1和x2,则x1 + x2 = _______,x1 x2 = _______。
2. 已知一元二次方程3x^2 + 7x 2 = 0的两根分别为x1和x2,且x1 < x2,则x1 = _______,x2 = _______。
三、解答题1. 已知一元二次方程4x^2 12x + 9 = 0的两根为x1和x2,求x1和x2的值。
2. 已知一元二次方程5x^2 7x + 2 = 0的两根之和为4,求该方程的两根之积。
3. 已知一元二次方程2x^2 (4k + 1)x + 2k = 0的两根之积为k,求k的值。
4. 设一元二次方程ax^2 + bx + c = 0(a ≠ 0)的两根为x1和x2,若x1 + x2 = 5,x1 x2 = 6,求该方程的解。
5. 已知一元二次方程x^2 (2a + 1)x + a^2 = 0的两根均为正数,求a的取值范围。
6. 已知一元二次方程x^2 (k + 3)x + 2k = 0的两根分别为x1和x2,且x1 < x2,求x1和x2的值。
7. 设一元二次方程x^2 (a + b)x + ab = 0的两根为x1和x2,求证:x1和x2是正数的充分必要条件是a和b均为正数。
8. 已知一元二次方程x^2 (2k + 1)x + k^2 = 0的两根之差为1,求k的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用标准文档解一元二次方程练习题(配方法)1.用适当的数填空:①、x 2+6x+ =(x+ )2; ②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2; ④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________. 3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为______,•所以方程的根为_______.5.若x 2+6x+m 2是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 6.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-1 7.把方程x+3=4x 配方,得( )A .(x-2)2=7B .(x+2)2=21C .(x-2)2=1D .(x+2)2=2 8.用配方法解方程x 2+4x=10的根为( )A .2B .-2C .D .9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数 10.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9 (3)x 2+12x-15=0 (4)41 x 2-x-4=07、01842=+--x x 8、0222=-+n mx x 9、()00222>=--m m mx x11.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。
一.填空题:1.关于x 的方程mx 2-3x= x 2-mx+2是一元二次方程,则m___________.2.方程4x(x-1)=2(x+2)+8化成一般形式是______________,二次项系数是____,一次项系数是_____,常数项是____.3.方程x 2=1的解为______________.4.方程3 x 2=27的解为______________; x 2+6x+____=(x+____)2; a 2±____+41=(a ±____ )2 5.关于x 的一元二次方程(m+3) x 2+4x+ m 2- 9=0有一个解为0 , 则m=______. 二.选择题:6.在下列各式中①x 2+3=x; ②2 x 2- 3x=2x(x- 1) – 1 ; ③3 x 2- 4x – 5 ; ④x 2=- x1+2 是一元二次方程的共有( )A 0个B 1个C 2个D 3个 8.一元二次方程的一般形式是( )A x 2+bx+c=0B a x 2+c=0 (a ≠0 )C a x 2+bx+c=0D a x 2+bx+c=0 (a ≠0) 9.方程3 x 2+27=0的解是( )A x=±3B x= -3C 无实数根D 以上都不对 10.方程6 x 2- 5=0的一次项系数是( ) A 6 B 5 C -5 D 011.将方程x 2- 4x- 1=0的左边变成平方的形式是( )A (x- 2)2=1 B (x- 4)2=1 C (x- 2)2=5 D (x- 1)2=4三.。
将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项五. 用配方法或公式法解下列方程.:(10) x 2-6x+9 =0 (1)x 2+ 2x + 3=0 (2)x 2+ 6x -5=0 (3) x 2-4x+ 3=0(4) x 2-2x -1 =0 (5) 2x 2+3x+1=0 (6) 3x 2+2x -1 =0(7) 5x 2-3x+2 =0 (8) 7x 2-4x -3 =0 (9) -x 2-x+12 =0韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么1212,b cx x x x a a+=-=说明:(1)定理成立的条件0∆≥ (2)注意公式重12bx x a+=-的负号与b 的符号的区别 根系关系的三大用处 (1)计算对称式的值例 若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2)1211x x +; (3) 12(5)(5)x x --;(4) 12||x x -.解:由题意,根据根与系数的关系得:12122,2007x x x x +=-=-(1) 2222121212()2(2)2(2007)4018x x x x x x +=+-=---=(2)121212112220072007x x x x x x +-+===- (3) 121212(5)(5)5()2520075(2)251972x x x x x x --=-++=---+=-(4) 12||x x -====说明:利用根与系数的关系求值,要熟练掌握以下等式变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.【课堂练习】1.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值为_________2.已知x 1,x 2是方程2x 2-7x +4=0的两根,则x 1+x 2= ,x 1·x 2= ,(x 1-x 2)2=3.已知方程2x 2-3x+k=0的两根之差为212,则k= ;4.若方程x 2+(a 2-2)x -3=0的两根是1和-3,则a= ;5.若关于x 的方程x 2+2(m -1)x+4m 2=0有两个实数根,且这两个根互为倒数,那么m 的值为 ;6. 设x 1,x 2是方程2x 2-6x+3=0的两个根,求下列各式的值: (1)x 12x 2+x 1x 22(2) 1x 1 -1x 27.已知x 1和x 2是方程2x 2-3x -1=0的两个根,利用根与系数的关系,求下列各式的值:2221x 1x 1+(2)构造新方程理论:以两个数为根的一元二次方程是。
例 解方程组 x+y=5xy=6 解:显然,x ,y 是方程z 2-5z+6=0 ① 的两根 由方程①解得 z 1=2,z 2=3 ∴原方程组的解为 x 1=2,y 1=3x 2=3,y 2=2 显然,此法比代入法要简单得多。
(3)定性判断字母系数的取值范围例 一个三角形的两边长是方程的两根,第三边长为2,求k 的取值范围。
解:设此三角形的三边长分别为a 、b 、c ,且a 、b 为的两根,则c=2由题意知△=k 2-4×2×2≥0,k ≥4或k ≤-4∴为所求。
【典型例题】例1 已知关于x 的方程221(1)104x k x k -+++=,根据下列条件,分别求出k 的值. (1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.分析:(1) 由韦达定理即可求之;(2) 有两种可能,一是120x x =>,二是12x x -=,所以要分类讨论. 解:(1) ∵方程两实根的积为5∴ 222121[(1)]4(1)034,412154k k k k x x k ⎧∆=-+-+≥⎪⎪⇒≥=±⎨⎪=+=⎪⎩ 所以,当4k =时,方程两实根的积为5. (2) 由12||x x =得知: ①当10x ≥时,12x x =,所以方程有两相等实数根,故302k ∆=⇒=; ②当10x <时,12120101x x x x k k -=⇒+=⇒+=⇒=-,由于302k ∆>⇒>,故1k =-不合题意,舍去.综上可得,32k =时,方程的两实根12,x x 满足12||x x =. 说明:根据一元二次方程两实根满足的条件,求待定字母的值,务必要注意方程有两实根的条件,即所求的字母应满足0∆≥.例2 已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值. 解:(1) 假设存在实数k ,使12123(2)(2)2x x x x --=-成立.∵ 一元二次方程24410kx kx k -++=的两个实数根∴ 2400(4)44(1)160k k k k k k ≠⎧⇒<⎨∆=--⋅+=-≥⎩,又12,x x 是一元二次方程24410kx kx k -++=的两个实数根∴ 1212114x x k x x k +=⎧⎪⎨+=⎪⎩∴ 222121212121212(2)(2)2()52()9x x x x x x x x x x x x --=+-=+-939425k k k +=-=-⇒=,但0k <.∴不存在实数k ,使12123(2)(2)2x x x x --=-成立.(2) ∵ 222121212211212()44224411x x x x x x k x x x x x x k k +++-=-=-=-=-++∴ 要使其值是整数,只需1k +能被4整除,故11,2,4k +=±±±,注意到0k <,要使12212x x x x +-的值为整数的实数k 的整数值为2,3,5---. 说明:(1) 存在性问题的题型,通常是先假设存在,然后推导其值,若能求出,则说明存在,否则即不存在.(2) 本题综合性较强,要学会对41k +为整数的分析方法.一元二次方程根与系数的关系练习题A 组1.一元二次方程2(1)210k x x ---=有两个不相等的实数根,则k 的取值范围是( )A .2k >B .2,1k k <≠且C .2k <D .2,1k k >≠且2.若12,x x 是方程22630x x -+=的两个根,则1211x x +的值为( ) A .2B .2-C .12D .923.已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程22(21)30x m x m +-++=的根,则m 等于()A .3-B .5C .53-或D .53-或4.若t 是一元二次方程20 (0)ax bx c a ++=≠的根,则判别式24b ac ∆=-和完全平方式2(2)M at b =+的关系是( )A .M ∆=B .M ∆>C .M ∆<D .大小关系不能确定5.若实数a b ≠,且,a b 满足22850,850a a b b -+=-+=,则代数式1111b a a b --+--的值为( )A .20-B .2C .220-或D .220或6.如果方程2()()()0b c x c a x a b -+-+-=的两根相等,则,,a b c 之间的关系是 ______7.已知一个直角三角形的两条直角边的长恰是方程22870x x -+=的两个根,则这个直角三角形的斜边长是 _______ .8.若方程22(1)30x k x k -+++=的两根之差为1,则k 的值是 _____ .9.设12,x x 是方程20x px q ++=的两实根,121,1x x ++是关于x 的方程20x qx p ++=的两实根,则p =_____ ,q = _____ .10.已知实数,,a b c 满足26,9a b c ab =-=-,则a = _____ ,b = _____ ,c = _____ .11.对于二次三项式21036x x -+,小明得出如下结论:无论x 取什么实数,其值都不可能等于10.您是否同意他的看法?请您说明理由.12.若0n >,关于x 的方程21(2)04x m n x mn --+=有两个相等的的正实数根,求mn的值.13.已知关于x 的一元二次方程2(41)210x m x m +++-=. (1) 求证:不论为任何实数,方程总有两个不相等的实数根; (2) 若方程的两根为12,x x ,且满足121112x x +=-,求m 的值.14.已知关于x 的方程221(1)104x k x k -+++=的两根是一个矩形两边的长. (1) k 取何值时,方程存在两个正实数根?(2)k 的值.B 组1.已知关于x 的方程2(1)(23)10k x k x k -+-++=有两个不相等的实数根12,x x . (1) 求k 的取值范围; (2) 是否存在实数k ,使方程的两实根互为相反数?如果存在,求出k 的值;如果不存在,请您说明理由.2.已知关于x 的方程230x x m +-=的两个实数根的平方和等于11.求证:关于x 的方程22(3)640k x kmx m m -+-+-=有实数根.3.若12,x x 是关于x 的方程22(21)10x k x k -+++=的两个实数根,且12,x x 都大于1.(1) 求实数k 的取值范围;(2) 若1212x x =,求k 的值.一元二次方程试题一、选择题1、一元二次方程2210x x --=的根的情况为( )B A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根D.没有实数根2、若关于z 的一元二次方程02.2=+-m x x 没有实数根,则实数m 的取值范围是( )C A .m<l B .m>-1 C .m>l D .m<-13、一元二次方程x 2+x +2=0的根的情况是( )C A .有两个不相等的正根 B .有两个不相等的负根 C .没有实数根 D .有两个相等的实数根 4、用配方法解方程2420x x -+=,下列配方正确的是( )A A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=5、已知函数2y ax bx c =++的图象如图(7)所示,那么关于x 的方程220ax bx c +++=的根的情况是( )DA .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根6、关于x 的方程20x px q ++=的两根同为负数,则( )A A .0p >且q >0 B .0p >且q <0 C .0p <且q >0 D .0p <且q <07、若关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足1212x x x x +=.则k 的值为( )C(A )-1或34 (B )-1 (C )34(D )不存在图(7)8、下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )D(A )x 2+4=0 (B )4x 2-4x +1=0 (C )x 2+x +3=0 (D )x 2+2x -1=09、某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( )BA :200(1+a%)2=148B :200(1-a%)2=148C :200(1-2a%)=148D :200(1-a 2%)=14810、下列方程中有实数根的是( )C(A )x 2+2x +3=0 (B )x 2+1=0 (C )x 2+3x +1=0 (D )111x x x =-- 11、已知关于x 的一元二次方程22x m x -= 有两个不相等的实数根,则m 的取值范围是( ) AA . m >-1B . m <-2C .m ≥0D .m <012、如果2是一元二次方程x 2=c 的一个根,那么常数c 是( )。