一元一次不等式的应用

合集下载

一元一次不等式的应用教案

一元一次不等式的应用教案

一元一次不等式的应用教案梁晓兰教学目标:(一)知识与技能:1.掌握一元一次不等式特殊题的解法。

2.列一元一次不等式解决具有不等关系的实际问题。

(二)过程与方法:经历由实际问题转化为数学问题的过程,掌握利用一元一次不等式解决问题的基本过程。

(三)情感态度与价值观:通过运用一元一次不等式解决实际问题,进一步强化运用数学的意识,从而使学生乐于接触社会环境中的数学信息。

教学重点:由实际问题中的不等关系列出不等式。

教学难点:列一元一次不等式描述实际问题中的不等关系。

教学方法:以探究式教学为主,以活动教学、启发式教学等教学方法为辅。

教学过程:(一)复习引入1.不等式的解题步骤是什么?2.解不等式 ,并把它的解集在数轴上表示出来.学生活动:找学生板演,其他同学练习本做。

例1、已知 若y <0,求m 的取值范围。

分析:由非负数的运算特征,求出x ,y 的值,再有y <0,构造关于m 的不等式,求出其解集。

学生活动:学生试着完成,找同学讲解做法。

练习;1、已知方程x+b=5的解是负数,则b 的取值范围_____________.3、若不等式3x<5与不等式ax<10的解集相同,则a=___________.学生活动:学生独立完成,展示答案。

例2、已知关于x 、y 的方程组的解中x >y,求出k 的取值范围。

分析:先求出方程组的解x ,y ,即用含k 的式子表示x 和y 。

再由x >y ,构造成关于k 的不等式求出其解集。

学生试着完成,然后找同学讲解做题过程。

32221+-<--x x x 0)3(|242|2=--+-m y x x 2、已知关于x 的不等式2x-a>-3的解集是x>-1则a 的值等于( ) A 、0 B 、1 C 、-1 D 、2⎩⎨⎧=++=-k y x k y x 523练习:已知方程3x-ax=2的解是不等式3(x+2)-7<5(x-1)-8的最小整数解,求a的值.学生活动:学生独立完成,展示答案。

人教版七年级数学下册第九章9.3.2应用一元一次不等式组解决六种方案问题课件(共41张PPT)

人教版七年级数学下册第九章9.3.2应用一元一次不等式组解决六种方案问题课件(共41张PPT)

2000a3000(40a)102000
根据题意得: a40a
解得18≤a<20.
∵a为正整数,∴a=18或19.
∴一共有2种分配方案,分别为:
方案一:分配18人清理养鱼网箱、22人清理捕鱼网箱;
方案二:分配19人清理养鱼网箱、21人清理捕鱼网箱.
类型 5 调运方案
7.(中考·长沙)2016年5月6日,中国第一条具有自主知识产 权的长沙磁悬浮线正式开通运营,该线路连接了长沙火 车南站和黄花国际机场两大交通枢纽,沿线生态绿化带 走廊的建设尚在进行中,届时将给乘客带来美的享受.星 城渣土运输公司承包了某标段的土方运输任务,
(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?
型渣土运输车与3辆小型渣土运输车一次共运输土方31 t, (2)根据题意,得y=(105-80)x+(70-50)(60-x)=
(2)设该渣土运输公司决定派出大型渣土运输车m辆,则派
方案一:购买30件文化衫、15本相册;
5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方 (2)该服装厂在生产这批时装时,当生产N型号的时装多少套时,所获得的利润最大?最大利润为多少?
2.某服装厂现有A种布料70 m,B种布料52 m,现计划用这 两种布料生产M,N两种型号的时装共80套,已知做一 套M型号的时装需用A种布料0.6 m,B种布料0.9 m, 可获得利润45元;做一套N型号的时装需用A种布料1.
1 m,B种布料0.4 m,可获得利润50元.若设生产N型号的 时装套数为x套,用这些布料生产这两种型号的时装所获 得的总利润为y元.
类型 3 进货方案
5.(中考·凉山州)为了推进我州校园篮球运动的发展,2017 年四川省中小学生男子篮球赛于2月在西昌成功举办.在 此期间,某体育文化用品商店计划一次性购进篮球和排 球共60个,其进价与售价间的关系如下表:

一元一次不等式(公开课优秀课件)

一元一次不等式(公开课优秀课件)
图像法解一元一次不等式需要注意函数图像的走向和性质,以及临界点与不等式解 集的关系。
实际应用中的一元一次不等式
一元一次不等式在实际生活中 有着广泛的应用,如购物、投 资、工程等领域的决策问题。
解决实际应用中的一元一次不 等式需要将问题转化为数学模 型,然后运用代数法和图像法 求解。
解决实际应用中的一元一次不 等式需要注意问题的实际情况 和限制条件,以及解的可行性 和最优性。
一元一次不等式(公开课优秀课件)
目 录
• 一元一次不等式的定义与性质 • 一元一次不等式的解法 • 一元一次不等式的应用 • 一元一次不等式的扩展
01 一元一次不等式的定义与 性质
一元一次不等式的定义
总结词
一元一次不等式是数学中一种简单的不等式,它只含有一个变量,且变量的指 数为1。
详细描述
一元一次不等式的一般形式为 ax + b > c 或 ax + b < c,其中 a、b、c 是常 数,a ≠ 0。这个不等式表示一个线性函数在某个区间内大于或小于另一个值。
在人口发展过程中,如何预测未来人 口数量,可以通过一元一次不等式来 建立数学模型。
交通流量问题
在道路交通中,如何合理规划红绿灯 时间,ห้องสมุดไป่ตู้保证交通流畅,可以通过一 元一次不等式来求解。
一元一次不等式与其他数学知识的结合
一元一次不等式与函数
一元一次不等式可以看作是函数的值大于或小于某个常数的情况, 因此可以结合函数的性质进行求解。
代数法解一元一次不等式的步骤 包括:去分母、去括号、移项、
合并同类项、化系数为1等。
代数法解一元一次不等式需要注 意不等式的性质,如不等式的可 加性、可乘性、可除性和同向不

一元一次不等式组应用题及答案复习过程

一元一次不等式组应用题及答案复习过程

一元一次不等式组应用题及答案精品文档一元一次不等式应用题用一元一次不等式组解决实际问题的步骤:⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答一.分配问题:1.把若干颗花生分给若干只猴子。

如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。

问猴子有多少只,花生有多少颗?2 .把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

问这些书有多少本?学生有多少人?3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。

4.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。

问有笼多少个?有鸡多少只?5. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。

请问:有多少辆汽车?6.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。

(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二速度、时间问题1爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。

已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?三工程问题1 .一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?2 .用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。

一元一次不等式应用题专题

一元一次不等式应用题专题

一元一次不等式应用题专题(附答案)1、某校王校长暑假将带领该校市级三好学生去北京旅游。

甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元) ①设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(写出表达式) ②当学生数是多少时,两家旅行社的收费一样? ③就学生数x讨论哪家旅行社更优惠。

解:设设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,根据题意,得①y甲=1200+1200×50%×x=1200+600xy乙=(x+1)×1200×60%=720(x+1)=720x+720②当学生数是多少时,两家旅行社的收费一样?当y甲=y乙时,即1200+600x=720x+720120x=480x=4所以,当学生数为4人时,两家旅行社的收费一样!③就学生数x讨论哪家旅行社更优惠。

若y甲>y乙,即1200+600x>720x+720120x<480x<4,此时乙旅行社便宜。

若y甲<y乙,即1200+600x<720x+720解得,x>4,此时甲旅行社便宜。

答:当学生人数少于4人时,乙旅行社更优惠;当学生人数多于4人时,甲旅行社更优惠;当学生人数等于4人时,两个旅行社一样优惠。

2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。

解:设到第x个月李明的存款超过王刚的存款,根据题意,得600+500x>2000+200x300x>1400x>14/3因为x为整数,所以x=5答:到第5个月李明的存款超过王刚的存款。

3、暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的优惠条件是:家长,学生都按八折收费。

七年级一元一次不等式组应用题

七年级一元一次不等式组应用题

七年级一元一次不等式组应用题1.某次数学测验共20道题(满分100分)。

评分办法是:答对1道给5分,答错1道扣2分,不答不给分。

某学生有1道未答。

那么他至少答对几道题才能及格?2.把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

这些书有多少本?学生有多少人?3.用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。

请问:有多少辆汽车?4.某校校长暑假将带领该校“市级三好学生”去三峡旅游,甲旅行社说:如果校长买全票一张,则其余学生可享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠。

已知两家旅行社的全票价都是240元,至少要多少名学生选甲旅行社比较好?5.某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数。

6.有一群猴子,一天结伴去偷桃子。

在分桃子时,如果每只猴子分3个,那么还剩59个;如果每只猴子分5个,那么有一只猴子分得的桃子不足5个。

这群猴子共有多少只?7.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件。

已知生产一件A产品需要甲种原料9千克,乙种原料3千克;生产一件B产品需要甲种原料4千克,乙种原料10千克。

问生产多少件A产品时,可使所用原料最少?8.某公司为了扩大经营,决定购进6台机器用于生产某种活塞。

现有甲、乙两种机器供选择,其中甲机器每台7万元,乙机器每台5万元。

经过预算,本次购买机器资金为38万元,问甲机器最多能买几台?9.小宏准备用50元钱买甲、乙两种饮料共10瓶。

已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买多少瓶甲饮料?10.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。

一元一次不等式的解法及应用

一元一次不等式的解法及应用不等式是数学中的一个重要概念,它描述了一组数之间的大小关系。

在一元一次不等式中,方程中只包含一个变量的一次项,例如:ax + b > 0。

解一元一次不等式的方法多种多样,本文将介绍几种常见的解法,并探讨其应用。

一、图像法解一元一次不等式图像法是一种直观、易于理解的方法,它可以帮助我们在平面直角坐标系上找到不等式的解集。

以不等式2x - 3 > 0为例,我们可以先将其转化为方程2x - 3 = 0,求得x = 1.5。

接下来,在坐标系上绘制直线y = 2x - 3,并标记出x = 1.5对应的点。

由于不等式要求2x - 3大于0,即y大于0,因此我们只需要关注直线在x轴上方的部分。

从图像中可以观察到,x大于1.5时,直线上的点坐标都满足不等式。

因此,不等式的解集为x > 1.5。

二、代入法解一元一次不等式代入法是一种常用的解不等式的方法,它适用于一些较为简单的一元一次不等式。

例如,求解不等式3x - 5 ≤ 4x + 2。

我们可以先假设x = 0,然后代入不等式,得到3(0) - 5 ≤ 4(0) + 2,即-5 ≤ 2,这显然不成立。

接着,我们再假设x = 1,代入不等式,得到3(1) - 5 ≤ 4(1) + 2,即-2 ≤ 6,此时不等式成立。

通过多次尝试,我们可以得到一个结论:当x ≥ 1时,不等式3x - 5 ≤ 4x + 2成立。

因此,不等式的解集为x ≥ 1。

三、符号法解一元一次不等式符号法是一种系统化的解不等式的方法,它根据不等式中的系数进行分类讨论,从而得到准确的解集。

考虑不等式2x - 3 < 4 - x,我们可以将其重写为3x < 7,然后根据x 的系数分类讨论:1. 当x > 0时,不等式成立;2. 当x = 0时,不等式不成立;3. 当x < 0时,不等式不成立。

结合以上三种情况,我们可以得到不等式的解集为x > 0。

一元一次不等式组的应用

一元一次不等式组的应用一元一次不等式组是数学中的重要知识点,也是我们日常生活中经常会遇到的问题。

它可以帮助我们解决许多实际问题,如生活中的购物、物品生产等方面。

下面我们就来具体了解一下一元一次不等式组的应用。

首先,让我们来看一个实际例子。

假设小明去商店买水果,他带了40元钱,他知道苹果和橙子的价格分别是每斤5元和每斤4元。

他想知道自己最多能买多少斤水果,以确保自己不会超出预算。

这个问题可以用一元一次不等式组来解决。

首先,我们设苹果的购买量为x斤,橙子的购买量为y斤。

根据题意,我们可以得到两个不等式:5x + 4y ≤ 40和x ≥ 0,y ≥ 0。

其中,5x + 4y ≤ 40表示所花费的钱不能超过40元,x ≥ 0和y ≥ 0表示水果的购买量必须是非负数。

接下来,我们来解决这个不等式组。

首先我们可以将不等式5x +4y ≤ 40转化为等式5x + 4y = 40。

根据一元一次方程的知识,我们可以求出一组解,即x = 8,y = 0。

这表示小明最多只能买8斤苹果而没有橙子,因为再多买的话就会超出预算了。

这个例子告诉我们,一元一次不等式组可以帮助我们在实际生活中解决预算等问题。

通过设定合理的不等式和约束条件,我们可以得出最理想的解决方案。

除了购物问题,一元一次不等式组还可以应用在许多其他方面。

比如,在物品生产方面,我们可以根据生产成本和销售价格来确定最适宜的生产量,以保证利润最大化。

在时间管理方面,我们可以根据工作时间和休息时间的约束条件,来平衡工作和生活的安排,以达到工作效率的最大化和身心健康的保持。

综上所述,一元一次不等式组是一个非常实用的数学工具,在我们的日常生活中应用广泛。

通过解决实际问题,它可以帮助我们做出理性的决策,提高生活质量和工作效率。

因此,掌握一元一次不等式组的应用是非常有指导意义和实际价值的。

希望大家能够认真学习并灵活运用这一知识点,为自己的生活和工作带来更多的便利和效益。

一元一次不等式第四课时一元一次不等式的应用课件人教版七年级下册

每个足球50元,则篮球最多可购买( A )
A.16个 B.17个 C.33个 D.34个
4.(2017·台州)商家花费760元购进某种水果80 kg,销售中有5% 的水果正常损耗,为了避免亏本,售价至少应定为_1__0_元/kg.
5.某学校计划买若干台电脑,现从两家商场了解到同一型号电 脑每台报价均为6 000元,并且多买都有一定的优惠.甲商场的优 惠条件是:第一台按原价收费,其余每台优惠25%,乙商场的优 惠条件是:每台优惠20%,设该学校购买x台电脑,则:
人教版 · 数学· 七年级(下)
7.一个两位数,十位数字与个位数字的和为6,若这个两位数不大于42,则这样的两位数共有____个.
解得x=8,则10-x=2.
你能从表格中看出在哪家商场花费少吗?
(1)到甲商场购买需费用_________________元;
第9章 不等式与不等式组 若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?
(1-20%)×200×16+200a-8 000≥3 200×90%,
A.甲比乙优惠 B.乙比甲优惠
95(x-50)=100+0.
购物不超过 50 元和刚好是 150 元时,在两家商场购物没有区别;
学习目标
1.会通过列一元一次不等式去解决生活中的实际问 题,经历“实际问题抽象为不等式模型”的过程。
同样价格的商品,下列结论正确的是( B )
A.甲比乙优惠 B.乙比甲优惠 C.两店优惠条件相同 D.不能进行比较
2.九(1)班几个同学毕业前合影留念,每人平摊0.7元,已知一张 彩色底片0.8元,冲印一张相片0.5元,每人一张,在平摊的钱尽量
用完的前提下,这张相片上的同学最少有(C )

专题09 一元一次不等式的应用与一元一次不等式组(原卷版)

专题09 一元一次不等式的应用与一元一次不等式组一、一元一次不等式实际问题1.行程问题:路程=速度×时间2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量3.利润问题:商品利润=商品售价-商品进价,4.和差倍分问题:增长量=原有量×增长率5.银行存贷款问题:本息和=本金+利息,利息=本金×利率6.数字问题:多位数的表示方法:例如:.7.收费问题:分类讨论,起步价,超过部分价格分好设x 即可8.几何问题:判断是哪种类型,如果是长方形则设长和宽x 即可列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等;(2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式;(4)解:解所列的不等式;(5)答:写出答案,并检验是否符合题意.注意(1)列不等式的关键在于确定不等关系;(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来;=100%´利润利润率进价32101010abcd a b c d =´+´+´+(3)构建不等关系解应用题的流程如图所示.(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.二、一元一次不等式组不等式组的概念如,等都是一元一次不等式组.(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.解一元一次不等式组1.一元一次不等式组的解集:注意:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.注意:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取整数.2562010x x ->ìí-<î7021163159x x x ->ìï+>íï+<î类型一、行程问题【解惑】(2023春·全国·七年级专题练习)小茗要从石室联中到春熙路IFS 国际金融中心,两地相距1.7千米,已知他步行的平均速度为90米/分钟,跑步的平均速度为210米/分钟,若他要在不超过12分钟的时间内到达,那么他至少需要跑步多少分钟?设他要跑步的时间为x 分钟,则列出的不等式为( )A .()2109012 1.7x x +-³B .()2109012 1.7x x +-£C .()21090121700x x +-³D .()21090121700x x +-£【融会贯通】1.(2023·黑龙江哈尔滨·统考一模)甲、乙两车分别从相距200千米的A 、B 两地相向而行,甲乙两车均保持匀速行驶,若甲车行驶2小时,乙车行驶3小时,两车恰好相遇:若甲车行驶4小时,乙车行驶1小时,两车也恰好相遇.(1)求甲乙两车的速度(单位:千米/小时)是多少.(2)若甲乙两车同时按原速度行驶了1小时,甲车发生故障不动了,为了保证乙车再经过不超过2小时与甲车相遇,乙车提高了速度,求乙车提速后的速度至少是每小时多少千米?2.(2023春·全国·七年级专题练习)在爆破时,如果导火索燃烧的速度是0.015m/s,人跑开的速度是3m/s,那么要使点导火索的施工人员在点火后能够跑到100m以外(包括100m)的安全地区,这根导火索的长度至少应取多少米?3.(2022春·上海·八年级期中)小明早上七点骑自行车从家出发,以每小时18千米的速度到距家7千米的学校上课,行至距学校1千米的地方时,自行车突然发生故障,小明只得改为步行前往学校,如果他想在7点30分赶到学校,那么他每小时步行的速度至少是多少千米?4.(2021春·山西·七年级校联考期末)小宇骑自行车从家出发前往地铁2号线的B站,与此同时,一列地铁从A站开往B站.3分钟后,地铁到达B站,此时小宇离B站还有2400米.已知A、B两站间的距离和小宇家到B站的距离恰好相等,这列地铁的平均速度是小宇骑车的平均速度的5倍.(1)求小宇骑车的平均速度(2)如果此时另有一列地铁需10分钟到达B站,且小宇骑车到达B站后还需2分钟才能走到地铁站台候车,那么他要想乘上这趟地铁,骑车的平均速度至少应提高多少?(假定这两列地铁的平均速度相同)5.(2021·广西百色·校联考一模)邓老师从学校出发,到距学校2160米的某商场买学习奖品,她步行了9分钟然后换骑共享单车,全程共用15分钟(转换方式所需时间忽略不计).已知邓老师骑共享单车的平均速度是步行速度的3倍.(1)邓老师步行和骑共享单车的平均速度分别是多少?(2)若邓老师仍然以步行和骑共享单车的方式分别按原来速度原路返回,买完奖品时正好10:31,为赶上10:45的数学课,问路上最多可步行多少米?类型二、工程问题【解惑】(2022秋·重庆丰都·九年级校考期中)众所周知,我国新疆盛产棉花,品种多且质量好,其中天然彩棉最具特色.每年4月底至5月初是种植天然彩棉的最佳季节.某农场今年有8480亩待种棉地,计划全部播种天然彩棉.农场现有雇佣工人若干名,且每个工人每小时种植棉花的面积相同.农场先将所有工人分成A、B、C三组,其中C组比A组多5人,且A、B、C三组工人每天劳动时间分别为12小时,10小时,8小时.一开始三组工人刚好用了8天完成了3200亩棉地的种植;接下来,农场安排A组工人每天劳动8小时,C组工人每天劳动12小时,B组工人劳动时间不变,这样调整后的三组工人也刚好用了8天完成了3280亩棉地的种植.为了不错过种植的最佳季节,农场决定从其他农场紧急雇佣3m名工人,平均分配给A、B、C三组进行支援,此时A、B、C三组工人每天劳动时间仍分别为8小时,10小时,12小时,以确保剩下的棉地在4天内完成全部种植,则3m的最小值为______.【融会贯通】1.(2022春·海南海口·七年级校考期中)5月份是空调销售和安装的高峰时期.某区域售后服务中心现有600台已售空调尚待安装,另外每天还有新销售的空调需要安装.设每天新销售的空调台数相同,每个空调安装小组每天安装空调的台数也相同.若同时安排3个装机小组,恰好60天可将空调安装完毕;若同时安排5个装机小组,恰好20天就能将空调安装完毕.(1)求每天新销售的空调数和每个空调安装小组每天安装空调的台数;(2)如果要在5天内将空调安装完毕,那么该区域售后服务中心至少需要安排几个空调安装小组同时进行安装?2.(2023春·广东佛山·八年级校考阶段练习)小明借到一本72页的图书,要在10天之内读完,开始2天每天只读5页,在剩下的时间里,小明每天至少要读多少页?3.(2023春·八年级单元测试)现有甲乙两个工程队参加一条道路的施工改造,受条件阻制,每天只能由一个工程队施工.甲工程队先单独施工3天,再由乙工程队单独施工5天,则可以完成340米施工任务;若甲工程队先单独施工2天,再由乙工程对单独施工4天,则可以完成260米的施工任务.(1)求甲、乙两个工程队平均每天分别能完成多少米施工任务?(2)要改造的道路全长1300米,工期不能超过30天,那么乙工程队至少施工多少天?类型三、利润问题【解惑】(2023春·山东济南·八年级校考阶段练习)某种笔记本原售价是每本7元,凡一次购买3本或以上可享受优惠价格,第1种:3本按原价,其余按七折优惠;第2种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第1种比第2种更优惠,则至少购买笔记本是()A.7本B.8本C.9本D.10本类型四、和差倍分问题【解惑】(2020·湖南常德·统考一模)我国的《洛书》中记载着世界上最古老幻方:将1-9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中字母m 所能表示的所有数中最大的数是()A.6B.7C.8D.9【融会贯通】1.(2023·云南·模拟预测)某校为活跃班级体育大课间,计划分两次购进一批羽毛球和乒乓球.第一次分别购进羽毛球和乒乓球30盒和15盒,共花费675元;第二次分别购进羽毛球和乒乓球12盒和5盒,共花费265元.若两次购进的羽毛球和乒乓球的价格均分别相同.(1)羽毛球和乒乓球每盒的价格分别是多少元?(2)若购买羽毛球和乒乓球共30盒,且乒乓球的数量少于羽毛球数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.2.(2022秋·黑龙江哈尔滨·九年级哈尔滨德强学校校考阶段练习)某班级为学习成绩进步的学生购买奖品,计划购买同一品牌的钢笔和自动铅笔,到文教店查看定价后发现,购买1支钢笔和5支自动铅笔共需50元,购买3支钢笔和2支自动铅笔共需85元.(1)求该品牌的钢笔、自动铅笔每支的定价分别是多少元;(2)如果该班级需要自动铅笔的数量是钢笔的数量的2倍还多8个,现在文教店进行促销活动,全场商品一律八折出售,且班级购买钢笔和自动铅笔的总费用不超过620元,那么该班级最多可购买多少支该品牌的钢笔?5.(2023春·福建漳州·七年级统考期中)某商场进货40件A商品和30件B商品共用了760元,进货50件A商品和10件B商品共用了840元.(1)求A、B两种商品的进价.(2)该商场在某次进货中,B商品的件数比A商品的件数的2倍少4件,且A、B两种商品的总件数至少为26件,总费用不超过248元,请问该商场有哪几种进货方案?类型五、利息问题【解惑】(2013·浙江杭州·统考一模)某企业向银行贷款100万元,一年后归还银行106.6多万元,则年利率高于_____%.【融会贯通】元.可使年利润超过35000元?类型六、收费问题【解惑】【融会贯通】份最多可用水多少立方米?类型七、数字问题【解惑】(2020·七年级统考课时练习)一个两位数,它的十位数上的数字比个位上的数字大2.且这个两位数小于40,则这个两位数是________.【融会贯通】类型八、几何问题【解惑】(2021春·山东潍坊·七年级统考期末)如图,一机器人在平地上按图中的程序行走,要使机器人行走的路程大于10m,则a的值可能是()A.90°B.45°C.36°D.24°【融会贯通】1.(2022·福建·模拟预测)小明同学在计算一个多边形的内角和时,由于粗心少算了一个内角,结果得到的总和是800°,则少算了这个内角的度数为___ .2.(2023春·全国·七年级专题练习)将长为4,宽为a(a大于2且小于4)的长方形纸片按如图①所示的方式折叠并压平,剪上一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图②所示的方式折叠并压平,剪下边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去…,若在第n次操作后,剩下的长方形恰为正方形,则n=时,a的值为___________.操作终止.当33.(2023春·江苏·七年级专题练习)如图,已知∠AOB=120°,射线OP从OA位置出发,以每秒2°的速度顺时针向射线OB旋转;与此同时,射线OQ以每秒6°的速度,从OB位置出发逆时针向射线OA旋转,到达射线OA后又以同样的速度顺时针返回,当射线OQ返回并与射线OP重合时,两条射线同时停止运动.设旋转时间为t秒.(1)当t=5时,则∠POQ的度数是______.(2)求射线OQ返回时t的值取值范围.(3)在旋转过程中,当020POQ °<У°时,求t 的取值范围.(注:此题主要考查,把不等式变等式来求,分三种情况,求相遇,相距30度的t ,再写三个不等式范围)4.(2023春·江苏·七年级专题练习)长方形的一边长为2米,另一边长为()8x +米,它的周长不大于48米,求x 的取值范围.5.(2021春·七年级课时练习)若多边形有且只有四个钝角,那么此多边形的边数至多是多少?类型九、一元一次不等式组中取整【解惑】(2023·山东泰安·统考一模)不等式组3x m x <ìí³î有4个整数解,则m 的取值范围是( )A .67m ££B .67m <<C .67£<m D .67m <£【融会贯通】1.(2023春·安徽滁州·七年级校考期中)关于x 的不等式组0251x a x x ->ìí-<-î有且仅有5个整数解,则a 的取值范围是( )A .54a -<£-B .54a -£<-C .43a -<£-D .43a -£<-2.(2022春·四川泸州·七年级统考期末)若关于x 的一元一次不等式组231220x x a +>ìí-£î恰有3个类型十、一元一次不等式组中有、无解(2022秋·浙江·八年级专题练习)若不等式12x x m <£ìí>î有解,则m 的取值范围是( )A .2m <B .2m ³C .1m <D .12m £<【融会贯通】类型十一、一元一次不等式组与二元一次方程组求解【融会贯通】1.(2022春·重庆·七年级校考期中)已知关于x ,y 的二元一次方程组242x y ax y a +=-ìí-=-î的解关于x ,y 满足0x <,2y £,则a 的取值范围为________.2.(2023春·七年级单元测试)整数m 满足关于x ,y 的二元一次方程组5321x y mx y +=ìí+=î的解是正整数,且关于x 的不等式组5406x m x ->ìí£î有且仅有2个整数解,则m 为_____.3.(2022春·江苏泰州·七年级校联考阶段练习)若关于x ,y 的二元一次方程组23122x y a x y +=-ìí+=î,(1)若x +y =1,求a 的值.(2)若﹣3≤x ﹣y ≤3,求a 的取值范围.(3)在(2)的条件下化简|a |+|a ﹣2|.4.(2023秋·贵州铜仁·八年级统考期末)已知关于x ,y 的二元一次方程组32121x y m x y m +=+ìí+=-î①②,当m 为何值时,x y <且320x y ->?5.(2021春·甘肃兰州·八年级校考期中)已知关于x,y的二元一次方程组713x y ax y a+=--ìí-=+î的解x为非正数,y为负数,求a的取值范围.类型十二、一元一次不等式组的新定义【解惑】(2023年广东省深圳市三十五校中考模拟数学试卷)定义新运算“Ä”,规定:2a b a bÄ=-,若关于x的不等式组30xx a aÄ>ìíÄ>î的解集为6x>,则a的取值范围是________.【融会贯通】1.(2023春·安徽合肥·七年级合肥市第四十二中学校考期中)新定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“关联方程”,例如:3.(2023春·安徽合肥·七年级中国科技大学附属中学校考阶段练习)对x ,y 定义一种新运算T ,规定:()()(),2T x y mx ny x y =++(其中m ,n 均为非零常数).例如:()1,133T m n =+.已知()1,10T -=,()0,28T =.(1)求m ,n 的值;(2)已若关于p 的不等式组()()2,244,32T p p T p p a ì->ïí-£ïî恰好有3个整数解,求a 的取值范围;4.(2022秋·湖南长沙·八年级校考开学考试)定义:给定两个不等式组P 和Q ,若不等式组P 的任意一个解,都是不等式组Q 的一个解,则称不等式组P 为不等式组Q 的“子集”.例如:不等式组M :21x x >ìí>î是N :21x x >-ìí>-î的“子集”.(1)若不等式组:A :1415x x +>ìí-<î,B :2113x x ->ìí>-î,则其中______不等式组是不等式组M :21x x >ìí>î的“子集”(填A 或)B ;(2)若关于x 的不等式组1x ax >ìí>-î是不等式组21x x >ìí>î的“子集”,则a 的取值范围是______;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设该同学买x支钢笔,根据题意得
15×6+8x≥200
解得x≥13+ 3/4 ∵x为整数 ∴x=14 答:该同学至少要买14支钢笔才能打折.
考点总结
一元一次不等式的应用 一元一次不等式的应用包括两个方面: 1、通过一元一次不等式求字母的取值范围;
2、列一元一次不等式解实际应用题。
方法归纳
列一元一次不等式解应用题的方法和列一元一次方程解应用题的方法基本相同,可以简单地概 括为审、设、列、解、答。 列不等式解应用题的一般步骤:
4x-1×(25-x)×1≥85,
解这个不等式,得 x≥22
所以,小明至少答对了22道题。
例题分析
例4 一辆客车从甲地开往乙地,出发十分钟后,一辆轿车也从甲地开往乙地,轿车的速度是 每小时120千米,轿车出发30分钟内就超过了客车,客车的速度为多少?
解:设客车的速度为x km/h,根据题意,得
。关题类决是关不找确
本题可设该同学要买x支钢笔,再根据题意列出不等式:15×6+8x≥200,化简即 可得出x的取值,取取值范围内的最小整数即为本题的答案.
情境导入
某商店在一次促销活动中规定:消费者消费满200元或超过200元就可 享受打折优惠.一名同学为班级买奖品,准备买6本影集和若干支钢 笔.已知影集每本15元,钢笔每支8元,问他至少买多少支钢笔才能打 折?
自学指导
认真阅读教材P146-P147。(时 间4分钟)
情境导入
某商店在一次促销活动中规定:消费者消费满200元或超过200元 就可享受打折优惠.一名同学为班级买奖品,准备买6本影集和若 干支钢笔.已知影集每本15元,钢笔每支8元,问他至少买多少支 钢笔才能打折? 键的问此解系等出地准
【思路分析】
当堂检测
4、去年某市空气质量良好(二级以上)的天数与全年天数(365) 之比达到60%,如果明年(365天)这样的比值要超过70%,那么 明年空气质量良好的天数要比去年至少增加多少?
自主反思

作业:
1、课本P146随堂练习,P147习题11.5. 2、《基础训练》P101-P102
(10+30)/60· x<120×30/60 解这个不等式,得

x<90
所以,客车的速度小于90km/h.
某商品的进价是200元,标价为300元,商场规定可以打折出售,但其利润率不能少于5%。请你 帮收货员算一下,此种商品可以打几折销售?
设售货员可以打x折出售此商品,依题意得:
解:(1)设每个书包和每本词典的价格各是x元,y元,根据题意得出: , 解得:.
答:每个书包的价格是28元,每本词典的价格是20元;
(2)设购买z个书包,则购买词典(40﹣z)本,根据题意得出: 28z+20(40﹣z)≤900,
解得:z≤12.5.
故最多可以购买12个书包.
3、燃烧某种礼花弹时,为了确保安全,人在点燃导火线后要在燃 放前转移到10米以外的安全区域,已知导火索的燃烧速度为0.02米 /s,人离开的速度为4米/s,则导火索的长度至少是x厘米。则x应 满足的关系式是( 0.01x/0.02>10/4 )。
当堂检测
1.某公司要招甲、乙两种工作人员30人,甲种工作人员月薪600 元,乙种工作人员月薪1000元.现要求每月的工资不能超过2.2万元, 问至多可招乙种工作人员多少名? 解:设招乙种工人x人,则招甲种工人(30-x)人, 根据题意得:1000x+600(30-x)≤22000 解这个不等式,得:x≤10 所以至多可招乙种工作人员10名.
(1)审题;
(2)设未知数; (3)确定包含未知数的不等量关系;
(4)列出不等式;
(5)求出不等式的解集,检验不等式的解是否符合题意; (6)写出答案。
例题分析
例3 一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣一分。在这 次竞赛中,小明的得分为优秀(85分或86分以上),小明至少答对了几道题? 分析:将答对题数所得的分数减去答错或不答所扣的分数,在由题意知小明答题所得的分数大 于等于85分,列出不等式即可. 解:设小明答对了x道题,则他答错或不答的共有(25-x)道题,由题意得:
复习回顾
1、解一元一次不等式的步骤:
去分母 →去括号→移项→合并同类项→不等式两边同时除 以未知数的系数(系数化为1)
解一元一次不等式的依据是:____________ 2、不等式的基本性质:
(1)不等式两边同时加或减去同一个整式,不等号方向不变。 (2)不等式两边同时乘以(或除以)同一个正数,不等号方向不变。 (3)不等式两边同时乘以(或除以)同一个负数,不等号方向改变。
品名 篮球 排球 厂家批发价(只/元)
130 100
商场零售价(只/元)
160 120
当堂检测
3、 (2014 辽宁铁岭)为培养学生养成良好的“爱读书,读好书, 好读书”的习惯,我市某中学举办了“汉字听写大赛”,准备为获 奖同学颁奖.在购买奖品时发现,一个书包和一本词典会花去48元, 用124元恰好可以购买3个书包和2本词典. (1)每个书包和每本词典的价格各是多少元? (2)学校计划用总费用不超过900元的钱数,为获胜的40名同学 颁发奖品(每人一个书包或一本词典),求最多可以购买多少个书 包?
3、解一元一次不等式时,它的移项法则:
不等号不变,把一项从不等式的一边移到另一边要改变符号。
练一练
解下列不等式并把它的解集在数轴上表示出来 (1)3x﹤2x+1 (2)﹣4x>3
学习目标
1. 能从实际问题中抽象出数学问题,根据数量关系建 立一元一次不等式进行求解.
2. 能够运用一元一次不等式解决实际问题。 3. 体会数学建模的思想.
当堂检测
2、某体育用品商场采购员要到厂家批发购进篮球和排球共100只, 付款总额不得超过11 815元.已知两种球厂家的批发价和商场的零 售价如右表,试解答下列问题: (1)该采购员最多可购进篮球多 少只? (2)若该商场把这100只球全部以零售价售出,为使商场获得的利 润不低于2580 元, 则采购员至少要购篮球多少只,该商场最多可盈利多少元?
3、《导学案》
300× x 解之得,x≥7 10 -200≥200×5%
所以售货员最低可以打7折出售此商品.
当堂检测
1、小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元, 每个练习本4角,那么他最多能买笔记本( 5 )本.
2、某部电梯的负荷量不能超过1000kg.有5人要携带每包15kg的 书籍乘坐电梯,如果他们的平均体重为70kg,他们一次最多能携带 这种书籍共( 43 )整包。
相关文档
最新文档