2014全国高考物理真题分类汇编 动量专题
2014年全国15套高考物理试题(含答案)

2014年全国15套高考物理试题(含答案)2014年普通高等学校招生全国统一考试(广东卷)理科综合(物理部分)参考答案一、选择题选择题题号 13 14 15 16 17 18 19 2021 答案 B A C B AC AD BD BD AC 非选择题 34、(18分)(1)①1.30②A ③B ④短路(2)①50 ②相等③滑块的动能④正比压缩量 35、(18分)解:(1)P1、P2碰撞过程,动量守恒mv1=2mv ① 解得v= v12=3m/s ② 碰撞损失的动能ΔE=12mv21-12(2m)v2 ③ 解得ΔE =9J ④ (2) 由于P与挡板的碰撞为弹性碰撞.故P在AC间等效为匀减速运动,设P在AC段加速度大小为a,由运动学规律,得μ(2m)g =2ma⑤ 3L=vt-12at2⑥ v2=v-at⑦ 由①⑤⑥⑦解得v1=t2+24tv2=24-t22t ⑧ 由于2s≤t≤4s 所以解得v1的取值范围10m/s≤v1≤14m/s ⑨ v2的取值范围1m/s≤v2≤7m/s 所以当v2=7m/s时,P向左经过A 点时有最大动能 E=12(2m)v22=49J ⑩ 36、(18分)解:(1)粒子在电场中,由动能定理有 qEd=12mv2 -0 ① 粒子在Ⅰ区洛伦兹力提供向心力 qvB0=mv2r ② 当k=1时,由几何关系得r=L ③ 由①②③解得E=qB02L22md ④ (2)由于2<k<3时,由题意可知粒子在Ⅱ区只能发生一次偏转,由几何关系可知(r-L)2+(kL)2=r2 ⑤ 解得r=(k2+1)2L ⑥ 由②⑥解得v=(k2+1)qB0L2m ⑦ 粒子在Ⅱ区洛伦兹力提供向心力 qvB=mv2r1 ⑧ 由对称性及几何关系可知 k(3-k)=rr1 ⑨ 解得r1=(3-k) (k2+1)2kL ⑩ 由⑧⑩解得 B=k(3-k) B0 2014高考物理海南卷 1.如图,在一水平、固定的闭合导体圆环上方。
高中物理专题汇编物理动量定理(一)及解析

高中物理专题汇编物理动量定理(一)及解析一、高考物理精讲专题动量定理1.质量0.2kg的球,从5.0m高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g取10m/s2.求小球对钢板的作用力.【答案】78N【解析】【详解】自由落体过程v12=2gh1,得v1=10m/s;v1=gt1得t1=1s小球弹起后达到最大高度过程0− v22=−2gh2,得v2=9m/s0-v2=-gt2得t2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft′-mg t′=mv2-(-mv1)其中t′=t-t1-t2=0.05s得F=78N由牛顿第三定律得F′=-F,所以小球对钢板的作用力大小为78N,方向竖直向下;2.质量为0.2kg的小球竖直向下以6m/s的速度落至水平地面,再以4m/s的速度反向弹回,取竖直向上为正方向,(1)求小球与地面碰撞前后的动量变化;(2)若小球与地面的作用时间为0.2s,则小球受到地面的平均作用力大小?(取g=10m/s2).【答案】(1)2kg•m/s;方向竖直向上;(2)12N;方向竖直向上;【解析】【分析】【详解】(1)小球与地面碰撞前的动量为:p1=m(-v1)=0.2×(-6) kg·m/s=-1.2 kg·m/s小球与地面碰撞后的动量为p2=mv2=0.2×4 kg·m/s=0.8 kg·m/s小球与地面碰撞前后动量的变化量为Δp=p2-p1=2 kg·m/s(2)由动量定理得(F-mg)Δt=Δp所以F=pt∆∆+mg=20.2N+0.2×10N=12N,方向竖直向上.3.如图所示,两个小球A和B质量分别是m A=2.0kg,m B=1.6kg,球A静止在光滑水平面上的M点,球B在水平面上从远处沿两球的中心连线向着球A运动,假设两球相距L≤18m时存在着恒定的斥力F,L>18m时无相互作用力.当两球相距最近时,它们间的距离为d=2m,此时球B的速度是4m/s.求:(1)球B 的初速度大小; (2)两球之间的斥力大小;(3)两球从开始相互作用到相距最近时所经历的时间. 【答案】(1) 09B m v s= ;(2) 2.25F N =;(3) 3.56t s =【解析】试题分析:(1)当两球速度相等时,两球相距最近,根据动量守恒定律求出B 球的初速度;(2)在两球相距L >18m 时无相互作用力,B 球做匀速直线运动,两球相距L≤18m 时存在着恒定斥力F ,B 球做匀减速运动,由动能定理可得相互作用力 (3)根据动量定理得到两球从开始相互作用到相距最近时所经历的时间.(1)设两球之间的斥力大小是F ,两球从开始相互作用到两球相距最近时所经历的时间是t 。
2014年高考物理分类汇编(高考真题+模拟新题)热学(1)

H 单元 热学分子动理论10.【选修3-3】(2)(6分)题10图为一种减震垫,上面布满了圆柱状薄膜气泡,每个气泡内充满体积为V 0、压强为p 0的气体,当平板状物品平放在气泡上时,气泡被压缩,若气泡内气体可视为理想气体,其温度保持不变,当体积压缩到V 时气泡与物品接触面的面积为S ,求此时每个气泡内气体对接触面处薄膜的压力.题10图10.[答案] (2)V 0Vp 0S 本题第一问考查分子动理论、内能的相关知识,第二问考查理想气体状态方程和受力分析.[解析] (2)设压力为F ,压缩后每个气泡内的气体压强为p .由p 0V 0=pV 和F =pS得F =V 0Vp 0S 29.[2014·福建卷Ⅰ] (1)如图,横坐标v 表示分子速率,纵坐标f (v )表示各等间隔速率区间的分子数占总分子数的百分比.图中曲线能正确表示某一温度下气体分子麦克斯韦速率分布规律的是________.(填选项前的字母)A .曲线①B .曲线②C .曲线③D .曲线④29.[答案] (1)D[解析] (1)速率较大或较小的分子占少数,接近平均速率的分子占多数,分子速率不可能为0,也不可能为无穷大,因此只有曲线④符合要求.13.[2014·北京卷] 下列说法中正确的是( )A .物体温度降低,其分子热运动的平均动能增大B.物体温度升高,其分子热运动的平均动能增大C.物体温度降低,其内能一定增大D.物体温度不变,其内能一定不变13.B 本题考查分子动理论、内能相关知识.温度是分子平均动能的宏观标志.物体温度降低,其分子热运动的平均动能减小,反之,其分子热运动的平均动能增大,A错,B 对;改变内能的两种方式是做功和热传递,由ΔU=W+Q知,温度降低,分子平均动能减小,但是做功情况不确定,故内能不确定,C、D错.1.(2014·云南文登二模)分子动理论较好地解释了物质的宏观热学性质.据此可判断下列说法中正确的是( )A.布朗运动是指液体分子的无规则运动B.分子间的相互作用力随着分子间距离的增大,一定先减小后增大C.一定质量的气体温度不变时,体积减小,压强增大,说明每秒撞击单位面积器壁的分子数增多D.气体从外界吸收热量,气体的内能一定增大1.C [解析] 布朗运动是悬浮颗粒的无规则运动,选项A错误;分子间的相互作用力随着分子间距离的增大,一定先减小后增大再减小,选项B错误;一定质量的气体温度不变时,单个分子撞击器壁的平均作用力一定,体积减小,单位体积分子的个数增多,每秒撞击单位面积器壁的分子数增多,选项C正确;气体从外界吸收热量,做功情况不明,气体的内能变化无法确定,选项D错误.3.(2014·北京朝阳区模拟)给一定质量的温度为0 ℃的水加热,在水的温度由0 ℃上升到4 ℃的过程中,水的体积随着温度的升高反而减小,我们称之为“反常膨胀”.某研究小组通过查阅资料知道:水分子之间存在着一种结合力,这种结合力可以形成多分子结构,在这种结构中,水分子之间也存在着相互作用的势能.在水反常膨胀的过程中,体积减小是由于水分子之间的结构发生了变化,但所有水分子间的总势能是增大的.关于这个问题,下列说法中正确的是( )A.水分子的平均动能减小,吸收的热量一部分用于分子间的结合力做正功B.水分子的平均动能减小,吸收的热量一部分用于克服分子间的结合力做功C.水分子的平均动能增大,吸收的热量一部分用于分子间的结合力做正功D.水分子的平均动能增大,吸收的热量一部分用于克服分子间的结合力做功3.D [解析] 温度升高,水分子的平均动能增大,体积减小,分子间的结合力做负功,水分子间的总势能增大,选项D正确.5.(2014·上海嘉定区一模)图X252中能正确地反映分子间的作用力f和分子势能E p随分子间的距离r变化的图像是( )图X2525.B [解析] 分子间的作用力f=0的位置对应分子势能E p最小的位置,能正确反映分子间的作用力f和分子势能E p随分子间的距离r变化的图像是图B.固体、液体、气体的性质33.[物理——选修3-3][2014·新课标全国卷Ⅰ] (1)一定量的理想气体从状态a开始,经历三个过程ab、bc、ca回到原状态.其p-T图像如图所示.下列判断正确的是________.A.过程ab中气体一定吸热B.过程bc中气体既不吸热也不放热C.过程ca中外界对气体所做的功等于气体所放的热D.a、b和c三个状态中,状态a分子的平均动能最小E.b和c两个状态中,容器壁单位面积单位时间内受到气体分子撞击的次数不同33.(1)ADE [解析] 本题考查了气体性质.因为pV T =C ,从图中可以看出,a →b 过程p T 不变,则体积V 不变,因此a →b 过程外力做功W =0,气体温度升高,则ΔU >0,根据热力学第一定律ΔU =Q +W 可知Q >0,即气体吸收热量,A 正确;b →c 过程气体温度不变,ΔU =0,但气体压强减小,由pV T =C 知V 增大,气体对外做功,W <0,由ΔU =Q +W 可知Q >0,即气体吸收热量,B 错误;c →a 过程气体压强不变,温度降低,则ΔU <0,由pV T =C 知V 减小,外界对气做功,W >0,由ΔU =W +Q 可知W <Q ,C 错误;状态a 温度最低,而温度是分子平均动能的标志,D 正确;b →c 过程体积增大了,容器内分子数密度减小,温度不变,分子平均速率不变,因此容器壁单位面积单位时间受到分子撞击的次数减少了,E 正确.17.、[2014·广东卷] 用密封性好、充满气体的塑料袋包裹易碎品,如图10所示,充气袋四周被挤压时,假设袋内气体与外界无热交换,则袋内气体( )A .体积减小,内能增大B .体积减小,压强减小C .对外界做负功,内能增大D .对外界做正功,压强减小17.AC [解析] 充气袋被挤压时,气体体积减小,外界对气体做功,由于袋内气体与外界无热交换,故由热力学第一定律知,气体内能增加,故选项C 正确,选项D 错误;体积减小,内能增加,由理想气体状态方程可知压强变大,故选项A 正确,选项B 错误.16.[2014·全国卷] 对于一定量的稀薄气体,下列说法正确的是( )A .压强变大时,分子热运动必然变得剧烈C.压强变大时,分子间的平均距离必然变小16.BD [解析] 本题考查气体性质.压强变大,温度不一定升高,分子热运动不一定变得剧烈,A错误;压强不变,温度也有可能升高,分子热运动可能变得剧烈,B正确;压强变大,体积不一定减小,分子间的距离不一定变小,C错误;压强变小,体积可能减小,分子间的距离可能变小,D正确.6.(2014·洛阳名校联考)图X253甲是晶体物质微粒在平面上的排列情况,图中三条等长线AB、AC、AD上物质微粒的数目不同,由此得出晶体具有________的性质.如图乙所示,液体表面层分子比较稀疏,分子间的距离大于分子平衡时的距离r0,因此表面层分子间作用力的合力表现为________.甲乙图X2536.各向异性引力[解析] 沿不同方向物质微粒的数目不同,使得晶体具有各向异性.当分子间的距离等于分子间的平衡距离时,分子间的引力等于斥力,合力为0;当分子间的距离大于分子间的平衡距离时,引力和斥力都减小,但斥力减小得快,合力表现为引力.3. (2014·福州质检)如图X261所示,U形气缸固定在水平地面上,用重力不计的活塞封闭着一定质量的气体,已知气缸不漏气,活塞移动过程无摩擦.初始时,外界大气压强为p0,活塞紧压小挡板.现缓慢升高缸内气体的温度,则图X262中能反映气缸内气体的压强p随热力学温度T变化的图像是( )图X261图X2623.B [解析] 缓慢升高缸内气体的温度,当缸内气体的压强p<p0时,气体的体积不变,由查理定律知p =p 1TT 1,故缸内气体的压强p 与热力学温度T 呈线性关系;当气缸内气体的压强p =p 0时发生等压变化.正确的图像为图B.8.(2014·唐山一模)如图X266所示,密闭容器有进气口和出气口可以和外部连通,容器的容积为V 0,将进气口和出气口关闭,此时内部封闭的气体的压强为p 0,将气体缓慢加热,使气体的温度由T 0=300 K 升至T 1=350 K.(1)求此时气体的压强.(2)保持T 1=350 K 不变,缓慢由出气口抽出部分气体,使气体的压强再回到p 0.求容器内剩余气体的质量与原来质量的比值.图X2668. (1)76p 0 (2)67[解析] (1)设升温后气体的压强为p 1,由查理定律得p 0T 0=p 1T 1 代入数据得p 1=76p 0. (2)抽气过程可等效为等温膨胀过程,设膨胀后气体的体积为V ,由玻意耳定律得 p 1V 0=p 0V解得V =76V 0 设剩余气体的质量与原来质量的比值为k ,由题意得k =V 0V解得k =67. 内能 热力学定律10.【选修3-3】(1)(6分)[2014·重庆卷] 重庆出租车常以天然气作为燃料,加气站储气罐中天然气的温度随气温升高的过程中,若储气罐内气体体积及质量均不变,则罐内气体(可视为理想气体)( )A.压强增大,内能减小B.吸收热量,内能增大C.压强减小,分子平均动能增大D.对外做功,分子平均动能减小10.[答案] (1)B37.(12分)【物理-3-3】[2014·山东卷] (1)如图所示,内壁光滑、导热良好的气缸中用活塞封闭有一定质量的理想气体.当环境温度升高时,缸内气体________.(双选,填正确答案标号) a.内能增加b.对外做功c.压强增大d.分子间的引力和斥力都增大37.[答案] (1)ab[解析] (1)根据理想气体状态方程,缸内气体压强不变,温度升高,体积增大,对外做功.理想气体不计分子间的作用力,温度升高,内能增加.选项a、b正确.17.、[2014·广东卷] 用密封性好、充满气体的塑料袋包裹易碎品,如图10所示,充气袋四周被挤压时,假设袋内气体与外界无热交换,则袋内气体( )A.体积减小,内能增大B.体积减小,压强减小C.对外界做负功,内能增大D.对外界做正功,压强减小17.AC [解析]充气袋被挤压时,气体体积减小,外界对气体做功,由于袋内气体与外界无热交换,故由热力学第一定律知,气体内能增加,故选项C 正确,选项D 错误;体积减小,内能增加,由理想气体状态方程可知压强变大,故选项A 正确,选项B 错误.2.(2014·北京顺义测试)如图G102所示,固定在水平面上的气缸内封闭着一定质量的理想气体,气缸壁和活塞绝热性能良好,气缸内气体分子间相互作用的势能忽略不计,则以下说法正确的是( )A .使活塞向左移动,气缸内气体对外界做功,内能减少B .使活塞向左移动,气缸内气体内能增大,温度升高C .使活塞向左移动,气缸内气体压强减小D .使活塞向左移动,气缸内气体分子无规则运动的平均动能减小2.B [解析] 使活塞向左移动,外界对气缸内气体做功,活塞绝热,Q =0,由热力学第一定律可知,内能增大,温度升高,由pV T =C 可知,压强增大,选项B 正确.9.(2014·烟台一模)某次科学实验中,从高温环境中取出一个如图X267所示的圆柱形导热气缸,把它放在大气压强p 0=1 atm 、温度t 0=27 ℃的环境中自然冷却.该气缸内壁光滑,容积V =1 m 3,开口端有一厚度可忽略的活塞.开始时,气缸内密封有温度t =447 ℃、压强p = atm 的理想气体,将气缸开口向右固定在水平面上,假设气缸内气体的所有变化过程都是缓慢的.求:(1)活塞刚要向左移动时,气缸内气体的温度t 1;(2)最终气缸内气体的体积V 1;(3)在整个过程中,气缸内气体对外界________(选填“做正功”“做负功”或“不做功”),气缸内气体放出的热量________(选填“大于”“等于”或“小于”)气体内能的减少量.图X2679.(1) 327 ℃ (2) 0.5 m 3 (3)做负功 大于[解析] (1)气体做等容变化,由查理定律得p T =p 0T 1 解得T 1=600 K ,即t 1=327 ℃.(2)由理想气体状态方程得pV T =p 0V 1T 0解得V 1=0.5 m 3.(3)体积减小,气缸内气体对外界做负功;由ΔU =W +Q 知,气缸内气体放出的热量大于气体内能的减少量.实验:用油膜法估测分子的大小7.(2014·孝感二模)在“用油膜法估测分子的大小”的实验中,用注射器将一滴油酸酒精溶液滴入盛水的浅盘里,待水面稳定后,将玻璃板放在浅盘上,在玻璃板上描出油膜的轮廓,随后把玻璃板放在坐标纸上,其形状如图X254所示,坐标纸上正方形小方格的边长为10 mm ,该油酸膜的面积是__________m 2;若一滴油酸酒精溶液中含有纯油酸的体积是4×10-6 mL ,则油酸分子的直径是__________m .(上述结果均保留1位有效数字)图X2547.8×10-3 5×10-10[解析] 正方形小方格的个数约为80个,油膜面积 S =80×1 cm 2=8×10-3 m 2油酸分子的直径d =V S =4×10-128×10-3 m =5×10-10 m. 热学综合37.(12分)【物理-3-3】[2014·山东卷](1)如图所示,内壁光滑、导热良好的气缸中用活塞封闭有一定质量的理想气体.当环境温度升高时,缸内气体________.(双选,填正确答案标号)a.内能增加b.对外做功c.压强增大d.分子间的引力和斥力都增大(2)一种水下重物打捞方法的工作原理如图所示.将一质量M=3×103kg、体积V0=0.5 m3的重物捆绑在开口朝下的浮筒上.向浮筒内充入一定量的气体,开始时筒内液面到水面的距离h1=40 m,筒内气体体积V1=1 m3.在拉力作用下浮筒缓慢上升,当筒内液面到水面的距离为h2时,拉力减为零,此时气体体积为V2,随后浮筒和重物自动上浮,求V2和h2.已知大气压强p0=1×105 Pa,水的密度ρ=1×103 kg/m3,重力加速度的大小g=10 m/s2.不计水温变化,筒内气体质量不变且可视为理想气体,浮筒质量和筒壁厚度可忽略.37.[答案] (1)ab (2)2.5 m310 m[解析] (1)根据理想气体状态方程,缸内气体压强不变,温度升高,体积增大,对外做功.理想气体不计分子间的作用力,温度升高,内能增加.选项a、b正确.(2)当F=0时,由平衡条件得Mg=ρg(V0+V2)①代入数据得V2=2.5 m3②设筒内气体初态、末态的压强分别为p1、p2,由题意得p1=p0+ρgh1③p2=p0+ρgh2④在此过程中筒内气体温度和质量不变,由玻意耳定律得p 1V 1=p 2V 2⑤联立②③④⑤式,代入数据得h 2=10 m ⑥(2)一定质量的理想气体被活塞封闭在竖直放置的圆柱形气缸内,气缸壁导热良好,活塞可沿气缸壁无摩擦地滑动.开始时气体压强为p ,活塞下表面相对于气缸底部的高度为h ,外界的温度为T 0.现取质量为m 的沙子缓慢地倒在活塞的上表面,沙子倒完时,活塞下降了h 4.若此后外界的温度变为T ,求重新达到平衡后气体的体积.已知外界大气的压强始终保持不变,重力加速度大小为g .(2)解:设气缸的横载面积为S ,沙子倒在活塞上后,对气体产生的压强为Δp ,由玻意耳定律得phS =(p +Δp )⎝ ⎛⎭⎪⎫h -14h S ① 解得Δp =13p ② 外界的温度变为T 后,设活塞距底面的高度为h ′.根据盖一吕萨克定律,得⎝ ⎛⎭⎪⎫h -14h S T 0=h ′S T ③解得 h ′=3T4T 0h ④据题意可得Δp =mg S ⑤气体最后的体积为V =Sh ′⑥联立②④⑤⑥式得V =9mghT 4pT 0.⑦ 9.(2014·石家庄二模)如图G107所示,两端开口的气缸水平固定,A 、B 是两个厚度不计的活塞,可在气缸内无摩擦地滑动,其面积分别为S 1=20 cm 2、S 2=10 cm 2,它们之间用一根细杆连接,B 通过水平细绳绕过光滑的定滑轮与质量为M =2 kg 的重物C 连接,静止时气缸中气体的温度T 1=600 K ,气缸两部分的气柱长均为L ,已知大气压强p 0=1×105 Pa ,g 取10 m/s 2,缸内气体可看作理想气体.(1)求活塞静止时气缸内气体的压强;(2)若降低气缸内气体的温度,当活塞A 缓慢向右移动12L 时,求气缸内气体的温度. 图G1079.(1)×105 Pa (2)500 K[解析] (1)设活塞静止时气缸内气体的压强为p 1,活塞受力平衡,则 p 1S 1+ p 0S 2= p 0S 1+ p 1S 2+Mg代入数据解得压强p 1=×105 Pa.(2)由活塞A 受力平衡可知缸内气体的压强没有变化,由盖·吕萨克定律得S 1L +S 2LT 1=S 1L 2+S 23L 2T 2代入数据解得T 2=500 K.。
2014—2018年高考真题汇总第七章 动量

第七章动量2018年【2018·全国卷II】高空坠物极易对行人造成伤害。
若一个50 g的鸡蛋从一居民楼的25层坠下,与地面的撞击时间约为2 ms,则该鸡蛋对地面产生的冲击力约为()A. 10 NB. 102 NC. 103 ND. 104 N【答案】 C【解析】一层楼高度约为3m。
设向下为正,受力分析和动量定理可得:mgt−Nt=mv−0又根据动能定理:mgℎ=12mv2联立方程解得N=103N【2018·全国卷I】高铁列车在启动阶段的运动可看作初速度为零的均加速直线运动,在启动阶段列车的动能()A. 与它所经历的时间成正比B. 与它的位移成正比C. 与它的速度成正比D. 与它的动量成正比【答案】 B【解析】根据初速度为零匀变速直线运动规律可知,在启动阶段,列车的速度与时间成正比,即v=at,由动能公式Ek=12mv2,可知列车动能与速度的二次方成正比,与时间的二次方成正比,选项AC错误;由v2=2ax,可知列车动能与位移x成正比,选项B正确;由动量公式p=mv,可知列车动能Ek=12mv2=p22m,即与列车的动量二次方成正比,选项D错误。
【2018·全国卷III】(多选)如图,一平行板电容器连接在直流电源上,电容器的极板水平,两微粒a、b所带电荷量大小相等、符号相反,使它们分别静止于电容器的上、下极板附近,与极板距离相等。
现同时释放a、b,它们由静止开始运动,在随后的某时刻t,a、b经过电容器两极板间下半区域的同一水平面,a、b间的相互作用和重力可忽略。
下列说法正确的是A. a的质量比b的大B. 在t时刻,a的动能比b的大C. 在t时刻,a和b的电势能相等D. 在t时刻,a和b的动量大小相等【答案】BD2017年【2017·全国卷Ⅲ】(多选)一质量为2 kg的物块在合外力F的作用下从静止开始沿直线运动.F随时间t变化的图线如图所示,则()图1A.t=1 s时物块的速率为1 m/sB.t=2 s时物块的动量大小为4 kg·m/sC.t=3 s时物块的动量大小为5 kg·m/sD.t=4 s时物块的速度为零【答案】AB【解析】由题目可知F=2 N,F′=-1 N,由动量定理Ft=m v1-m v0,可知t=1 s时,Ft1=m v1,代入数据可得v1=Ft1m=2×12m/s=1 m/s,故A正确;t=2 s时,p=Ft2,代入数据可得p=4 kg·m/s,故B正确;t=3 s时,p=Ft2+F′(t3-t2),代入数据可得p=3 kg·m/s,故C错误;t=4 s时,由Ft2+F′(t4-t2)=m v4,代入数据可得v4=Ft2+F′(t4-t2)m=2×2-1×(4-2)2m/s=1 m/s,故D错误.【2017·天津卷】“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是()图1A .摩天轮转动过程中,乘客的机械能保持不变B .在最高点时,乘客重力大于座椅对他的支持力C .摩天轮转动一周的过程中,乘客重力的冲量为零D .摩天轮转动过程中,乘客重力的瞬时功率保持不变 【答案】B【解析】 乘客随座舱在竖直面内做匀速圆周运动,动能保持不变,而重力势能时刻改变,A 错误;在最高点合外力提供向心力,方向向下,所以在最高点,乘客重力大于座椅对他的支持力,B 正确;乘客重力的冲量等于重力与时间的乘积,C 错误;乘客向下的瞬时分速度时刻在改变,所以重力的瞬时功率也时刻在变化,D 错误.【2017·北京卷】 在磁感应强度为B 的匀强磁场中,一个静止的放射性原子核发生了一次α衰变.放射出的α粒子(42He)在与磁场垂直的平面内做圆周运动,其轨道半径为R .用m 、q 分别表示α粒子的质量和电荷量.(1)放射性原子核用A Z X 表示,新核的元素符号用Y 表示,写出该α衰变的核反应方程. (2)α粒子的圆周运动可以等效成一个环形电流,求圆周运动的周期和环形电流大小. (3)设该衰变过程释放的核能都转为α粒子和新核的动能,新核的质量为M ,求衰变过程的质量亏损Δm .【答案】 (1)A Z X ―→A -4Z -2Y +42He(2)2πm qB q 2B 2πm(3)(M +m )(qBR )22mMc 2【解析】 (2)设α粒子的速度大小为v ,由q v B =m v 2R ,T =2πRv ,得α粒子在磁场中运动周期T =2πmqB环形电流大小I =q T =q 2B2πm(3)由q v B =m v 2R ,得v =qBRm设衰变后新核Y 的速度大小为v ′,系统动量守恒,得M v ′-m v =0 则v ′=m v M =qBR M由Δmc 2=12M v ′2+12m v 2得Δm =(M +m )(qBR )22mMc 2说明:若利用M =A -44m 解答,亦可.【2017·江苏卷】 (1)原子核的比结合能曲线如图所示.根据该曲线,下列判断正确的有________.图1A .42He 核的结合能约为14 MeVB .42He 核比63Li 核更稳定C .两个21H 核结合成42He 核时释放能量D .235 92U 核中核子的平均结合能比8936Kr 核中的大(2)质子(11H)和α粒子(42He)被加速到相同动能时,质子的动量________(选填“大于”“小于”或“等于”)α粒子的动量,质子和α粒子的德布罗意波波长之比为________.(3)甲、乙两运动员在做花样滑冰表演,沿同一直线相向运动,速度大小都是1 m/s.甲、乙相遇时用力推对方,此后都沿各自原方向的反方向运动,速度大小分别为1 m/s 和2 m/s.求甲、乙两运动员的质量之比.【解析】(1)结合能等于比结合能乘以核子数,故42He 核的结合能约为28 MeV ,A 错误;由图像可知42He 核的比结合能大于63Li 核的比结合能,故B 正确;两个21H 核结合成一个42He核,结合能增加,故一定存在质量亏损,故要释放能量,C 正确;235 92U 核中核子的平均结合能小于8936Kr 核中的,故D 错误.(2)由p =m v ,E k =12m v 2得p =2mE k ,所以质子和α粒子动能相同时,质子的动量更小.德布罗意波波长λ=h p =h2mE k,所以波长之比为2∶1.(3)由动量守恒定律得m 甲v 甲-m 乙v 乙=m 乙v 乙′-m 甲v 甲′ 解得m 甲m 乙=v 乙+v 乙′v 甲+v 甲′代入数据得m 甲m 乙=32.【2017·全国卷Ⅰ】 将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30 kg ·m/sB .5.7×102 kg ·m/sC .6.0×102 kg ·m/sD .6.3×102 kg ·m/s 【答案】A【解析】 在燃气喷出后的瞬间,喷出的燃气的动量p =m v =30 kg ·m/s ,由动量守恒定律可得火箭的动量大小为30 kg ·m/s ,选项A 正确.【2017·天津卷】 如图所示,物块A 和B 通过一根轻质不可伸长的细绳相连,跨放在质量不计的光滑定滑轮两侧,质量分别为m A =2 kg 、m B =1 kg.初始时A 静止于水平地面上,B 悬于空中.现将B 竖直向上再举高h =1.8 m (未触及滑轮),然后由静止释放.一段时间后细绳绷直,A 、B 以大小相等的速度一起运动,之后B 恰好可以和地面接触.取g =10 m/s 2,空气阻力不计.求:图1(1)B 从释放到细绳刚绷直时的运动时间t ; (2)A 的最大速度v 的大小; (3)初始时B 离地面的高度H .【答案】 (1)0.6 s (2)2 m/s (3)0.6 m【解析】 (1)B 从释放到细绳刚绷直前做自由落体运动,有 h =12gt 2 ① 代入数据解得 t =0.6 s ②(2)设细绳绷直前瞬间B 速度大小为v B ,有 v B =gt ③细绳绷直瞬间,细绳张力远大于A 、B 的重力,A 、B 相互作用,由动量守恒得 m B v B =(m A +m B )v ④之后A 做匀减速运动,所以细绳绷直后瞬间的速度v 即为最大速度,联立②③④式,代入数据解得v =2 m/s ⑤(3)细绳绷直后,A 、B 一起运动,B 恰好可以和地面接触,说明此时A 、B 的速度为零,这一过程中A 、B 组成的系统机械能守恒,有12(m A+m B )v 2+m B gH =m A gH ⑥ 代入数据解得 H =0.6 m ⑦ 【2017·全国卷Ⅲ】 如图,两个滑块A 和B 的质量分别为m A =1 kg 和m B =5 kg ,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m =4 kg ,与地面间的动摩擦因数为μ2=0.1.某时刻A 、B 两滑块开始相向滑动,初速度大小均为v 0=3 m/s.A 、B 相遇时,A 与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g =10 m/s 2.求:图1(1)B 与木板相对静止时,木板的速度; (2)A 、B 开始运动时,两者之间的距离. 【答案】 (1)1 m/s (2)1.9 m【解析】 (1)滑块A 和B 在木板上滑动时,木板也在地面上滑动.设A 、B 所受木板的摩擦力和木板所受地面的摩擦力大小分别为f 1、f 2和f 3,A 和B 相对于地面的加速度大小分别为a A 和a B ,木板相对于地面的加速度大小为a 1.在滑块B 与木板达到共同速度前有f1=μ1m A g①f2=μ1m B g②f3=μ2(m+m A+m B)g③由牛顿第二定律得f1=m A a A④f2=m B a B⑤f2-f1-f3=ma1⑥设在t1时刻,B与木板达到共同速度,其大小为v1.由运动学公式有v1=v0-a B t1⑦v1=a1t1⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s⑨(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-12a B t21⑩设在B与木板达到共同速度v1后,木板的加速度大小为a2.对于B与木板组成的体系,由牛顿第二定律有f1+f3=(m B+m)a2⑪由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2.设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2=v1-a2t2⑫对A有v2=-v1+a A t2⑬在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-12a2t22⑭在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-12a A(t1+t2)2⑮A和B相遇时,A与木板的速度也恰好相同.因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B⑯联立以上各式,并代入数据得s0=1.9 m⑰(也可用如图的速度—时间图线求解)2016年【2016·上海卷】如图,粗糙水平面上,两物体A 、B 以轻绳相连,在恒力F 作用下做匀速运动。
高考物理6年高考真题精解精析训练:专题14《动量》Word版含解析.pdf

【201高考】【2014·福建卷Ⅰ】 (2)一枚火箭搭载着卫星以速率v0进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m1,后部分的箭体质量为m2,分离后箭体以速率v2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v1为________.(填选项前的字母) A.v0-v2 B.v0+v2 C.v0-v2 D.v0+(v0-v2) 2.【2014·浙江卷】 (1)如图1所示,甲木块的质量为m1,以速度v沿光滑水平地面向前运动,正前方有一静止的、质量为m2的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后( ) A. 甲木块的动量守恒 B. 乙木块的动量守恒 C. 甲、乙两木块所组成的系统的动量守恒 D. 甲、乙两木块所组成系统的动能守恒 3.【2014·重庆卷】 一弹丸在飞行到距离地面5 m高时仅有水平速度v=2 m/s,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1,不计质量损失,重力加速度g取10 m/s2,则下列图中两块弹片飞行的轨迹可能正确的是 A B C D 4.【物理——选修3-5】【2014·新课标全国卷Ⅰ】 (2)如图所示,质量分别为mA、mB的两个弹性小球A、B静止在地面上,B球距地面的高度h=0.8 m,A球在B球的正上方,先将B球释放,经过一段时间后再将A球释放,当A球下落t=0.3 s时,刚好与B球在地面上方的P点处相碰,碰撞时间极短,碰后瞬间A球的速度恰为零,已知mB=3mA,重力加速度大小g取10 m/s2,忽略空气阻力及碰撞中的动能损失.求: (1)B球第一次到过地面时的速度; (2)P点距离地面的高度. 【解析】(2)解:()设B球第一次到达地面时的速度大小为vB,由运动学公式有 vB=① 将h=0.8 m代入上式,得 v1=4 m/s.② ()设两球相碰前后,A球的速度大小分别为v1和v′1(v′1=0),B球的速度分别为v2和v′2,由运动学规律可得 v1=gt③ 5.【2014·新课标Ⅱ卷】 【物理——选修3-5】 (2)现利用图(a)所示的装置验证动量守恒定律.在图(a)中,气垫导轨上有A、B两个滑块,滑块A右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间. 图(a) 实验测得滑块A的质量m1=0.310 kg,滑块B的质量m2=0.108 kg,遮光片的宽度d=1.00 cm;打点计时器所用交流电的频率f=50.0 Hz. 将光电门固定在滑块B的右侧,启动打点计时器,给滑块A一向右的初速度,使它与B相碰.碰后光电计时显示的时间为ΔtB=3.500 ms,碰撞前后打出的纸带如图(b)所示. 图(b) 若实验允许的相对误差绝对值(×100%)最大为5%,本实验是否在误差范围内验证了动量守恒定律?写出运算过程. 【解析】 (2)按定义,物块运动的瞬间时速度大小v为 v=① 式中Δs为物块在短时间Δt内走过的路程. 设纸带上打出相邻两点的时间间隔为ΔtA,则 ΔtA==0.02 s② ΔtA可视为很短 6.【2014·安徽卷】 (20分) 在光滑水平地面上有一凹槽A,中央放一小物块B.物块与左右两边槽壁的距离如图所示,L为1.0 m,凹槽与物块的质量均为m,两者之间的动摩擦因数μ为0.05.开始时物块静止,凹槽以v0=5 m/s初速度向右运动,设物块与凹槽槽壁碰撞过程中没有能量损失,且碰撞时间不计,g取10 m/s2.求: (1)物块与凹槽相对静止时的共同速度; (2)从凹槽开始运动到两者相对静止物块与右侧槽壁碰撞的次数; (3)从凹槽开始运动到两者刚相对静止所经历的时间及该时间内凹槽运动的位移大小. 【答案】 (1)2.5 m/s (2)6次 (3)12.75 m 【解析】 (1)设两者间相对静止时速度为v,由动量守恒定律得 mv0=2mv,解得v=2.5 m/s (2)设物块与凹槽间的滑动摩擦力Ff=μN=μmg 设两者相对静止前相对运动的路程为s1,由动能定理得 -Ff·s1=(m+m)v2-mv,得s3=12.5 m 已知L=1 m,可推知物块与右侧槽壁共发生6次碰撞. 7.【2014·北京卷】如图所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块A和B分别静止在圆弧轨道的最高点和最低点.现将A无初速释放,A与B碰撞后结合为一个整体,并沿桌面滑动.已知圆弧轨道光滑,半径R=0.2 m;A和B的质量相等;A和B整体与桌面之间的动摩擦因数μ=0.2.重力加速度g取10 m/s2.求: (1) 碰撞前瞬间A的速率v; (2) 碰撞后瞬间A和B整体的速率v′; (3) A和B整体在桌面上滑动的距离l. 8.【2014·全国卷】 冰球运动员甲的质量为80.0 kg.当他以5.0 m/s的速度向前运动时,与另一质量为100 kg、速度为3.0 m/s的迎面而来的运动员乙相撞.碰后甲恰好静止.假设碰撞时间极短,求: (1 )碰后乙的速度的大小; (2)碰撞中总机械能的损失. 【答案】 (1)1.0 m/s (2)1400 J 【解析】 (1)设运动员甲、乙的质量分别为m、M,碰前速度大小分别为v、V,碰后乙的速度大小为V′.由动量守恒定律有 mv-MV=MV′① 代入数据得 V′=1.0 m/s② (2)设碰撞过程中总机械能的损失为ΔE,应有 mv2+MV2=MV′2+ΔE③ 联立②③式,代入数据得 ΔE=1400 J④ 9.【2014·广东卷】 (18分)图24 的水平轨道中,AC段的中点B的正上方有一探测器,C处有一竖直挡板,物体P1沿轨道向右以速度v1与静止在A点的物体P2碰撞,并接合成复合体P,以此碰撞时刻为计时零点,探测器只在t1=2 s至t2=4 s内工作.已知P1、P2的质量都为m=1 kg,P与AC间的动摩擦因数为μ=0.1,AB段长L=4 m,g取10 m/s2,P1、P2和P均视为质点,P与挡板的碰撞为弹性碰撞. (1)若v1=6 m/s,求P1、P2碰后瞬间的速度大小v和碰撞损失的动能ΔE; (2)若P与挡板碰后,能在探测器的工作时间内通过B点,求v1的取值范围和P向左经过A 点时的最大动能E. 10 m/s≤v1≤14 m/s v2的取值范围1 m/s≤v2≤5 m/s 所以当v2=5 m/s时,P向左经过A点时有最大速度 v3= 则P向左经过A点时有最大动能E=(2m)v=17 J. 10.【2014·江苏卷】 (3)牛顿的《自然哲学的数学原理》中记载,A、B两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总是约为15∶16.分离速度是指碰撞后B对A的速度,接近速度是指碰撞前A对B的速度.若上述过程是质量为2m的玻璃球A以速度v0碰撞质量为m的静止玻璃球B,且为对心碰撞,求碰撞后A、B的速度大小. 【答案】 (3)v0 v0 【解析】 设A、B球碰撞后速度分别为v1和v2,由动量守恒定律得2mv0=2mv1+mv2,且由题意知=,解得v1=v0,v2=v0. 11. 【2014·山东卷】 【物理35】 (2)如图所示,光滑水平直轨道上两滑块A、B用橡皮筋连接,A的质量为m.开始时橡皮筋松弛,B静止,给A向左的初速度v0.一段时间后,B与A同向运动发生碰撞并粘在一起.碰撞后的共同速度是碰撞前瞬间A的速度的两倍,也是碰撞前瞬间B的速度的一半.求: ()B的质量; ()碰撞过程中A、B系统机械能的损失. 联立②③④式得 ΔE=mv⑤ 12.【2014·天津卷】 如图所示,水平地面上静止放置一辆小车A,质量mA=4 kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计.可视为质点的物块 B置于A的最右端,B的质量mB=2 kg.现对A施加一个水平向右的恒力F=10 N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6 s,二者的速度达到vt=2 m/s.求: (1)A开始运动时加速度a的大小; (2)A、B碰撞后瞬间的共同速度v的大小; (3)A的上表面长度l. l=0.45 m⑦ 【201高考】2、我国女子短道速滑队在今年世锦赛上实现女子3000m接力三连冠。
2014年高考物理(高考真题 模拟新题)分类汇编:A单元 质点的直线运动

A 单元 质点的直线运动A1 直线运动的概念、匀速直线运动23. [2018·浙江卷] 如图所示,装甲车在水平地面上以速度v 0=20 m/s 沿直线前进,车上机枪的枪管水平,距地面高为h =1.8 m .在车正前方竖直立一块高为两米的长方形靶,其底边与地面接触.枪口与靶距离为L 时,机枪手正对靶射出第一发子弹,子弹相对于枪口的初速度为v =800 m/s.在子弹射出的同时,装甲车开始匀减速运动,行进s =90 m 后停下.装甲车停下后,机枪手以相同方式射出第二发子弹.(不计空气阻力,子弹看成质点,重力加速度g 取10 m/s 2)第23题图(1)求装甲车匀减速运动时的加速度大小;(2)当L =410 m 时,求第一发子弹的弹孔离地的高度,并计算靶上两个弹孔之间的距离; (3)若靶上只有一个弹孔,求L 的范围. 23.[答案] (1)209m/s 2(2)0.55 m 0.45 m (3)492 m<L≤570 m [解析] 本题考查匀速直线运动、匀变速直线运动、平抛运动等知识点和分析推理能力. [答案] (1)装甲车加速度a =v 202s =209 m/s 2.(2)第一发子弹飞行时间t 1=Lv +v 0=0.5 s 弹孔离地高度h 1=h -12gt 21=0.55 m第二发子弹离地的高度h 2=h -12g ⎝ ⎛⎭⎪⎫L -s t 2=1.0 m两弹孔之间的距离Δh =h 2-h 1=0.45 m.(3)第一发子弹打到靶的下沿时,装甲车离靶的距离为L 1 L 1=(v 0+v)2hg=492 m 第二发子弹打到靶的下沿时,装甲车离靶的距离为L 2 L 2=v2hg+s =570 m L 的范围 492 m<L≤570 m.24. [2018·浙江卷] 某同学设计一个发电测速装置,工作原理如图所示.一个半径为R =0.1 m 的圆形金属导轨固定在竖直平面上,一根长为R 的金属棒OA ,A 端与导轨接触良好,O 端固定在圆心处的转轴上.转轴的左端有一个半径为r =R3的圆盘,圆盘和金属棒能随转轴一起转动.圆盘上绕有不可伸长的细线,下端挂着一个质量为m =0.5 kg 的铝块.在金属导轨区域内存在垂直于导轨平面向右的匀强磁场,磁感应强度B =0.5 T .a 点与导轨相连,b 点通过电刷与O 端相连.测量a 、b 两点间的电势差U 可算得铝块速度.铝块由静止释放,下落h =0.3 m 时,测得U =0.15 V .(细线与圆盘间没有滑动,金属棒、导轨、导线及电刷的电阻均不计,重力加速度g 取10 m/s 2)第24题图(1)测U 时,与a 点相接的是电压表的“正极”还是“负极”? (2)求此时铝块的速度大小;(3)求此下落过程中铝块机械能的损失. 24.[答案] (1)正极 (2)2 m/s (3)0.5 J[解析] 本题考查法拉第电磁感应定律、右手定则等知识和分析综合及建模能力. (1)正极(2)由电磁感应定律得U =E =ΔΦΔtΔΦ=12BR 2Δθ U =12B ωR 2v =r ω=13ωR所以v =2U3BR =2 m/s(3)ΔE =mgh -12mv 2ΔE =0.5 J11. [2018·四川卷] 如图所示,水平放置的不带电的平行金属板p 和b 相距h ,与图示电路相连,金属板厚度不计,忽略边缘效应.p 板上表面光滑,涂有绝缘层,其上O 点右侧相距h 处有小孔K ;b 板上有小孔T ,且O 、T 在同一条竖直线上,图示平面为竖直平面.质量为m 、电荷量为-q(q>0)的静止粒子被发射装置(图中未画出)从O 点发射,沿p 板上表面运动时间t 后到达K 孔,不与板碰撞地进入两板之间.粒子视为质点,在图示平面内运动,电荷量保持不变,不计空气阻力,重力加速度大小为g.(1)求发射装置对粒子做的功;(2)电路中的直流电源内阻为r ,开关S 接“1”位置时,进入板间的粒子落在b 板上的A 点,A 点与过K 孔竖直线的距离为l.此后将开关S 接“2”位置,求阻值为R 的电阻中的电流强度;(3)若选用恰当直流电源,电路中开关S 接“1”位置,使进入板间的粒子受力平衡,此时在板间某区域加上方向垂直于图面的、磁感应强度大小合适的匀强磁场(磁感应强度B 只能在0~B m=()21+5m ()21-2qt范围内选取),使粒子恰好从b 板的T 孔飞出,求粒子飞出时速度方向与b 板板面的夹角的所有可能值(可用反三角函数表示).11.(1)mh 22t 2 (2)mh q (R +r )⎝ ⎛⎭⎪⎫g -2h 3l 2t 2 (3)0<θ≤arcsin 25[解析] (1)设粒子在p 板上做匀速直线运动的速度为v 0,有h =v 0t ①设发射装置对粒子做的功为W ,由动能定理得W =12mv 20②联立①②可得 W =mh22t2③(2)S 接“1”位置时,电源的电动势E 0与板间电势差U 有E 0=U ④板间产生匀强电场的场强为E ,粒子进入板间时有水平方向的速度v 0,在板间受到竖直方向的重力和电场力作用而做类平抛运动,设加速度为a ,运动时间为t 1,有U =Eh ⑤ mg -qE =ma ⑥ h =12at 21⑦l =v 0t 1⑧S 接“2”位置,则在电阻R 上流过的电流I 满足I =E 0R +r⑨ 联立①④~⑨得I =mh q (R +r )⎝ ⎛⎭⎪⎫g -2h 3l 2t 2⑩ (3)由题意知此时在板间运动的粒子重力与电场力平衡,当粒子从K 进入板间后立即进入磁场做匀速圆周运动,如图所示,粒子从D 点出磁场区域后沿DT 做匀速直线运动,DT 与b 板上表面的夹角为题目所求夹角θ,磁场的磁感应强度B 取最大值时的夹角θ为最大值θm ,设粒子做匀速圆周运动的半径为R ,有qv 0B =mv 2R○11 过D 点作b 板的垂线与b 板的上表面交于G ,由几何关系有DG =h -R(1+cos θ)○12 TG =h +Rsin θ○13 tan θ=sin θcos θ=DGTG○14 联立①○11~○14,将B =B m 代入,求得 θm =arcsin 25○15 当B 逐渐减小,粒子做匀速圆周运动的半径为R 也随之变大,D 点向b 板靠近,DT 与b 板上表面的夹角θ也越变越小,当D 点无限接近于b 板上表面时,粒子离开磁场后在板间几乎沿着b 板上表面运动而从T 孔飞出板间区域,此时B m >B>0满足题目要求,夹角θ趋近θ0,即θ0=0○16 则题目所求为 0<θ≤arcsin 25○17A2 匀变速直线运动的规律及应7. (15分)[2018·重庆卷] 题7图为“嫦娥三号”探测器在月球上着陆最后阶段的示意图,首先在发动机作用下,探测器受到推力在距月球表面高度为h 1处悬停(速度为0,h 1远小于月球半径);接着推力改变,探测器开始竖直下降,到达距月面高度为h 2处的速度为v ;此后发动机关闭,探测器仅受重力下落到月面,已知探测器总质量为m(不包括燃料),地球和月球的半径比为k 1,质量比为k 2,地球表面附近的重力加速度为g ,求:题7图(1)月球表面附近的重力加速度大小及探测器刚接触月面时的速度大小; (2)从开始竖直下降到刚接触月面时,探测器机械能的变化. 7.[答案] (1)k 21k 2gv 2+2k 21gh 2k 2 (2)12mv 2-k 21k 2mg(h 1-h 2)本题利用探测器的落地过程将万有引力定律,重力加速度概念,匀变速直线运动,机械能等的概念融合在一起考查.设计概念比较多,需要认真审题.[解析] (1)设地球质量和半径分别为M 和R ,月球的质量、半径和表面附近的重力加速度分别为M′、R′和g′,探测器刚接触月面时的速度大小为v t .由mg′=G M′m R′2和mg =G Mm R 2得g′=k 21k 2g由v 2t -v 2=2g′h 2 得v t =v 2+2k 21gh 2k 2(2)设机械能变化量为ΔE ,动能变化量为ΔE k ,重力势能变化量为ΔE p . 由ΔE =ΔE k +ΔE p有ΔE =12m(v 2+2k 21gh 2k 2)-m k 21k 2gh 1得ΔE =12mv 2-k 21k 2mg(h 1-h 2)23. [2018·浙江卷] 如图所示,装甲车在水平地面上以速度v 0=20 m/s 沿直线前进,车上机枪的枪管水平,距地面高为h =1.8 m .在车正前方竖直立一块高为两米的长方形靶,其底边与地面接触.枪口与靶距离为L 时,机枪手正对靶射出第一发子弹,子弹相对于枪口的初速度为v =800 m/s.在子弹射出的同时,装甲车开始匀减速运动,行进s =90 m 后停下.装甲车停下后,机枪手以相同方式射出第二发子弹.(不计空气阻力,子弹看成质点,重力加速度g 取10 m/s 2)第23题图(1)求装甲车匀减速运动时的加速度大小;(2)当L =410 m 时,求第一发子弹的弹孔离地的高度,并计算靶上两个弹孔之间的距离; (3)若靶上只有一个弹孔,求L 的范围. 23.[答案] (1)209m/s 2(2)0.55 m 0.45 m (3)492 m<L≤570 m [解析] 本题考查匀速直线运动、匀变速直线运动、平抛运动等知识点和分析推理能力. [答案] (1)装甲车加速度a =v 202s =209 m/s 2.(2)第一发子弹飞行时间t 1=Lv +v 0=0.5 s 弹孔离地高度h 1=h -12gt 21=0.55 m第二发子弹离地的高度h 2=h -12g ⎝ ⎛⎭⎪⎫L -s t 2=1.0 m两弹孔之间的距离Δh =h 2-h 1=0.45 m.(3)第一发子弹打到靶的下沿时,装甲车离靶的距离为L 1 L 1=(v 0+v)2hg=492 m 第二发子弹打到靶的下沿时,装甲车离靶的距离为L 2L2=v 2hg+s=570 mL的范围492 m<L≤570 m.10.在如图所示的竖直平面内,水平轨道CD和倾斜轨道GH与半径r=944m的光滑圆弧轨道分别相切于D 点和G点,GH与水平面的夹角θ=37°.过G点、垂直于纸面的竖直平面左侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度B=1.25 T;过D点、垂直于纸面的竖直平面右侧有匀强电场,电场方向水平向右,电场强度E=1×104N/C.小物体P1质量m=2×10-3kg、电荷量q=+8×10-6C,受到水平向右的推力F=9.98×10-3N 的作用,沿CD向右做匀速直线运动,到达D点后撤去推力.当P1到达倾斜轨道底端G点时,不带电的小物体P2在GH顶端静止释放,经过时间t=0.1 s与P1相遇.P1与P2与轨道CD、GH间的动摩擦因数均为μ=0.5,g取10 m/s2,sin 37°=0.6,cos 37°=0.8,物体电荷量保持不变,不计空气阻力.求:(1)小物体P1在水平轨道CD上运动速度v的大小;(2)倾斜轨道GH的长度s.10.(1)4 m/s (2)0.56 m[解析] (1)设小物体P1在匀强磁场中运动的速度为v,受到向上的洛伦兹力为F1,受到的摩擦力为f,则F1=qvB①f=μ(mg-F1)②由题意,水平方向合力为零F-f=0③联立①②③式,代入数据解得v=4 m/s④(2)设P1在G点的速度大小为v G,由于洛伦兹力不做功,根据动能定理qErsin θ-mgr(1-cos θ)=12mv2G-12mv2⑤P1在GH上运动,受到重力、电场力和摩擦力的作用,设加速度为a1,根据牛顿第二定律qEcos θ-mgsin θ-μ(mgcos θ+qEsin θ)=ma1⑥P1与P2在GH上相遇时,设P1在GH上运动的距离为s1,则s1=v G t+12a1t2⑦设P2质量为m2,在GH上运动的加速度为a2,则m2gsin θ-μm2gcos θ=m2a2⑧P 1与P 2在GH 上相遇时,设P 2在GH 上运动的距离为s 2,则s 2=12a 2t 2⑨联立⑤~⑨式,代入数据得s =s 1+s 2⑩ s =0.56 m ○11 2.(2018·安徽安庆联考)如图X12所示,在水平面上有一个质量为m 的小物块,在某时刻给它一个初速度,使其沿水平面做匀减速直线运动,其依次经过A 、B 、C 三点,最终停在O 点.A 、B 、C 三点到O 点的距离分别为L 1、L 2、L 3,小物块由A 、B 、C 三点运动到O 点所用的时间分别为t 1、t 2、t 3.则下列结论正确的是( )图X12A.L 1t 1=L 2t 2=L 3t 3B.L 1t 21=L 2t 22=L 3t 23 C.L 1t 1<L 2t 2<L 3t 3 D. L 1t 21<L 2t 22<L 3t 232.B [解析] 小物块由A 点到O 点的匀减速直线运动可看成由O 点到A 点的初速度为0的匀加速直线运动,由位移规律,分别有L 1=12at 21、L 2=12at 22和L 3=12at 33,联立以上各式可得L 1t 21=L 2t 22=L 3t 23,选项B 正确.8.(2018·安徽“江淮十校”联考)测速仪上装有超声波发射和接收装置,如图X19所示,B 为测速仪,A 为汽车,两者相距335 m ,某时刻B 发出超声波,同时A 由静止开始做匀加速直线运动,当B 接收到反射回来的超声波信号时,A 、B 相距355 m .已知声速为340 m/s ,则汽车的加速度大小为( )图X19A .20 m/s 2B. 10 m/s 2C .5 m/s 2D. 无法计算8.B [解析] 设超声波来回传播的总时间为t ,汽车运动的加速度为a ,声速为v ,则v·t 2-12a ⎝ ⎛⎭⎪⎫t 22=335 m ,12at 2=355 m -335 m ,联立以上二式解得t =2 s ,a =10 m/s 2,选项B 正确. 9.( 2018·江西景德镇二检)如图X110所示,物体从O 点由静止开始做匀加速直线运动,途经A 、B 、C 三点,其中|AB|=2 m ,|BC|=3 m .若物体通过AB 和BC 这两段位移的时间相等,则O 、A 两点之间的距离等于( )图X110A.98m B.89m C.34m D.43m9.A [解析] 设物体的加速度为a,经过A点时的速度为v A,由A点到B点所用的时间为t,则x AB=v A t+1 2at2=2 m,x AC=v A·2t+12a(2t)2=5 m,联立以上二式解得at2=1 m,v A t=1.5 m,而||OA=v2A2a=98m,选项A正确.A3 自由落体运动A4 竖直上抛运动A5 运动图象5. [2018·重庆卷] 以不同的初速度将两个物体同时竖直向上抛出并开始计时,一个物体所受空气阻力可忽略,另一个物体所受空气阻力大小与物体的速率成正比,下列分别用虚线和实线描述两物体运动的v-t图像可能正确的是( )A BC D5.D [解析] 本题考查v-t图像.当不计阻力上抛物体时,物体做匀减速直线运动,图像为一倾斜直线,因加速度a=-g,故该倾斜直线的斜率的绝对值等于g.当上抛物体受空气阻力的大小与速率成正比时,对上升过程,由牛顿第二定律得-mg-kv=ma,可知物体做加速度逐渐减小的减速运动,通过图像的斜率比较,A错误.从公式推导出,上升过程中,|a|>g ,当v=0时,物体运动到最高点,此时 a=-g,而B、C图像的斜率的绝对值均小于g,故B、C错误,D正确.1. [2018·天津卷] 质点做直线运动的速度—时间图像如图所示,该质点( )A.在第1秒末速度方向发生了改变B.在第2秒末加速度方向发生了改变C.在前2秒内发生的位移为零D .第3秒末和第5秒末的位置相同1.D [解析] 本题考查了学生的读图能力.应用图像判断物体的运动情况,速度的正负代表了运动的方向,A 错误;图线的斜率代表了加速度的大小及方向,B 错误;图线与时间轴围成的图形的面积代表了物体的位移,C 错误,D 正确.15. [2018·山东卷] 一质点在外力作用下做直线运动,其速度v 随时间t 变化的图像如图所示.在图中标出的时刻中,质点所受合外力的方向与速度方向相同的有( )A .t 1B .t 2C .t 3D .t 415.AC [解析] 本题考查的是速度图像.速度图像中某点的切线的斜率表示加速度.t 1时刻速度为正,加速度也为正,合外力与速度同向;t 2时刻速度为正,加速度为负,合外力与速度反向;t 3时刻速度为负,加速度也为负,合外力与速度同向;t 4时刻速度为负,加速度为正,合外力与速度反向.选项A 、C 正确.14. [2018·新课标Ⅱ卷] 甲乙两汽车在一平直公路上同向行驶.在t =0到t =t 1的时间内,它们的v -t 图像如图所示.在这段时间内( )A .汽车甲的平均速度比乙的大B .汽车乙的平均速度等于v 1+v 22C .甲乙两汽车的位移相同D .汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大14.A [解析] v -t 图像中图线与横轴围成的面积代表位移,可知甲的位移大于乙的位移,而时间相同,故甲的平均速度比乙的大,A 正确,C 错误;匀变速直线运动的平均速度可以用v 1+v 22来表示,乙的运动不是匀变速直线运动,所以B 错误;图像的斜率的绝对值代表加速度的大小,则甲、乙的加速度均减小,D 错误.13. [2018·广东卷] 图6是物体做直线运动的v -t 图像,由图可知,该物体( )A .第1 s 内和第3 s 内的运动方向相反B .第3 s 内和第4 s 内的加速度相同C.第1 s内和第4 s内的位移大小不相等D.0~2 s和0~4 s内的平均速度大小相等13.B [解析] 0~3 s内物体一直沿正方向运动,故选项A错误;v-t图像的斜率表示加速度,第3 s内和第4 s内图像斜率相同,故加速度相同,选项B正确;v-t图像图线与时间轴包围的面积表示位移的大小,第1 s内和第4 s内对应的两个三角形面积相等,故位移大小相等,选项C错误;第3 s内和第4 s内对应的两个三角形面积相等,故位移大小相等,方向相反,所以0~2 s和0~4 s内位移相同,但时间不同,故平均速度不相等,选项D错误.14. [2018·全国卷] 一质点沿x轴做直线运动,其v-t图像如图所示.质点在t=0时位于x=5 m处,开始沿x轴正向运动.当t=8 s时,质点在x轴上的位置为( )A.x=3 m B.x=8 mC.x=9 m D.x=14 m14.B [解析] 本题考查v-t图像. v-t图像与x轴围成的面积表示位移,即位移为s1-s2=3 m,由于初始坐标是5 m,所以t=8 s时质点在x轴上的位置为x=3 m+5 m=8 m,因此B正确.6.(2018·广东江门调研)跳伞运动员从高空悬停的直升机上跳下,运动员沿竖直方向运动的vt图像如图X16所示,下列说法正确的是( )图X16A.运动员在0~10 s的平均速度大于10 m/sB.15 s末开始运动员处于静止状态C.10 s末运动员的速度方向改变D.10~15 s运动员做加速度逐渐减小的减速运动6.AD [解析] 由图可知,运动员在0~10 s的位移大于其在这段时间内做匀加速运动的位移,则平均速度大于202m/s=10 m/s,选项A正确;15 s后速度的大小恒定,运动员做匀速运动,选项B错误; 10 s末的速度最大,方向不变,选项C错误;10~15 s图线的斜率减小,运动员做加速度逐渐减小的减速运动,选项D 正确.图X177.(2018·上海松江期末)如图X17所示,汽车以10 m/s的速度匀速驶向路口,当行驶至距路口停车线20 m处时,还有3 s绿灯就要熄灭.而该汽车在绿灯熄灭时刚好停在停车线处,则汽车运动的速度—时间图像可能是图X18中的( )图X187.BC [解析] 汽车运动的速度—时间图线与坐标轴所围成图形的面积表示位移,所以,vt图像可能是图B或图C.A6 追及与相遇问题A7 实验:研究匀变速直线运动(长度的测量)19. [2018·福建卷Ⅰ] (1)某同学测定一金属杆的长度和直径,示数如图甲、乙所示,则该金属杆的长度和直径分别为________cm和________mm.19.[答案] (1)60.10 4.20[解析] 金属杆的长度通过毫米刻度尺读出来,毫米刻度尺读数时要读到最小刻度的下一位,即要有估读数位,如图甲所示,读数为60.10 cm,其中最后一个“0”为估读数;金属杆的直径通过游标卡尺读出来,游标卡尺的读数是主尺读数加上游标尺的读数,注意没有估读,如图乙所示,读数为:4 mm+10×0.02 mm=4.20 mm. 22. [2018·全国卷] 现用频闪照相方法来研究物块的变速运动.在一小物块沿斜面向下运动的过程中,用频闪相机拍摄的不同时刻物块的位置如图所示.拍摄时频闪频率是10 Hz;通过斜面上固定的刻度尺读取的5个连续影像间的距离依次为x1、x2、x3、x4.已知斜面顶端的高度h和斜面的长度s.数据如下表所示.重力加速度大小g取9.80 m/s2.单位:cm根据表中数据,完成下列填空:(1)物块的加速度a=________m/s2(保留3位有效数字).(2)因为______________________,可知斜面是粗糙的.22.(1)4.30(填“4.29”或“4.31”同样给分) (2)物块加速度小于g hs=5.88 m/s2(或:物块加速度小于物块沿光滑斜面下滑的加速度)[解析] (1)根据逐差法求出加速度a=(x3+x4)-(x1+x2)(2T)2=4.30 m/s2.(2)根据牛顿第二定律,物块沿光滑斜面下滑的加速度a′=gsin θ=g hs=5.88 m/s2,由于a<a′,可知斜面是粗糙的.A8 直线运动综合1. [2018·天津卷] 质点做直线运动的速度—时间图像如图所示,该质点( )A.在第1秒末速度方向发生了改变B.在第2秒末加速度方向发生了改变C.在前2秒内发生的位移为零D.第3秒末和第5秒末的位置相同1.D [解析] 本题考查了学生的读图能力.应用图像判断物体的运动情况,速度的正负代表了运动的方向,A错误;图线的斜率代表了加速度的大小及方向,B错误;图线与时间轴围成的图形的面积代表了物体的位移,C错误,D正确.23. (18分)[2018·山东卷] 研究表明,一般人的刹车反应时间(即图甲中“反应过程”所用时间)t0=0.4 s,但饮酒会导致反应时间延长.在某次试验中,志愿者少量饮酒后驾车以v0=72 km/h的速度在试验场的水平路面上匀速行驶,从发现情况到汽车停止,行驶距离L=39 m,减速过程中汽车位移s与速度v的关系曲线如图乙所示,此过程可视为匀变速直线运动.取重力加速度的大小g取10 m/s2.求:图甲图乙(1)减速过程汽车加速度的大小及所用时间;(2)饮酒使志愿者的反应时间比一般人增加了多少;(3)减速过程汽车对志愿者作用力的大小与志愿者重力大小的比值.23.[答案] (1)8 m/s2 2.5 s (2)0.3 s (3)41 5[解析] (1)设减速过程中汽车加速度的大小为a,所用时间为t,由题可得初速度v0=20 m/s,末速度v t =0,位移s=25 m,由运动学公式得v20=2as①t=v0a②联立①②式,代入数据得a=8 m/s2③t=2.5 s④(2)设志愿者反应时间为t′,反应时间的增加量为Δt,由运动学公式得L=v0t′+s⑤Δt=t′-t0⑥联立⑤⑥式,代入数据得Δt=0.3 s⑦(3)设志愿者所受合外力的大小为F,汽车对志愿者作用力的大小为F0,志愿者质量为m,由牛顿第二定律得F=ma⑧由平行四边形定则得F20=F2+(mg)2⑨联立③⑧⑨式,代入数据得F0 mg =415⑩10.(2018·湖北黄冈期末)某人在相距10 m的A、B两点间练习折返跑,他在A点由静止出发跑向B点,到达B点后立即返回A点.设加速过程和减速过程都是匀变速运动,加速过程和减速过程的加速度大小分别是4 m/s2和8 m/s2,运动过程中的最大速度为4 m/s,从B点返回的过程中达到最大速度后即保持该速度运动到A点,求:(1)从B点返回A点的过程中以最大速度运动的时间;(2)从A点运动到B点与从B点运动到A点的平均速度的大小之比.10.(1)2 s (2)12 13[解析] (1)设此人从静止到加速至最大速度时所用的时间为t1,加速运动的位移大小为x1,从B点返回A 点的过程中做匀速运动的时间为t2,A、B两点间的距离为L,由运动学公式可得v m=a1t1x1=v m 2 t1L-x1= v m t2联立以上各式并代入数据可得t2=2 s.(2)设此人从A点运动到B点的过程中做匀速运动的时间为t3,减速运动的位移大小为x2,减速运动的时间为t4,由运动学方程可得v m=a2t4x2=v m 2 t4L-x1-x2= v m t3v AB v BA =t1+t2t1+t3+t4联立以上各式并代入数据可得v ABv BA=1213.。
2011-2018年高考真题物理试题分类汇编:动量和动量定理(精编+解析版)
2011-2018年高考真题物理试题分类汇编:动量和动量定理试题部分1.2012年天津卷9. (1)质量为0.2kg 的小球竖直向下以6m/s 的速度落至水平地面,再以4m/s 的速度反向弹回,取竖直向上为正方向,则小球与地面碰撞前后的动量变化为 kg•m/s 。
若小球与地面的作用时间为0.2s ,则小球受到地面的平均作用力大小为 N (g =10m/s 2)。
2.2014年物理上海卷22A .动能相等的两物体A 、B 在光滑水平面上沿同一直线相向而行,它们的速度大小之比 v A ∶v B =2: 1,则动量大小之比P A ∶P B = ;两者碰后粘在一起运动,其总动量与A 原来动量大小之比P ∶P A = 。
3.2017年海南卷1.光滑水平桌面上有P 、Q 两个物块,Q 的质量是P 的n 倍。
将一轻弹簧置于P 、Q 之间,用外力缓慢压P 、Q 。
撤去外力后,P 、Q 开始运动,P 和Q 的动量大小的比值为A .2nB .nC .1nD .1 4.2015年理综重庆卷3.高空作业须系安全带。
如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动)。
.此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上。
则该段时间安全带对人的平均作用力大小为 A mgB mgC mg+ D mg - 5.2015年理综北京卷18.“蹦极”运动中,长弹性绳的一端固定,另一端绑在人身上,人从几十米高处跳下,将蹦极过程简化为人沿竖直方向的运动。
从绳恰好伸直,到人第一次下降至最低点的过程中,下列分析正确的是A .绳对人的冲量始终向上,人的动量先增大后减小B .绳对人的拉力始终做负功,人的动能一直减小C .绳恰好伸直时,绳的弹性势能为零,人的动能最大D .人在最低点时,绳对人的拉力等于人所受的重力6.2018年全国卷II 、15.高空坠物极易对行人造成伤害。
高中物理动量守恒定律真题汇编(含答案)含解析
高中物理动量守恒定律真题汇编(含答案)含解析一、高考物理精讲专题动量守恒定律1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答2.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
2014高考物理专题辅导讲义专题14动量守恒定律
一。
重点知识精讲和知识拓展1.动量守恒定律如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变,这个结论叫做动量守恒定律。
(i)动量守恒定律是自然界中最重要最普遍的守恒定律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体,它是一个实验规律。
相互间有作用力的物体体系称为系统,系统内的物体可以是两个、三个或者更多,解决实际问题时要根据需要和求解问题的方便程度,合理地选择系统.(ii)动量守恒定律适用条件(1)系统不受外力或系统所受的外力的矢量和为零。
(2)系统所受外力的合力虽不为零,但比系统内力小得多。
(3)系统所受外力的合力虽不为零,但在某个方向上的分力为零,则在该方向上系统的总动量保持不变——分动量守恒。
(4)在某些实际问题中,一个系统所受外力和不为零,内力也不是远大于外力,但外力在某个方向上的投影为零,那么在该方向上也满足动量守恒的条件。
(iii)动量守恒定律的四性:(1).矢量性动量守恒方程是一个矢量方程,对于作用前后物体的运动方向都在同一直线上的问题,应选取统一的正方向。
凡是与选取的正方向相同的为正,相反为负。
若方向未知,可设为与正方向相同来列动量守恒方程,通过解的结果的正负,判定未知量的方向。
(2).瞬时性动量是一个瞬时量,动量守恒是指系统在任一瞬时的动量守恒。
m1v1+m2v2=m1v1′+m2v2′,等号左边是作用前的各物体动量和,等号右边是作用后的各物体动量和,不同时刻动量不能相加。
(3).相对性动量大小与选择的参考系有关,应注意各物体的速度是相对同一惯性系的速度,一般选取地面为参考系。
(4).普适性它不仅适用于两个物体组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统。
2.动量定理与动能定理的区别动量定理:物体所受合外力的冲量等于物体动量的变化。
即F △t=mv 2- mv 1。
2014年高考物理试题和答案 15套
有色皆空2014年高考物理试题答案(全15套)1. 2014年全国高考新课标卷1物理部分 (1)2. 2014年普通高等学校招生全国统一考试(新课标卷Ⅱ) (7)3. 2014年全国全国统一招生考试大纲卷物理部分............................ 错误!未定义书签。
4. 2014北京高考物理卷 (15)5. 2014年普通高等学校招生全国统一考试(天津卷).................... 错误!未定义书签。
6. 2014年山东高考理综试题物理部分 (22)7. 2014年高考浙江理综卷(物理部分)............................................ 错误!未定义书签。
8. 福建2014年高考理科综合能力测试题.......................................... 错误!未定义书签。
9. 2014年普通高等学校招生全国统一考试(安徽卷) (31)10.2014年普通高等学校招生全国统一考试(四川卷) (33)11.2014年普通高等学校招生全国统一考试(重庆卷) ................... 错误!未定义书签。
12.2014年全国高考物理试题(江苏卷) (42)13.2014年普通高等学校招生全国统一考试(广东卷) (48)14.2014高考物理海南卷 (50)15.2014年全国高考上海卷物理试题 (54)2014年全国高考新课标卷1物理部分参考答案二、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
14.D 15.B 16.D 17.A 18.C19.BD 20.AC 21.AD有色皆空第Ⅱ卷三、非选择题:包括必考题和选考题两部分。
第22题~第32题为必考题,每个试题考生都必须做答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2014年高考物理真题分类汇编:动量专题 30. [2014·福建卷Ⅰ] (2)一枚火箭搭载着卫星以速率v0进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m1,后部分的箭体质量为m2,分离后箭体以速率v2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v1为________.(填选项前的字母)
A.v0-v2 B.v0+v2 C.v0-m2m1v2 D.v0+m2m1(v0-v2) 30.(2)D [解析] 忽略空气阻力和分离前后系统质量的变化,卫星和箭体整体分离前后动量守恒,则有(m1+m2)v0=m1v1+m2v2,整理可得v1=v0+m2m1(v0-v2),故D项正确. (2014上海)22A.动能相等的两物体A、B在光滑水平面上沿同一直线相向而行,它们的速度大小之比12:2:1vv,则动量之比:ABpp ;两者碰后粘在一起运动,其总动量与
A原来动量大小之比:App 。 [答案] 1:2;1:1 14.[2014·浙江卷] (1)如图1所示,甲木块的质量为m1,以速度v沿光滑水平地面向前运动,正前方有一静止的、质量为m2的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后( ) A. 甲木块的动量守恒 B. 乙木块的动量守恒 C. 甲、乙两木块所组成的系统的动量守恒 D. 甲、乙两木块所组成系统的动能守恒 14.[答案] (1)C [解析] (1)本题考查碰撞、动量守恒定律等知识点.甲木块与弹簧接触后,由于弹簧弹力的作用,甲、乙的动量要发生变化,但对于甲、乙所组成的系统因所受合力的冲量为零,故动量守恒,选项A、B错误,选项C正确;甲、乙两木块所组成系统的动能,一部分转化为弹簧的势能,故不守恒. 4. [2014·重庆卷] 一弹丸在飞行到距离地面5 m高时仅有水平速度v=2 m/s,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1,不计质量损失,重力加速度g取10 m/s2,则下列图中两块弹片飞行的轨迹可能正确的是
A B 2
C D 4.B [解析] 弹丸在爆炸过程中,水平方向的动量守恒,有m弹丸v0=34mv甲+14mv乙,解
得4v0=3v甲+v乙,爆炸后两块弹片均做平抛运动,竖直方向有h=12gt2,水平方向对甲、乙两弹片分别有x甲=v甲t,x乙=v乙t,代入各图中数据,可知B正确. 35.[物理——选修3-5][2014·新课标全国卷Ⅰ] (2)如图所示,质量分别为mA、mB
的两个弹性小球A、B静止在地面上,B球距地面的高度h=0.8 m,A球在B球的正上方,
先将B球释放,经过一段时间后再将A球释放,当A球下落t=0.3 s时,刚好与B球在地面上方的P点处相碰,碰撞时间极短,碰后瞬间A球的速度恰为零,已知mB=3mA,重力加速度大小g取10 m/s2,忽略空气阻力及碰撞中的动能损失.求:
(1)B球第一次到过地面时的速度; (2)P点距离地面的高度. (2)解:(ⅰ)设B球第一次到达地面时的速度大小为vB,由运动学公式有 vB=2gh①
将h=0.8 m代入上式,得 v1=4 m/s.②
(ⅱ)设两球相碰前后,A球的速度大小分别为v1和v′1(v′1=0),B球的速度分别为v2和v′2,由运动学规律可得
v1=gt③
由于碰撞时间极短,重力的作用可以忽略,两球相碰前后的动量守恒,总动能保持不变,规定向下的方向为正,有 mAv1+mBv2=mBv′2④
12mAv21+12mBv22=12mv′22⑤
设B球与地面相碰后速度大小为v′B,由运动学及碰撞的规律可得 v′B=vB⑥
设P点距地面的高度为h′,由运动学规律可得
h′=v′2B-v222g⑦
联立②③④⑤⑥⑦式,并代入已知条件可得 h′=0.75 m.⑧
[2014·新课标Ⅱ卷] [物理——选修3-5] (2)现利用图(a)所示的装置验证动量守恒 3
定律.在图(a)中,气垫导轨上有A、B两个滑块,滑块A右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间.
图(a) 实验测得滑块A的质量m1=0.310 kg,滑块B的质量m2=0.108 kg,遮光片的宽度d=1.00 cm;打点计时器所用交流电的频率f=50.0 Hz. 将光电门固定在滑块B的右侧,启动打点计时器,给滑块A一向右的初速度,使它与B相碰.碰后光电计时显示的时间为ΔtB=3.500 ms,碰撞前后打出的纸带如图(b)所示.
图(b) 若实验允许的相对误差绝对值(碰撞前后总动量之差碰前总动量×100%)最大为5%,本实验是否在误差范围内验证了动量守恒定律?写出运算过程. [解析] (2)按定义,物块运动的瞬间时速度大小v为
v=ΔsΔt① 式中Δs为物块在短时间Δt内走过的路程. 设纸带上打出相邻两点的时间间隔为ΔtA,则
ΔtA=1f=0.02 s② ΔtA可视为很短 设A在碰撞前、后时速度大小分别为v0,v1.将②式和图给实验数据代入①式得 v0=2.00 m/s③ v2=0.970 m/s④ 设B在碰撞后的速度大小为v2,由①式得
v2=dΔtB⑤ 代入题给实验数据得 v2=2.86 m/s⑥ 设两滑块在碰撞前、后的总动量分别为p和p′则 p=m1v0⑦ p′=m1v1+m2v2⑧ 两滑块在碰撞前后总动量相对误差的绝对值为
δp=p-p′p×100%⑨ 联立③④⑥⑦⑧⑨式并代入有关数据,得 δp=1.7%<5%⑩ 因此,本实验在允许的误差范围内验证了动量守恒定律. 4
24.[2014·安徽卷] (20分) 在光滑水平地面上有一凹槽A,中央放一小物块B.物块与左右两边槽壁的距离如图所示,L为1.0 m,凹槽与物块的质量均为m,两者之间的动摩擦因数μ为0.05.开始时物块静止,凹槽以v0=5 m/s初速度向右运动,设物块与凹槽槽壁碰撞过程中没有能量损失,且碰撞时间不计,g取10 m/s2.求:
(1)物块与凹槽相对静止时的共同速度; (2)从凹槽开始运动到两者相对静止物块与右侧槽壁碰撞的次数; (3)从凹槽开始运动到两者刚相对静止所经历的时间及该时间内凹槽运动的位移大小.
24.[答案] (1)2.5 m/s (2)6次 (3)12.75 m [解析] (1)设两者间相对静止时速度为v,由动量守恒定律得 mv0=2mv,解得v=2.5 m/s
(2)设物块与凹槽间的滑动摩擦力Ff=μN=μmg 设两者相对静止前相对运动的路程为s1,由动能定理得
-Ff·s1=12(m+m)v2-12mv20,得s3=12.5 m 已知L=1 m,可推知物块与右侧槽壁共发生6次碰撞. (3)设凹槽与物块碰前的速度分别为v1、v2,碰后的速度分别为v′1、v′2.有mv1+mv2
=mv′1+mv′2
12mv21+12mv22=12mv′21+12mv′22
得v′1=v2,v′2=v1 即每碰撞一次凹槽与物块发生一次速度交换,在同一坐标系上两者的速度图线如图所示,根据碰撞次数可分为13段凹槽,物块的vt图像在两条连续的匀变速运动图线间转换,故可用匀变速直线运动规律求时间.则v=v0+at,a=-μg,解得t=5 s
凹槽的vt图像所包围的阴影部分面积即为凹槽的位移大小s2.(等腰三角形面积共分13份,第一份面积为0.5 L,其余每份面积均为L)
s2=12v02t+6.5 L=12.75 m.
22.[2014·北京卷]如图所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块A和B分别静止在圆弧轨道的最高点和最低点.现将A无初速释放,A与B碰撞后结合为一个整体,并沿桌面滑动.已知圆弧轨道光滑,半径R=0.2 m;A和B的质量相等;A和B整体与桌面之间的动摩擦因数μ=0.2.重力加速度g取10 m/s2.求: 5
(1) 碰撞前瞬间A的速率v; (2) 碰撞后瞬间A和B整体的速率v′; (3) A和B整体在桌面上滑动的距离l. 22.[答案] (1)2 m/s (2)1 m/s (3)0.25 m [解析] 设滑块的质量为m. (1)根据机械能守恒定律有
mgR=12mv2 解得碰撞前瞬间A的速率有 v=2gR=2 m/s.
(2)根据动量守恒定律有 mv=2mv′
解得碰撞后瞬间A和B整体的速率
v′=12v=1 m/s.
(3)根据动能定理有 12(2m)v′2=μ(2m)gl
解得A和B整体沿水平桌面滑动的距离 l=v′22μg=0.25 m.
24. [2014·全国卷] 冰球运动员甲的质量为80.0 kg.当他以5.0 m/s的速度向前运动时,与另一质量为100 kg、速度为3.0 m/s的迎面而来的运动员乙相撞.碰后甲恰好静止.假设碰撞时间极短,求: (1 )碰后乙的速度的大小; (2)碰撞中总机械能的损失. 24.[答案] (1)1.0 m/s (2)1400 J [解析] (1)设运动员甲、乙的质量分别为m、M,碰前速度大小分别为v、V,碰后乙的速度大小为V′.由动量守恒定律有 mv-MV=MV′①
代入数据得 V′=1.0 m/s②
(2)设碰撞过程中总机械能的损失为ΔE,应有 12mv2+12MV2=12MV′2+ΔE③
联立②③式,代入数据得 ΔE=1400 J④ 35.[2014·广东卷] (18分)图24 的水平轨道中,AC段的中点B的正上方有一探测器,C处有一竖直挡板,物体P1沿轨道向右以速度v1与静止在A点的物体P2碰撞,并接合成复合体P,以此碰撞时刻为计时零点,探测器只在t1=2 s至t2=4 s内工作.已知P1、