2018年高考数学总复习第九章平面解析几何第3讲圆的方程学案!
核按钮(新课标)高考数学一轮复习第九章平面解析几何9.3圆的方程课件文

5 6.
故所求圆的方程为x-522+y-562=356.
故填x-522+y-562=356.
第十五页,共23页。
点拨: 设出圆的圆心坐标后,利用三角形内切圆的性质 和点到直线的距离公式得到关于圆心坐标的方程组,
解此方程组得圆心坐标后再求圆的半径长.求解过程
中需要注意:内切圆的圆心总在三角形的内部,因此 需要应用线性规划的有关知识判断绝对值中代数式的 符号,否则会求出多解(其他的解是三个旁切圆的圆
2.(1)(a,b) r
(2)D2+E2-4F>0
-D2 ,-E2
1 2
3.(1)(x0-a)2+(y0-b)2=r2
(2)(x0-a)2+(y0-b)2>r2
(3)(x0-a)2+(y0-b)2&l共23页。
方程 x2+y2+4mx-2y+5m=0 表示圆的充要条
件的是( )
注:将上述一般方程配方得x+D2 2+y+E22=D2+E42-4F,
此为该一般方程对应的标准方程,表示的是以____________为圆心,
____________为半径长的圆.
第二页,共23页。
3.点与圆的位置关系
点与圆的位置关系有三种: 圆的标准方程(x-a)2+(y-b)2=r2(r>0),点 M(x0,y0), (1)点 M 在圆上:_________________________; (2)点 M 在圆外:_________________________; (3)点 M 在圆内:________________________.
x=1,AB
的垂直平分线为
y-
23=
3 3
x-12,直线 BC,AB 的交点为 P1,2 3 3,点 P 为圆心,易得距
高考数学一轮复习 第九章 平面解析几何 9.3 圆的方程课件 理

§9.3 圆的方程
内容 索引
基础知识 自主学习 题型分类 深度剖析 思想与方法系列 思想方法 感悟提高 练出高分
基础知识 自主学习
1
知识梳理
1.圆的定义 在平面内,到 定点 的距离等于定长 的点的集合 叫圆. 2.确定一个圆最基本的要素是圆心 和 半径 . 3.圆的标准方程 (x-a)2+(y-b)2=r2(r>0),其中 (a,b) 为圆心, r 为半径. 4.圆的一般方程 x2+y2+Dx+Ey+F=0表示圆的充要条件是 D2+E2-4F>0,其中圆心为 __-__D2_,__-__E2__,半径r=____D__2+__2E_2_-__4_F__.
答案
5.确定圆的方程的方法和步骤 确定圆的方程主要方法是待定系数法,大致步骤为: (1)根据题意,选择标准方程或一般方程; (2)根据条件列出关于a,b,r或D、E、F的方程组; (3)解出a、b、r或D、E、F代入标准方程或一般方程.
6.点与圆的位置关系 点和圆的位置关系有三种. 圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0) (1)点在圆上:(_x_0_-__a_)2_+__(_y0_-__b_)_2=__r_2; (2)点在圆外: _(_x_0-__a_)_2_+__(y_0_-__b_)2_>_r_2 ; (3)点在圆内: _(_x0_-__a_)_2+__(_y_0_-__b_)2_<_r_2.
答案
思考辨析
判断下面结论是否正确(请在括号中打“√”或“×”)
(1)确定圆的几何要素是圆心与半径.( √ )
(2)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(x-x2)
高考数学一轮复习 第九章 平面解析几何 第3讲 圆的方程课件 理

1.圆的定义及方程
定义
平面内与__定__点 _____的距离等于__定__长_____的点的集合(轨迹)叫做圆
标准方程
___(_x_-__a_)2_+__(_y_-__b_)2_=__r_2__ (r>0)
圆心:(_a_,__b_) ,半径:_r ____
___x_2+__y_2_+__D_x_+__E__y+__F__=__0____ (D2+E2 一般方程
-4AF>0.
(√)
(3)方程 x2+2ax+y2=0 一定表示圆.
(×)
12/11/2021
第十页,共四十九页。
(4)(x-2)2+(y+1)2=a2(a≠0)表示以(2,1)为圆心,a 为半径的圆.
(× )
(5)圆 x2+2x+y2+y=0 的圆心是1,12.
(× )
(6)若点 M(x0,y0)在圆 x2+y2+Dx+Ey+F=0 外,则 x20+y20+Dx0+Ey0+F<0. ( × )
12/11/2021
第二十六页,共四十九页。
1.(一题多解)(2020·陕西西安一模)已知圆 C 截两坐标轴所得弦长相等,且圆 C 过点(-
1,0)和(2,3),则圆 C 的半径为
()
A.8
B.2 2
C.5
D. 5
解析:选 D.法一:设圆的标准方程为(x-a)2+(y-b)2=r2(r>0).因为圆 C 经过点(-1,
12/11/2021
第十三页,共四十九页。
2.若点(1,1)在圆(x-a)2+(y+a)2=4 的内部,则实数 a 的取值范围是________. 解析:因为点(1,1)在圆内, 所以(1-a)2+(a+1)2<4,即-1<a<1. 答案:(-1,1)
高考数学大一轮复习第九章平面解析几何9.3圆的方程教案文含解析新人教A版

高考数学大一轮复习第九章平面解析几何9.3圆的方程教案文含解析新人教A版§9.3圆的方程最新考纲考情考向分析掌握确定圆的几何要素,掌握圆的标准方程与一般方程.以考查圆的方程为主,与圆有关的轨迹问题、最值问题也是考查的热点,属中档题.题型主要以选择、填空题为主,要求相对较低,但内容很重要,有时也会在解答题中出现.圆的定义与方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准式(x-a)2+(y-b)2=r2(r>0)圆心为(a,b)半径为r一般式x2+y2+Dx+Ey+F=0充要条件:D2+E2-4F>0圆心坐标:⎝⎛⎭⎪⎫-D2,-E2半径r=12D2+E2-4F概念方法微思考1.二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的条件是什么?提示⎩⎪⎨⎪⎧A=C≠0,B=0,D2+E2-4AF>0.2.已知⊙C:x2+y2+Dx+Ey+F=0,则“E=F=0且D<0”是“⊙C与y轴相切于原点”的什么条件?提示 由题意可知,⊙C 与y 轴相切于原点时,圆心坐标为⎝ ⎛⎭⎪⎫-D2,0,而D 可以大于0,所以“E =F =0且D <0”是“⊙C 与y 轴相切于原点”的充分不必要条件. 3.如何确定圆的方程?其步骤是怎样的?提示 确定圆的方程的主要方法是待定系数法,大致步骤: (1)根据题意,选择标准方程或一般方程.(2)根据条件列出关于a ,b ,r 或D ,E ,F 的方程组. (3)解出a ,b ,r 或D ,E ,F 代入标准方程或一般方程. 4.点与圆的位置关系有几种?如何判断? 提示 点和圆的位置关系有三种.已知圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0) (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2<r 2.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)确定圆的几何要素是圆心与半径.( √ )(2)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.( √ )(3)方程x 2+2ax +y 2=0一定表示圆.( × )(4)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( √ ) (5)方程(x +a )2+(y +b )2=t 2(t ∈R )表示圆心为(a ,b ),半径为t 的圆.( × ) 题组二 教材改编2.圆心为(1,1)且过原点的圆的方程是( ) A.(x -1)2+(y -1)2=1 B.(x +1)2+(y +1)2=1 C.(x +1)2+(y +1)2=2 D.(x -1)2+(y -1)2=2答案 D解析 因为圆心为(1,1)且过原点,所以该圆的半径r =12+12=2,则该圆的方程为(x -1)2+(y -1)2=2.3.以点(3,-1)为圆心,并且与直线3x +4y =0相切的圆的方程是( ) A.(x -3)2+(y +1)2=1 B.(x -3)2+(y -1)2=1D.(x +3)2+(y +1)2=1 答案 A4.圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为______________. 答案 (x -2)2+y 2=10 解析 设圆心坐标为C (a,0), ∵点A (-1,1)和B (1,3)在圆C 上, ∴|CA |=|CB |,即(a +1)2+1=(a -1)2+9, 解得a =2, ∴圆心为C (2,0),半径|CA |=(2+1)2+1=10, ∴圆C 的方程为(x -2)2+y 2=10. 题组三 易错自纠5.若方程x 2+y 2+mx -2y +3=0表示圆,则m 的取值范围是( ) A.(-∞,-2)∪(2,+∞) B.(-∞,-22)∪(22,+∞) C.(-∞,-3)∪(3,+∞) D.(-∞,-23)∪(23,+∞) 答案 B解析 将x 2+y 2+mx -2y +3=0化为圆的标准方程得⎝ ⎛⎭⎪⎫x +m 22+(y -1)2=m 24-2.由其表示圆可得m 24-2>0,解得m <-22或m >2 2.6.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是( ) A.-1<a <1 B.0<a <1 C.a >1或a <-1 D.a =±4答案 A解析 ∵点(1,1)在圆内, ∴(1-a )2+(a +1)2<4,即-1<a <1.7.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A.(x -2)2+(y -1)2=1C.(x +2)2+(y -1)2=1 D.(x -3)2+(y -1)2=1 答案 A解析 由于圆心在第一象限且与x 轴相切,可设圆心为(a,1)(a >0),又圆与直线4x -3y =0相切, ∴|4a -3|5=1,解得a =2或a =-12(舍去). ∴圆的标准方程为(x -2)2+(y -1)2=1. 故选A.题型一 圆的方程例1(1)已知圆E 经过三点A (0,1),B (2,0),C (0,-1),且圆心在x 轴的正半轴上,则圆E 的标准方程为( )A.⎝ ⎛⎭⎪⎫x -322+y 2=254B.⎝ ⎛⎭⎪⎫x +342+y 2=2516C.⎝ ⎛⎭⎪⎫x -342+y 2=2516D.⎝ ⎛⎭⎪⎫x -342+y 2=254答案 C解析 方法一 (待定系数法)根据题意,设圆E 的圆心坐标为(a,0)(a >0),半径为r ,则圆E 的标准方程为(x -a )2+y 2=r 2(a >0).由题意得⎩⎪⎨⎪⎧a 2+12=r 2,(2-a )2=r 2,a 2+(-1)2=r 2,解得⎩⎪⎨⎪⎧a =34,r 2=2516,所以圆E 的标准方程为⎝ ⎛⎭⎪⎫x -342+y 2=2516.方法二 (待定系数法)设圆E 的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则由题意得⎩⎪⎨⎪⎧1+E +F =0,4+2D +F =0,1-E +F =0,解得⎩⎪⎨⎪⎧D =-32,E =0,F =-1,所以圆E 的一般方程为x 2+y 2-32x -1=0,即⎝ ⎛⎭⎪⎫x -342+y 2=2516. 方法三 (几何法)因为圆E 经过点A (0,1),B (2,0),所以圆E 的圆心在线段AB 的垂直平分线y -12=2(x -1)上.又圆E 的圆心在x 轴的正半轴上,所以圆E 的圆心坐标为⎝ ⎛⎭⎪⎫34,0. 则圆E 的半径为|EB |=⎝ ⎛⎭⎪⎫2-342+(0-0)2=54, 所以圆E 的标准方程为⎝ ⎛⎭⎪⎫x -342+y 2=2516.(2)已知圆C 经过P (-2,4),Q (3,-1)两点,且在x 轴上截得的弦长等于6,则圆C 的方程为______________________________.答案 x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0解析 设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 将P ,Q 两点的坐标分别代入得⎩⎪⎨⎪⎧2D -4E -F =20, ①3D -E +F =-10.②又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根,由|x 1-x 2|=6,即(x 1+x 2)2-4x 1x 2=36, 得D 2-4F =36,④由①②④解得D =-2,E =-4,F =-8或D =-6,E =-8,F =0.故所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0.思维升华 (1)直接法:直接求出圆心坐标和半径,写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,求出a ,b ,r 的值; ②选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值. 跟踪训练1已知圆心在x 轴上,半径为5的圆位于y 轴右侧,且截直线x +2y =0所得弦的长为2,则圆的方程为__________. 答案 (x -25)2+y 2=5解析 根据题意,设圆的圆心坐标为(a,0)(a >0),则圆的标准方程为(x -a )2+y 2=5(a >0),则圆心到直线x +2y =0的距离d =|a +2×0|12+22=55a . 又该圆截直线x +2y =0所得弦的长为2,所以可得12+⎝ ⎛⎭⎪⎫55a 2=5,解得a =2 5.故圆的方程为(x -25)2+y 2=5.题型二 与圆有关的轨迹问题例2已知Rt△ABC 的斜边为AB ,且A (-1,0),B (3,0).求: (1)直角顶点C 的轨迹方程; (2)直角边BC 的中点M 的轨迹方程.解 (1)方法一 设C (x ,y ),因为A ,B ,C 三点不共线,所以y ≠0. 因为AC ⊥BC ,且BC ,AC 斜率均存在,所以k AC ·k BC =-1, 又k AC =y x +1,k BC =y x -3,所以y x +1·yx -3=-1, 化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).方法二 设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知|CD |=12|AB |=2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0), 将x 0=2x -3,y 0=2y 代入得(2x -4)2+(2y )2=4,即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).思维升华求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: ①直接法:直接根据题目提供的条件列出方程. ②定义法:根据圆、直线等定义列方程. ③几何法:利用圆的几何性质列方程.④相关点代入法:找到要求点与已知点的关系,代入已知点满足的关系式.跟踪训练2设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为两边作平行四边形MONP ,求点P 的轨迹方程.解 如图,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y2, 线段MN 的中点坐标为⎝⎛⎭⎪⎫x 0-32,y 0+42.因为平行四边形的对角线互相平分,所以x 2=x 0-32,y 2=y 0+42,整理得⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4,又点N (x 0,y 0)在圆x 2+y 2=4上, 所以(x +3)2+(y -4)2=4.所以点P 的轨迹是以(-3,4)为圆心,2为半径的圆,直线OM 与轨迹相交于两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285,不符合题意,舍去,所以点P 的轨迹为(x +3)2+(y -4)2=4,除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285.题型三 与圆有关的最值问题例3已知点(x ,y )在圆(x -2)2+(y +3)2=1上,求x +y 的最大值和最小值. 解 设t =x +y ,则y =-x +t ,t 可视为直线y =-x +t 在y 轴上的截距,∴x +y 的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时在y 轴上的截距.由直线与圆相切得圆心到直线的距离等于半径,即|2+(-3)-t |2=1,解得t =2-1或t =-2-1. ∴x +y 的最大值为2-1,最小值为-2-1. 引申探究1.在本例的条件下,求yx的最大值和最小值.解 y x 可视为点(x ,y )与原点连线的斜率,y x的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y =kx ,由直线与圆相切得圆心到直线的距离等于半径,即|2k +3|k 2+1=1,解得k =-2+233或k =-2-233,∴y x 的最大值为-2+233,最小值为-2-233.2.在本例的条件下,求x 2+y 2+2x -4y +5的最大值和最小值. 解x 2+y 2+2x -4y +5=(x +1)2+(y -2)2,求它的最值可视为求点(x ,y )到定点(-1,2)的距离的最值,可转化为求圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点(-1,2)的距离为34,∴x 2+y 2+2x -4y +5的最大值为34+1,最小值为34-1. 思维升华与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法. ①形如u =y -bx -a型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离的平方的最值问题.跟踪训练3已知M (x ,y )为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3). (1)求|MQ |的最大值和最小值; (2)求y -3x +2的最大值和最小值; (3)求y -x 的最大值和最小值.解 (1)由圆C :x 2+y 2-4x -14y +45=0, 可得(x -2)2+(y -7)2=8,∴圆心C 的坐标为(2,7),半径r =2 2. 又|QC |=(2+2)2+(7-3)2=42,∴|MQ |max =42+22=62, |MQ |min =42-22=2 2. (2)可知y -3x +2表示直线MQ 的斜率k . 设直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0. 由直线MQ 与圆C 有交点, ∴|2k -7+2k +3|1+k2≤22, 可得2-3≤k ≤2+3, ∴y -3x +2的最大值为2+3,最小值为2- 3. (3)设y -x =b ,则x -y +b =0.当直线y =x +b 与圆C 相切时,截距b 取到最值, ∴|2-7+b |12+(-1)2=22,∴b =9或b =1.∴y -x 的最大值为9,最小值为1.1.若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( )A.0B.1C.2D.3 答案 B解析 方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆的条件为a 2+4a 2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23.又a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,∴仅当a =0时,方程x 2+y 2+ax +2ay+2a 2+a -1=0表示圆,故选B.2.已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是 ( ) A.x 2+y 2=2 B.x 2+y 2= 2 C.x 2+y 2=1 D.x 2+y 2=4答案 A解析 AB 的中点坐标为(0,0), |AB |=[1-(-1)]2+(-1-1)2=22,∴圆的方程为x 2+y 2=2.3.以(a,1)为圆心,且与两条直线2x -y +4=0,2x -y -6=0同时相切的圆的标准方程为( )A.(x -1)2+(y -1)2=5 B.(x +1)2+(y +1)2=5 C.(x -1)2+y 2=5 D.x 2+(y -1)2=5 答案 A解析 由题意得,点(a,1)到两条直线的距离相等,且为圆的半径r . ∴|2a -1+4|22+(-1)2=|2a -1-6|22+(-1)2,解得a =1. ∴r =|2×1-1+4|22+(-1)2=5, ∴所求圆的标准方程为(x -1)2+(y -1)2=5.4.(2018·锦州调研)圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是( ) A.x 2+y 2+10y =0 B.x 2+y 2-10y =0 C.x 2+y 2+10x =0 D.x 2+y 2-10x =0答案 B解析 根据题意,设圆心坐标为(0,r ),半径为r , 则32+(r -1)2=r 2,解得r =5,可得圆的方程为x 2+y 2-10y =0.5.已知圆C 1:(x +1)2+(y -1)2=4,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A.(x +2)2+(y -2)2=4 B.(x -2)2+(y +2)2=4 C.(x +2)2+(y +2)2=4 D.(x -2)2+(y -2)2=4 答案 B解析 根据题意,设圆C 2的圆心为(a ,b ),圆C 1:(x +1)2+(y -1)2=4,其圆心为(-1,1),半径为2,若圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 1与C 2的圆心关于直线x -y -1=0对称,且圆C 2的半径为2,则有⎩⎪⎨⎪⎧b -1a +1=-1,a -12-b +12-1=0,解得⎩⎪⎨⎪⎧a =2,b =-2,则圆C 2的方程为(x -2)2+(y +2)2=4.6.圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2的距离的最大值是( ) A.1+ 2 B.2 C.1+22D.2+2 2答案 A解析 将圆的方程化为(x -1)2+(y -1)2=1,圆心坐标为(1,1),半径为1,则圆心到直线x -y =2的距离d =|1-1-2|2=2,故圆上的点到直线x -y =2的距离的最大值为d +1=2+1,故选A.7.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是____________,半径是________. 答案 (-2,-4) 5解析 由已知方程表示圆,则a 2=a +2, 解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,5为半径的圆.8.已知圆C :x 2+y 2+kx +2y =-k 2,当圆C 的面积取最大值时,圆心C 的坐标为__________. 答案 (0,-1)解析 圆C 的方程可化为⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=-34k 2+1,所以当k =0时,圆C 的面积最大,此时圆心C 的坐标为(0,-1).9.若圆C 经过坐标原点与点(4,0),且与直线y =1相切,则圆C 的方程是__________________.答案 (x -2)2+⎝ ⎛⎭⎪⎫y +322=254解析 因为圆的弦的垂直平分线必过圆心且圆经过点(0,0)和(4,0),所以设圆心为(2,m ). 又因为圆与直线y =1相切,所以22+m 2=|1-m |, 解得m =-32.所以圆C 的方程为(x -2)2+⎝ ⎛⎭⎪⎫y +322=254.10.平面内动点P 到两点A ,B 的距离之比为常数λ(λ>0,且λ≠1),则动点P 的轨迹叫做阿波罗尼斯圆,若已知A (-2,0),B (2,0),λ=12,则此阿波罗尼斯圆的方程为____________.答案 x 2+y 2+203x +4=0解析 由题意,设P (x ,y ),则(x +2)2+y2(x -2)2+y 2=12, 化简可得x 2+y 2+203x +4=0.11.已知点P (x ,y )在圆C :x 2+y 2-6x -6y +14=0上, (1)求y x的最大值和最小值; (2)求x +y 的最大值和最小值.解 方程x 2+y 2-6x -6y +14=0可变形为(x -3)2+(y -3)2=4,则圆C 的半径为2. (1)(转化为斜率的最值问题求解)yx表示圆上的点P 与原点连线的斜率,显然当PO (O 为原点)与圆C 相切时,斜率最大或最小,如图所示.设切线方程为y =kx ,即kx -y =0,由圆心C (3,3)到切线的距离等于圆C 的半径, 可得|3k -3|k 2+1=2,解得k =9±2145.所以y x 的最大值为9+2145,最小值为9-2145.(2)(转化为截距的最值问题求解)设x +y =b ,则b 表示动直线y =-x +b 在y 轴上的截距,显然当动直线y =-x +b 与圆C 相切时,b 取得最大值或最小值,如图所示.由圆心C (3,3)到切线x +y =b 的距离等于圆C 的半径,可得|3+3-b |12+12=2, 即|b -6|=22,解得b =6±22,所以x +y 的最大值为6+22,最小值为6-2 2.12.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得的线段长为22,在y 轴上截得的线段长为2 3.(1)求圆心P 的轨迹方程; (2)若P 点到直线y =x 的距离为22,求圆P 的方程. 解 (1)设P (x ,y ),圆P 的半径为r , 则y 2+2=r 2,x 2+3=r 2. ∴y 2+2=x 2+3,即y 2-x 2=1. ∴P 点的轨迹方程为y 2-x 2=1. (2)设P 点的坐标为(x 0,y 0), 则|x 0-y 0|2=22,即|x 0-y 0|=1. ∴y 0-x 0=±1,即y 0=x 0±1.①当y 0=x 0+1时,由y 20-x 20=1,得(x 0+1)2-x 20=1.∴⎩⎪⎨⎪⎧x 0=0,y 0=1,∴r 2=3.∴圆P 的方程为x 2+(y -1)2=3.②当y 0=x 0-1时,由y 20-x 20=1,得(x 0-1)2-x 20=1. ∴⎩⎪⎨⎪⎧x 0=0,y 0=-1,∴r 2=3.∴圆P 的方程为x 2+(y +1)2=3. 综上所述,圆P 的方程为x 2+(y ±1)2=3.13.已知圆C :(x -3)2+(y -4)2=1,设点P 是圆C 上的动点.记d =|PB |2+|PA |2,其中A (0,1),B (0,-1),则d 的最大值为________.答案 74解析 设P (x 0,y 0),d =|PB |2+|PA |2=x 20+(y 0+1)2+x 20+(y 0-1)2=2(x 20+y 20)+2.x 20+y 20为圆上任一点到原点距离的平方,∴(x 20+y 20)max =(5+1)2=36,∴d max =74.14.已知动点P (x ,y )满足x 2+y 2-2|x |-2|y |=0,O 为坐标原点,则x 2+y 2的最大值为________. 答案 2 2 解析x 2+y 2表示曲线上的任意一点(x ,y )到原点的距离.当x ≥0,y ≥0时,x 2+y 2-2x -2y =0化为()x -12+()y -12=2,曲线上的点到原点的距离的最大值为2×2=22,当x <0,y <0时,x 2+y 2+2x +2y =0化为()x +12+()y +12=2,曲线上的点到原点的距离的最大值为2×2=22,当x ≥0,y <0时,x 2+y 2-2x +2y =0化为()x -12+()y +12=2,曲线上的点到原点的距离的最大值为2×2=22,当x <0,y ≥0时,x 2+y 2+2x -2y =0化为()x +12+()y -12=2,曲线上的点到原点的距离的最大值为2×2=2 2.综上可知,x 2+y 2的最大值为2 2.15.圆x 2+y 2+4x -12y +1=0关于直线ax -by +6=0(a >0,b >0)对称,则2a +6b的最小值是( ) A.2 3 B.203 C.323 D.163答案 C解析 由圆x 2+y 2+4x -12y +1=0知,其标准方程为(x +2)2+(y -6)2=39,∵圆x 2+y 2+4x -12y +1=0关于直线ax -by +6=0(a >0,b >0)对称,∴该直线经过圆心(-2,6),即-2a -6b +6=0,∴a +3b =3(a >0,b >0), ∴2a +6b =23(a +3b )⎝ ⎛⎭⎪⎫1a +3b =23⎝ ⎛⎭⎪⎫1+3a b +3b a +9≥23⎝⎛⎭⎪⎫10+23a b ·3b a =323,当且仅当3b a =3ab,即a =b 时取等号,故选C.16.已知圆C 截y 轴所得的弦长为2,圆心C 到直线l :x -2y =0的距离为55,且圆C 被x 轴分成的两段弧长之比为3∶1,求圆C 的方程.解 设圆C 的方程为(x -a )2+(y -b )2=r 2,则点C 到x 轴、y 轴的距离分别为|b |,|a |.由题意可知⎩⎪⎨⎪⎧r 2=2b 2,r 2=a 2+1,|a -2b |5=55,∴⎩⎪⎨⎪⎧ a =-1,b =-1,r 2=2或⎩⎪⎨⎪⎧a =1,b =1,r 2=2.故所求圆C 的方程为(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2.。
高考数学大一轮复习第九章平面解析几何9.3圆的方程教案(含解析)

§9.3圆的方程考情考向分析以考查圆的方程为主,与圆有关的轨迹问题、最值问题也是考查的热点,属中档题.题型主要以填空题为主,要求相对较低,但内容很重要,在解答题中也会出现.圆的定义与方程概念方法微思考1.如何确定圆的方程?其步骤是怎样的?提示确定圆的方程的主要方法是待定系数法,大致步骤:(1)根据题意,选择标准方程或一般方程.(2)根据条件列出关于a,b,r或D,E,F的方程组.(3)解出a,b,r或D,E,F代入标准方程或一般方程.2.点与圆的位置关系有几种?如何判断?提示点和圆的位置关系有三种.已知圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)(1)点在圆上:(x0-a)2+(y0-b)2=r2;(2)点在圆外:(x0-a)2+(y0-b)2>r2;(3)点在圆内:(x0-a)2+(y0-b)2<r2.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)方程(x +a )2+(y +b )2=t 2(t ∈R )表示圆心为(a ,b ),半径为t 的圆.( × ) (2)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.( √ )(3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0.( √ ) (4)方程x 2+2ax +y 2=0一定表示圆.( × )(5)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( √ ) 题组二 教材改编2.[P111练习T4]圆x 2+y 2-4x +6y =0的圆心坐标是________. 答案 (2,-3)解析 由(x -2)2+(y +3)2=13,知圆心坐标为(2,-3).3.[P111习题T1(3)]已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的标准方程为________________. 答案 (x -2)2+y 2=10 解析 设圆心坐标为(a ,0),易知(a -5)2+(-1)2=(a -1)2+(-3)2, 解得a =2,∴圆心为(2,0),半径为10, ∴圆C 的标准方程为(x -2)2+y 2=10. 题组三 易错自纠4.若方程x 2+y 2+mx -2y +3=0表示圆,则m 的取值范围是________________. 答案 (-∞,-22)∪(22,+∞)解析 将x 2+y 2+mx -2y +3=0化为圆的标准方程得⎝ ⎛⎭⎪⎫x +m 22+(y -1)2=m 24-2.由其表示圆可得m 24-2>0,解得m <-22或m >2 2.5.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是________. 答案 -1<a <1解析 ∵点(1,1)在圆内, ∴(1-a )2+(a +1)2<4,即-1<a <1.6.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是________________. 答案 (x -2)2+(y -1)2=1解析 由于圆心在第一象限且与x 轴相切,可设圆心为(a ,1)(a >0), 又圆与直线4x -3y =0相切, ∴|4a -3|5=1,解得a =2或a =-12(舍去). ∴圆的标准方程为(x -2)2+(y -1)2=1.题型一 圆的方程例1求经过点A (-2,-4),且与直线l :x +3y -26=0相切于点B (8,6)的圆的方程. 解 方法一 设圆心为C ,所求圆的方程为x 2+y 2+Dx +Ey +F =0, 则圆心C ⎝ ⎛⎭⎪⎫-D 2,-E 2,∴k CB =6+E28+D 2.∵圆C 与直线l 相切,∴k CB ·k l =-1, 即6+E28+D 2·⎝ ⎛⎭⎪⎫-13=-1.①又有(-2)2+(-4)2-2D -4E +F =0, ② 又82+62+8D +6E +F =0.③联立①②③,可得D =-11,E =3,F =-30, ∴所求圆的方程为x 2+y 2-11x +3y -30=0. 方法二 设圆的圆心为C ,则CB ⊥l , 可得CB 所在直线的方程为y -6=3(x -8), 即3x -y -18=0.①由A (-2,-4),B (8,6),得AB 的中点坐标为(3,1). 又k AB =6+48+2=1,∴AB 的垂直平分线的方程为y -1=-(x -3),即x +y -4=0.②由①②联立,解得⎩⎪⎨⎪⎧x =112,y =-32.即圆心坐标为⎝ ⎛⎭⎪⎫112,-32.∴所求圆的半径r =⎝ ⎛⎭⎪⎫112-82+⎝ ⎛⎭⎪⎫-32-62=1252, ∴所求圆的方程为⎝⎛⎭⎪⎫x -1122+⎝ ⎛⎭⎪⎫y +322=1252.思维升华 (1)直接法:直接求出圆心坐标和半径,写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,求出a ,b ,r 的值; ②选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值. 跟踪训练1(1)(2018·如皋模拟)已知圆C 过点(2,3),且与直线x -3y +3=0相切于点(0,3),则圆C 的方程为________________. 答案 (x -1)2+y 2=4解析 设圆心为(a ,b ),半径为r , 则⎩⎪⎨⎪⎧b -3a×33=-1,(a -2)2+(b -3)2=a 2+(b -3)2,解得a =1,b =0,则r =2, 即所求圆的方程为(x -1)2+y 2=4.(2)一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,则该圆的方程为______________________.答案 x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0 解析 方法一 ∵所求圆的圆心在直线x -3y =0上, ∴设所求圆的圆心为(3a ,a ),又所求圆与y 轴相切,∴半径r =3|a |,又所求圆在直线y =x 上截得的弦长为27,圆心(3a ,a )到直线y =x 的距离d =|2a |2,∴d 2+(7)2=r 2,即2a 2+7=9a 2,∴a =±1.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9,即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.方法二 设所求圆的方程为(x -a )2+(y -b )2=r 2, 则圆心(a ,b )到直线y =x 的距离为|a -b |2,∴r 2=(a -b )22+7,即2r 2=(a -b )2+14.① 由于所求圆与y 轴相切,∴r 2=a 2,② 又∵所求圆的圆心在直线x -3y =0上,∴a -3b =0,③联立①②③,解得⎩⎪⎨⎪⎧a =3,b =1,r 2=9或⎩⎪⎨⎪⎧a =-3,b =-1,r 2=9.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9, 即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.方法三 设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为⎝ ⎛⎭⎪⎫-D 2,-E 2,半径r =12D 2+E 2-4F .在圆的方程中,令x =0,得y 2+Ey +F =0. 由于所求圆与y 轴相切,∴Δ=0,则E 2=4F .①圆心⎝ ⎛⎭⎪⎫-D 2,-E2到直线y =x 的距离为d =⎪⎪⎪⎪⎪⎪-D 2+E 22,由已知得d 2+(7)2=r 2, 即(D -E )2+56=2(D 2+E 2-4F ).②又圆心⎝ ⎛⎭⎪⎫-D 2,-E 2在直线x -3y =0上,∴D -3E =0.③联立①②③,解得⎩⎪⎨⎪⎧ D =-6,E =-2,F =1或⎩⎪⎨⎪⎧D =6,E =2,F =1.故所求圆的方程为x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0. 题型二 与圆有关的最值问题例2已知点(x ,y )在圆(x -2)2+(y +3)2=1上,求x +y 的最大值和最小值. 解 设t =x +y ,则y =-x +t ,t 可视为直线y =-x +t 在y 轴上的截距,∴x +y 的最大值和最小值就是直线与圆有公共点时直线在y 轴上的截距的最大值和最小值,即直线与圆相切时在y 轴上的截距.由直线与圆相切得圆心到直线的距离等于半径, 即|2+(-3)-t |2=1,解得t =2-1或t =-2-1. ∴x +y 的最大值为2-1,最小值为-2-1. 引申探究1.在本例的条件下,求yx的最大值和最小值.解 y x 可视为点(x ,y )与原点连线的斜率,y x的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y =kx ,由直线与圆相切得圆心到直线的距离等于半径,即|2k +3|k 2+1=1,解得k =-2+233或k =-2-233,∴y x 的最大值为-2+233,最小值为-2-233.2.在本例的条件下,求x 2+y 2+2x -4y +5的最大值和最小值. 解x 2+y 2+2x -4y +5=(x +1)2+(y -2)2,求它的最值可视为求点(x ,y )到定点(-1,2)的距离的最值,可转化为求圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点(-1,2)的距离为34,∴x 2+y 2+2x -4y +5的最大值为34+1,最小值为34-1. 思维升华与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法. ①形如u =y -bx -a型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离的平方的最值问题. 跟踪训练2已知实数x ,y 满足方程x 2+y 2-4x +1=0. 求:(1)y x的最大值和最小值; (2)y -x 的最大值和最小值; (3)x 2+y 2的最大值和最小值. 解 原方程可化为(x -2)2+y 2=3, 表示以(2,0)为圆心,3为半径的圆.(1)y x 的几何意义是圆上一点与原点连线的斜率,所以设y x=k ,即y =kx .当直线y =kx 与圆相切时(如图),斜率k 取最大值和最小值,此时|2k -0|k 2+1=3,解得k =± 3.所以y x的最大值为3,最小值为- 3.(2)y -x 可看作是直线y =x +b 在y 轴上的截距,如图所示,当直线y =x +b 与圆相切时,其在y 轴上的截距b 取得最大值和最小值,此时|2-0+b |2=3,解得b =-2± 6.所以y -x 的最大值为-2+6,最小值为-2- 6.(3)如图所示,x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为(2-0)2+(0-0)2=2, 所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.题型三 与圆有关的轨迹问题例3已知Rt△ABC 的斜边为AB ,且A (-1,0),B (3,0).求: (1)直角顶点C 的轨迹方程; (2)直角边BC 的中点M 的轨迹方程.解 (1)方法一 设C (x ,y ),因为A ,B ,C 三点不共线,所以y ≠0. 因为AC ⊥BC ,且BC ,AC 斜率均存在, 所以k AC ·k BC =-1, 又k AC =y x +1,k BC =y x -3,所以y x +1·yx -3=-1,化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).方法二 设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知CD =12AB =2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0), 将x 0=2x -3,y 0=2y 代入得(2x -4)2+(2y )2=4, 即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).思维升华求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: ①直接法:直接根据题目提供的条件列出方程. ②定义法:根据圆、直线等定义列方程. ③几何法:利用圆的几何性质列方程.④相关点代入法:找到要求点与已知点的关系,代入已知点满足的关系式.跟踪训练3设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为两边作平行四边形MONP ,求点P 的轨迹.解 如图,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y2,线段MN 的中点坐标为⎝⎛⎭⎪⎫x 0-32,y 0+42.因为平行四边形的对角线互相平分,所以x 2=x 0-32,y 2=y 0+42,整理得⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4,又点N (x 0,y 0)在圆x 2+y 2=4上, 所以(x +3)2+(y -4)2=4.所以点P 的轨迹是以(-3,4)为圆心,2为半径的圆,直线OM 与轨迹相交于两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285,不符合题意,舍去,所以点P 的轨迹为(x +3)2+(y -4)2=4,除去两点⎝⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285.1.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________. 答案 (-2,-4)解析 由题意得a 2=a +2,a =-1或2. 当a =-1时方程为x 2+y 2+4x +8y -5=0,即(x +2)2+(y +4)2=25,圆心为(-2,-4),半径为5;当a =2时方程为4x 2+4y 2+4x +8y +10=0,⎝ ⎛⎭⎪⎫x +122+(y +1)2=-54不表示圆.2.已知圆C :x 2+y 2+kx +2y =-k 2,当圆C 的面积取最大值时,圆心C 的坐标为__________. 答案 (0,-1)解析 圆C 的方程可化为⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=-34k 2+1,所以当k =0时,圆C 的面积最大,此时圆心C 的坐标为(0,-1).3.若圆C 经过坐标原点与点(4,0),且与直线y =1相切,则圆C 的方程是__________________.答案 (x -2)2+⎝ ⎛⎭⎪⎫y +322=254解析 因为圆的弦的垂直平分线必过圆心且圆经过点(0,0)和(4,0),所以设圆心为(2,m ). 又因为圆与直线y =1相切,所以22+m 2=|1-m |, 解得m =-32.所以圆C 的方程为(x -2)2+⎝ ⎛⎭⎪⎫y +322=254.4.已知圆C :x 2+y 2-2x +4y +1=0,那么与圆C 有相同的圆心,且经过点(-2,2)的圆的方程是______________. 答案 (x -1)2+(y +2)2=25解析 设出要求的圆的方程为(x -1)2+(y +2)2=r 2,再代入点(-2,2),可以求得圆的半径为5.5.已知圆M 与直线3x -4y =0及3x -4y +10=0都相切,圆心在直线y =-x -4上,则圆M 的方程为________. 答案 (x +3)2+(y +1)2=1解析 到直线3x -4y =0及3x -4y +10=0的距离都相等的直线方程为3x -4y +5=0,联立方程组⎩⎪⎨⎪⎧3x -4y +5=0,y =-x -4,解得⎩⎪⎨⎪⎧x =-3,y =-1,又两平行线之间的距离为2,所以所求圆的半径为1,从而圆M 的方程为(x +3)2+(y +1)2=1.6.圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是________________. 答案 x 2+y 2-10y =0解析 根据题意,设圆心坐标为(0,r ),半径为r , 则32+(r -1)2=r 2,解得r =5,可得圆的方程为x 2+y 2-10y =0. 7.圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是________________. 答案 (x -1)2+(y -3)2=4解析 设圆(x -2)2+y 2=4的圆心(2,0)关于直线y =33x 对称的点的坐标为(a ,b ), 则有⎩⎪⎨⎪⎧b a -2·33=-1,b 2=33·a +22,解得a =1,b =3,从而所求圆的方程为(x -1)2+(y -3)2=4.8.如果圆(x -a )2+(y -a )2=8上总存在到原点的距离为2的点,则实数a 的取值范围是________________. 答案 [-3,-1]∪[1,3]解析 圆(x -a )2+(y -a )2=8的圆心(a ,a )到原点的距离为|2a |,半径r =22, 由圆(x -a )2+(y -a )2=8上总存在点到原点的距离为2,得22-2≤|2a |≤22+2,∴1≤|a |≤3,解得1≤a ≤3或-3≤a ≤-1. ∴实数a 的取值范围是[-3,-1]∪[1,3].9.平面内动点P 到两点A ,B 的距离之比为常数λ(λ>0,且λ≠1),则动点P 的轨迹叫做阿波罗尼斯圆,若已知A (-2,0),B (2,0),λ=12,则此阿波罗尼斯圆的方程为____________________.答案 x 2+y 2+203x +4=0 解析 由题意,设P (x ,y ),则(x +2)2+y 2(x -2)2+y 2=12, 化简可得x 2+y 2+203x +4=0. 10.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是________________. 答案 (x -2)2+(y +1)2=1解析 设圆上任一点坐标为(x 0,y 0),x 20+y 20=4,连线中点坐标为(x ,y ), 则⎩⎪⎨⎪⎧ 2x =x 0+4,2y =y 0-2,解得⎩⎪⎨⎪⎧ x 0=2x -4,y 0=2y +2, 代入x 20+y 20=4中,得(x -2)2+(y +1)2=1.11.已知点P (x ,y )在圆C :x 2+y 2-6x -6y +14=0上,(1)求y x的最大值和最小值;(2)求x +y 的最大值和最小值.解 方程x 2+y 2-6x -6y +14=0可变形为(x -3)2+(y -3)2=4,则圆C 的半径为2.(1)(转化为斜率的最值问题求解) y x表示圆上的点P 与原点连线的斜率,显然当PO (O 为原点)与圆C 相切时,斜率最大或最小,如图所示.设切线方程为y =kx ,即kx -y =0,由圆心C (3,3)到切线的距离等于圆C 的半径,可得|3k -3|k 2+1=2,解得k =9±2145. 所以y x 的最大值为9+2145,最小值为9-2145. (2)(转化为截距的最值问题求解)设x +y =b ,则b 表示动直线y =-x +b 在y 轴上的截距,显然当动直线y =-x +b 与圆C 相切时,b 取得最大值或最小值,如图所示.由圆心C (3,3)到切线x +y =b 的距离等于圆C 的半径,可得|3+3-b |12+12=2, 即|b -6|=22,解得b =6±22,所以x +y 的最大值为6+22,最小值为6-2 2.12.已知点A (-3,0),B (3,0),动点P 满足PA =2PB .(1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求QM 的最小值.解 (1)设点P 的坐标为(x ,y ), 则(x +3)2+y 2=2(x -3)2+y 2.化简可得(x -5)2+y 2=16,此方程即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图所示.由题意知直线l 2是此圆的切线,连结CQ ,则QM =CQ 2-CM 2=CQ 2-16,当QM 最小时,CQ 最小,此时CQ ⊥l 1, CQ =|5+3|2=42, 则QM 的最小值为32-16=4.13.已知圆C :(x -3)2+(y -4)2=1,设点P 是圆C 上的动点.记d =PB 2+PA 2,其中A (0,1),B (0,-1),则d 的最大值为________.答案 74解析 设P (x 0,y 0),d =PB 2+PA 2=x 20+(y 0+1)2+x 20+(y 0-1)2=2(x 20+y 20)+2.x 20+y 20为圆上任一点到原点距离的平方,∴(x 20+y 20)max =(5+1)2=36,∴d max =74.14.已知圆C 截y 轴所得的弦长为2,圆心C 到直线l :x -2y =0的距离为55,且圆C 被x 轴分成的两段弧长之比为3∶1,则圆C 的方程为__________________________. 答案 (x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2解析 设圆C 的方程为(x -a )2+(y -b )2=r 2,则点C 到x 轴、y 轴的距离分别为|b |,|a |. 由题意可知⎩⎪⎨⎪⎧ r 2=2b 2,r 2=a 2+1,|a -2b |5=55,∴⎩⎪⎨⎪⎧ a =-1,b =-1,r 2=2或⎩⎪⎨⎪⎧ a =1,b =1,r 2=2. 故所求圆C 的方程为(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2.15.若圆x 2+y 2+4x -12y +1=0关于直线ax -by +6=0(a >0,b >0)对称,则2a +6b的最小值是________.答案 323解析 由圆x 2+y 2+4x -12y +1=0知,其标准方程为(x +2)2+(y -6)2=39,∵圆x 2+y 2+4x -12y +1=0关于直线ax -by +6=0(a >0,b >0)对称,∴该直线经过圆心(-2,6),即-2a -6b +6=0,∴a +3b =3(a >0,b >0), ∴2a +6b =23(a +3b )⎝ ⎛⎭⎪⎫1a +3b =23⎝ ⎛⎭⎪⎫1+3a b +3b a +9≥23⎝ ⎛⎭⎪⎫10+2 3a b ·3b a =323, 当且仅当3b a =3a b,即a =b 时取等号. 16.已知动点P (x ,y )满足x 2+y 2-2|x |-2|y |=0,O 为坐标原点,求x 2+y 2的最大值. 解 x 2+y 2表示曲线上的任意一点(x ,y )到原点的距离.当x ≥0,y ≥0时,x 2+y 2-2x -2y =0化为()x -12+()y -12=2,曲线上的点到原点的距离的最大值为2×2=22,当x <0,y <0时,x 2+y 2+2x +2y =0化为()x +12+()y +12=2,曲线上的点到原点的距离的最大值为2×2=22,当x ≥0,y <0时,x 2+y 2-2x +2y =0化为()x -12+()y +12=2,曲线上的点到原点的距离的最大值为2×2=22,当x <0,y ≥0时,x 2+y 2+2x -2y =0化为()x +12+()y -12=2,曲线上的点到原点的距离的最大值为2×2=2 2. 综上可知,x 2+y 2的最大值为2 2.。
【K12教育学习资料】2018届高三数学一轮复习第九章平面解析几何第三节圆的方程夯基提能1

第三节圆的方程A组基础题组1.若圆x2+y2+2ax-b2=0的半径为2,则点(a,b)到原点的距离为( )A.1B.2C.D.42.方程|x|-1=-所表示的曲线是( )A.一个圆B.两个圆C.半个圆D.两个半圆3.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是( )A.(x-2)2+(y+1)2=1B.(x-2)2+(y+1)2=4C.(x+4)2+(y-2)2=4D.(x+2)2+(y-1)2=14.已知圆C与直线y=x及x-y-4=0都相切,圆心在直线y=-x上,则圆C的方程为( )A.(x+1)2+(y-1)2=2B.(x+1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x-1)2+(y+1)2=25.已知圆x2+y2-4ax+2by+b2=0(a>0,b>0)关于直线x-y-1=0对称,则ab的最大值是.6.若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.7.已知圆C经过A(5,2),B(-1,4)两点,圆心在x轴上,则圆C的方程为.8.当方程x2+y2+kx+2y+k2=0所表示的圆的面积最大时,直线y=(k-1)x+2的倾斜角α= .9.已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4(1)求直线CD的方程;(2)求圆P的方程.10.在平面直角坐标系xOy中,已知圆P在x轴上截得的线段长为2,在y轴上截得的线段长为2.(1)求圆心P的轨迹方程;(2)若点P到直线y=x的距离为,求圆P的方程.B组提升题组11.已知点A(-1,0),B(0,2),点P是圆(x-1)2+y2=1上任意一点,则△PAB面积的最大值与最小值分别是( )A.2,(4-)B.(4+),(4-C.,4-D.(+2),(-2)12.已知圆C:(x-3)2+(y-4)2=1和点A(-m,0),B(m,0)(m>0).若圆C上存在点P,使得∠APB=90°,则m的最大值为( )A.7B.6C.5D.413.设点P是函数y=--图象上的任意一点,点Q坐标为(2a,a-3)(a∈R),则|PQ|的最小值为.14.在以O为原点的直角坐标系中,点A(4,-3)为△OAB的直角顶点,已知|AB|=2|OA|,且点B的纵坐标大于0.(1)求;(2)求圆x2-6x+y2+2y=0关于直线OB对称的圆的方程.15.已知M(m,n)为圆C:x2+y2-4x-14y+45=0上任意一点.(1)求m+2n的最大值;(2)求-的最大值和最小值.答案全解全析11.已知点A(-1,0),B(0,2),点P是圆(x-1)2+y2=1上任意一点,则△PAB面积的最大值与最小值分别是( )A.2,(4-)B.(4+),(4-)C.,4-D.(+2),(12.已知圆C:(x-3)2+(y-4)2=1和点A(-m,0),B(m,0)(m>0).若圆C上存在点P,使得∠APB=90°,则m的最大值为( )A.7B.6C.5D.413.设点P是函数y=--图象上的任意一点,点Q坐标为(2a,a-3)(a∈R),则|PQ|的最小值为.14.在以O为原点的直角坐标系中,点A(4,-3)为△OAB的直角顶点,已知|AB|=2|OA|,且点B的纵坐标大于0.(1)求;(2)求圆x2-6x+y2+2y=0关于直线OB对称的圆的方程.15.已知M(m,n)为圆C:x2+y2-4x-14y+45=0上任意一点.(1)求m+2n的最大值;(2)求-的最大值和最小值.。
高三数学一轮复习第九章平面解析几何第三节圆的方程课件理

③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等等,这些 用语往往体现了老师的思路。来自:学习方法网
④ 紧跟老师的推导过程抓住老师的思路。老师在课堂上讲解某一结论时,一般有一个推导过程,如数学问题的来龙去脉、物理概念的抽象归纳、语 文课的分析等。感悟和理解推导过程是一个投入思维、感悟方法的过程,这有助于理解记忆结论,也有助于提高分析问题和运用知识的能力。
方法技巧 求与圆有关的轨迹问题时,根据题设条件的不同采用以下方法:(1)直接 法:直接根据题设给定的条件列出方程;(2)定义法:根据圆的定义列方程; (3)几何法:利用圆的几何性质列方程;(4)代入法:找出要求的点与已知点 的关系,代入已知点满足的关系式,从而得出方程.
3-1 已知定点M(-3,4),动点N在圆x2+y2=4上运动,点O是坐标原点,以
解析 易知|PA|的最小值=|PC|的最小值-圆的半径.由例题知圆心C与点 P的最小距离为3.又因为圆x2+y2-2x-2y+1=0的半径为1,所以|PA|的最小 值为3-1=2.
变式2-2 在本例(2)的条件下,求y-x的最大值和最小值.
解析 y-x可看作是直线y=x+b在y轴上的截距,当直线y=x+b与圆相切时,
纵截距b取得最大值或最小值,此时 | 2 =0 ,解b |得b3=-2± .
6
2
所以y-x的最大值为-2+ 6,最小值为-2- . 6
变式2-3 在本例(2)的条件下,求x2+y2的最大值和最小值. 解析 x2+y2表示圆上的点与原点的距离的平方,由平面几何知识知,在 原点和圆心连线与圆的两个交点处取得最大值和最小值. 又圆心到原点的距离为 (=22,0)2(00)2 所以x2+y2的最大值是(2+ 3)2=7+4 , 3 x2+y2的最小值是(2- 3)2=7-4 .3
高三数学一轮总复习第九章平面解析几何第三节圆的方程课件理ppt版本

1.圆的定义及方程 定义 平面内与定点的距离等于定长的点的集合(轨迹) 标准 (x-a)2+(y-b)2=r2(r>0) 圆心:(a,b),半径: r 方程
一般 方程
x2+y2+Dx+Ey+F=0, (D2+E2-4F>0)
圆心: -D2 ,-E2 ,
半径: 1 2
D2+E2-4F
2.点与圆的位置关系
点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:
(1)若M(x0,y0)在圆外,则 (x0-a)2+(y0-b)2>r2 . (2)若M(x0,y0)在圆上,则 (x0-a)2+(y0-b)2=r2 . (3)若M(x0,y0)在圆内,则 (x0-a)2+(y0-b)2<r2 .
∴r2=3,
[由题悟法] 与圆有关的轨迹问题的 4 种求法 (1)直接法:直接根据题目提供的条件列出方程. (2)定义法:根据圆、直线等定义列方程. (3)几何法:利用圆与圆的几何性质列方程. (4)代入法:找到要求点与已知点的关系,代入已知点 满足的关系式等.
[即时应用] 经过点A(4,0)作圆O:x2+y2=4的割线ABC,求弦BC 的中点P的轨迹方程.
解:法一:(直接法)设点 P 的坐标为(x,y),连结 OP.
当 x≠法0二时:,(定OP义,法AP)取所O在A直的线中的点斜为率M均,存则在点,M的坐
则 又
kOO标 由 PP⊥=为 圆xBy的,(C2,,k定0A)∴P,义=k且,xO- PPy知·kM4A点.P==P12-的O1A轨,=迹即2方.yx·x程-y是4=(x--12,)2+y2=
考点三 与圆有关的轨迹问题重点保分型考点——师生共研
[典例引领] 在平面直角坐标系xOy中,已知圆P在x轴上截得线段 长为2 2,在y轴上截得线段长为2 3. (1)求圆心P的轨迹方程; (2)若P点到直线y=x的距离为 22,求圆P的方程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 - 第3讲 圆的方程 最新考纲 掌握确定圆的几何要素,掌握圆的标准方程与一般方程.
知 识 梳 理 1.圆的定义和圆的方程 定义 平面内到定点的距离等于定长的点的轨迹叫做圆
方 程
标准 (x-a)2+(y-b)2=r2(r>0) 圆心C(a,b) 半径为r
一般 x2+y2+Dx+Ey+F=0
(D2+E2-4F>0)
充要条件:D2+E2-4F>0 圆心坐标:-D2,-E2
半径r=12D2+E2-4F 2.点与圆的位置关系 平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系: (1)d>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;
(2)d=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;
(3)d<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.
诊 断 自 测 1.判断正误(在括号内打“√”或“×”) (1)确定圆的几何要素是圆心与半径.( ) (2)方程x2+y2=a2表示半径为a的圆.( ) (3)方程x2+y2+4mx-2y+5m=0表示圆.( ) (4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.( ) 解析 (2)当a=0时,x2+y2=a2表示点(0,0);当a<0时,表示半径为|a|的圆.
(3)当(4m)2+(-2)2-4×5m>0,即m<14或m>1时才表示圆. 答案 (1)√ (2)× (3)× (4)√ 2.(2015·北京卷)圆心为(1,1)且过原点的圆的方程是( ) A.(x-1)2+(y-1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2 D.(x-1)2+(y-1)2=2 解析 由题意得圆的半径为2,故该圆的方程为(x-1)2+(y-1)2=2,故选D. 答案 D - 2 -
3.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是( ) A.(-1,1) B.(0,1) C.(-∞,-1)∪(1,+∞) D.a=±1 解析 因为点(1,1)在圆的内部, 所以(1-a)2+(1+a)2<4,所以-1答案 A 4.(2016·浙江卷)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是________,半径是________. 解析 由已知方程表示圆,则a2=a+2, 解得a=2或a=-1. 当a=2时,方程不满足表示圆的条件,故舍去. 当a=-1时,原方程为x2+y2+4x+8y-5=0, 化为标准方程为(x+2)2+(y+4)2=25, 表示以(-2,-4)为圆心,半径为5的圆. 答案 (-2,-4) 5 5.(必修2P124A4改编)圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________. 解析 设圆心坐标为C(a,0), ∵点A(-1,1)和B(1,3)在圆C上, ∴|CA|=|CB|, 即(a+1)2+1=(a-1)2+9, 解得a=2,所以圆心为C(2,0), 半径|CA|=(2+1)2+1=10, ∴圆C的方程为(x-2)2+y2=10. 答案 (x-2)2+y2=10 6.(2017·湖州调研)若圆C与圆x2+y2+2x=0关于直线x+y-1=0对称,则圆心C的坐标为________;圆C的一般方程是________. 解析 已知圆x2+y2+2x=0的圆心坐标是(-1,0)、半径是1,设圆C的圆心(a,b),则有
ba+1
=1,
a-12+b2-1=0,
由此解得a=1,b=2,即圆心C的坐标为(1,2),因此圆C的方程是(x-
1)2+(y-2)2=1,即x2+y2-2x-4y+4=0. 答案 (1,2) x2+y2-2x-4y+4=0 - 3 -
考点一 圆的方程 【例1】 (1)(2017·金华调研)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为________. (2)已知圆C经过P(-2,4),Q(3,-1)两点,且在x轴上截得的弦长等于6,则圆C的方程为________. 解析 (1)法一 由已知kAB=0,所以AB的中垂线方程为x=3.① 过B点且垂直于直线x-y-1=0的直线方程为y-1=-(x-2),即x+y-3=0,②
联立①②,解得x=3,y=0,所以圆心坐标为(3,0),半径r=(4-3)2+(1-0)2=2, 所以圆C的方程为(x-3)2+y2=2. 法二 设圆的方程为(x-a)2+(y-b)2=r2(r>0),
∵点A(4,1),B(2,1)在圆上,故(4-a)2+(1-b)2=r2,(2-a)2+(1-b)2=r2,
又∵b-1a-2=-1,解得a=3,b=0,r=2, 故所求圆的方程为(x-3)2+y2=2. (2)设圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0), 将P,Q两点的坐标分别代入得
2D-4E-F=20,3D-E+F=-10. ①②
又令y=0,得x2+Dx+F=0.③ 设x1,x2是方程③的两根, 由|x1-x2|=6,得D2-4F=36,④ 由①,②,④解得D=-2,E=-4,F=-8,或D=-6,E=-8,F=0. 故所求圆的方程为 x2+y2-2x-4y-8=0或x2+y2-6x-8y=0.
答案 (1)(x-3)2+y2=2 (2)x2+y2-2x-4y-8=0或x2+y2-6x-8y=0 规律方法 求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法: (1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线; (2)代数法,即设出圆的方程,用待定系数法求解. - 4 -
【训练1】 (1)(2016·天津卷)已知圆C的圆心在x轴的正半轴上,点M(0,5)在圆C上,且圆心到直线2x-y=0的距离为455,则圆C的方程为________. (2)(2017·武汉模拟)以抛物线y2=4x的焦点为圆心,与该抛物线的准线相切的圆的标准方程为________. 解析 (1)因为圆C的圆心在x轴的正半轴上,设C(a,0),且a>0,所以圆心到直线2x-y
=0的距离d=2a5=455,解得a=2,所以圆C的半径r=|CM|=4+5=3,所以圆C的方程为(x-2)2+y2=9. (2)抛物线y2=4x的焦点为(1,0),准线为x=-1,故所求圆的圆心为(1,0),半径为2,所以该圆的标准方程为(x-1)2+y2=4. 答案 (1)(x-2)2+y2=9 (2)(x-1)2+y2=4 考点二 与圆有关的最值问题 【例2】 已知实数x,y满足方程x2+y2-4x+1=0.
(1)求yx的最大值和最小值; (2)求y-x的最大值和最小值; (3)求x2+y2的最大值和最小值. 解 原方程可化为(x-2)2+y2=3,表示以(2,0)为圆心,3为半径的圆.
(1)yx的几何意义是圆上一点与原点连线的斜率,
所以设yx=k,即y=kx. 当直线y=kx与圆相切时,斜率k取最大值或最小值,此时|2k-0|k2+1=3,解得k=±3(如图1). 所以yx的最大值为3,最小值为-3.
(2)y-x可看作是直线y=x+b在y轴上的截距,当直线y=x+b与圆相切时,纵截距b取得最大值或最小值,此时|2-0+b|2=3,解得b=-2±6(如图2). - 5 -
所以y-x的最大值为-2+6,最小值为-2-6. (3)x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图3). 又圆心到原点的距离为(2-0)2+(0-0)2=2, 所以x2+y2的最大值是(2+3)2=7+43,x2+y2的最小值是(2-3)2=7-43. 规律方法 把有关式子进行转化或利用所给式子的几何意义解题,充分体现了数形结合以及转化的数学思想,其中以下几类转化极为常见:
(1)形如m=y-bx-a的最值问题,可转化为动直线斜率的最值问题; (2)形如t=ax+by的最值问题,可转化为动直线截距的最值问题; (3)形如m=(x-a)2+(y-b)2的最值问题,可转化为两点间距离的平方的最值问题.
【训练2】 (1)(2017·义乌市诊断)圆心在曲线y=2x(x>0)上,与直线2x+y+1=0相切,且面积最小的圆的方程为( ) A.(x-2)2+(y-1)2=25 B.(x-2)2+(y-1)2=5 C.(x-1)2+(y-2)2=25 D.(x-1)2+(y-2)2=5 (2)(2014·全国Ⅱ卷)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是________.
解析 (1)设圆心坐标为Ca,2a(a>0),则半径r=2a+2a+15≥22a×2a+15=5,当且仅当2a=2a,即a=1时取等号. 所以当a=1时圆的半径最小,此时r=5,C(1,2),所以面积最小的圆的方程为(x-1)2+(y-2)2=5. (2)如图所示,过点O作OP⊥MN交MN于点P.
在Rt△OMP中,|OP|=|OM|·sin 45°, 又|OP|≤1,得|OM|≤1sin 45°=2. ∴|OM|=1+x20≤2,∴x20≤1. 因此-1≤x0≤1.