电场磁场公式概念对比.
电场与磁场的能量转化及计算方法

电场与磁场的能量转化及计算方法在物理学中,电场和磁场是两个重要的概念,它们不仅在我们日常生活中起着重要作用,而且在科学研究和技术应用中也扮演着重要角色。
本文将探讨电场和磁场之间的能量转化以及计算方法。
一、电场的能量转化电场是由电荷产生的力场,它可以对其他电荷施加力,并且具有能量。
当电荷在电场中移动时,电场对其做功,将电势能转化为动能。
这种能量转化可以通过以下公式计算:电场能量= 1/2 * ε * E^2 * V其中,ε是真空介电常数,E是电场强度,V是体积。
电场能量的计算方法可以通过对电场的积分来实现。
假设我们有一个电荷分布在空间中,电场强度在不同位置上有所变化。
我们可以将空间分成小的体积元,计算每个体积元内的电场能量,并对所有体积元的电场能量进行求和,即可得到总的电场能量。
二、磁场的能量转化磁场是由电流或磁体产生的力场,它也具有能量。
当电流通过导线时,磁场对电流产生力,并将电流的动能转化为磁场能量。
磁场能量的计算方法如下:磁场能量= 1/2 * μ * H^2 * V其中,μ是真空磁导率,H是磁场强度,V是体积。
与电场能量的计算类似,磁场能量的计算也可以通过对磁场的积分来实现。
我们可以将空间分成小的体积元,计算每个体积元内的磁场能量,并对所有体积元的磁场能量进行求和,即可得到总的磁场能量。
三、电场和磁场的能量转化电场和磁场之间存在着相互转化的关系。
当电流通过导线时,磁场会随之产生。
而当磁场发生变化时,会产生感应电场。
这种相互转化的过程可以通过麦克斯韦方程组来描述。
电场和磁场的能量转化可以通过以下公式计算:能量转化率 = 1/2 * (E * J + H * B)其中,E是电场强度,J是电流密度,H是磁场强度,B是磁感应强度。
这个公式表明,电场和磁场之间的能量转化是由电流和磁感应强度共同决定的。
当电流通过导线时,电场能量转化为磁场能量;而当磁场发生变化时,磁场能量转化为电场能量。
四、计算方法的应用电场和磁场的能量转化及其计算方法在科学研究和技术应用中具有重要意义。
电场__磁场__电磁感应基本知识点回顾

学习必备欢迎下载电场磁场电磁感应基本知识点回顾一:电场1.电场强度F(1)场强定义式:E(其中F为检验电荷所受电场力,q为检验电荷q电量,但场强与F、q均无关,而由场源电荷及该点位置决定)★★★本公式适用于任意电场(2)真空中点电荷电场场强:QE k r2★★★本公式仅适用于真空中的点电荷.......2.电势差表达式: U AB WAB(★★★两点电势差与WAB、q无关)q匀强电场中: U E d (★★★其中d为电场中两点沿电场线方向的距离)3.电势能(1)表达式: W AB U AB q二:磁场1、磁感应强度①表示磁场强弱的物理量.是矢量.②大小: B=F/Il (电流方向与磁感线垂直时的公式).③方向:左手定则:是磁感线的切线方向;是小磁针N 极受力方向;是小磁针静止时N 极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向.④单位:牛 /安米,也叫特斯拉,国际单位制单位符号T .2、磁通量与磁通密度1.磁通量Φ:穿过某一面积磁力线条数,是标量.2.磁通密度 B :垂直磁场方向穿过单位面积磁力线条数,即磁感应强度,是矢量.3.二者关系: B =Φ /S(当 B 与面垂直时),Φ= BScosθ, Scosθ为面积垂直于 B 方向上的投影,θ是 B 与 S 法线的夹角.3、安培力(左手定则)1.安培力:通电导线在磁场中受到的作用力叫做安培力2.安培力的计算公式:F= BILsin θ(θ是 I 与 B 的夹角);通电导线与磁场方向垂直时,即θ= 900,此时安培力有最大值;通电导线与磁场方向平行时,即00小值, F=0N;0 < B <90 时,安培力 F 介于 0 和最大值之间.θ= 00,此时安培力有最4、洛仑兹力(左手定则)磁场对运动电荷的作用力1.洛伦兹力的公式: f=qvB sin θ,θ 是 V 、 B 之间的夹角 .三、电磁感应E BLv右手定则(感应电流的方向磁感线方向导体运动方向)伸开右手,让拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四肢所指的方向就是感应电流的方向归纳:左、右手定则的应用电磁感应1、磁通量、磁通量变化、磁通量变化率对比表t磁通量磁通量变化物理某时刻穿过磁场中某个穿过某个面的磁通量随时意面的磁感线条数间的变化量义大BS ,S 为与2-1,或小 B 垂直的面积,不垂直式,B S,或计取 S 在与 B 垂直方向上的S B算投影注若穿过某个面有方向相开始和转过1800时平面都反的磁场,则不能直接用与磁场垂直,但穿过平面的意B S ,应考虑相反磁通量是不同的,一正一问方向的磁通量或抵消以负,其中=B· S,而不题后所剩余的磁通量是零2、电磁感应现象与电流磁效应的比较磁通量变化率t表述磁场中穿过某个面的磁通量变化快慢的物理量B S 或t tB Btt既不表示磁通量的大小也不表示磁通量变化的多少,在 =t 图像中,可用图线的斜率表示电磁感应现象电流磁效应关系利用磁场产生电流的现电流产生磁场电能够生磁,磁能够生电象3、产生感应电动势和感应电流的条件比较只要穿过闭合电路的磁通量发生变化,闭合电路中就有感应电流产生,即产生感应电流的条件有两个:产生感应电流的条件○1电路为闭合回路○2回路中磁通量发生变化,0不管电路闭合与否,只要电路中磁通量发生变化,电产生感应电动势的条件路中就有感应电动势产生4、感应电动势在电磁感应现象中产生的电动势叫感应电动势,产生感应电流比存在感应电动势,产生感应电动势的那部分导体相当于电源,电路断开时没有电流,但感应电动势仍然存在。
电磁场中的电场与磁场

电磁场中的电场与磁场电磁场是物理学中研究电荷和电流之间相互作用的一个重要领域。
在电磁场中,电场和磁场相互作用并相互影响,共同构成了电磁波传播的基础。
本文将深入探讨电磁场中电场与磁场的性质和相互关系。
电场描述了电荷在空间中的分布情况以及对其他电荷产生的作用力。
根据库仑定律,电场的强度与电荷量和距离的平方成反比。
电场的单位是伏特/米(V/m),代表了单位正电荷所受到的力。
磁场是由运动电荷产生的,并且只对运动的电荷有作用。
磁场的强度与电流的大小成正比,与距离的平方成反比。
磁场的单位是特斯拉(T),代表了单位电流所受到的力。
在电磁场中,电场和磁场之间有一种相互作用的关系,即洛伦兹力定律。
洛伦兹力定律描述了电荷在电磁场中受到的合力,是电场力和磁场力的叠加效应。
当电荷运动时,它既受到电场力的作用,也受到磁场力的作用。
在电磁场中,电场与磁场的相互作用使电荷具有了运动的趋势,同时也决定了电磁波的传播性质。
电磁波是一种能量的传播形式,由电场和磁场相互耦合而成。
当电场和磁场发生变化时,它们会相互激发,产生交叉的震荡,形成电磁波。
电磁波的传播速度是光速,也是一个常数,约为 3.00×10^8米/秒。
电场和磁场的变化规律决定了电磁波的频率和波长。
频率是指单位时间内电磁波通过某一点的次数,单位是赫兹(Hz)。
波长是指电磁波在空间中一个完整周期的长度,单位是米(m)。
电磁场的性质可以通过麦克斯韦方程组来描述。
麦克斯韦方程组是描述电磁场的基本规律,包括了四个方程式,分别是高斯定律、安培定律、法拉第电磁感应定律和位移电流定律。
通过麦克斯韦方程组,可以推导出电场和磁场的变化关系。
其中,法拉第电磁感应定律表明变化的磁场可以引起电场的产生,这也是电磁感应现象的基础。
而位移电流定律则说明变化的电场可以引起磁场的产生。
总结起来,电磁场中的电场和磁场相互作用并相互影响,构成了电磁波的传播基础。
电场描述了电荷的分布和作用力,磁场描述了电流的分布和作用力。
求高中物理电场,磁场所有公式

高中物理电场、磁场所有公式高中物理电场、磁场所有公式:1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/Am2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}3.洛仑兹力f=qVB(注V⊥B);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);1.[感应电动势的大小计算公式]:1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}3)E m=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。
(4)其它相关内容:自感/日光灯。
1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R 总3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/24.理想变压器原副线圈中的电压与电流及功率关系U1/U2=n1/n2; I1/I2=n2/n2; P入=P出5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻);6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。
高中物理电场公式大全_电场磁场公式

高中物理电场公式大全_电场磁场公式电场是高中物理教学中的重点和难点,学生更需要关注电场相关的公式,下面给大家带来的高中物理电场公式,希望对你有帮助。
高中物理电场公式1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB 两点在场强方向的距离(m)}6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/215.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直; (3)常见电场的电场线分布要求熟记〔见图[第二册P98]; (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关; (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面; (6)电容单位换算:1F=106μF=1012PF; (7)电子伏(eV)是能量的单位,1eV=1.60×10-19J。
电磁学公式大全

电磁学公式大全(一)电场1、库仑力:(适用条件:真空中点电荷)k= 9.0×109 N·m2/ c2 静电力恒量电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度:电场强度是表示电场强弱的物理量。
定义式:单位:N / C点电荷电场场强:匀强电场场强:3、电势,电势能:顺着电场线方向,电势越来越低。
4、电势差U,又称电压5、电场力做功和电势差的关系WAB = q UAB6、粒子通过加速电场7、粒子通过偏转电场的偏转量粒子通过偏转电场的偏转角8、电容器的电容电容器的带电量Q=cU平行板电容器的电容电压不变电量不变(二)直流电路1、电流强度的定义:微观式:I=nevs (n是单位体积电子个数,)2、电阻定律:电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。
单位:Ω·m 3、串联电路总电阻R=R1+R2+R3电压分配:功率分配:4、并联电路总电阻(并联的总电阻比任何一个分电阻小)两个电阻并联并联电路电流分配并联电路功率分配5、欧姆定律:(1)部分电路欧姆定律:变形:U=IR R=U/I(2)闭合电路欧姆定律:I = E/R+r E = U+Ir 路端电压:U = E -I r= IR输出功率:电源热功率:电源效率:6、电功和电功率:电功:W=IUt焦耳定律(电热)电功率P=IU纯电阻电路:非纯电阻电路:(三)磁场1、磁场的强弱用磁感应强度B 来表示:(条件:B垂直L)单位:T2、电流周围的磁场的磁感应强度的方向由安培(右手)定则决定。
(1)直线电流的磁场(2)通电螺线管、环形电流的磁场3、磁场力(1)安培力:磁场对电流的作用力。
公式方向:左手定则(2)洛仑兹力:磁场对运动电荷的作用力。
公式:f = qvB(B垂直v)方向:左手定则粒子在磁场中圆运动基本关系式解题关键画图,找圆心画半径粒子在磁场中圆运动半径和周期扩展资料:电磁学是研究电、磁、二者的相互作用现象,及其规律和应用的物理学分支学科。
高考物理电场与磁场公式总结-最新学习文档

高考物理电场与磁场公式总结高考物理电场公式1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109Nm2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}11.电场力做功与电势能变化ΔEAB=-WAB=-QuAb (电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ε:介电常数)14.带电粒子在电场中的加速(V0=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/215.带电粒子沿垂直电场方向以速度V0进入匀强电场时的偏转(不考虑重力作用的情况下)类平抛运动;垂直电场方向:匀速直线运动L=V0t,平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m强调:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;(3)常见电场的电场线分布要求熟记,见课本。
物理中的电场与磁场

物理中的电场与磁场电场与磁场是物理学中重要的概念,它们在我们日常生活和科学研究中都扮演着重要的角色。
本文将深入探讨电场和磁场的定义、性质以及它们在物理学中的应用。
一、电场的定义与性质电场是指电荷周围的一个力场,其作用是使得带电粒子受到电力的影响。
电场是由电荷产生的,并且可以通过电场线来表示。
电场强度表示单位正电荷在电场中所受到的力的大小。
根据库伦定律,我们知道电场强度与电荷的大小和距离的平方成反比。
换句话说,电场强度与电荷距离的平方成正比。
电场强度的单位是 N/C(牛/库仑)。
电场有向量和标量两种表示方式。
当考虑电场的方向时,我们使用电场向量,其箭头的方向指示了正电荷受到的力的方向。
当只考虑电场的大小时,我们使用电场标量。
电场具有叠加性,即多个电荷的电场可以相互叠加。
根据叠加原理,我们可以计算出在给定点的总电场强度。
二、磁场的定义与性质磁场是指由磁体产生的力场。
它对带电粒子和磁性物体都有影响。
磁场由磁场线来表示,磁场线的方向从南极到北极。
与电场类似,磁场也有磁场强度来表示力的大小。
磁场强度与磁体的性质和距离的平方成反比,类似于电场强度。
它的单位是 T(特斯拉)。
在磁场中,我们还要考虑磁势,它是标量,表示在某一点磁场的大小。
磁场具有指示性,即磁力线指示了在给定点带电粒子受到的力的方向。
由于磁力线永远不会穿过磁体,我们可以看到磁体的磁力线形成了一个循环。
三、电场与磁场的相互作用电场和磁场之间存在着一种相互作用现象,即洛伦兹力。
当一个带电粒子同时存在于电场和磁场中时,它将同时受到两个力的作用。
在电场中,带电粒子会受到电力的作用;在磁场中,带电粒子会受到洛伦兹力的作用。
洛伦兹力与带电粒子运动的速度和磁场强度有关。
当速度和磁场垂直时,洛伦兹力最大;当速度和磁场平行时,洛伦兹力为零。
这种相互作用对于许多技术应用都具有重要意义。
例如,磁共振成像(MRI)利用了电场和磁场的相互作用原理,能够生成人体内部的三维图像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁场 电场 类比
一 磁场强度
磁场强度在历史上最先由磁荷观点引出。类比于电荷的库仑定律,人们认为存在正负两种磁荷,并提出磁
荷的库仑定律。单位正点磁荷在磁场中所受的力被称为磁场强度H。后来安培提出分子电流假说,认为并不存
在磁荷,磁现象的本质是分子电流。自此磁场的强度多用磁感应强度B表示。但是在磁介质的磁化问题中,磁
场强度H作为一个导出的辅助量仍然发挥着重要作用。
磁荷意义下,磁场强度的定义为:
与电场强度类似。
在介质中,磁场强度则通常被定义为:
式中为磁化强度。
在国际单位制(SI)中,磁场强度的单位为安[培]/米()量纲为;在高斯单位制(CGS)中磁
场强度单位是奥[斯特]()。1安/米相当于奥。
简易定义:把磁场中某点磁感应强度B与介质磁导率μ的比值叫作该点的磁场强度。
磁场强度由磁感应强度与磁导率定义而来,起辅助作用,重要的是理解后两者。
介质中的磁场强度
在恒定磁场中磁场强度的闭合环路积分仅与环路所链环的传导电流有关而不含束缚分子电流,即
在真空中,磁场强度
麦克斯韦方程组
在时变电磁场中,磁场强度的闭合环路积分与环路所链环的全电流有关,但仍不包括束缚分子电流,即
全电流由传导电流与位移电流组成。此式的微分形式为
式中为传导电流密度;为电位移矢量的时间变化率,即位移电流密度,其面积积分为
。
磁路中磁场强度的计算公式
磁场强度的计算公式:
其中H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位为A;Le为测试
样品的有效磁路长度,单位为m。
二 磁位差
恒定磁场中无传导电流分布的空间区域内两点a与b之间的标量磁位之差(又称磁位降)。记为U m。
它与静电场中的电位差相似。其定义为H为沿ab曲线长度元dl处的磁场强度。在国际单位制(SI)中,磁位差
的单位为安(A)
三 磁通[量]
通过给定有向面S的磁感应强度B的通量。
中文名称:磁通[量];英文名称:magneticflux;定义:通过给定有向面S的磁感应强度B的通量。
设在磁感应强度为B的匀强磁场中,有一个面积为S且与磁场方向垂直的平面,磁感应强度B与面积S的乘积,
叫做穿过这个平面的磁通量,简称磁通。标量,符号“Φ”
四 磁感应强度 (也称磁通密度)
磁感应强度(magnetic flux density),描述磁场强弱和方向的物理量,是矢量,常用符号B表示,国际通用
单位为特斯拉(符号为T)。磁感应强度也被称为磁通量密度或磁通密度。在物理学中磁场的强弱使用磁感应强度
来表示,磁感应强度越大表示磁应感越强;磁感应强度越小,表示磁感应越弱。
这个物理量之所以叫做磁感应强度,而没有叫做磁场强度,是由于历史上磁场强度一词已用来表示另外一
个物理量了,区别:磁感应强度反映的是相互作用力,是两个参考点A与B之间的应力关系,而磁场强度是主体
单方的量,不管B方有没有参与,这个量是不变的
定义方法
电荷在电场中受到的电场力是一定的,方向与该点的电场方向相同或者相反。电流在磁场中某处所受的磁场
力(安培力),与电流在磁场中放置的方向有关,当电流方向与磁场方向平行时,电流受的安培力最小,等于零;
当电流方向与磁场方向垂直时,电流受的安培力最大。
点电荷q以速度v在磁场中运动时受到力f 的作用。在磁场给定的条件下,f的大小与电荷运动的方向有关 。
当v 沿某个特殊方向或与之反向时,受力为零;当v与这个特殊方向垂直时受力最大,为Fm。Fm与|q|及v成正比,
比值 与运动电荷无关,反映磁场本身的性质,定义为磁感应强度的大小,即。B的方向定义为:由正电荷所受最大
力Fm的方向转向电荷运动方向 v 时 ,右手螺旋前进的方向 。定义了B之后,运动电荷在磁场 B 中所受的力可
表为 F= QVB,此即洛伦兹力公式。
除利用洛伦兹力定义B外,也可以根据电流元Idl在磁场中所受安培力df=Idl×B来定义B,或根据磁矩m在
磁场中所受力矩M=m×B来定义B,三种定义,方法雷同,完全等价。
磁感应强度公式。
B=F/IL=F/qv=E/Lv =Φ/S
F:洛伦兹力或者安培力
q:电荷量
v:速度
E:感应电动势
Φ(=ΔBS或BΔS,B为磁感应强度,S为面积):磁通量
S:面积
定义式及量纲
定义式F=ILB
表达式B=F/IL
量纲
在国际单位制(SI)中,磁感应强度的单位是特斯拉[2],简称特(T)。在高斯单位制中,磁感应强度的单位是
高斯(Gs ),1T=10KGs等于10的四次方高斯。由于历史的原因,与电场强度E对应的描述磁场的基本物理量被称为
磁感应强度B,而另一辅助量却被称为磁场强度H,名实不符,容易混淆。通常所谓磁场,均指的是B。
B在数值上等于垂直于磁场方向长1 m,电流为1 A的导线所受磁场力的大小
B= F/IL (F=BIL而来)
注:磁场中某点的磁感应强度B是客观存在的,与是否放置通电导线无关,定义式F=BIL中要求一小段通电
导线应垂直于磁场放置才行,如果平行于磁场放置,则力F为零
常用计算式
编辑
无限长载流直导线外
其中,,为真空磁导率。r为该点到直导线距离。
圆电流圆心处
其中,r为圆半径。
无限大均匀载流平面外
其中,α是流过单位长度的电流。
一段载流圆弧在圆心处
其中,φ是该圆弧对应的圆心角,单位为弧度。
毕奥-萨伐尔定律
Idl表示恒定电流的一电流元,r表示从电流元指向某一场点P的径矢,式中B、dl、r均为矢量。
五 磁通链
磁通链就是磁通量乘以线圈的匝数。磁通链代表了单位导体截面通过磁通量的多少,就是磁通的强度。
用符号表示Ψ 单位为韦(伯)Wb
Ψ=N(匝数)*B(磁感应强度)*S(面积)
利用回路(粗导线构成)的磁通匝链数,计算了同轴电缆通以低频,高频电流时的自感。
六 磁动势
磁动势,的标准定义是电流流过导体所产生磁通量的势力(force),是用来度量磁场或电磁场的一种量,类似
于电场中的电动势或电压。它被描述为线圈所能产生磁通量的势力,这样科学家就能够用它来衡量或预见通电线
圈实际能够激发磁通量的势力。此外,永久磁铁也会有磁动势
公式
一、F=Φ·Rm,Φ=B*S(S为与磁场方向垂直的平面的面积),Rm=L/μA(L表示磁路长度,A表示磁路横
截面积)。
二、F = N·I,N表示线圈匝数,I表示线圈中的电流大小。
三、F = H·L,(H为磁场强度,与磁密度B和磁路材料等有关) L表示磁路长度。
公式一:作用在磁路上的磁动势 F 等于磁路内的磁通量 Φ 与磁阻Rm的乘积。
公式二:通电线圈产生的磁动势 F 等于线圈的匝数 N 和线圈中所通过的电流 I 的乘积,也叫磁通势,磁动势
F的单位是安培(A)。
公式三:F 是磁场强度H在磁路L上的积分。
感应电机的磁动势为:N-绕组匝数,单位为次数(turns)
I-绕组中的电流,单位为安培 (A)
Φ-磁通量,单位为韦伯 (Wb)
Rm-磁路的磁阻,单位为安培/韦伯 (A/Wb)
公式一又被称为霍普金斯定律或磁路欧姆定律.
单位
安培-匝数(At), 国际单位制。代表一匝导线线圈流过1安培电流时所产生的磁势。
吉伯 (gilbert 或Gi),是IEC1930 [1]提出的单位。属于厘米-克-秒制中的磁动势单位。与安培-匝数定义不同,是
一个比安培-匝数稍小的单位。这个单位是以英国物理学家和哲学家威廉·吉尔伯特 (1544–1603)的名字命名的。
。